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On the regularity of the pressure of weak solutions 
of Navier-Stokes equations 

By 

HERMANN SOHR and WOLF vON WAHL 

1. Introduction. Let O be a bounded domain or an exterior domain of R"  with n ~ 3. 
We assume that O has a smooth boundary 80,  i.e. 80  is of class C ~. On  o r : =  O X (0, T) 
with some T > 0, we consider the equations of Navier-Stokes 

(1.1) u ' - A u + u . V u + V ~ r = f ,  V . u = 0 ,  u (0 )=Uo,  u l n a = 0  

and a weak solution u ~ L ~ (0, T, L2(0) n) n L2(0, T,/41'2(O)") of these equations. For  
some applications it is important to know regularity properties of the pressure ~ (see 
Caffarelli-Kohn-Nirenberg [2]). In case O = ~3  it has been shown in [2] that ~ ~ L 5/3 (0 T) 
holds (under some assumptions on f, Uo). For  a bounded domain, v. Wahl [12] has shown 
the property n ~ L 5/4 (or). A conjecture in [2, p. 780] states that ~ ~ L 5/3 (O T) holds in the 
general case; this property would have some important  consequences for the partial 
regularity theory of weak solutions of (1.1). It is the aim of the present paper to prove this 
conjecture for a bounded domain O. However, combining the method of the proof with 
the method given in [10], the result follows for an exterior domain too. 

For  exterior domains, the result g ~ L 5/3 (0 T) is a global one; it follows that n has a 
certain decay for [ x[ ~ oo. Another consequence is the existence of a weak solution u in 
an exterior domain O c R 3 which is smooth for large Ix [. In the case O = R 3, this has 
been proved by Caffarelli-Kohn-Nirenberg [2]. 

Our  method rests on a potential theoretical estimate for the linear part of (1.1) with 
different integration exponents in space and tim e (given in [13] for the parabolic case) and 
on the method to regularize weak solutions by the Yosida approximation (given in [8] and 
[9]). The main idea can be briefly explained as follows: 

In case O = ]R 3 the result z~ ~ L 5/3 (0 T) follows by a careful investigation of the equation 
A~ = V. 0 c - V.  (u u)) in the sense of distributions; it follows that 7r has essentially the 
same regularity as u u which belongs to L s/3 (0 T) (see [2]). Of course, this method fails for 
arbitrary domains O ~ ~3  because ~r does not fulfill any boundary conditions on 80. 
A similar argument yields only that V~ has the same regularity as u - Vu which belongs 
to L 5/4 (0 T) (see [12]); therefore the integration exponent of ~r in space is better than �88 by 
Sobolev's embedding theorem; however it is not possible to improve the exponent in time 
by this argument. The splitting of the integration exponents in space and time overcomes 

2 3 
this difficulty. It holds more generally u .  Vu E/~ (0, T;/s with 4 = - + - in O ~ IR 3 

s p 
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and  we ob t a in  u. Vu ~ Z 5/3 (0, ~ Z 15/14) for s = 5/3; f rom this we get Vn ~ L 5/3 (0, T; IJ5/14), 
and  Sobolev ' s  e m b e d d i n g  theo rem yields n e LS/3(O, T', L 5/3) = L5/3(O r)  because  of  
g + ~  = ~ . 1  3 14 Thus  we arr ive  at  des i red  resul t  n E L 5/a (f2T). 

W e  in t roduce  some no ta t ions .  In  the fo l lowing we need the usual  spaces  L p (O), H k, P (O), 
I~k,p(~r ck(~"~), ck(O),  (~k(~'2) ' ~k(~) with  k = 0, 1 ,2  . . . .  and  1 < p  < oc. The  n o r m  in 

L p (f2) is deno ted  by  [I v II Lp(o) = FIv []p = II v 11 l/p; O is the c losure  of f2. W e  set D~: = ~ with 

i = 1, 2 . . . . .  n, x = (x 1 . . . . .  x , )  �9 I2. All  spaces  are  real. The  co r r e spond ing  spaces  for  
vec tor  funct ions  v = (v l ,  v 2 . . . . .  v,) are  deno ted  by  LP(O) ", Hk'p(f2) ", . . . .  F o r  a Banach  

space H , / ~  (0, ii~ H)  is the usua l  space with  the n o r m  II v IlL, co, r~H) = I[ v ll~ d ~; we use 

the n o t a t i o n  llvllL~(o,r;L~(~)~ = llvllp.s = Ilvll_~ _1(1 < p  < o% 1 < s < 0o). 
p's 

Let  Hp(Q) be the c losure  of {v �9 d ~~ (f~)" ] div v = 0} with  respect  to the LP(O)"-norm. 
There  exists a b o u n d e d  l inear  o p e r a t o r  Pp: /~(O)" ~ Hp (Q) with P~ = Pp such tha t  we 
have for every v e /Y  (~)" a d e c o m p o s i t i o n  v = Pp v + V~ wi th  rc �9 L~o ~ (f2) and  Vrc �9 L p (Q)" 
([4], [71, [11]). Similar ly ,  for every v � 9  /~(~)")  we get a d e c o m p o s i t i o n  
v = Ppv + Vrc with  Ppv �9  T', I-Ip(O)), n �9 T; LP(K)) for  every c o m p a c t  set 
K ~ f2, and  Vrc � 9  (0, 7~/~ (f2)"). 

W e  use the n o t a t i o n  u ' = - - u ,  ( u , v ) : =  ~ u ( x ) . v ( x )  dx with  u ( x ) . v ( x ) =  
St ~ 

u 1 (x) v 1 (x) + . . .  + u~ (x) v, (x), (Vu, V v ) : =  (D 1 u, D 1 v) + . - .  + (D~ u, D, v), div u = V .  u = 

D t u 1 + " -  + D, u, ,  V : = (D 1 . . . .  , D,), u -  Vu : = (u" Vu 1 . . . . .  u -  Vu.), u u : = (u i u i)i,j= a ....... 
V" (u u): = (V" (u u 0  . . . .  , V" (u u,)), (u u, V v ) : =  (u u l ,  Vv0  + "'" + (u u, ,  Vv,). 

In  the fo l lowing def ini t ion of weak  so lu t ions  u we use tes t ing funct ions  of the form 
v (x, t) = w (x) h (t) only.  Ins t ead  of  the usua l  cond i t i on  f �9 L z (0, T, H -  L a (f2)"), we requi re  
f � 9  (0, T, L p (O)") in our  a s sumpt ions ;  this  is poss ib le  because  we do  no t  need the energy 
inequa l i ty  here;  v �9 C~  (O)" means  tha t  v �9 C ~ (f2)" and  tha t  the suppo r t  of v is c o m p a c t  
and  con ta ined  in O. 

1.2 D e f i n i t i o n .  Le t  Uo �9 H2(f2 ) and  f � 9  T, /s  (f2)") wi th  s , p � 9  0o). A weak  
so lu t ion  of (1.1) wi th  da t a  Uo, f is a weak ly  con t inuous  funct ion u: [0, T] ~ H 2 (O) wi th  
the fo l lowing p roper t i e s :  

a) u �9 L~ T; H2 (f2)") c~ L2(0, T; H~'2(O)"), u(0) = u o. 
T T T T 

b) - ~ ( u , v ' ) d t +  ~(Vu, Vv) a t - ~ ( u u ,  Vv) dt = ( u 0 ,  v ( 0 ) ) +  ~ ( f ,v )  dt  for  all v = w h  
0 0 0 0 

with w e (~oo (~), ,  div w = 0, w [ ~  = 0, h e C ~ ([0, T]), h (T)  = 0. 

R e m a r k .  The  weak  con t inu i ty  of  u fol lows a lso  f rom u e L ~ (0, T; H z ((2)") c~ 
L2(0, T ; /4a '2  (f2)") and  b); u(0) = Uo follows also f rom b). 

In  wha t  follows, c, c~, c2, . . .  deno te  posi t ive  cons tan t s  which m a y  change  f rom line to  
line. 

2. A potential theoretical estimate for the linearized equation. Let  Ap: D (Av) -~ L p (0)" 
be the usual  Lap lace  o p e r a t o r  in /Y(f2)" wi th  D ( A p ) : =  H2'p(Q)n(3/~l'P(g2)n. The  
Stokes  o p e r a t o r  PpAp:D(PpAp) --, Hp(O) is defined by  D(PpAp):= D(Ap) c~ Hp(O) 
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and PpApv:= Pp(Apv). We suppose always 1 < p < ~ .  I denotes the identity operator. 
We set 

A p : = - P p d p + I ,  B p : = - A p + l .  

In case of a bounded domain f2 ___ R ~, it is possible to set Ap:=--PpA p and 
Bp:= - A  n. It is well known that - A  n and - B p  generate analytic semigroups in (the 
complexification of) Hp (f2) and Lp (t2) ~ respectively ([5], [14], [11]). The fractional powers 
A~ and B~(0 < ~ < 1) are well defined ([6]) and we get D(A~)= D(B~)c~ np(f2) with 
equivalent graph norms; D (A~,) and D (B~) are always equipped with the graph norms. We 
obtain 

(2.1) Ile-~apllop~,~ < ce -~t, t > O, 

for some 6 > 0. A well known embedding property yields 

IIh~vllq<cllh~pvl[~= for - f f - - P  = - - n - - q ' 2 f l  1 >2~t  1 ~ > q  > p  > 1 

where the constant c = c (p, q, ~, fl, f2) > 0 is independent of v ~ D (A~). 
The following theorems are well known in the special case s = p. However the splitting 

of these integration exponents is important for our method. First we consider the case 
U 0 ~ 0 .  

2.2 Theorem. Let l < p <  ~ ,  1 < s <  ~ and f 612(O,T;lIp(f2)). Then u(t):= 

i e-~'-~)APf(z)dz~D(Ap) for a.e. t~[0 ,  T], u',Apu~12(O, T, Hp(f2)), u'+ Apu = f ,  
0 

and 
T T 

(11 u' I1% + [I h~ u I1~) at < e ~ ]l f [l~ dt, 
0 0 

where the constant c = c(T,p, s, f2) > 0 is independent off .  

P r o o f .  According to [11], [12], [14], the conclusion of the theorem holds in the 
case s = p .  There exists a unique u ~ ( O , T ,  HZ'P(~2)"c~tZll'P(f2)"nHp(f2)) with 
u' ~ I3 (0, T, Hp (f2)), u (0) = 0, such that 

(2.3) u' + Ap u = f a.e. on [0, T]. 

The following estimate holds: 

T T T 

(2.4) ~]}u ' l l~dt+ E ~ l l D ~ u l l ~ d t < c ~ ( l l f l l ~ + l l u l l ~ ) d t .  
0 1~1_-<2 0 0 

Approximating f by functions fv ~ C1([ 0, T]Hp(t2)) in /B(0, T, Hp(f2)) it is easily seen 
that 

t 

(2.5) u(t) = ~ e-(t-~)apf(z) dz on [0; T]. 
0 
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(2.1) furnishes the estimate 

T T 

(2.6) I l l u l l P p d t ~ c l  [If I1~ dt. 
0 0 

The norm equivalence 

1 Itulln=,p(x~r < IIApullHp(~) < c Ilu IIH~,p(~)- 
C 

together with (2.6), (2.4) and (2.5) yields 

T T 

I IlA, ul l~dt  ~ c I IIf I[~ dr. 
0 0 

[13, p. 492-493] with Hp(t2) instead LP (f2) completes the proof. [] 

The next theorems concern the case u o # 0. 

2.7 Theorem. Le t  1 < p < 0o, 1 < s < ~ ,  f e E ( O ,  T, Hp(f2)) and uo ~ D ( A ~ - J  +~) for  
1 

some e > 0 with 1 - - + ~ < 1. Then there is a unique u with 
S 

u' E 12 (0, T, Hp (f2)), 

u e ~(0 ,  T, H2,P(O) ~ • ~1 ,~(~) .  c~ Hp(O)), 

(2.8) u' - PpA~u = f a.e. on [0, T], 

u(0) = Uo; 

moreover the following estimate holds: 

(2.9) I[u'[l~dt+ [lu[l~2,p(a).dt<c [l~v ~ UoH~,+ Ilf l t~d , 
0 0 0 

where c = c ( T, p, s, f2) > 0 is independent o f f  u o. 

P r o o f. We set v (t): = e-tap Uo and consider the equation 

( e - ' u  - v)' + A p ( e - '  u - v) = e - t  f . 

Setting w ( t ) : =  e - t  u(t)  - v(t) we solve the problem 

(2.10) w' + Ap w = e- t  f ,  w (0) = 0. 

Arguing as in the proof of Theorem 2.2 we get that 

w(t)  = i e - ( t -~  e -"  f (z) dz 
0 

gives the unique solution of (2.10) with w ' ~ E ( O , T ,  Hp(I2)), w ~ E ( O , T ,  HE'~(f2) ~ 
c~/~LP(O)~ c~ Hp(O)), w(0) = 0. F rom 2.2 we get the following estimate 

T T T 

(2.11) ~ [Iw'll~, d t +  ff HwIJ~2.,(a),dt < c ~ I t f[ l~dt .  
0 0 o 
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W e  observe  tha t  

T 

][vl[}~,~c~)~ d t  < C 1 
0 

T 

I[ Ap v ll; dt  
0 

T 1 

cl ~ II A~ -~ e -'A~ n1--1+~ H~ a t ,  ~tp s U 0 
0 

< c 2 dt  A l - -1  +" = ~p s Uo II; 

A 1  - - l + e  <=c3 ~ p  ~ Uol l ; .  

F r o m  this es t imate  and  (2.11) we ob ta in  for u (t) = e ~ (w (t) + v (t)) the es t imate  (2.9), and  
u solves the equa t ion  u' - Pp A p u = f wi th  u (0) = u o. This  comple tes  the proof.  []  

Nex t  we tu rn  to the in s t a t iona ry  Stokes  p rob lem,  the l inear  pa r t  of (1.1). 

2.12 Theorem.  Le t  1 < p < 0% 1 < s < 0% f ~ /5 (0, T;12 ( ~2)') and Uo ~ D t~, p ~ j 

1 
c~ Hp (D) for  some e > 0 with 1 - - + e < 1. Then there exist a unique u with 

S 

u E/5(o, r, H2,p(O)" c~ iI l . . (O)" ~ u~(O)), 

u' ~/5 (0, T; U. (O)), u (0) = Uo, 

and a ~ such that 

~ 12 (0, T; 12 (K)) for  every compact set 

v~ ~/5 (0, T, 12 (~2)"), 

u ' - A u + V n = f  in I2(O,T, 12(Y2)"), V . u = O ,  

and 
T T T 

(2.13) ~ Ilu'[I; dt  + ~ [lull}~2,.(~rdt + ~ IlWll~ 
0 0 0 

K _ _ ~ ,  

where e = c(T,  s ,p,  f2) > 0 is independent o f f  u o. 
1 1 

P r o o f. F r o m  Giga ' s  resul t  [6] it  follows D (A,  1 -7  +~) = D ~ (B~-~+~) c~ Hp(~2) a n d  there-  
fore u o e D (A~ --;+~). W e  m a y  app ly  T h e o r e m  2.7 to u o and P p f  ~/5  (0, 7] Hp (f2)) and  get 
a so lu t ion  u of the equa t ion  u ' -  PpApu = Ppf ,  u(O) = u o. 

Therefore  it fol lows Pp ( f  - u' + Ap u) = 0 and  the e lement  f = u' + Ap u ~/~ (0, T, 12 (f2)") 
has  a d e c o m p o s i t i o n  of the form f - u' + ApU = P p ( f  - u' + Apu) + Vn = Vrc, where n 
has  the des i red  proper t ies .  Therefore  we get 

u' - Apu + V~ = f 



Vol. 46, 1986 Regularity of the pressure 433 

in /5 (0, 7~/Y (f2)"). Using (2.9) with P p f  instead f and the equivalence of the norms 

Ilulln2.p~r and IIApu[Ip + Ilullp, we get 

IlVrcllp,~ < I lf  IIp,~ + Ilu'llp,~ + IIApull,,,s + IluG,s 

(i 0 < I l f l l p , , + c l  I lu ' l l~d t+  Ilullu~.,~o)-d 
0 

< = l l f l l , , ~ + c 2 ~ , ~ p  ~ u ~  ; 

( 0 _-<c3 II~p ~ uoll~+ I I / [ I ; d  �9 
0 

Using (2.9) again we obtain immediately the estimate (2.13). This completes the 
proof. [] 

R e m a r k. For  some applications it is of interest to have an estimate instead of (2.13) 
which holds uniformly for all T > 0. This can be done as in [15, pp. 139-141] and yields 
the following result: Under  the assumption of Theorem 2.12 we have 

T T T 
Ilu'll• dt + ~ Ilull~2,,(~rdt + y [[V~ll~, dt 

0 0 0 

( 1:~1-1+e ~ ~ 0 ~ c  II~', s u o l I ; + ~ ] [ f H ; d t + o _ / [ u ] [ ; d  

where c = c (s, p,/2) > 0 is independent o f f  u o and T. 

3. Properties of these pressure n of weak solutions. We try to get information on ~ by 
writing the Navier-Stokes equation in the form 

(3.1) u' - Au + Vn  -- f := f - -  u .  Vu 

and using potential theoretical estimates of the linear equation. In principle this proce- 
dure is well known; however, we will use here the following new idea. 

It  can be shown by Sobolev's embedding theorem that  u .  Vu ~/5(0,/~/d(f2)") 

holds with n + l < - 2 + n .  In case p = s  we obtain p = < n + 2  and therefore 
- s  p n + l  

VTr ~ s (0, 12/3"+2)/~"+1)(f2)")). However,  the integration exponent of ~ with 
respect to space can be improved by using Sobolev's embedding theorem; of course this 
is not possible with respect to the time t. Therefore we have introduced the splitting in 
space and time, in order to get an improvement  of the exponent for the time: We 

n + 2  
may  take s larger and p smaller than - -  and later on we improve p by Sobolev's 

n + l  
theorem to get the same value s again. By this method we get ~ ~/2 (0, T, L p (O)) with 

n _< 2 + _n for a bounded domain;  in particular we get ~ ~/_3 "+z)/" (0, ~ /3"  +2)/" (f2)) and 
- s  p 

7r ~ L 5n (O r) for n = 3. 

Archiv der Mathematik 46 28 
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In o rde r  to app ly  po ten t i a l  theore t ica l  es t imates  to  a weak  so lu t ion  u of (3.1), we 

will regular ize  u by  the Yos ida  a p p r o x i m a t i o n  as in [8], [9]. W e  set Jk:= + 

with  6 = _n and  k = 1, 2 . . . .  and  get the p roper t ies  IIJkll < c and  Jk V ~ V for 
4 

k ~ oo. The  regular ized  funct ions  Jk U possess  be t te r  regular i ty  p roper t ies  and  are  
s t rong solut ions  of a modi f ied  equat ion .  F i r s t  we will expla in  the p rocedu re  (see [9] for 
details). 

Let  u 0, f and  u be as in the Def in i t ion  1.2. In  case of an exter ior  d o m a i n  we suppose  
in a d d i t i o n  p _<_ 2. In  1.2 we can  take  test ing funct ions of the form v = w h with  

w ~ d ~ ( ~ ) " ) , V ,  w = 0, w[0~ = O, weD(Aaz)for 6 =-,n heCl([o ,  r ] ) , h ( r ) = O .  Thenw e 
4 

wri te  w = A2  ~ A~ w = A2  ~ u) wi th  # :  = A~2 w and  the set of all k of this  form is dense  in 
H2 (f2). Thus  f rom 1.2 we ob t a in  the equa t ion  

T T T 

-- S (u,A]a #) h' dt + ~ (Vu, VA2a~)h dt - [. (uu, V A za# )h  dt 
0 0 0 

T 

= (Uo, A;a#)h(O) + ~ (f, A2O#)h dt. 
0 

Using  the embedd ing  p r o p e r t y  D (A~) ~ D (A~), - - - -  

and  a well k n o w n  in t e rpo la t i on  t h e o rem we get 

2c( 1 > 2f i  1 
= - -  , oo > , o > c r >  1, 

n ~z n 0 

[I V .  (u u)]lr = II u .  Vu I1~ ~ c~ II u I1~_ ! II Vu tl! 
r r 2 2 

1 1 = cl LI u II  r ~ . ~ h - ; ) - ~ ]  I[ vu 11�89 
Ln 2 \  

" [ i  i~ 
< c2 [[A~ t - ; !  u [[1 ][Vulll 

2 

1 

~ r ,  _1 IlVull l ,  < c3 [[A2u[1�89 I[uH2 5 

+~ 
C 4 ] I A ~ u  Ilull 2 

<_c5(llVull2 + llull9 ~§ ~) Ilul12 

and  w i t h l < r ~ - -  
n + 2  

n + l  
we obtain r (, n ( l  

i 1 T 
]lu'VulL~,~ = Ilu'Vulh~dt<~c6lluH2,~ j(l[Vul[2-t-I]u][2)2dt< oo. 

0 r 0 
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Therefore it holds u - Vu ~ E (0, T, E (O)") for 1 < r < n + 2. F rom this we conclude 
n + l  

that  A f  ~ Pr u .  Vu ~ L 2 (0, T, L 2 (f2)") for 5 = n. This follows from the estimates 
4 

_L 
11Af ~ Pr u-  Vu 112 = H A2 (~ -�89 A2 2 P, V.  (u u)I1_1 

2 
1 

=< c, II/Z ~ Pr v .  (uu) _-< c= jluu 

i (  = 
= c 2 1 [ u u l l l _ ! .  <c3HuH 1-1)  c3tlull 2_~;.~(21_;jI~ 

1 1 

=< c4 [[a~u[[~_ IluH: 

_-_ c6(I]Vulh + Ilullz) l lulh,  

r 
I I A ~ a g u  Vu 2 2 = ull2,+ Ilull2)2 dt oe. �9 112,2 < c6 I[ I(llVull2 + < 

o 

In the same way we conclude/92 AA2 ~ u e L 2 (0, 7~ L 2 ((2) n) and A 2 ~ Pv f ~ 12 (0, T, L 2 ([2)n). 
Here we use p __< 2 for exterior domains. Thus we obtain 

T 

- ~ (A;~  w)h' dt 
0 

T 

= I [(A2 ~/92 Au, if:) - (Az'~P~u �9 Vu, ~) + (A2OPv f ,  ~)1 h d t  
0 

+ (A2 a Uo, +)h(0),  

( A ;  ~ u, #) '  = ( P 2 A A ]  ~ u, #)  -- ( A ;  ~ P, u .  Vu, ~) + ( A ;  ~ e v f ,  #)  

and 

(A2 ~ u(0), k) = (A2 ~ Uo, ~), 

(A2 ~ u)' ~ 15(0, T, LZ(f2) ") with 7 :=  min (s, 2), 

a . e .  

on [0, T], 

(3.1) ( A z ~  ' - P 2 A A z ~  + A]'~ P , u  �9 Vu = A z a  Ppf .  

This condition is equivalent with 1.2, b); it is easy to apply potential theoretical 
methods to (3.1,. ( i  i ) _  ~ 

Of  course we can replace A f  a by Jk = + ~ A 2 for k = 1, 2 . . . . .  Thus we obtain 
the equations 

(3.2) (JkU)' -- PzAJk u + dk P, U . Vu = d k P a f  

which are regularizations of (1.1) in a certain sense. 
The next theorem is our main result for bounded domains. It yields the desired 

regularity result for rc and some regularity properties of the weak solution u. 

28* 
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3.3. Theorem.  Le t  f2 ~ ~," be a smooth bounded domain with n > 3, let s, p e (1, oo) 

2 n 1 1 1 1 1 
with n < - + - ,  - + - < 1 ,  - : = - + - ,  f ~ / 5 ( 0 , ~ / 5 ( g 2 ) " )  for  some T > O and u o 

s p p n q p n 
1 

D ( A I - ~  +~) n H2(f2) for  some e > 0, 1 - - - +  e <= 1. Le t  u be a weak solution o f  the 
s 

Navier-Stokes equation (1.1) with data u o and f .  Then we have 

u' ~ e (o, T,/5 (a)"), Au ~ / 5  (0, ~ ~ (a)% u .  Vu ~ / 5  (0, ~ / 5  (a)"), 

and there exists a pressure ir ~ /5 (0, T, Is (f2)) with V1r ~/5  (0, Z / 5  (f2)") and 

u' - Au + u .  Vu + Vn = f in /5 (0, T, I3 (f2)"). 

R e m a r k s. W e  are main ly  in teres ted  in the resul t  n ~ /5  (0, T, L p (f2)) wi th  1 + I - - < 1 ,  

2 n 5 1 1 1 p n 
n = < - + - .  In  case n = 3  we m a y  take  s = P - 3 ,  - + 3 '  and  we get the resul t  

s p q p 
n ~  LS/a(ar). Of  course,  zr is only  de t e rmined  up  to  a funct ion ~Zo: [0, T] ~ IR with  
n o e / 5  (0, T) (for a b o u n d e d  domain) .  If  u o E D (A 2) c~ H 2 (t2) ( =  D (A2)), the a s sumpt ion  

n + 2  
on u o is sat isfied for all poss ib le  s and  p. F o r  all n ->_ 3, we m a y  take  p = s - n 
and  1_ I + 1 . = - - m the hypo thes i s  of 3.3. 

q p n 
The  theo rem proves  the conjec ture  in [2; p. 780] for b o u n d e d  domains .  

P r o o f. The  p r o p e r t y  u .  Vu ~/5(0 ,  ~ / 5  (t2)") follows f rom the fol lowing es t imates :  

I lu .Vui l_ l=  l l u ' V u l l ,  , l<elllulll_lllVulll 
- 7 + 5  ~ 5 5 q g 

~ llVull�89 

nt 1 1~ 
_<_ e~ ] [ A ~  -~J u I]1 llVu II1 

5 2 

-1 J1-1"~ 1 - " 0 - 1 )  I[Vu ll2 

_ 1_o0_ 9 1 9,ull  _< c+ IIA ull 

1+ . (1 -9 .  +, 
< c5(llVull2 + Ilull9 Ilull 2 , 

T 
II u .  Vu tl~,+ = .f II u -  Vu II; dt 

0 

s (1 -n(1-1) )  i (I [gun2 -~- [1U ]t2)s(1 +n(1---lq)) at .  C6 II ull 2, + 
0 

Observe  t h a t q < 2 b e c a u s e o f n + l _ - < s  + - ' q  l - n  S - 1  =<q -n - 1  < ~ , - < l . s  
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lCrom n = < 2 + -  we get n + l _ - < - + n  + - - - + -  and therefore it holds 
s p s s q 

s (1  + n ( 1 -  ~))__< 2. Thus w e g e t  

It u ,  Vu II~,s --< 0 7  ][ ull 2;~o ~ ~ ' '  j" (1[ VU li2 + II U 112) 2 dt < 00. 
0 

In the next step we use the equations (3.2), write them in the form 

(Jku)'-- PqA(JkU)= JkPqf  -- JkPqu. Vu, k = 1 , 2  . . . . .  

and apply the estimate (2.9) to obtain 

T T 

J" IlfAu)'ll,~ dt + S []Jku[l~,,(a) "dt  
0 0 

< c  II-~q s u01l~+ Ilfll~+llu'Vu]l;)dt. 
0 

Since the right hand side does not depend on k, we get immediately u' s / 2  (0, ~ /Y ([2)"), 
u ~/2(0, ~ H2'~([2) ") and Au e/2(0,  T, ~([2)'). Letting k ~ oo we get the equation 

u' - P~Au + P~u. Vu = Pqf  

in /2(0, ~/2([2)"). In this space we have a decomposit ion of the form f -  u ' +  Au 
- u .  Vu = P~ ( f  - u' + Au - u-  Vu) + V~z = Vz~, where Vz~ is uniquely determined. Thus 
we obtain the equation u' - Au + u .  Vu + V~z = f i n /2  (0, T, ~ ([2)") and the property 

1 1 1 
Vne/2(O, T, /_Y ([2)'). F rom n q p '  p - > q we get [tn[[p < c I[Vnl[q and []nll,,s 

< c [[ V~z H q, ~ using the boundedness of ~2. It follows n ~/2 (0, ~/_Y ([2)). This completes the 
proof. [] 

R e m a r k. This proof  leads to an estimate on the form 

T T T 

I II u' I1~ dt + I[I u ]l~.,(o), dt + I l[ Vzc I[; dt 
0 0 0 

< c  IlAq ~ uo l l ;+  I l f J l~d t+ l lu l l 2~  ( ~ ) )  
0 

" i (l[Vu]'2 + [lu][2)2 

where c = c (a, s, e, T, [2) > 0 is independent of Uo and f. In particular we get 

t l n l l ; d t < c  tl-'% " Uoll~ 
0 

+ i rlz Jl, dt + IJ.lJ;!  I(Hv.l l2 + iluH2)' d . 
0 0 



438 H. SOHR and W. voN WAHL ARCH. MATH. 

The conclusion of Theorem 3.3 holds essentially for an exterior domain (2 too. This can 
be shown by combining the method given above with the method in [10] which is a 
localization procedure; an essential step there is the use of the formula of Bogovski-Erig 
([1], [3]) concerning the equation div w = f, S f d x  = O, w ~ Ha'q(O)". To localize the 

r 
Navier-Stokes equation we have to multiply (1.1) by a certain function ~ ~ C~ (~) and 
with the help of the formula of Bogovski-Erig it is possible to make ~ u divergence- 
free. 

For  an exterior domain we def ine /~ ,P  (f2)" to be the closure of C~ (s with respect 

to the Dirichlet norm IIVuHp; let H-I'P'(Y2)" with I +1_ = i be the dual space of 
p '  P 

/~I'P(f2)". Then it holds /~-1'P'(~2)" ~ H-~'~'(~?)" for an exterior domain, where 
H -  ~'P' (s : = (/4~'P (~2)")* is the usual space. 

We have the following result. 

3.4 Theorem. Let  Y2 ~= ]R" be a smooth exterior domain with n >= 3 and s, p, q ~(1, ~ )  

2 n 1 1 1 1 2 n 
with n < = - +  , - < - < - + - ,  n + l = < - + - .  We suppose f615(O,T,I?t-l 'P(Y2) n) 

s p p q p n s q 1 

[ '41-1+e~ H2(f2 ) for  some e > 0 ,  1 - -  c~15(0, T,/5(0)") and u o E D , a q - ~ + ~ , c ~ D ~ ,  ~ , n  
+ e < l .  s 

Let  u be a weak solution o f  the Navier-Stokes equation (1.1) with data Uo and f Then 
we have 

u' ~ 15 (0, Z / 5  (Q)"), au  ~ 15 (0, T,/5 (~)"), u .  Vu ~ 15 (0, ~ / 5  (~)"), 

u ~ 15 (0, T, L p (O)'), Vu ~ 15 (0, T , / f  (O)"2), u u ~ 15 (0, T,/s  (~2)"2), 

and there exists a pressure z~ ~ 15 (0, T, I~ (~2)) with V~z ~ 15 (0, T,/5 (f2)") and 

u ' - A u + u .  V u + V ~ = f  in /2(0, T,/5(~2)"). 

R e m a r k s. The conditions on the data u 0 and f are always satisfied if the following 
holds: Uo e ~2 (~), f e ~ (~ x [0, T]). The conditions on s, p, q are satisfied in the following 

n + 2  I 1 1 
case: s = p - - -  - + - .  In the case n = 3 we get the result ~ e L 5/a (O r) as for a 

n ' q  p n 
bounded domain. However, the properties rce/A (0, 7~ L p (s u e /2  (0, T, L p (O)") . . . .  are 
global results for the exterior domain O; n and u must have a certain decay for [xl --* oo. 

An important  consequence of the result ~ s L  5/3 (Or), n = 3, is the smoothness of u for 
sufficiently large Ix[, provided u fulfills additionally a generalized form of the energy 
inequality as in [2]. This result is known in the case O = ~ 3  by Caffarelli-Kohn-Nirenberg 
[2]; we have extended this result to arbitrary smooth exterior domains [10]. Theorem 3.4 
proves the conjecture in [2; p. 780] for exterior domains. 

Using the method given in [10] and Prop. 1 in [2, p. 775], we can prove the following 
result. 
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3.5 Theorem. Let  s be a s m o o t h  exterior domain of  N 3, T > 0 ,  p = ~ ,  r > ~ ,  
1 3+1 J z 
q ~ - 3 , f ~ ( O , T ; f t - I , p ( ~ ) ~ ) ~ L ~ ( O , T ; I ~  1,2 (~)3) o I.~ (O~ Y'~ flff (~'~)3) o lf, (~~T) and 

1 1 
Uo ~ n (A~/~) n 1) (A~ -7) ~ n~ (~). 

Then there exists a weak solution u of  (1.1) which is smooth for sufficiently large [xl. This 
means that there exist constants M > O, K > 0 such that [u (x, t)[ < M holds for almost all 
x, t with ]x[ > K, t > 0. 
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