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On the regularity of the pressure of weak solutions
of Navier-Stokes equations

By

HErRMANN SOHR and WOLF vON WAHL

1. Introduction. Let © be a bounded domain or an exterior domain of R” with n = 3.
We assume that Q has a smooth boundary 8Q, i.e. 8Qis of class C*. On Q7 := Qx (0, T)
with some T > 0, we consider the equations of Navier-Stokes
(1.1) W—Au+t+u-Vut+Ve=f V-u=0, u0)=uy, ulgp=0
and a weak solution ue I* (0, T, 2 (Q)") n I2(0, T, H2(Q)") of these equations. For
some applications it is important to know regularity properties of the pressure 7 (see
Caffarelli-Kohn-Nirenberg [2]). In case @ = IR? it has been shown in [2] that = € 1’3 (Q")
holds (under some assumptions on f, u,). For a bounded domain, v. Wahl [12] has shown
the property n € IZ/*(Q"). A conjecture in [2, p. 780] states that = € I>/*(Q7) holds in the
general case; this property would have some important consequences for the partial
regularity theory of weak solutions of (1.1). It is the aim of the present paper to prove this
conjecture for a bounded domain Q. However, combining the method of the proof with
the method given in [10], the result follows for an exterior domain too.

For exterior domains, the result = € I2/*(Q7) is a global one; it follows that = has a
certain decay for | x| — oo. Another consequence is the existence of a weak solution u in
an exterior domain Q < R?® which is smooth for large | x|. In the case 2 = IR?, this has
been proved by Caffarelli-Kohn-Nirenberg [2].

Our method rests on a potential theoretical estimate for the linear part of (1.1) with
different integration exponents in space and time (given in [13] for the parabolic case) and
on the method to regularize weak solutions by the Yosida approximation (given in [8] and
[9]). The main idea can be briefly explained as follows:

In case @ = R3 the result & € 1373 (Q7) follows by a careful investigation of the equation
An =V - (f — V- (uu)) in the sense of distributions; it follows that = has essentially the
same regularity as uu which belongs to I3 (Q7) (see [2]). Of course, this method fails for
arbitrary domains Q = R® because n does not fulfill any boundary conditions on 0€Q.
A similar argument yields only that Vz has the same regularity as u - Vu which belongs
to /4 (QT) (see [12]); therefore the integration exponent of 7 in space is better than 2 by
Sobolev’s embedding theorem; however it is not possible to improve the exponent in time
by this argument. The splitting of the integration exponents in space and time overcomes

2 3
this difficulty. It holds more generally u-Vue E(0, T} I¥) with 4 = 5 +Zin Q 2 R?
b
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and we obtain u-Vu e 3 (0, T: I}°**)for s = 5/3; from this we get Vr € I>/> (0, T; I}5/4),
and Sobolev’s embedding theorem yields = e I¥3(0, T: I2/3) = [’/3(Q7) because of
1+ 2 =12 Thus we arrive at desired result = € I/ (Q7).

We introduce some notations. In the following we need the usual spaces I7 (@), H*?(Q),
H%?(Q), C*(), C*(Q), C*(Q), C*(Q) with k=0,1,2,... and 1 < p < co. The norm in

IZ(Q)is denoted by || v 1o = vl = |v]ly,; Qis the closure of Q. We set D;:= o with

0x;
i=1,2,...,n x=(x;,...,x,)€ Q. All spaces are real. The corresponding spaces for
vector functions v = (vy, v,,...,v,) are denoted by I?(Q)", H*?(Q)",.... For a Banach

T Y

space H, I (0, T; H) is the usual space with the norm ||v || 1o o, 7 = | [ 015 d |°; we use
0

the notation || v s, 1,100y = 10l = vl 1 (1 <p < 00,1 <5< ).

Let H,(£2) be the closure of {ve Ce(Qy |Iziiv v = 0} with respect to the I? (Q)*-norm.
There exists a bounded linear operator P,: IZ(Q)" —» H, () with P? = P, such that we
have for every v € I? (Q)" a decomposition v = P, v + Vx Wlth e Lloc (Q)and Vr e I (Q)
(4], [7), [11]). Similarly, for every ve D (0 T, ()" we get a decomposition
v=P,v+ Va with P,oeE(0, T, H,(Q), ne L@, T, Z(K)) for every compact set
K< Q and Vre E(0, T; Z(Q)".

We use the notation u’=§t—u, Wv):= fu(x) v(x) dx with u(x)-v(x) =
Q

Uy (X) vy (%) + -+ + u, (x) v, (x), (Vie, Vo) := (D, u, Dyv) + - -+ + (D, u, D,v),divu=V -u=
Dyuy+ -+ Dyu,,Vi=(Dy, ... D) u-Vui=-Vuy,...,u-Vu,), uu:= (uu);, ;_,
V-wu):=(V-(uuy),...,V-(uu,)), (wu, Vo):= (wuy, Vo) + --- + (uu,, Vo,).

In the following definition of weak solutions u we use testing functions of the form
v(x, t} = w{x) h(t) only. Instead of the usual condition f € I? (0, T, H™ !**(Q)"), we require
f e E(0, T, I (2)") in our assumptions; this is possible because we do not need the energy
inequality here; v € C* (Q)" means that v e C® ()" and that the support of v is compact
and contained in .

1.2 Definition. Let uge H,(Q) and f e E(0, T, IZ (2)") with 5, p e (1, ). A weak
solution of (1.1) with data u, f is a weakly continuous function u: [0, T] —» H, (Q) with
the following properties:

a) ueLw'(o T'HZ(Q)")r\LZ(O T-H’r“(g)"),u((nzuo
b) —j (u, v)dt+f(Vu Vo) dt — j(uu Vo) dt = (ug, v(0)) +j(fv dt for all v=wh
w1thweC°°(Q)" divw =0, w[ag——O he CH(O, T, h(T)

Remark. The weak continuity of u follows also from ue (0, T; H,(Q)") n
I2(0, T; H"2(Q)") and b); u(0) = u,, follows also from b).

In what follows, ¢, ¢y, c,, ... denote positive constants which may change from line to
line.

2. A potential theoretical estimate for the linearized equation. Let 4, D(A » = @y
be the usual Laplace operator in (Q)" with D(4,):= H>”* (Q) m HY?(Q)". The
Stokes operator P,4,:D(P,4,) - H,(Q) is defined by D(P, D(4,) n H,(2)
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and P, A,v:= P,(4,v). We suppose always 1 < p < co. I denotes the identity operator.
We set

Api=—P,4,+1, B,=-—-4,+1.
In case of a bounded domain Q £ R”, it is possible to set 4,:= — P, 47 and
B,:= —4,. It is well known that — 4, and — B, generate analytic semigroups in (the

complexification of) H,(€2) and L, (Q)" respectively ([S], [14], [11]). The fractional powers
A} and B} (0 <y £ 1) are well defined ([6]) and we get D(A4}) = D(B}) n H,(2) with
equivalent graph norms; D (4}) and D (B}) are always equipped with the graph norms. We
obtain

2.1 e e llg, @ <ce™™, t20,
for some 6 > 0. A well known embedding property yields

28 1 _2a 1
P _2uEr 2 >
n pEh 7 w>gzp>1
where the constant ¢ = ¢(p, g, %, §, @) > 0 is independent of v e D (45).
The following theorems are well known in the special case s = p. However the splitting
of these integration exponents is important for our method. First we consider the case
Uy = 0.

| 4300, < cllABoll,  for

2.2 Theorem. Let 1<p< o, 1<s<oo and €L T, H,(2). Then u(t):=
t
.‘E e "M f(r)dreD(4,) for ae te[0,T], w,A,ucEQ, TH,(Q), u+ A,u=f,

and
T T
(j;(llu’ 5+ 1 Auly)de < cg If 115 de,

where the constant ¢ = ¢ (T, p, s, Q) > 0 is independent of f.

Proof According to [11], [12], [14], the conclusion of the theorem holds in the
case s=p. There exists a unique ueIF(0, T H>?(Q) n H"?(Q)" n H,(Q) with
u e Z(0, T, H,()), u(0) = 0, such that

(2.3) u + A,u=fae on[0,T]

The following estimate holds:
T T T
(24) (J; o'l dt + | TTZ g I D*ull} dt < ¢ (f) (Hf1I5 + lulp) de.

Approximating f by functions f, e C*([0, T1H,(®)) in I#(0, T, H,()) it is easily seen
that

2.5) ul) = ie“"”"*’f(x) dt on [0, T].
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(2.1) furnishes the estimate

T T
(2.6) gllullﬂdt écg IS 115 de.

The norm equivalence
1
¢ lullgzpop = [ Apu ”H,,(m S cllullgzrp
together with (2.6), (2.4) and (2.5) yields
T T
g [Apulpde = cg If 115 de.
[13, p. 492-493] with H, (L) instead I? () completes the proof.  [J
The next theorems concern the case uy + 0.

2.7 Theorem. Let 1 <p < o0, 1 <5< o0, fe E(0, T, H,(Q)) and u, eD(A;‘%“) for
some e > 0 with 1 — % + & £ 1. Then there is a unique u with
uw'eE(0, T, Hy(Q),
ue L, T H*?(Q)" n H**(Q)' n H,(Q)),
(2.8) W —P,4,u=f ae on [0,T],
u(0) = uy;

moreover the following estimate holds:

T T 1 T
(29) [T de+ § Julla s onde S c<n A7 gl + LI 1 dt),

where ¢ = ¢(T, p, s, Q) > O is independent of f, u,.
Proof We set v(t):= e 47 u, and consider the equation
(eTfu—vy+A,(eu—v)=e""f.
Setting w (t):= e~ * u(t) — v(t) we solve the problem
(2.10) w+A,w=e'f, w0)=0.
Arguing as in the proof of Theorem 2.2 we get that

w(t) = j e ¢ e (1) dt
0

gives the unique solution of (2.10) with weE(0, T, H,(Q), we L0, TH Zr(Qy
N HY?(Q)" n H,(Q)), w(0) = 0. From 2.2 we get the following estimate

T T T
211) (I) fiw'l; de + (j; w2 s @ dt < cg If 15 de.
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We observe that

T T
g 015220 At < €4 i A, vl de

T 1
== 1
=c, {1145 TemHr ALTS e w5 de,
4]

T 1 ° l—l-l-a s
é C2 (g <T__;> dt) HAp s TlUg ”p
ts

_1 s
=c¢; “All, s Ug Hp'
From this estimate and (2.11) we obtain for u(¢) = & (w(t) + v(t)) the estimate (2.9), and
u solves the equation u' — P, 4,u = f with u(0) = u,. This completes the proof. O

Next we turn to the instationary Stokes problem, the linear part of (1.1).

2,12 Theorem. Let 1 <p <, 1 <s<w, fel(0, T, Z(Q)) and u, eD(B}f%”)

n H,(82) for some ¢ > 0 with 1 — % + & < 1. Then there exist a unique u with

ue L0, T H>?(Q)" n H*(Q)" n H, (%)),
weL© T H,(Q) u(0)=u,,
and a T such that
ne (0, . I?(K)) for every compact set K < Q,
Vre E(0, T, IZ ()",

W—Au+Vr=f in EOTEWQ)", V-u=0,

and
T

(2.13) [lw'll de + [ lullier@edt + [ IVRIS
0 0 V]

1 T
= C(H B, 5 P ug |5 + (5) 1115 dt>,
where ¢ = ¢(T, s, p, Q) > 0 is independent of f, u,.

Proof. From Giga’s result [6] it follows D (4; *%”) = D(B, _%”) ~ H,(£) and there-
fore uy € D(A; s **). We may apply Theorem 2.7 to u, and P, f € E(0, T; H,(Q2)) and get
a solution u of the equation v’ — P, 4,u = P, f, u(0) = u,.

Therefore it follows P,(f — u' + 4,u) =0 and the element f =u'+4,ue E(0, T, I (Q)")
has a decomposition of the form f — ' + A,u = P,(f —w 4+ 4,u) + Vi = Vn, where =
has the desired properties. Therefore we get

W —Adut+Vo=f
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in E(0, T, I ()"). Using (2.9) with P, f instead f and the equivalence of the norms
[ullgz e and |4, ull, + llull,, we get

IVRlips £ 1S Nps + 1615 + I dpull,s + llullys

T T 1
SHflps+ e <£ ']} dt + g 4 1322, 2 dt>s

i

T 1
”f ”p,s + CZ (” A;M%‘*E uO ”; + .! ” PPf “; dt>s

A

1 T %
3 <”A,1f?+£ oy + g (A dl> .

Using (2.9) again we obtain immediately the estimate (2.13). This completes the
proof. [

Remark. For some applications it is of interest to have an estimate instead of (2.13)
which holds uniformly for all T > 0. This can be done as in [15, pp. 139-141] and yields
the following result: Under the assumption of Theorem 2.12 we have

T T T
g o'l de + g w2 2 @ dt + g V|3, de

Lo s o CUFISde s (Tl
§C<!|B,1, s u |15 + g £ 15 de + g Hullpdt)
where ¢ = c(s, p, 2) > 0 is independent of f, u, and T.
3. Properties of these pressure n of weak solutions. We try to get information on 7 by
writing the Navier-Stokes equation in the form
(3.1) W —Au+Ve—fi=f—u-Vu

and using potential theoretical estimates of the linear equation. In principle this proce-
dure is well known; however, we will use here the following new idea.

It can be shown by Sobolev’s embedding theorem that u-Vue E(0, T, I2(Q)")
n

2 and therefore
n+1

Vr e [nt e+ @ T2 [#+2+D () However, the integration exponent of 7 with
respect to space can be improved by using Sobolev’s embedding theorem; of course this
is not possible with respect to the time ¢. Therefore we have introduced the splitting in
space and time, in order to get an improvement of the exponent for the time: We

nt f and later on we improve p by Sobolev’s

holds with n+1§%+g. In case p=s we obtain p =

may take s larger and p smaller than

n+
theorem to get the same value s again. By this method we get = e E(0, T, I? (Q)) with

2 . .
nss+ " for a bounded domain; in particular we get m € I *2¥% (0, T: I¢"* 2/*(2)) and

ne 22 (Q7) for n = 3.

Archiv der Mathematik 46 28
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In order to apply potential theoretical estimates to a weak solution u of (3.1), we
—d

will regularize u by the Yosida approximation as in [8], [9]. We set J,:= (I + %A2>
with & =Z and k=1, 2,... and get the properties |J. |l <¢ and J,v— v for

k — oo. The regularized functions J, u possess better regularity properties and are
strong solutions of a modified equation. First we will explain the procedure (see [9] for
details).

Let u,, f and u be as in the Definition 1.2. In case of an exterior domain we suppose
in addition p £2. In 1.2 we can take testing functions of the form v = wh with

we C= (@), V-w=0,wlyp =0,weD (4% for § = Z,he C! ([0, T]), h(T) = 0. Then we

write w = A5 % A5 w = A %W with w:= A% w and the set of all W of this form is dense in
H, (). Thus from 1.2 we obtain the equation

T T
~ {(u, Ay’ W)W dt + § (Vu, VA7’ W)h dt — j(uu VA;°W)hdt
0 0

= (ug, A5 W) (0 +j(fA2"~)hdt

. . 2 1_ 28 1
Using the embedding property D(A2) s D(AL), —— -2 ———, 00 >0z 0>,
n

. . 6 n
and a well known interpolation theorem we get ¢

IV-@wi, = llu-Vulr=c; IIqu_%I!VuH%

¥

= HMH_[E.%(l_l),%]HV“ II%,

¥

<c, llAf(“%) ull | Vally
2 3

(7)), 1mn(-7)

1
ScllABully Tuz | Vuls,

<o || azal)y 07y 00

1-nl1-
Sces(|Vully + ful,) (i )Il Il 2 ( )
andwith1<r§n~i——2weobtainr<l—n<1—1>>§2,
n+1 ¥

T a1 - 1T
nu-Vun:,,=(§)||u~VuH1dt§c6uuniw(1 ')g(HVulizwLHullz)zdt<00‘

r



Vol. 46, 1986 Regularity of the pressure 435

Therefore it holds u-Vue E(0, TLE(Q)) for 1 <r < E+—f From this we conclude
n+
that A;°P.u-VueI?(0, T, I? (9)") for § = g This follows from the estimates

1A5° Pou-Vul, = || 4, (o- )AZZPV (uu>||1

§cl||A2 PV -(uu) ”1 ( 1)Sczlluull1 2(5 )
= < 2
& luull, s csuuuzl =l 1y

1 1
cq llA%uHi §c5||A%u||2||unz

= ¢ ([1Vully + llullo) Tull,,

lIA

T
IAz°Bu-Vull3 , < cglluf o (I)(I!Vullz + [ull,)* dt < oo.

In the same way we conclude P, AA;°ue (0, T. I?(Q)") and A;° P, f € E(0, T: I (Q)").
Here we use p < 2 for exterior domains. Thus we obtain

Oy

(A% u, W)k dt

[(A5° P, Au, W) — (A7 ° Pou-Vu, W) + (A7° P, f, W) h dt

ot-—.'i

+ (A3 ug, W h (0),
(A% u, W) = (P, AA;°u, W) — (A5° P ou-Vu, w) + (A7°P, ;W) ae.
on [0, T,
(45° u(0), W) = (45 ° up, W),
(A;°uwy e (0, T, I(Q)y") with 7:=min (s, 2),
and
(3.1) (A;°w) — P,AA;°u+ A;° Bu-Vu=A;°P,f.

This condition is equivalent with 1.2, b); it is easy to apply potential theoretical
methods to (3.1). 1 s

Of course we can replace 4;° by J, = (I + - A2> for k =1,2,.... Thus we obtain
the equations k

(3.2) ey — RBALu+ S Pu-Vu=J. P, f

which are regularizations of (1.1) in a certain sense.
The next theorem is our main result for bounded domains. It yields the desired
regularity result for = and some regularity properties of the weak solution .

28*



436 H. Sour and W. vON WAHL ARCH. MATH.

3.3. Theorem. Let Q < R” be a smooth bounded domain with n = 3, let s, pe (1, )
2 nt 1 1 1

with ns—-+-, —+-<1, —:i= —+ , feEQO T.IE(Q)") for some T>0 and uye
s pp n g P

D(A;f”) N H,(Q) for some ¢ >0, 1 ——+ ¢ =< 1. Let u be a weak solution of the
s

Navier-Stokes equation (1.1) with data u, and f. Then we have

WeBO THEQ, AueE@O TLE®", u-VueL(0, T, E(Q)),
and there exists a pressure € E(0, T: I (Q)) with Vr e E(0, T, I#()") and

W —Au+u-Vu+Vr=f in IEQ T LE(Q).

Remarks. We are mainly interested in the result n € E(0, T; I7 (£2)) w1th + ! <1,
p

2 51 1
ns- +2. In case n=3 we may take s=p=—, —=—-+ —,
s p 3¥q p 3

ne IP3(Q7). Of course, = is only determined up to a function 74:[0, T] - R with
g € E(0, T) (for a bounded domain). If uy € D (4,) N H, () (= D(A4,)), the assumption
n+2

and we get the result

on u, is satisfied for all possible s and p. For all n = 3, we may take p = s =
and % =% + % in the hypothesis of 3.3.
The theorem proves the conjecture in [2; p. 780] for bounded domains.
Proof The property u-Vue E(0, T: I (2)") follows from the following estimates:

fu-Vulr=fu-Vuls_1, 15¢llulr_ 1||Vqu
q P 2

2732 q

N

=cy ||ul Ea(-H-4 I Vu II%,

nf, 1
< 143D vy

(-9), 1(-3)

<cla2ul Y uls Vul,

< e, lLadull 30D gy 09

< es(|Vul, + ||u||2)”"(1‘§). ”u”;—n(l—%)’
fu-Vuls = E lu- Vuls dt

écsllulls( (_))f(lqu||2+|!ul|z( (=D g,

2,

2 1(2 1172 i1
Observethatq<2becauseofn+1< +— 1—={-—-1)]2—--{-—-1)<5—-<L
q n\s g n\s 2's
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2 2 1 1 2 n .
From n§—+f we get n+1§—+n(;+—)=—+— and therefore it holds
s p s nj s gq

s<1 +n (1 — £>> < 2. Thus we get
q

s(1-n(1-1) T
Vs, < e fup S0 4))g(nwnz+||u||2)2dr<oo.

In the next step we use the equations (3.2), write them in the form
(euwy — P Aywy=J P f —J Pu-Vu, k=1,2,..,
and apply the estimate (2.9) to obtain

T T
.g [ (Jewy ||f1 dr + E‘; I Jku”;ﬂd’(ﬂ)” de

1 T
- C<||A2'?”uo Iz + (f) 1f1g+ - Vuld) dt)-
Since the right hand side does not depend on k, we get immediately v’ € E(0, T; I4(Q)"),
ue E(0, T H>4(Q)") and Aue E(0, T I4(2)"). Letting k — co we get the equation
W —PAu+FPu-Vu=Pf

in E(0, T, Z(2)"). In this space we have a decomposition of the form f — ' + Au
—u-Vu=F/(f - + Au — u - Vu) + Vr = Vr, where Vr is uniquely determined. Thus
we obtain the equation ' — Au +u - Vu + Vo = f in E(0, T, [Z(Q)") and the property

Vree £, T, I4(£2)"). From %—é 1

_1_77 qu we get ”n”pécnvnuq and ”n”p,s

< c||Vz], ; using the boundedness of Q. It follows = € E (0, T; IF (2)). This completes the
proof. [

Remark. This proof leads to an estimate on the form
T T T
(f) [lw'1lg dt + (f) 4l 52 am dt + (5) IV g dt
1 T . s(1-n{1-1
§C(HA§ e J(; ISl de + ”u“2,(eo (1=2)

T
[0Vl + ful)? dt)

where ¢ = c(a, 5, ¢, T, 2) > 0 is independent of u, and f. In particular we get
T

[imlydr < c(n Al

T s{l~—n 1—l T
+£l|fllf,dt+ uuuz(; ( “))~(I)(|1Vu|!z+IIu!Iz)zdt)-
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The conclusion of Theorem 3.3 holds essentially for an exterior domain Q too. This can
be shown by combining the method given above with the method in [10] which is a
localization procedure; an essential step there is the use of the formula of Bogovski-Erig
([1], [3]) concerning the equation divw=f, [ fdx =0, we Hv4(Q)". To localize the

Q

Navier-Stokes equation we have to multiply (1.1) by a certain function ¢ € ¢* (@) and
with the help of the formula of Bogovski-Erig it is possible to make £u divergence-
free.

For an exterior domain we define H L2(Q)" to be the closure of C*® (Q)" with respect
to the Dirichlet norm [|Vul|,; let H~1# (Q)y with 1,4-11—) =1 be the dual space of

2 . . , p
HY7(Q)". Then it holds H %2 (Q" ¢ H %?(Q)" for an exterior domain, where
H™ 4P (Qy:= (H?(Q))* is the usual space.

We have the following result.

3.4 Theorem. Let Q = R” be a smooth exterior domain with n = 3 and s, p, g €(1, o)

. 2 o1 1 1 1 2 n Ay
with nS—-+-, —=-=S-+-, n+1=—-+—-. We suppose feI(0, T, H **(Q))
s p pPp 49 p n . S q1 1
NE@O, TEQ" and uge D(A; s nD(A,; %) n Hy(Q) for some >0, 1 ——
+e=1. $
Let u be a weak solution of the Navier-Stokes equation (1.1) with data uy and f. Then
we have

IA

wWeL@© TIEQ)"), AuceLE(O TLEQ)", u-VueL(0, T L(Q)",

ueBO, TP, VueL, TIP@Q), uueL0, T, Q")
and there exists a pressure n € L0, T, [ (Q)) with Ve E (0, T; I(Q2)") and

v —Au+u-Vu+Vrn=f in E@O T Q).

Remarks. The conditions on the data u, and f are always satisfied if the following
holds: ug € C%(Q), f € €(Q x [0, T)). The conditions on s, p, g are satisfied in the following
. : 2, % = ;—) + % In the case n = 3 we get the result = € I3 (Q7) as for a
bounded domain. However, the properties xe E(0, T, I (Q)), ue E(O, T; I (Q)"), ... are
global results for the exterior domain Q; 7 and u must have a certain decay for |x| — oo.

An important consequence of the result = eI>’3 (Q7), n = 3, is the smoothness of u for
sufficiently large | x|, provided u fulfills additionally a generalized form of the energy
inequality as in [2]. This result is known in the case 2 = IR® by Caffarelli-Kohn-Nirenberg
[2]; we have extended this result to arbitrary smooth exterior domains [10]. Theorem 3.4
proves the conjecture in [2; p. 780] for exterior domains.

Using the method given in [10] and Prop. 1 in [2, p. 775], we can prove the following
result.

case: s = p =
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3.5 Theorem. Let Q be a smooth exterior domain of R3, T >0, p= g, F> g,
=24l ferO mA Q) A PO T HE @) A PO T @) A L@ and

1
g 5 3 L
ug€ D(AY®) " D(A} 7)) n Hy ().

Then there exists a weak solution u of (1.1) which is smooth for sufficiently large | x|. This
means that there exist constants M > 0, K > 0 such that |u(x, t)] £ M holds for almost all
x,t with |x| 2 K, t = 0.
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