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Abstract, It is shown that a geodesically complete, asymptotically Euclidean, 
static perfect fluid space-time satisfying the time-like convergence condition and 
having a connected fluid region is diffeomorphic to R 3 × ~. 

Introduction 

In this paper we prove that a geodesically complete, asymptotically Euclidean, static 
perfect fluid space-time with connected fluid region and satisfying the time-like 
convergence condition is diffeomorphic to ~3 x ~. It is believed that such a space- 
time would be spherically symmetric at least for physically reasonable conditions on 
the density function p and the pressure function p. 

The above assertion (that the space-time is diffeomorphic to ~3 × R) has been 
claimed in [LB] provided the Poincar6 conjecture is valid. In fact a theorem due to 
Gannon [G] says that such a space-time is diffeomorphic to N x R, where N is a 
simply connected complete 3-manifold. The asymptotic conditions then imply that 
N has the same homotopy as ~3 ([LB]; results in [G] and [LB] do not require that 
space-time be static). Thus Gannon's result reduced the question to proving the non- 
existence of fake 3-cells in N (in particular it would give the full result if the 3 
dimensional Poincar6 conjecture were known to be true). Proving the non-existence 
of fake 3-cells in an appropriate class of asymptotically Euclidean Riemannian 3- 
manifolds is thus the main point of this paper. Here we note that a theorem due to 
Schoen and Yau (Theorem 3 in [SY]) says that a complete, noncompact 3-manifold 
with positive Ricci curvature is diffeomorphic to R 3. 

The main arguments needed are given in Sect. 2 and Sect. 3 of the paper. In Sect. 2 
we point out that the theorem of Meeks, Simon and Yau (Theorem 1 in [MSY]) 
applied in the present context, gives (in ease there are fake 3-cells) a totally geodesic 
embedded sphere not intersecting the "fluid region," where p + p > 0. The argument 
to show this is similar to an argument of Frankel and Galloway [FG] (who also used 
the existence theorem of [MSY]), but here we need an additional approximation 
argument to make the appropriate stability statement. 

In Sect. 3 we use an argument (inspired partly by an argument of Robinson [R] 
from his proof of spherical symmetry of the static vacuum solution) to prove that 
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there cannot exist a totally geodesic embedded sphere which does not intersect the 
fluid region. Combined with the result of Sect. 2, this completes the proof of the main 
theorem for Riemannian 3-manifolds. 

In Sect. 4 we complete the proof of the main result for static perfect fluid space- 
time. The result differs from the similar result in the paper of Frankel and Galloway 
in that, in our case we may allow p + p to vanish outside a connected region. 

In Sect. 5 we consider various generalizations of the main theorem. In particular, 
the topology of suitable space-like hypersurfaces in a certain class of space-times, 
not necessarily static or perfect fluid, is investigated. 

1. Notation and Main Theorem 

With regards to tensor notation we use the following conventions. 
Italic capital indices A, B, C,. . .  run from 0 to 3, Greek indices e, fl, 7,... run from 

1 to 3 and Italic indices a, b, c . . . .  run from 2 to 3. 
In local co-ordinates, for a metric g,p the Ricci curvature is Ric(g)~p = 

R~,,a, where R~a,, is the Riemann curvature tensor. For  a vector field Z a we have 
R~'t~,vZa= Z~';v~- Z~,v. Here ; denotes covariant differentiation in the g metric. 

Let 22 be a smooth surface embedded in the smooth three dimensional 
Riemannian manifold (N, g). (By smooth we shall mean C°L) In local coordinates II 
indicates covariant differentiation with respect to the induced connection on 27. For 
a tensor T belonging to the tensor bundle of 27 we have 

T ~ . . . .  ~p... ~ ~ r . . - t l~-"  ~...;~, ~,~ ~.-.-h~ on 27, 

where T is a local extension of T in a neighbourhood of 22 in N, and where 
h~,p =g~p-n~np ,  h~'a=g~"~h,,a on 27, n~ being the unit normal form on 27. Clearly 
h~Pn~,=O, h~t~ii ~ = O. 

The second fundamental form A of 27 is the tensor A~p = h'~,h~a~v: . ,  where h~ is 
any local extension of n~ in N. Mean curvature H = A~pg ~a. I A I denotes the length of 
the second fundamental form: IA t 2 =  A~aA ~.  

The Riemann curvature of the induced metric on 27 is denoted by hR~,ay,~, where 

h R~#Y ,~ Y# = Y~II~- Y~l]r~ 

for all vector fields Y on 27. The indices are raised using g. We include the embedding 
equations for easy reference. Gauss' equation: hR~#~ =Repu~h~ hpa h ~ h ~  + 
A~rAp~ - A'aAa~. Contracted Gauss' equation: hR = R -- 2 Ric(g)~an'n ~ + H 2 - 
I A I z, hR and R being respectively the scalar curvatures of 27 and N. Codazzi's equa- 
tion: A~II~ - A ~lla -- Rlc(g),~n h 8" 

For a vector field Y on N, Ylp denotes its value at a point p e N .  g(,) denotes the 
inner product on the tangent space of N and ( , )  denotes the corresponding induced 
inner product on 2:. In general the induced inner product on the tensor bundles of N 
and 27 will be denoted by g(,) and by ( , )  respectively. ITI z =- g ( Z  T). For a tensor 
field T defined on ~1 c N and for (2 ~ (1, T[(2 denotes the restriction of T on ~z. 

127 [ denotes the area (that is the usual two dimensional Hausdroffmeasure yf2 in 
N) of 27 considered as a submanifold of the Riemannian manifold (N, g). L" denotes 
the n-dimensional Lebesgue measure in E". 
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V and d will respectively denote the gradient operators and the Laplacian on 
(N, g). Vx and As are the corresponding operators on 2: with respect to the induced 
metric. 

BR(X ) is the open ball in E3 with radius R and centre at x e ~  3. 
For a bounded, open, connected subset D of R", ck'~(12), k > O, 2~(0, 1), denotes 

the space of C k functions on D whose k th order partial derivatives are locally H61der 
continuous in D with exponent 2. ck'1(£2) denotes the space of C k functions whose 
k th order partial derivatives are locally Lipschitz continuous in -(2. For 1 ~ p < ~ ,  
wk'P(O) denotes the Sobolev space; that is, Wk'P(D) is the set of all k times weakly 
differentiable functions u in D such that D~u~LP(I2) for all I~1 _-< k. 

The main theorem we prove is the following (to compare with physics literature, 
see 1.10 and Sect. 4): 

Theorem 1. Assumptions. ( N, { qA~, q~}aEd) is a C ° simply connected three-dimensional 
differentiable manifold with a complete Riemannian metric g satisfying the following 
conditions: 

(a) In local co-ordinates given by q~, g~a~Cl'l(q~(ql~)) and g satisfies 

Ric(g)~a = V- 1 V;~fl --}- ¢~g,p (1.1) 
and 

AV = VO0 2, (1.2) 

where ; denotes the covariant differentiation for g, A is Laplacian for g, V is a locally 
C 1"1 positive function on N, ~ ,  ci9 2 are bounded measurable functions on N, and 
cO 2 >= O. (The above equations are assumed to hold almost everywhere in N.) 

(b) There exists an open connected set ~ ~ N such that essinf(~ 1 + @2) > O for 
all compact K c ~, and cI)1, q)2 = 0 in N ,,~ ~. K 

(c) There exists an open connected set N o ~ N such that No is compact and 
N ~ No is diffeomorphic to ~3 ~ B1, where B~ is the closed unit bali centred at the 
origin and, with respect to the standard co-ordinate system in ~3, we have, on 
N ~ / ~ o ,  

g ,p=f ,p  +O(]x[ -~) and Og~a=O(lxl-a-~), (1.3) 
cqx ~ 

/ 3 \1/2 
Io so e w ere ) 

Assertion. N is topologically ~3 and hence diffeomorphic to ~3. 

1.4. Remark. Henceforth the co-ordinate system in (c) above will be referred to as 
the asymptotic co-ordinate system. 

1.5. Remark. On N ~ ~ we have A V = 0. Hence on N --, ~, V is locally C 2'~, #~(0, t) 
(See the paragraph following 3.7 in Sect. 3). 

It can be easily shown (see [MA]) that when J is compact, by virtue of 1.3 we 
have in the asymptotic co-ordinate system, 

C2 ~ __ 
V = C 1 - - ~ +  ~, where q = O ( l x l - l - a ) ,  Ox -O(]xI -2-P) ,  (1.6) 
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and 

I 32/,] [2X~ 1/2 
R-3N3~_N, ~ ) =O(R - 3 - ' )  for some fl~(0,1), 

constants C1 > 0 and Cz _-_ 0. Here NR c N is such that in the asymptotic co- 
ordinate system, N ~ N R = ~a ~ Bg(O). Without loss of generality we write (1.6) as 

m 
V = l - ] ~ + q ,  where m ~ 0  and q is as above. (1.7) 

It is well-known that when m = 0 and q~ tends to 0 at infinity, then g is flat. To see 
this we note that in this case (1.2) and (1.7) imply V -  constant. Hence by (t.1) we 
have Ric(9),p = q~9,p. The contracted Bianchi identity for 9 (see [MA]) then implies 
that qh - constant. Thus ~x - 0 and 9 is Ricci flat and hence flat. 

1.8. Remark. The contracted Bianchi identity for 9 (in weak sense, see Eq. (A2) in 
[MA] where the third derivatives of the metric are avoided by integration by parts 
after contracting the usual expression for the contracted Bianchi identity with a 
smooth vector field having compact support) implies that q~z - q>l is a Lipschitz 
function on N and 

('/~2 - ~ l ) : e  = - 2 V -  1(~ 1 + (/)2)V;fl, ( 1 . 9 )  

For simplicity we put 

{¢h - '/h = 16rip, 
3¢h + ¢~2 = 16np, (1.10) 

where the factor 16n has been used in accordance with the usual convention of 
physics literature. 

It is shown in [KS] that if.~ is compact and p is non-negative then p cannot be a 
Lipschitz function of p unless p -= 0. In [KS] it is assumed that V has one critical 
point. We give an alternative argument which does not need the assumptions on the 
critical points of V. If p is a Lipschitz function of p then (1.9) and (1.2) give 

A p + ( 2 + ~pp ) V-1V;~p;~ = -4Tc(p + p)(p + 3p) < O. 

Now p vanishes outside ~ and N,-~ ~ # ~ .  Hence by the (generalized) strong 
maximum principle (Theorem 8.19 in [GT]), p -  0. 

1.1 t. Remark. The assumption ¢~z ~ 0 in (a) is not necessary in case ,~ is unbounded. 
This is because in this case, if a sphere S c N with S ~ ~ = ~ bounds the compact 
manifold-with-boundary N1 c N then N l c ~ = ~ Z ~  (since, by hypothesis ~ is 
connected; for details see Remark 3.1 in Sect. 3). Hence Case II in the proof of 
Theorem 5 cannot occur automatically. The proof of Case II uses (1.7) and that 
V < 1 on N ,-~ ~. The condition ¢'2 ~ 0 enables us to use the maximum principle to 
deduce that V < 1 on N and also to determine the sign of C a in (1.6). 

1.12. Remark. A physical example where g and V are piecewise C a and p is 
discontinuous across ~ is the static stellar model described in [KS] and [L3. Our 
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asymptotic conditions are slightly more general than those given in [KS] or [K]. 

1.13. Remark. Further generalizations of Theorem 1 are given in Sect. 5. In 
particular alternative definitions of "~" are considered. 

2. Stable Minimal Surfaces 

In this section we use a theorem of Meeks, Simon and Yau (Theorem 1 in [MSY]) 
regarding the existence of minimal surfaces in 3-manifolds to prove that either N is 
topologically Euclidean or there exists an embedded totally geodesic sphere in 
N ~ 2. The proof is essentially a straightforward modification of a result due to 
Frankel and Galloway (Corollary to Theorem 1 in [FG]). However, since the metric 
is only C 1"1 in our case, we have to deduce a suitable form of the "stability 
inequality" involving the Ricci curvature which, in our case, is only defined almost 
everywhere and hence does not, in general, make sense on the minimal surface. 

Let cg denote the collection of all connected compact C 2 2-dimensional surfaces- 
without-boundary embedded in N, and let c~1 denote the collection of compact 
embedded surfaces 27such that each component of 2; is an element off& Given 226cg 
we let 1(2;) be the collection of all 2 such that 2 is isotopic to 27 via a smooth 
isotopy: ~,: [0, 1] x N-- ,N,  where 

(i) ~ko(X ) = q/(0, x )=  1N(x), 1N being the identity map on N; 
(ii) q/, defined by q/t(x)= q/(t,x), (t,x)s[O, 1] x N, is a diffcomorphism of N onto N; 

(iii) q/tiN "~ K = 1N~ K for ts[0, 1] for some compact set K c N independent of t. 

We shall say that a two-sided surface $ 6 ~  is area minimizing if there exists d > 0 
such that 

IS] _-< inf 121. (2.1) 
£~l(S) 

c {xeN[dist(x,S)<d} 

Now from the asymptotic conditions (c) in the hypothesis of the main Theorem 1 
it follows that there exists a smooth sphere Sr given by ix I---r in the asymptotic co- 
ordinate system such that the mean curvature of S, in (N, g) with respect to the 
outward normal is strictly positive. Let X~ be the simply connected compact 
submanifold of N with boundary t3Jl~ = S~ (that is, in asymptotic co-ordinate 
system N ,,~ X 1  = R3 ~ Br(0)). Then 

Theorem 2, [MSY]. Either Y l  is diffeomorphic to a closed unit bail in ~3 or there 
exists a C 2'~, ct ~(0, 1), embedded area minimizing minimal sphere S in the interior Jff ~ of 
J~/ ' l "  

Proof of 2. It is a particular case of the more general fundamental existence theorem 
(Theorem 1) in t-MSY]. We note that the only places in the proof of the latter 
theorem where the smoothness of the metric is used are in the definition of 
homogeneous regularity and in the arguments relating to homothetic expansion on 
p. 639. (As an alternative method we can avoid the use of the above theorem for C ~'' 
metric altogether and can directly apply the smooth metric version of this theorem 
(which is proved in [MSY]) to a sequence of smooth metrics approximating the C 1' 
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metric to prove our final theorem (3) of this section. This alternative approach is 
based on convergence of sequences {Zk} of smooth compact surfaces in a 
Riemannian 3-manifold (N, g) where 2: k is stable minimal in the smooth metrics kg 
approximating the C ~'1 metric g. For  details see [MA]). On p. 639 in [MSY] it is 
assumed that N can be locally isometrically embedded in the Euclidean space. This 
can be avoided by considering the local co-ordinates representation for N in the 
neighbourhood of a point Xo with the C ~'t metric g~ satisfying g~o(0)=6,~ and 
(c~g,~/c~x~)(O) = 0, where 0 is the image of Xo. The definition of homogeneous 
regularity can be modified by having a countable atlas with uniformly bounded C ~' 
norm of the metric in each chart. By hypothesis N has such an atlas. Finally, we note 
that since N is simply connected there cannot be any embedded projective space in N 
(by Theorem 4.7 on p. 108 in [HI). [] 

We shall now deduce a suitable form of the "stability inequality" from 2.1 and use 
this inequality to prove the existence of a totally geodesic embedded sphere S 
N -,, ~ in case N is not topologically Euclidean. In particular, we prove the following 
theorem: 

Theorem 3. Either N is diffeomorphic to ~3 or there exists a C 2'~, ~ ( 0 ,  1), embedded 
totally geodesic sphere S in N ~ .~. 

Proof of  3. We take an 1-parameter family {~&}0=<t=<~ of diffeomorphisms ~/'2 ~ ' H E  

of some neighbourhood ~ z  of S in N such that 

(i) qg(t,x)-(pt(x) is a C 2 map: ( - 1 ,  1) × JV'2 ~dV'2; 
(ii) q~o(X) - x,x~JV2; 

(iii) (3q~(t, x)/Otlo,s = ~ ,  

where ~ is a smooth positive function and fi is a smooth vector field on S such that for 
some given e > 0 ,  the C 1 norm o f ( ( - V )  in fi/'2 is less than e, l t l - n o l Z < e  and 
IVy( r~ - no)[ 2 < gl y[2 for all vectors Y~ T~N, x~S, n o being a unit normal vector field 
on S. 

Now let f ( t)=[Stl ,  where S,=~ot(S). Then df /dt lo=O, since S is area 
minimizing. Also given any interval Ij = ( -  1/j, l/j) (however small) about t = 0 and 
given any ?~I~, we have 

i ~ ~ d2f 
0 <-f(t) --f(O) = dt = ~ ~ 5~2dsdt. 

o o a S  

Thus d2f/ds 2 >= 0 on a subset A~ c Ij with A i having positive measure. 
Now there exist Cj c Aj with Cj having positive measure such that, for all t~Cj, 

c~zO~/Ox~c~x ~ and (c ~2 V/Ox~Ox ~) exist almost everywhere on St. To see this we consider 
the local chart (q/~,~oi). Let B be the set {x~qlilxer&(S),te[-(1/j),(1/j)] for 
sufficiently large j and some (OZg,~/c~x~c~x ~) is not defined at x}. 

Then 

O= ~ tVtldL 3= ~ ~2(q)i(BnSt))dt 
¢,~(B) _~ 

by the co-area formula. Thus for almost all t E [ - t ,  {], ~ 2 ( B  ~ St)---O. 
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For  any teCj we have the following second variation formula on St: 

~s21S~t = ~ divs, Z +(divs, X) 2 + I(V~°X)II 2 
s=t S t \  a=l  

) -- Y', 9(%,V~bX)g(zb, V~ ,X) -  Z 9(R(z,,X)X,%) , 
b ,a=l  a=t  

where z~ is an orthonormal vector basis on S,X=(d/ds)(q),(x))ls=,xeSt; 
Z = (dZ/ds)(eps(X))[s=t, x~St; (V~X) ± is the part of V~X normal to S, and (R(.,.).) is 
the Riemann tensor. 

Restricting t to a subset Dj of Cj with Dj having positive measure, we have 
X = ~(n + t/), where n is the unit normal vector to St and where ]rtl 2 < c, Igyql z < 
et y[2 for YeT~N, x e S r  Hence we have, for t~Dj, 

= ff (9(Z, n)Ht + ¢ZHZt +IVs,~ I z --IAtl2~ z -- ~z Ric(g)(n ' n)) + ce, (2.2) 
St 

where At is the second fundamental form of St and Ht is the mean curvature ofSr  c is 
a constant depending only on C 1 norm of 4. This implies 

(42(I At I z + Ric(9)(n, n)) - I V s f  12) ~< ~ (9(Z, n)Ht + ~2H~) + ce. 
St St 

Now there exists Ej c D i also with positive measure such that (1.t) and (1.2) hold 
almost everywhere on St for all teEj. Hence using the fact that the C ~ norm of(~ - V) 
in ~#2 is less than e we get, for all teEj, 

f (V2( IA t l  2 + Ric(g)(n,n))- IVs, VI z) < ~(g(Z, n)H, + V2H 2) + Ce. (2.3) 
St St 

This implies, since VI St is W2w(St), 

(V2(fAt 12 + Ric(g)(n, n)) + VAst V) < ~ (g(Z, n)gt + V2H 2) + ce. (2.4) 
St St 

Now using the following well known formula 

A ~ = As, ¢ + ¢;~n~n p + ntv~O(n) for any C 2 ~, (2.5) 

which also holds for V on St, teEj, we have 

(V2([At[ 2 + Ric(9)(n, n)) + VA V - VV;~n~n ~) 
St 

< ~ (g(Z, n)H t + VZH 2 + VHtVV(n)) + ce, (2.6) 
St 

But V 2 Ric(g)(n, n) + VA V -  VV.~n~n ~ = V 2 ( ~  + ~b2) > V2h, where h is a con- 
tinuous function in N with h > 0 in ~.. Hence 

V2(IAtl 2 + h) < ~ (o(Z,n)Ht + V2H~ + VHtVV(n)) + ce 
St St 

for all t~E i. 
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But Ej c ( -  l/j, I/j). Hence lettingj ~ oo and noting that S = S O is a C 2 minimal 
surface, we have 

~V2(IAI 2 + h) < 0, 
S 

where A is the second fundamental form of S. Since h > 0 in ~ we get that I A I = 0 and 
f S ~ I  =0 .  Since S is C 2 we have proved Theorem 3. [ ]  

3. Proof of the Main Theorem 

In this section we shall prove that no embedded totally geodesic sphere exists in 
N ~ ~., and thereby we shall complete the proof of the main theorem. 

3.1. Remark. Since N is simply connected and S is compact co-dimension 1 
embedded submanifold of N,S separates N and N ~ S has exactly two closed 
components, say N1 and Nz having boundary S (see Lemma 4.4 and Theorem 4.6 
on p. 107 in [H]). It follows from the asymptotic condition (c) that exactly one of the 
components, say N1, is bounded. Thus ~ r  is a compact manifold with boundary S so 
that Stoke's formula holds. Similar is the case with the set obtained from N2 by 
deleting the exterior of any asymptotic sphere SR given by I xl = R in the asymptotic 
coordinate system for sufficiently large R. 

In the following lemma we deduce some formulae we shall need later. 

Lemma 4. Let S be a (C 2) totally geodesic embedded sphere in (N, g) such that 
S c N ,,~ ~. We suppose n is a continuous unit normal form on S. Then 

(i) g(n, VV)= m', a constant on S; (3.2) 
f]VsVl 2 

(ii) j s ~ -  = 4~, where Vs is the gradient operator on S with respect to the metric 

induced from g; and provided V < 1, (3.3) 
(iii) for a sequence T~ of smooth spheres in N ~ ~ converging to S in the C z sense 

v , l  v , s e V a + a  ~ ' (  ( c V 2 + a  3 ) lim f ,7;7--7~g, a g(n, V w ) = f 2 m  Vs ,VsV , (3.4) 
l-~ ~ TI 

where w =  IVVI 2, f i= ~(l) is the smooth unit normal form on T t consistent in 
direction with n, ( , )  denotes induced inner product on Tz and c, a are arbitrary 
constants to be specified later. 

3.5. Remark. IfS c N ~ •, we may replace (3.4) by the pointwise relation g(n, Vw) = 
- m'RV on S, R being the scalar curvature of S. However S may touch a~, where the 
metric is not C 2. The extra term (cV 2 + a)/(V(1 - V2) 3) has been introduced for later 
application. In (3.2) the sign of the constant m' depends on which normal direction is 
considered. 

Proof of 4. We first note that there exists a sequence T~ of smooth spheres in N ~ 
converging to S in the C z sense. This is because S separates N (see Remark 3.1) and 
by hypothesis ~. is connected. 

Now in N ,-~ ~, (1.1) and (1.2) become 

Ric(g)~a = V-1V;~a (3.6) 
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and 
AV = 0 (3.7) 

respectively. 
Standard  P D E  regularity theorems (for example, Theorem 9.19 in [ G T ] )  applied 

to 3.7 gives V to be locally W 3,p, 1 < p < m, on N ,-~ ~. F rom 3.6 it follows that  Ric(#) 
is locally W 1 'p on N ,v ~. 

Now for the smooth compact  embedded surface Tt in N ~ ~ we can use the 
following weak form of Codazzi 's  equation: 

5 b" Ric(o)=p(6~ - ~=~,)~fi = S (b"LI,H - b"ll~Ae,) (3.8) 
T~ T1 

for any C 1 vector field b" on TI. Here A=p = A=p(l) is the second fundamental  form of 
T~ and H = H(1) is the mean curvature  of T> 

Now let f be any C 2 function on S and let f be a C 2 extension of f in a fixed 
ne ighbourhood of S such that  f restricted to T l is a C 2 function on Tl for all 
sufficiently large I. 

On any such T l in local co-ordinates we have 

fll~( V;fi=)lt~ = fll,(V;~(6~ - ~P~)~ + V;=~=;fi(6~ - ~fit~), (3.9) 

where ~ is any local extension of ~ in N. 
On  using (3.6) and (~=~=);/~(6~ - ~P~) = 0, (3.9) yields 

fll~(V;fi~)ll~ = flla(F Ric(o)~p(65~ -/TP/~,,)t~ ~ + V I1' Am, ). (3.10) 

Hence integrating and using (3.8) with b~= VT I'~, we have 

J fI'~(V.~)II~ = j ((VflI~)II,H -(VylI~),,A% + Au~V'l*'yll°), (3.11) 
T~ T~ 

which on simplifying the r ight-hand side and integrating the left-hand side by parts 
yields 

- 59(~,VV)AT,f= 5 ( V H A T , f + H ( V T ,  V, VT , f ) - -  V(A, VT,Vr,f)) .  (3.12) 
TI TI 

Now VT,VT,f, AT, f  and (Vr,  V, VT, f )  are uniformly bounded independent  of I. 
Hence letting 1 ~ oo and recalling that  S is totally geodesic we get 

jg(n, VV)As f  = 0. (3.13) 
S 

Since this holds for arbi t rary C 2 function f on S and since g(n, VV) is cont inuous 
we have g(n, V V ) =  constant  on S. Thus  (i) is proved. 

To  prove (ii) first we note  that  the scalar curvature  of g in N ~ ,~ vanishes. Now 
using the Gauss -Bonne t  theorem and the contracted Gauss equation, we get 

( - Ric ( g )~e~  p + H2/2 - -  1A 1 2 / 2 )  = 4m (3.14) 
Tt 

This implies, by 3.6 

- -  V -  1V.,Tfl~lz~fl _}_ H2/2 _ iAi2/2) = 4ft. ( 3 . 1 5 )  
Tz 
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Now using (2.5) with ~, = V and (3.7) in (3.15), we get 

T5 ( I V y 2  V[2 + 9 ( ~ , V V ) H / V + H 2 / 2  - [AI2/2) = 4ft. 

Hence letting l tend to oo we get (ii). 
Finally to prove (iii) we note that 

(3.16) 

= 2 Ric(0)=p(6~ - ~P~e) Viler'/= + 2V-  19(~, VV)( -  AT, V -- 9(~, g V)H). 
(3.17) 

In the last step above we have used (3.6), (2.5) and (3.7) in addition to replacing V ;/~ in 
the first term by V I1~. 

Hence using (3.8) with b e = ((cV 2 + a)/(1 - V2)3)V Ite, we get 

cV 2 + a 
r~, V(1 - V2) 3g(~' Vw) 

{ cV  2 + a VII~'X 
. / cV  2 + a VII~ ] A~e + 2TJ ~ ( i~V2)3  H 

c V  2 + a . 
+ 2if V-(-f2 v'I~'"ag(n'VV)(-AT'V - g(n, VV)H). (~.18) 

Now we have 

J," v(lCV2- +V2) 3g(n'a ~ / / V ~  cV2 +V~) 3a  ~X VT, V/. 

cV 2 + a (3.19) 
+ 2T5,_ V(1 -- V2) 3 (VT, V, VT,g(~,V V)), 

where the second term in the right-hand side equals - 2 ~ g ( ~ , V V ) A T , f  for 
f =  ~((cV 2 + a)/V(1 - V2)a)dV and can be evaluated using (3.12). Hence letting l 
tend to oo we get, from (3.18), 

tim j . ; : r . -  2,39(~,Vw)=2m' Vs ,~T;---;,~-,x},VsV)- 
t-+o~TzV[l -- V ) 

This completes the proof of the lemma. [] 

Theorem 5. There cannot be any totally geodesic embedded C 2 sphere S in (N, g) such 
that S c N ~ ~. 

Proof of 5. Let us suppose to the contrary that there is a S. Since by hypothesis .~ is 
connected we have by Remark 3.1 either of the following cases: 

Case I: ~ c ]~2 or 
Case II: ~ c/V1. 
We consider Case I first. On N 1 we have A V = 0 and on aN 1 = S we have 
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#(n, VV)= constant by (3.2). This implies 9(n, VV)= 0 on S. Hence 

f IVV[ 2= - f VA V+(1/2)  I a va=lglvg(n,  VV)=O, 
N1 N~ Ni  /-, S 

giving IVVI2= 0 on Nx. Thus V is constant in the interior of N~ and hence, by 
continuity, on S. This implies 

~lVsVle/V 2 = O, 
S 

which contradicts (3.3). Thus ~. ¢ N 2. 
Now we show that Case II also does not occur and hence get a contradiction. We 

shall use Robinson's divergence form inequality ([R])  on N ~ ~. 
On each bounded open subset JV" 4 of N ,-~ ~ we have the following inequality 

(provided V <  1 on N ~  (JR], [MA]))  

where 

and 

(FV-  lw;~ + GwV;~)a ~ O, 

F = (cV 2 + a)/(1 - V2) 3, 

(3.20) 

(3.21) 

(3.22) G = - 2c/(1 - V 2 )  3 + 6(cV 2 + a)/(1 - V2) 4, 

c and a being constants such that F > 0 on N2. 
First, we show that w is locally C 2 on N ~ ~ so that (3.20) makes sense pointwise. 

Differentiating (3.7) we get V;~'p=0. This implies by commutation law, 
Va~ ~ = Ric(g)~pV a. Hence, 

a w = 2(V;~eV:e);" = 2V;~=V ;p + 2 V;=eV;~ 

= 2 Ric(9)¢~ V;¢ V;~ + 2 V;=~ V;PL (3.23) 

Since Ric(g) is locally C =, ~e(0, 1), we get that w is locally C 2a. 
Now Stoke's formula applied to (3.20) gives 

lim 5 (FV-  lg(fi, Vw) + Gwg(~, VV)) 
t ~  m Tt 

+ tim S (FV-  19(Rn , Vw) + Gwg(Rn, VV)) > O, (3.24) 
R - - , ~  SR 

where T~ and fi are as in Lemma 4. SR is the asymptotic sphere l xl = R and Rn is the 
outward normal to S R. fi is directed outward with respect to the volume bounded by 
T I and SR. Hence by (3.7) and (1.7) we have 

lim ~ g(fi, VV) = - lim ~ g(Rn, VV) = --4rcm. 
l~oo  Tl R ' - ' ~ S R  

Thus by (3.2) we have 

m' = 9(n, VV)IS = -4rcm/ISI, (3.25) 

n being the unit normal form on S consistent in direction with ~. We need to consider 
only the case m > 0 (for m = 0, arguments of Case I apply in the domain exterior to 
S). Hence we assume V < 1. 
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We have 

lim S FV- lg(Rn, Vw) + Gwg(Rn, VV) = - rc(c + a)/2m. (3.26) 
R - ~  oO SR 

Using (3.21), (3.22), (3.25) and (3.26) in (3.24) we get 

c v  2 + .  . - 2 c w  , 
lim S V(1 - V2) s 9(~, Vw) + !(1 - V2) s m + Js (1 - vz) 4 wm' > rc(c + a)/2m. 
l --* o~ T t 

(3.27) 

Hence by (3.4) we get 

( ( cV2+_a ~ ) 2cw ,,6(cV2+a)w 
m'! 2Vs V ( 1 -  V2)3/'VSV - m ' ! ( 1 -  V2) a + m ! ~ ~ >n(c + a)/2m. 

(3.28) 

Dividing by [m'[ and using (3.25) we get, 

c V  2 "{- a 2cw 6(c V 2 + a)w 1 
(1 - vz) -~ _] > (c + a)lSI/Sm 2. 

(3.29) 
Following Robinson [R] we shall choose two different sets of values for c and a to 
obtain two inequalities contradicting each other. We put c = - 1, a = 1. We check 
that F > 0 on N ,-~ ~. Then (3.29) becomes 

! [ ( - 2 V s ( v ( 1  1vZ)2),Vs V)  (12V2)3 ( 1 6 V 2 ) 3 ] > 0 .  (3.30, 

Simplifying the first term and using w = IVsVI  2 + m '2 on S, we get 

2(1 - 9V z) 1 
!V2( 1 _ V2) 3 [VsVI 2 ~ 8rn'2!i 1 _ V2)~ > 8m'21SI. (3.31) 

The last inequality follows because we have 1/(1 - V2) 3 > 1 on S as V > 0. Now 
using (3.25) and 

1 - 9V 2 
- - < 1  on S, (3.32) 
(1 - V2) 3 

we have 

Finally using (3.3) we get 

lVsVI > 64zcZm2/ISI . (3.33) 

IS[ > 167zm 2. (3.34) 

We now consider c = 1 and a = 0 in (3.29). Clearly F is positive. Thus we have 

V V 2w 6V2w l>]SI/8m 2. (3.35) ![ ( -  2Vs((i---V2)3)' Vs )+(i_ V2) 3 (1 _ V2)4A--- 
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Simplifying the first term, using w = [VsVI2 + rn '2 on S and adding the co- 
efficients of tVsVI z and m '2 respectively, we get 

giving 

Then using (3.25) and 

we get 

[- _ 18V  2 ] 2m'2(1 --4V2)] 
L (1 -V2)  • VsV[ 2+  ~ V 2 )  4 >=[S[/8m 2. 

2m'2 !ill - 4V2v2), =>[S[/8m 2 . 

1 - -  4 V  2 

( 1 -  V2) 4 

(3.36) 

(3.37) 

- - < 1  on S, (3.38) 

32zcZm2/ISt > IS[ /8m 2, 

giving 167cm 2 > IS[ which contradicts (3.34). [] 
We can now complete the proof of the main Theorem 1. 

P r o o f  o f  1. By Theorem 2 and Theorem 3 either N is diffeomorphic to R 3 or there 
exists a C 2 embedded totally geodesic sphere S in N ~ ~. But by Theorem 5 such a 
sphere cannot exist. Hence the theorem follows. [] 

4. Application to General Relativity 

In this section we apply our main theorem to prove that a geodesically complete, 
asymptotically Euclidean, static perfect fluid space-time with connected fluid region 
and satisfying "timelike convergence condition" is diffeomorphic to ~3 × ~, without 
using the Poincar6 conjecture. 

By a static perfect fluid spacetime we mean a geodesically complete space-time 
(M,  *g) such that: 

(i) M is a C ® manifold diffeomorphic to N × ~, where for each t~R, N t = N × {t} 
is a spacelike three-manifold. 

(ii) The Lorentz metric 49 can be written as 

4 g = _ V2(dt ® dt) + g, (4.1) 

where V is a positive C 1'1 function and g is a tensor such that g restricted to N is a 
Riemannian metric on N, and V and g are independent of t. We assume that g is at 
least C 1'1. 

(iii) (M, 4g) satisfies Einstein's equation 

Ric(*0)AB -- ½Scalar(40)*0A~ = 8~((p + p)u-cu B + p49AB ), (4.2) 

where p and p are bounded measurable functions and UA is a unit timelike vector 
field on M. 
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By virtue of the Gauss-Codazzi embedding equations for the Lorentz metric 4g, 
(4.2) decomposes into 

Ric(0),fl = V- 1 V;~fl --~ 4n(p -- p)g~fi, (4.3) 

and 

A V = 4rcV(p + 3p) on N, (4.4) 

where ; denotes the covariant derivative with respect to 9 and A denotes the 
Laplacian with respect to 9 ([L]). 

It is clear that p and p are independent of t. It follows from (4.2) that if 49 satisfies 
the timelike convergence condition, namely. 

Ric(4g)(W, W) ~ 0 (4.5) 

for all timelike vectors W, then p + 3p > 0. By continuity (4.5) implies the null 
convergence condition, namely, Ric(49)(K, K) > 0 for all null vectors K. By virtue of 
(4.2) the latter condition is satisfied if and only if p + p ~ 0. 

We also assume that there exists an open connected region ~ c N such that 
ess inf(p + p) > 0 for all compact K c ~ and p = p = 0 in N ,-- ~. 

K 

The functions p and p are respectively called the density and the pressure of the 
fluid. The assumption that the fluid region ~ is connected is needed here in order to 
apply our main theorem. We also assume that 4g satisfies the timelike convergence 
condition so that by (4.4), A V is non-negative. However when ~ is unbounded, the 
null convergence condition will be sufficient for our purpose. Remark 1.11 is relevant 
here. 

We say that (M, 49) is asymptotically Euclidean if (N, g) satisfies condition (c) of 
the main Theorem 1 and for some #~(0, 1), V satisfies (by (1.6), this is automatic if.~is 
compact) 

~V -1-~) Ix[ ~ (4.6) 1 -  V= O([x]-~), ~ =  O([x] as ~ .  

It follows from a result due to Gannon (Proposition 1.2 in [G]) that N is simply 
connected. (The proof in [G] can be modified to the case of C 1'1 metric in a way 
similar to the extension of singularity theorems to the case when the metric is C 1'1 that 
is, by taking a smooth sequence of metrics and using a sharpened version of the 
"Focusing Lemma;" see p. 285 in [HE]. See also Sect. 4.3 in [MA]), As a 
consequence of this fact and our main theorem, we prove the following theorem. 
This result has been claimed in [LB] assuming the Poincar6 conjecture to be true. In 
fact the asymptotic conditions and Gannon's Theorem imply that N has the same 
homotopy as •3 ([LB]). What we have shown here is that a fake 3-cell cannot occur 
in N and hence N is diffeomorphic to ~3 

Theorem 6. A 9eodesically complete asymptotically Euclidean static perfect fluid 
space-time having connected fluid region and satisfying the timelike convergence 
condition is diffeomorphic to •3 x ~. 
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Proof of  7. 
N -,~ ~ and 

5. Miscellaneous Remarks and Generalizations 

In this section we discuss various generalizations to Theorem 1 and some further 
applications to general relativity. First we consider an alternative definition of 
. ~ N ;  

is connected, ess inf(O 1 + 02) > 0 for all compact  sets 
r 

K ~ . ~  and 0 2 = 0  on N,-~-~. 

Because of the following lemma the main Theorem 1 continues to hold with .~ 
defined as above. 

Lemma 7. Let .~ be defined as above. Suppose q51 + 02 > 0 on N. I f  there exists an 
embedded area minimizing (defined in (2.0) minimal C 2 sphere S on N ~ ~, then 01 - 0 
on each component of  N ,,~ ~ with closure intersecting S. 

5.1. Remark. In the above lemma we continue to assume that N is simply connected 
so that S separates N. The assumption that V i s a  positive C 1'1 function on N is also 
used. 

Since ~2 = 0 on N ~ & (1.9) implies that O1 is a Lipschitz function on 

@t;p = 2 V -  ~ @t V;/~. (5.2) 

Hence cb 1 = CV 2 on N ~ ~, where by virtue of ~1 + ~2 > 0, C (which is constant on 
each component  of N ~ .~) is non-negative. 

Now as in the proof  of Theorem 3 we can approximate S by a sequence of C 2 
spheres S,, t~0. We can take St c N --~ .~ because S separates N and .~ is connected. 
The fact that S is area-minimizing and ~1 is continuous on (each component  of) 
N-~ ~ gives (using (2.6)) that lim S O1V2 = 0. Hence SCV 4 = O. 

t-*O St S 

But V > 0. Hence on S, C = 0 giving • 1 =- 0 on each component  of N ~ ~ with 
closure interseting S. []  

5.3. Remark. If we use an extra asymptotic condition that the scalar curvature R ofg 
is 0(1), then it follows that ~ 1 = 0 on each unbounded component  of N ~ ~ without 
the assumption that an area minimizing sphere S exists in N ~ 2. This is because 
from (1.1) we have R = A V + 3 ~1 and by hypothesis A V --- 0. However by Theorems 
2 and 3 if such S does not exist then N is topologically Euclidean and hence the 
conclusion of the main theorem follows without the above mentioned asymptotic 
decay of R. 

5.4. Remark. Arguments similar to those used in the p r o o f o f L e m m a  7 show that we 
can also define .~ as follows: .~ is connected, ess inf(O 1 + 02) > 0 for all compact  sets 

r 
K c . ~  and ~ 1 - - 0  in N~.~ .  Then (1.9) implies that ~2 ;p=-2V-102V:p ,  giving 
O2 = C V-2,  where C is constant on each component  of N ~ ~. The same arguments 
as before then imply that O2 = 0  on each component  of N ~ . ~  with closure 
intersecting S. 

We shall now discuss some generalizations of Eq. (1.1). 
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Lemma 8. Theorem 1 continues to hold with the usual conditions on V, g, ¢Pl and ci9 2 if 
we replace 1.1 by 

CI (Dlg~# ~ Ric(g),a -- V -  1V.~ > cl)lg~a almost everywhere, 

where C~ is a constant. (5.5) 

The first inequality in (5.5) is added to ensure that ~a - 0 on N ~ ~ implies 

Ric(g)~p = V- ~ V;~, on N ,,~ ~. (5.6) 

Proof of  8. Equation (5.6) enables us to apply the reasoning of Sect. 3 (in particular 
we refer to Theorem 5) to prove that no embedded C 2 totally geodesic sphere exists 
in N ,-~ ~. To prove our assertion that Theorem 1 holds with (1.1) replaced by (5.5) we 
now simply need to use the inequality 

V 2 Ric(g)(n, n) + VA V - VE~n~n ~ >_ V2(~1 + (/)2) 

in (2.6) instead of the equality. The rest of the arguments in the proof of Theorem 3 
then apply, and since there is no embedded C 2 totally geodesic sphere in N ,-~ ~, it 
follows that N must be diffeomorphic to Ea. []  

We shall now apply Theorem 1 to a complete, asymptotically Euclidean (that is, 
the induced metric satisfies the asymptotic conditions 1.3) simply connected space- 
like hyper-surface N in a suitable class of space-times (M, 4g), not necessarily static. 
As before the results are different from those in the paper of Frankel and Galloway 
[FG];  for example, using the asymptotic conditions we can allow certain terms 
(q~l, q~z in (5.11-12)) to vanish identically outside a connected set, whereas the 
results in [FG]  require that ess i n f ( ~  + ~ba) > 0 for all compact subsets K of the 3- 
manifold whose topology is to be investigated. 

Let (M, 49) and N be as above. In a neighbourhood of N in M we write 

4g = _ VZdt2 q_ g,adx~dx ~, c~, fl~ { 1, 2, 3}, 

where {x'}, e = 1, 2, 3, is a co-ordinate system on N; g~p = g~p(t, x ~) and V = V(t, x~). 
Suppose g and V restricted to N are respectively C ~'~ Riemannian metric and C ~'~ 
positive function. Also we assume that 02g~a/Qt e exist on N. The unit normal time- 
like vector field u a on N is given in the above co-ordinate system, by 

u ° = V - l ;  u " = 0 ,  c~=1,2,3. (5.7) 

Decomposing Ric(4g) we get 

Ric(g)~a = V- t V.~ + Ric(4g),a + 2-0,,@~ -- .O.t"2 ~,p - V- 1 ~?-0,a 
, ~ 3 t  ' 

V-  lzl V = Ric(4g)oo V-2  + V - l g ~  - t-012, 

(5.8) 

where -0,p = ½ V-l(~g~p/Ot) is the second fundamental form of N in M, -0 = -0~ag,t~, 
and I-0 j2 =-0~a-0p~o,pga,. As usual A and ; denote respectively the Laplacian and 
covariant differentiation relative to the g metric and the indices are raised by g~a. 

(5.9) 
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For pEN there exist 2(p) and A(p) such that 

2(p)9(X, X) lp < ( R i c  (40) (X, X) + 2£2,,~TaX'X p - £2 £2,pX'X p 

- V -  lt30.:PX:XP~(p) < A (p)o(X, X)Iv 
t~t J - 

for all vectors X tangent to N at p. We shall take 

@2 = Ric(*Ooo) V-2 + V- 9 p at - -  t £ 2 t 2  

and 

(5.10) 

(5.tl) 

V- 1A V = Ric(40)oo V- 2 
Let 

~2 = Ric(*g)oo V-2 
and 

<91 = 2, 
where 

2(p) = inf ((Ric (4O),pX~XP)(p)/o(X, X) Ip), 

the infimum is over all vectors X tangent to N at p. 

and 

~1 = 2. (5.12) 

Now we suppose that ~1 and ~2 satisfies the following conditions: 

(i) on N, ~1 + ~2 > 0, q~2 > 0 and C~1 ~ A for some constant C; and 
(5.13) 

(ii) there exists a connected set ~ c N with ess inf(tO 1 + ~2) > 0 for all compact 
K 

K c ~  and ~1 = ~2 = 0  on N ~ .  

Then by virtue of Lemma 8, Theorem 1 applies and gives N to be diffeomorphic 
to R 3. In particular if N is a Cauchy surface, then by a well known theorem due to 
Geroch (see Proposition 6.6.8 in [HE]) M will be diffeomorphic to Na x N. 

In case the Cauchy surface N is not a priori known to be simply connected, 
Gannon's Theorem can be used to prove that N is simply connected provided 
(M, 4g) is geodesically complete and satisfies the null convergence condition, and on 
N, V satisfies the asymptotic condition (4.6), and ag~/Ot = 0(I x I-1-~). 

As an example we now consider the case of a static space-time (M, ,g) not 
necessarily perfect fluid. We assume (M, 4g) to be asymptotically Euclidean in the 
sense of(1.3) and (4.6); and to satisfy 

Ric(*a)(K, K) g 0 (5.14) 

for all null vectors K. Hence any t = constant hyper-surface N is simply connected. 
Since the metric is static we have £2=p = 0. Hence (5.8) and (5.9) become 

Ric(g)=p = V- 1V;=~ + Ric(49)~e 
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Let n be any unit vector tangent to N. Putting K A = u A + n A in (5.14) we have 

Ric(g),an~n p + V- z  Ric(4g)oo > 0, 

where we have used the fact Ric(4g)oa = 0 by Codazzi's equation since N is totally 
geodesic in M. 

Thus ~1 + ~2 > 0. If we strengthen the assumption (5.14) to 

Ric(4g)(W, W) > 0 (5.15) 

for all time-like vectors W we get in particular (taking W A = u A) 

Ric(4g)ooV-  2 ~ 0. 

Le t  .~ be a c o n n e c t e d  set in N such tha t  on  ~,  essinf(q01 + ~02) > 0 for  all  
K 

compact sets K c ,~; and on N ~ ~, Ric(*g)- 0. We shall call ~ the "non-vacuum 
region." Since the conditions (5.13) (i) and (ii) are satisfied, Theorem 1 applies. Hence 
we have proved the following theorem. 

Theorem 9. Let (M, * g) be an asymptotically Euclidean (in the sense of(1.3) and (4.6)), 
geodesically complete static space-time satisfying the time-like convergence condition 
(5.15). I f  (M,4g) has connected non-vacuum region (defined above) then M is 
diffeomorphic to ~3 x ~. 
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