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Summary. We provide elementary proofs of  Scarf's theorem on the non-emptiness 
of  the core and of  the K-K-M-S thoerem, based on Kakutani 's  fixed point the- 
orem. We also show how these proofs can be modified to apply a coincidence 
theorem of  Fan instead of  Kakutani 's  fixed point theorem, for some additional 
simplicity. 

I Introduction 

Scarf (1967) showed that every NTU game whose characteristic function is 'bal- 
anced' has a non-empty core, i.e., a set of  feasible utility vectors that no subset 
of  players can improve upon. The central idea in his algorithmic proof  was to 
approximate the general case by finitely generated balanced games. For  the fi- 
nitely generated case, Scarf used an ingenious ordinal analog of the simplex 
method of  linear programming to construct points in the core. 

Shapley (1973) provided an alternative proof  of  this result, including Bitlera's 
(1970) extension, which suggested an intimate connection to classical fixed point 
theory. In fact, he first extended Sperner's (1928) lemma on completely labelled 
cells in a triangulated simplex to the case of  set-valued labels. Whereas Sperner's 
lemma leads directly to the theorem of  Knaster, Kuratowski and Mazurkiewicz 
(1929) on labelled simplices (the 'K-K-M theorem'), which is virtually equivalent 
to Brouwer's (1912) fixed point theorem, the generalized Sperner's lemma leads 
to an analogous generalization of the K-K-M theorem, now called the 'K-K-M- 
S theorem', which in turn leads in a fairly straightforward way I to Scarf's theorem 
(or, in its n-balanced' form, to Billera's extension). 

* The results presented here were first reported in Shapley (1987) and Vohra (1987). A version 
of our proof of Theorem 1 has also been presented in a recent book by C.D. Aliprantis, D.J. 
Brown and O. Burkinshaw, Existence and Optimality of Competitive Equilibria (1989) Springer- 
Verlag. We are grateful to Ky Fan, Wanda Gorgol, Tatsuro Ichiishi and All Khan for comments 
on earlier drafts. Vohra's research has been supported in part by NSF grant SES-8605630. 
t Hildenbrand and Kirman (1976, 1988) and Ichiishi (1983) have given an especially lucid 
account of this construction. See also Kannai (1988), where a generalized Sperner's lemma is 
proved through Brouwer's fixed point theorem. 
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The importance of Scarf's theorem in mathematical economics has led several 
authors to further explore the logical connections between it and fixed-point 
theory, either by proving the K-K-M-S theorem from one of  the standard fixed 
point theorems or by going directly to Scarf's core theorem by a different route. 
Thus, Ichiishi (1981) used Fan's (1969) coincidence theorem to obtain the K-K- 
M-S theorem. (Previously, in unpublished lecture notes Todd (1978) had used 
Kakutani 's fixed point theorem (1941) to prove a special case of the K-K-M-S 
theorem, sufficient to prove the core theorem.) Keiding and Thorlund-Peterson 
(1985) prove the core theorem through the K-K-M theorem. And Ichiishi (1988) 
proves a dual version of the K-K-M-S theorem, again using a coincoidence 
theorem of Fan, and then applies it to the core existence problem. 

In this paper we provide elementary proofs of  both Scarf's theorem and the 
K-K-M-S theorem, based on Kakutani 's  fixed point theorem. This is of  particular 
interest given the importance of  the core and Walrasian equilibria in economics, 
and the fact that most results on the existence of  Walrasian equilibria are based 
on an application of  Kakutani 's fixed point theorem. Indeed, even the fixed point 
mapping we use is not unfamiliar in general equilibrium theory; similar' mappings 
were used by Nash (1951) and Negishi (1960). 

2 Non-emptiness of  the core 

In this section we shall consider cooperative games in characteristic function 
form. Let N =  El,.. . ,  n] denote the set of  players and let ~42= 2N\[0] denote the 
set of  all non-empty subsets of  N. An element of  M# is referred to as a coalition. 
For  any coalition S ~ JK, let R s denote the I SI dimensional Euclidean space 
with coordinates indexed by the elements of S. For  u ~ R N, Us will denote its 
restriction on R s. We shall use the convention ~-, > ,  _> to order vectors in R u. 
R~ refers to the positive orthant of  R u and for any set y c  R N, Co(Y), Oq y and 
I~ will denote its convex hull, boundary and interior respectively. Each coalition 
S has a feasible set of  payoffs or utilities denoted Vs~_R s. It is convenient to 
describe the feasible utilities of  a coalition as a set in R N. For  S ~ 4 /  
let V( S) = [u ~ R u ] u S ~ Vs~; i.e., V( S) is a cylinder in RNand can be alternatively 
defined as V ( S ) =  Vs • R N\S. With this interpretation in mind, we can now define 
an N T U  game. 

Definition 1. A (normalized) non-transferable utility ( N T U )  game is a pair (N, 
V) where the correspondence V : J[/'~-+ R N satisfies the following: 
(1.1) V(S) is non-empty, non-full and closed for  all S ~ M#, 
(1.2) V(S) is comprehensive for  all S ~ ~ in the sense that V ( S ) =  V ( S ) -  R u , 
(1.3) V(S) is cylindrical for  all S ~ ~I# in the sense that i f  x ~ V(S) and y ~ R u 
such that Ys = Xs, then y ~ V(S), 
(1.4) there exists v ~  N such that v~ and for  every j ~ N ,  V([ j ) )=  

R lxj<_v~ 
(1.5) V(S) is 'bounded'for all 2 S ~ JU in the sense that there exists a real number 
q > O, such that i f  x ~ V(S) and Xs >= O, then xi < q for  all i e S. 

Since the core concept is translation invariant, the partial normalization we 
chosen, namely v~ 0 in condition (1.4), rather the more common condition v ~ = 0 
is simply a matter of  convenience. It does bear mentioning that the 'boundedness' 

2 It is easy to check that in balanced games (see definition 4 below) this condition will hold 
for all S e JK if it holds for N. 
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condition is usually imposed on Xs > v~ rather than on Xs > O, as specified in 
(1.5). But, with a little effort, the reader can verify that given comprehensiveness 
there is no loss of  generality in using condition (1.5). 

Definition 2. The core of a game (N, V) is defined as 

C(N, V ) = [ u e  V ( N ) I ~ S e H  and a~ V(S) such that as,>Us]. 

It is the set of all outcomes feasible for the grand coalition which cannot be 
improved upon by any coalition and can be alternatively defined as 

C(N, V)= V(N)\ U I/(S). 
S e A  .~ 

For  any S ~ M/" let e s denote the vector in R x whose ith coordinate is 1 if 
i ~ S and 0 otherwise. We shall also use the notation e for e N and e ~ for e ~;~. 

Let A be the unit simplex in R N. For  every S ~ IU define 

AS= C o [ e i l i ~  S] .  

Thus AN= A, and the other ASare its closed ( ISI  - 1)-dimensional faces. Finaly, 
for each S ~ J ,  define 

e S 
m S _ 

Ist '  
these are the centers of  gravity of  the respective sets AS as well as of  the sets 
[ei t i e S~. 

Definition 3. A set ~ ___/U is said to be balanced if there exist non-negative 
weights 2 s, S ~ ~r such that 

~, ~SeS=eN. 

It is easily verified that 2 is balanced if and only if 
N m e C o [ m S t S e 3 ) .  (1) 

Definition 4. A game (N, V) is said to be balanced if f] V(S) ~_ V(N) for any 

balanced collection 3 .  s~ 

Theorem 1 (Scarf). A balanced game has a non-empty core. 

To prove the non-emptiness of  the core we shall make use of  a mapping from 
A to a suitable modification of  the boundary of the 'utility set' ( defined as the 
union over all S of the sets V(S)). Towards this end, given q as in (1.5), let 
Q =  I x  ~ R N I  x~qe]  and define 

It will be useful to consider some elementary properties of  0 W. Since every V(S) 
is comprehensive and Q is comprehensive, so is W; i.e. 

I f u ~ 0 W  and v->u, then v ~ W .  (2) 
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By (1.3) and (1.4) there exist v ~ such that, for any j e N ,  
(q, o ..., vj , . . . ,  q ) e  V(~j]). Clearly, (q, . . . ,  v~,..., q) also belongs to W. This, along 
with (2) yields 

if u e 0 W and uj = 0 for some j ~ N,  
then u~=q for some i ~ N,  

(3) 

We shall prove Scarf's theorem by showing the existence of  a balanced collection 
and a ~ 0 W such that ~7 e ['] V(S). 

Proof of  Theorem 1. Consider W as constructed above and define f :  A ~-~0 W by 

f (x )  = O' e 0 W I y = tx for some t => 0~. 

We now show that f is a well defined, continuous function. For  any x e A, 
n(q+ 1)xr W, while by (1.4), 0 e l)/. This implies that for any x ~ A, there exists 
t e [0, n(q+ 1)] such that tx ~ OW, i. e . f ( x )  is non-empty. It is easy to 'verify that 
f is upper hemicontinuous given that for any x e A ,  the set 
[t~ R+ I tx ~ 0 W] c [0, n(q + 1] is bounded. We now show th a t f i s  single valued. 
Suppose not. Then there exist x e A, y e f ( x ) ,  and ~ e f ( x )  such that y = tx, ~ = fx 
and f > t .  If  x>>0, )~-y ,  which contradicts (2). If I = [ i E N l x i > O  ] and 
K =  [k ~ N ] xk = 0] are both non-empty, txi < fxlfor all i �9 I. We also know, from 
the construction of  W, that fxi =< q for all i ~ .~: We now have tx~ < q for all i e I 
and txk=O for all k ~ K, which contradicts (3) and establishes t h a t f i s  a contin- 
uous function. 

Let G : A~+A be defined by 

G(x) = [m s ] S e • and f (x )  e V(S)] . 

Since, for all x ~ A, f (x )  ~ U v ( s )  a n d f i s  non-empty, so is G. We now show 
s ~ s  

that G is upper hemicontinuous. Suppose xq--*x, x q e A for all q, yq ~ G(x q) for 
all q and yq-*y. We need to establish that y ~ G(x). Since G(A) is a finite set, 
there exists 0 such that for all q > q, Yq =Y" This implies that for all q > q, 
y ~ G(xq), i. e. there exists S e A/" such that y = m S a n d f ( x  q) ~ V(S). Since xq-~x, 
f is continuous and, by (1.1), V(S) is closed, f ( x ) E  V(S), which means that 
y ~ G(x) and completes the proof  that G is upper hemicontinuous. 

Finally, for any x, g ~ A, let h : A x A ~+A be defined by 

xi + m a x ( g i -  1/n, O) 
h i ( x ' g ) = l +  ~, max (g j - l / n ,O)  fora l l  i ~ N .  

j ~ N  

Certainly, h is a well defined, continuous function. Now consider the mapping 
h • Co(G) : A • A~-+A x A. Clearly, this satisfies the conditions of  Kakutani 's 
fixed point theorem. We can therefore assert that there exists (2, g) e A • A such 
that :? = h(:?, g) and g e Co(G(:?)). This also means that 

:?i + m a x ( g i -  1/n, O) 
~ = for all i ~ N. 

1 + ~, max(g i -  1/n, O) 
j ~ N  
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Or, 

2 i (  ~, max(gj -1/n ,O))=max(gi-1/n ,O)  for all i ~ U .  (4) 
\ j E  N 

We shall now establish that mNe Co (G(~)) by showing that g = m N. Suppose 
not. Then, ~ max (g j -  1/n, 0) > 0. Let I =  ~i e N] ~i > 0) and K =  [k ~ N ] ~k = 

j ~ N  

0). It follows from (4) that for every i E L gi > 1/n. If  K is empty this is impossible 
since g e A. Let us therefore assume that K is also non-empty. As we have already 
seen, for every i e I, gi > 1/n > 0. Since g e Co(G(2)), given the construction of  
G, this means that for every i e L there exists S such that i e S and f (2)  e V(S). 
Since f(~)>=0, (1.5) implies that for every i e  L f -0  ~) < q. But fk(:Q = 0  for all 
k e K which contradicts (3) and completes the proof  that g = m u. 

Let 27-= IS ~ ,/U [ f0  ~) e V(S)). Since G(~) = ~m s [ S e ~ and m N ~ C o ( G ( . ~ ) ) ,  

it follows from (1) that 27- is balanced. Let a =f(2) .  From the definition of  G it 
follows that a e N V(S). Since the game is balanced, this implies that a ~ V(N). 

s e ~ -  

Given (1.5) and the fact that a > 0, this in turn implies that a,~ qe. We now claim 
that ~7 ~ C(N, V). Suppose not. Since ~7 E V(N), this must mean that there exists 
S e M /  and v e  V(S) such that Vs>>as. Since a,~qe, by (1.3) we can find 
g>>~Tsuchtha t~ ,~qeandge  V(S);i.e. ~ > > a a n d g e  W. Since a = f ( 2 ) e O W ,  
this contradicts (2). [] 

3 A proof of the K-K-M-S theorem 

Shapley (1973) proved the following generalization of the K-K-M theorem. 

Theorem 2 (K-K-M-S). Let [ cS [ S e JU) be a family of  closed subsets of  A such 
that 

U C S ~ A r  foreach T ~ J U .  (5) 
S ~ _ T  

Then there is a balanced set ~ such  that 

N . 
S e ~  

Definition 5. A proper set-labelling of A is a correspondence L : A~-~JU of  the 
form 

L(x)= [S[x ~ cS) , 

where the C s are closed subsets of A satisfying (5). 

Thus, if x e Ar then  L(x) contains at least one subset of  T. Theorem 2 is then 
equivalent to the statement that in any properly set labelled simplex at least one 
point has a balanced label. 

Proof of  Theorem 2. The idea of  the proof  is to embed A in a larger simplex A '  
and construct a 'Kakutani '  mapping on A '  with the property that its fixed points 
all lie in A and have balanced labels. 
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First, we define G �9 A~-~A by 

G(x) = Co [ms[ S e L(x)] . 

By construction, G is convex valued. By the same argument as in the proof  of  
Theorem 1 it can be shown that it is upper hemicontinuous. Also by (5) with 
S = N, it follows that G(x) is non-empty. 

Next, define F :  A~+A by 

F(x) = x + m N -  G(x) . 

This too is convex valued, non-empty and upper hemicontinuous. But note that 
its range may extend beyond A into A, the hyperplane in R N which contains A. 

We see from (1) that F has a desirable property, namely, that L(x)  is balanced 
if and only if x is a fixed point of  F. The domain and range of  F do not agree, 
however. Consider the larger simplex 

A ' = I x ~ R N i  ~, x~=l  a n d x , > - l  fora l l i  1 .  

We observe that A ' D  A + A -  A, so A '  easily contains F ( A ) - w i t h  room to 
spare. 

Next we define a mapping which shrinks A '  down to A. Let h : A '  ~-~A be 
defined as, 

max (y;, 0) for all i e N. 
h~(y) = )-]. max (yj, O) 

j E N  

Next we extend the labelling function to A ": 

L" (y) = IS e L(h(y))  I y i> O, for all i ~ S ] .  (6) 

Since L is assumed to be proper, L '  (y) is non-empty; moreover, L '  is upper 
hemicontinuous 3 and agrees with L on A~ Continuing, let 

G '  (y) = Co [rnSl S e L" (y)] . 

G'  too is non-empty, convex valued and upper hemicontinuous. 
Let F" : A'~-~A" be defined as 

F'  (y) = h(y) + m N -  G" (y). 

Clearly, F '  too is non-empty, upper hemicontinuous and convex valued. Since 
h (A ' )  = A, we have F '  (y) ~ A + A -- A G A" for all y ~ A ' .  We can, therefore, 
appeal to Kakutani 's  fixed point theorem to assert that there exists ~ ~ F '  (~). 

Notice that F '  (x) = F(x) for all x ~ A, so that to complete the proof  it only 
remains to be shown that 2 e A. If  2 ~ F '  (~), 

= h(2) + mN--g  for some g ~ G '  (2). 

3 It may be instructive to compare our mappings with those of Todd (1978). He defined h(y) 
in a different way. More importantly, he constructed L'  as 

L'(y)=[S~L(h(y))[h~(y)>O forall iGS] , 

a mapping that is not necessarily upper hemicontinuous. 
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Suppose 2 ~ A '  \A.  Then X~ < 0 for some i. This implies that h~(2) = 0. By (6) it 
also follows that g~ = 0. But we now have 

~ = 0 +  l / n - - 0  > 0, 

a contradiction. Thus, 2 ~ A and L(2)  is balanced. [] 

4 Fan's coincidence theorem 

Theorems 1 and 2, which we proved by using Kakutani ' s  fixed point theorem 
can both be proved, more simply, by applying a coincidence theorem of Fan 
(Theorem 6, (1969)). 

Theorem 3 (Fan). Let X be a non-empty compact, convex set in a real locally 
convex, Hausdorff topological vector space E. Let G, H : X~+E be two non-empty, 
convex-valued, upper demicontinuous correspondences and, for each x ~ X, let at 
least one of  G(x), H(x) be compact. Suppose 

for each x in the algebraic boundary o f  X there exists g ~ G(x), h ~ H(x) 
and a real number 2 > 0 such that x + 2 (g - h) ~ X.  (7) 

Then there exists Yc ~ X such that G(2) ~ H(2)  ~ 0. 

The existence issues dealt with in Theorems 1 and 2 can be viewed as problems 
of  obtaining a 'coincidence' of  the type considered in Fan 's  coincidence theorem. 
Moreover, we are interested in the special case where G, H map from A to A. 
Then for any x ~ A, g ~ G(x) and h ~ H(x), we have ~. ( � 9  h~) = 0. This means 

j~N 
that we can choose A small enough to ensure that (7) is satisfied, provided there 
exist g ~ G(x) and h ~ H(x) such that gj- >= hj for all j such that xj = 0. Notice also 
that Theorem 3 remains valid for 2 < 0. This provides us with the following 
corollary of  Theorem 3. 

Corollary. Let G, H: A~-+A be two non-empty, convex-valued, upper hemicontinuous 
correspondences. Suppose 

for all x ~ A there exists g ~ G(x) and h ~ H(x) such that 
either g ~  N Ixj=O] ~ h ~  Nlxj=ol or g~j~ ~vfxj=o3 <= h ~  N ]xj=O}. (8) 

Then there exists 2 ~ A such that G(.Q ~ H(2) ~: 0. 

Recall that the basic argument in our proof  of  Theorem 1 is to find x ~ A for 
which m N ~ Co(G(x)). The corollary to Theorem 3 can be applied to the mappings 
Co(G) and H :  AF+A, where H ( x ) = r a n  for all x ~ A, to show the existence of 2 
such that mN~Co(G(X)) .  All we need to verify is that (8) is satisfied. Suppose 
x ~ A .  Let K = [ k ~ N [ x ~ = 0 ] .  F rom (1.2), (1.3) and (1.4) we know that 
f ( x ) ~  V({k~) for all k ~ K .  Thus e k ~ G ( x )  for all k ~ K .  Clearly then, 

K K ~  N m ~ Co(G(x)) and, since m K= m K,  this establishes condition (8). 
To prove Theorem 2 using the above corollary, define, as in Sect. 3, G : A~-+A 

by 
G(x) = Co(mS I S e L(x)) . 

It is clear that G is convex valued. As observed in Sect. 3, it is also upper hemi- 
continuous and non-empty. Let H(x)  = m N for all x ~ A. Again, we are interested 
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in finding 2 �9 A such that G(2) n H(x)  ~= O. Suppose x �9 A and K =  [k �9 N [ x~ = 0). 
To verify condition (8), notice that from (5) it follows directly that there exists 
g �9 G(x) such that gK=O, i.e., gx<=m N. 

Remark. Notice that in applying Kakutani ' s  fixed point theorem to prove Theo- 
rem 1, our proof  involves verifying a certain 'boundary condition'. It  is in this 
step that we make crucial use of  our normalization (1.4). An application of Fan 's  
coincidence theorem requires a weaker 'boundary condition', for which it is 
possible to choose v ~ = 0 in (1.4); see the proof  of  Lemma 2 in Vohra (1990) for 
details. It  is for a similar reason that in proving Theorem 2 through Kakutani ' s  
fixed point theorem we need to extend F from A to A ' .  Again, as we have seen, 
this is not necessary if we use Fan 's  coincidence theorem to prove Theorem 2. 

5 n-balancedness 

From our proofs of  Theorems 1 and 2 it should be clear that our argument does 
not depend on the particular location of  any of the points m s within the relative 
interiors of  their respective faces A s, S � 9  ,/K. Our results, therefore, continue 
to hold for a wide class of  generalized concepts of  balancedness, as was first 
demonstrated by Billera (1970), and again in Shapley (1973). 

Suppose there is a given array of  positive numbers 

n =  InS ,  i [ S � 9  i � 9  S~. 

Definition 5. A set ~ c_ j / /  is said to be n-balanced if there exist non-negative 
weights ) s, S �9 ~ , such that 

Z ~S~s, i = 1, for all i �9 N. 
[se ~1 ie s] 

It is clear that a set is n-balanced if and only if it is z?-balanced, where r? is 
the 'normalization'  of  n given by 

ns, i for all S �9 A/ .  
7~S, i - -  Z nS,J ' 

j ~ S  

For  each S �9 JK let 
7 ,  - i 

7~s, i e  , 
i E s  

be the n-weighted center of  gravity of  the set [ei] i �9 S]. Since n is strictly positive, 4 
mS(n) lies in the relative interior of  A s . Moreover, any collection of  points in 
the relative interiors of  A s, S �9 JU can be expressed as the n-weighted centers of  
gravity of  the sets [e ~ I i �9 S~, for some strictly positive n. It  is easy to see that a 
set ~ ~_ JK is n-balanced if and only if 

mN ~" C~ I S �9 ~.~ ~. 

Definition 6. A game (N, V) is said to be n-balanced if n v ( s )  ~_ V(N) for 
any ~r-balanced set 3 .  s~ 

I f  we replace the mapping G(x) in the proof  of  Theorem 1 by 

G=(x)=Co(mS(n)lS�9 and f (x )  �9 V(S)~ , 
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we obtain,  wi thout  any further changes in the proof, a result which asserts that  
every zc-balanced game has a non-empty  core. Similarly, in the proof  of  Theorem 
2, replacing G(x) by 

G,~(x)-- Co(mS(z0 1S ~ L(x)] , 

yields the ~-balanced version of  the K - K - M - S  theorem. It is also possible to apply 
F a n ' s  coincidence to prove zr-balanced versions of  Theorems 1 and  2 with similar 
modif icat ions to the a rgument  presented in Sect. 4. 
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