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A class P of measurable functions on a probability space is called a Glivenko- 
Cantelli class if the empirical measures P~ converge to the true P uniformly over 
P almost surely. P is a universal Glivenko-Cantelli class if it is a Glivenko- 
Cantelli class for all laws P on a measurable space, and a uniform Glivenko- 
Cantelli class if the convergence is also uniform in P. We give general sufficient 
conditions for the Glivenko-Cantelli and universal Glivenko-Cantelli properties 
and examples to show that some stronger conditions are not necessary. The 
uniform Glivenko-Cantelli property is characterized, under measurability 
assumptions, by an entropy condition. 

KEY WORDS: Laws of large numbers; Vapnik-(2ervonenkis classes. 

I. I N T R O D U C T I O N  

Let (X, .~, P)  be a probabi l i ty  space. Let X~, X2,..., be independent ,  iden- 
tically dis tr ibuted variables with values in X and  dis t r ibut ion P, specifically 

coordinates  on  a countable  product  of copies of (X, .~, P). Let X(i)  := X,  
and  let P,, be the usual  empirical  measures, Pn := ( ~ x o ) +  "'" + ~x~n))/n. 
Let P be a class of measurable  functions on X. For  any real-valued funct ion 
G on  F, such as a signed measure for which all functions in P are 

mtegrable,  let I IG[lp:=sup{IG(f ) l"  f ~ ' } .  If all funct ions in P are 
imtegrable for P, then P will be called a (strong) Glivenko-Cantell i  class for 

P iff l i e n -  ell~---' 0 almost  surely as n ~ oc. For  such a class Ta lagrand  ~28) 

has shown that  a l though the IIPn- PII r are not  necessarily measurable  they 
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are majorized by measurable functions converging to zero; on this and 
other definitions of and conditions for Glivenko-Cantelli properties for one 
P see Section 2 below, especially Theorem 1. 

Let (2, .~) be a measurable space and P = P(X, A) the set of all laws 
(probability measures) on it. A subset of X is called universally measurable 
if it is measurable for the completion of every law in P. The collection of 
all universally measurable sets forms a a-algebra ~ '=  A. A class of real- 
valued universally measurable functions on X will be called a universal 
Glivenko-Cantelli class if it is a Glivenko-Cantelli class for every 
probability measure P defined on A. P will be called a uniform Glivenko- 
Cantelli class if for every ~ > 0 there is an no such that for any probability 
measure P on .4 and any n ~ n  o, Pr*{] IPn-PI [~>~}  <~. 

For  a class ~ of sets, the seminorm tl" [1 e is naturally defined as [[. II 
where a v is the set of indicator functions of sets in ~. So a class of 
measurable sets will be called a Glivenko-Cantelli class if its class of 
indicator functions is such a class, and likewise for uniform and universal 
Glivenko-Cantelli classes. 

The notion of Glivenko-Cantelli class (for one P) and its vital relation 
with the notion of shattering are due to Vapnik and (~ervonenkis, (29~'(3~ 
with notable later work by Steele (26) and Talagrand. (2s) Let C be a collec- 
tion of subsets of X. Then ~ shatters a finite set F iff every subset of F is 
of the form Ac~F for some AEC.  Let S(C) be the supremum of 
cardinalities of shattered sets. If S (C)<  0% then C is called a Vapnik- 
Cervonenkis class. An infinite set Y will be said to be finitely shattered by 

iff every finite subset of Y is shattered by C. 
We will see (Proposition 4) that a universal (and thus a uniform) 

Glivenko-Cantelli class of functions must be uniformly bounded up to 
additive constants. For  a preview of our further results, first consider 
classes of sets. A class of sets satisfying suitable measurability conditions is 
a uniform Glivenko-Cantelli class if and only if it is a Vapnik-(~ervonenkis 
class (Proposition 11 below). On the other hand the collection of all 
subsets of a countable set is a universal but not uniform Glivenko-Cantelli 
class. In fact, if the sample space is a countable union of measurable sets 
Am, and on each Am, C induces a Vapnik-(~ervonenkis class Cm (with 
suitable measurability), then ~ is a universal Glivenko-Cantelli class, 
although S(Cm) can grow with m (Corollary 4). The existence of such A m 

is not necessary for the universal Glivenko-Cantelli property (Proposi- 
tion 6). A more general sufficient condition will be given based on the 
following. 

Let (X, .~, P) be a probability space. For any real-valued function g on 
X let g* be a measurable cover function for g, i.e., a measurable function 
g* >/g everywhere such that for any measurable function h/> g everywhere, 
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we have h>~g* a.s. (Ref. 5, Section 3.1). Here g* has values in Ew {+oe} 
and may be infinite with positive probability even if g is finite everywhere. 

Definitions.  Let /3 m :=/3(m), m = 1, 2,..., be a sequence of classes of 
measurable subsets of X. Then we say {Dm}m>~l is P-asymptotically null if 
[IPllzs(m)~0 as m--+oe and IlP.ll*(m)~0 in probability as m--.oe and 
n ---> oe. If (X, A) is a measurable space and the sets in /5  m are universally 
measurable for each m, {Dm}m>~l will be called universally asymptotically 
null if it is P-asymptotically null for every nonatomic law P on (X, 4). 

Let P be a uniformly bounded class of universally measurable 
functions such that for some universally asymptotically null sequence of 
classes {/~m} and some universal Glivenko-Cantelli classes Fro, for each 
f e F  and m there is a DeDm such that the restriction of f to the 
complement of D is in Fm' Then P is a universal Glivenko-Cantelli class 
of functions (Theorem 5). We do not know of any universal Glivenko- 
Cantelli classes of sets other than those obtained in this way where the Fm 
are suitably measurable Vapnik-(2ervonenkis classes. 

In our main result on uniform Glivenko-Cantelli classes (Theorem 6), 
such classes, if they satisfy a mild measurability condition, are charac- 
terized by an entropy condition. 

2. G L I V E N K O - C A N T E L L I  CLASSES 

Let (X, A, P) be a probability space. A collection P of functions 
integrable for P is called order-bounded iff for the envelope function 
Ff(x) :=sup{lf(x)[ :  f e F } ,  F* is integrable for P. In other words, there 
exists ue~l(P) such that for all f e F ,  If(x)l <~u(x) for all x. For any 
PcSfl(P) let Fo, p :=  { f -~fdP:  fe~'}. Then clearly F is a Glivenko- 
Cantelli class for P if and only if Fo, e is. Here are some characterizations 
of Glivenko-Cantelli classes: 

Theorem 1. (Talagrand.) For any class a v of functions integrable for 
P, the following are equivalent as n --* oe: 

(a) I l P n - P t l * ~ 0  in probability and Fo, p is order bounded 

(b) I l P n - P l l * ~ 0  almost surely. 

(c) I IPn-PtI~-~0 almost surely 

Proof. This is a corollary of Talagrand (Ref. 28, Theorem 22, p. 860). 
Specifically, each of (a), (b), or (c) for P is equivalent to the same 
statement for Fo, e; we restrict attention to Fo, e- Now (b) implies (c), which 
is equivalent to Talagrand's (I) (for Fo, e). Also (a) is intermediate between 
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Talagrand's equivalent (VI) and (VII), so it is also equivalent. Talagrand's 
(V) implies (b). [] 

P is a Glivenko-Cantelli class for P, by definition, if (c) holds, and so 
if and only if any of the three equivalent conditions in Theorem 1 holds. 
Call P a weak Glivenko-Cantelli class for P if ][Pn- PII *-+ 0 in probability 
as n ~ ~ .  An example of a weak Glivenko-Cantelli class which is not a 
Glivenko-Cantelli class will be given in Proposition 3. 

In treating (strong) Glivenko-Cantelli classes we can (up to additive 
constants) restrict ourselves to order-bounded classes. The main result of 
Talagrand (Ref. 28, Theorem 2, p. 838) characterizes non-Glivenko-Cantelli 
classes, as follows. For  any measurable set A c X, real e < fl, and positive 
integer n let 

W(F, A, ~, fl, n) := { (xl ..... xn, Yl ..... y~) �9 A2~: for some f �9 F, 

f ( x i )  < ~ < fl < f (Y i )  for all i =  1 ..... n} 

Theorem 2. (Talagrand.) An order bounded class P for P fails to be 
a Glivenko-Cantelli class for P if and only if there exist some real e < fi 
and a measurable set A with P(A)>  0 such that for all n, 

Pz"*(W(P, A, ~z, B, n))= P(A) 2" 

A class P of measurable functions is said to satisfy condition (M) if for 
every ~ < fl and positive integer n, W(F, X, ~, fl, n) is p2, measurable, and 
hence so is W(F, A, c~, fl, n) for any measurable A. For  classes of sets, 
Talagrand (Ref. 28, Theorem 5, p. 839) obtains the following: 

Theorem 3. (Talagrand.) A class C of measurable sets satisfying (M) 
fails to be a Glivenko-Cantelli class for P if and only if there is a measurable 
set A with P ( A ) >  0 on which P is nonatomic such that for all n and 
Pn-almost all choices of xl ..... xn in A, C shatters {Xl ..... x~}. 

Theorems 2 and 3 say that when the Glivenko-Cantelli property fails, 
the failure can be in a sense localized on some set, in terms of shattering. 
It can be asked, though, when the Glivenko-Cantelli property does hold 
for a class C of sets, can the good property also be localized: Are there sets 
with probability close to zero on whose complements C is a Vapnik- 
C;ervonenkis class? This turns out not to be necessary for any fixed sets, 
but a sufficient condition will be given where the sets of probability near 
zero, in an asymptotically null class, can depend on a set in C being 
approximated. 
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If {/~m}m~>l is P-asymptotically null, and Em is the class of all 
measurable subsets of sets in /3m, then clearly Em is also P-asymptotically 
null. 

Example 1. For X equal to the unit square 12 with Lebesgue measure 
P, let /~m be the class of all measurable sets A such that for some b, c with 
O<c-b<l/m, b<y<c for all (x,y) in A. Then {/3m}m~> 1 is 
P-asymptotically null but not universally asymptotically null (consider 
one-dimensional Lebesgue measures on lines y = constant). 

Example 2. Let X=Ui>~oXi where X~ are disjoint (universally) 
measurable sets. Let /~m consist of the one set Y,, :=XowU~,,X~, or 
of Ym and all its (universally) measurable subsets. Then {/~m}m~>l is 
P-asymptotically null if P(Xo) = 0 and universally asymptotically null if Xo 
is universally null, meaning that P(Xo)= 0 for all nonatomic laws P on 
(X, A); about such sets see Section 3 below. 

Example 3. Let (X, d) be a separable metric space with Borel 
a-algebra. Let 6m $ O. Let /3  m be the class of all universally measurable sets 
A with diameters d iamA :=sup{d(x,y): xeA, yeA} ~6m. Then /3 m is 
universally asymptotically null. 

Next, here is a way to extend the Glivenko-Cantelli property from 
simpler to more complex classes of functions. 

Theorem 4. Let (X,A,P) be a probability space and {L)m}m>~ a 
P-asymptotically null sequence of classes of measurable sets. For  
m = 1, 2,..., let Fm be a Glivenko-Cantelli class of functions for P. Let P 
be a class of measurable functions, order-bounded in ~ ( P ) .  Suppose that 
for any f e P and m = 1, 2 ..... there is a set A e/~m with f (1  - 1 A) e Fm- 
Then P is a Glivenko-Cantelli class for P. 

Proof Let Ifl ~< u e ~ l(p) for all f e  F. For  any ~ > 0, there is a 6 > 0 
such that if P ( A ) < &  then ]SAfdP[ <~SA udP<e/3 for all f e F .  Also, let 
xl ,  x2,..., be i.i.d. (P) and 2",. :-- u(xi). By the strong law of large numbers, 
we have 

1 ~ Xil{Xi>~M}~Oa.s. as n ~  and M - ~  
ni=l 

Thus since IIe[l~(m)-,0 and IIe~ll*<m)-~0 in probability as r n ~  and 
n ~ ~ ,  we have (sup{Pn(ulA): A E/~(m)})* ~ 0 in probability, considering 
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cases Xi < M and Xe ~> M for large M. Take m o and n o large enough so that 
for m 1> mo and n ~> no, 

Ilell b(m)< 3 

Pr{(sup{e.(ul A): A �9 })* > 5/3 } < 5/2 

and 

Pr{ II e~ - Ell r~(m) > e/3 } < 5/2 

For any f � 9  F, take A �9 with f (1  - la)  �9 Fm. Then 

I ( e , -  e ) ( f ) l  ~ I ( e , -  P)(f(1 - 1A))I + I(e,--e)(flA)l 

~< IlPn- ell~m)+ en(ula)  + P(ula)  

~< 5/3 + e/3 + 5/3 = e 

except on a set with (outer) probability at most 5/2 + 5/2 = e, so the conclu- 
sion follows (from Theorem 1). [] 

A Vapnik-Cervonenkis class satisfying some measurability conditions 
is a Glivenko-Cantelli class) 29) A Vapnik-Cervonenkis class satisfying a 
measurability condition enough to imply universal Glivenko-Cantelli will 
be called sufficiently measurable. The image admissible Suslin condition 
implies sufficiently measurable (Ref. 5, Sections 10.3 and 11.1). Measur- 
ability conditions cannot be completely removed (Ref. 5, example 10.3, 
p. 101). 

Corollary 1. Let the hypotheses of Theorem 4 hold for s o m e  {/~m} 
where P and Fm are classes of indicators of sets in classes ff and Cm, 
respectively, and C,~ are sufficiently measurable Vapnik-C~ervonenkis 
classes. Then ff is a Glivenko-Cantelli class for P. 

We do not know whether the sufficient condition for the Glivenko- 
Cantelli property of a class of sets in Corollary 1 is necessary. 

Applying Example 2 before Theorem 4 gives the following: 

Corollary 2. Supose that X can be decomposed as a union of disjoint 
measurable sets X;, i = 0, 1, 2 ..... and C is a collection of measurable subsets 
of X such that for each i > 0, the collection Ci of all sets C n Xi for C �9 
is a sufficiently measurable Vapnik-Cervonenkis class. Let P be any law 
such that P(Xo)= 0. Then ~ is a Glivenko-Cantelli class for P. 
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Glivenko-Cantelli classes of sets for a given P, at least under some 
measurability conditions, have been variously characterized (Vapnik and 
Cervonenkis~29)'~3~ Steele, ~26) Talagrand~28)). Although it does not seem 
clear from these characterizations (such as Theorem 3 above) whether the 
sufficient condition of Corollary 2 is necessary, in fact it is not: 

Proposition 1. There exist a probability measure P and a Glivenko- 
Cantelli class C for P such that C does not satisfy the condition in 
Corollary 2, and C is not a universal Glivenko-Cantelli class. 

Proof Let P be Lebesgue measure on the unit square 12 := {(x, y): 
0 ~< x ~< 1, 0 ~< y ~< 1 }. Let C be the collection of all measurable subsets of 
horizontal intervals, on each of which y has a fixed value. Then for each 
A ~ C, P(A) = 0. For each n, tl Pn IIe = 1/n a.s., so C is a Gtivenko-Cantelli 
class. It is not a universal Glivenko-Cantelli class: Consider a nonatomic 
law (having no atoms) concentrated on one horizontal interval. Next, if P 
satisfies the condition of Corollary 2, there is a set Xi of positive measure 
on which C is a Vapnik-Cervonenkis class. By the Tonelli-Fubini theorem, 
the intersection of )(l- with some horizontal interval has positive linear 
measure and is thus infinite, a contradiction. [] 

An example of nonexistence of the decomposition where ~ is a univer- 
sal Glivenko-Cantelli class will be given in Proposition 6 below. 

Kolmogorov (15) proved the folowing. Let Xl, X2,..., be i.i.d, real 
random variables and S n : = X ~ + - . - + X n .  Then the following are 
equivalent: 

(i) For  some constants an, iSn/n-  an[ -~ 0 in probability as n ~ ~ .  

(ii) nP(IXll > n ) ~ 0  as n - ~ .  

For random variables in a separable Banach space, with absolute 
value replaced by norm, (i) always implies (ii), whereas (ii) implies (i) if 
and only if the Banach space is B-convex (B-convexity is defined in 
Section 4). See Araujo and Gin~, (2) Mandrekar and Zinn, (17) and Marcus 
and Woyczynski. ~8) For  completeness we give a direct proof of (i) =~ (ii) 
for symmetric elements of a normed space: 

Proposition 2. Let X1, )(2 ..... be random elements of a normed space 
(X, I['t]) such that for each n and s j=  1 or - 1  for each j =  1,...,n, 
I[slXl+ - ' - + s n X ,  ll and IlXnH are measurable, the joint distribution of 
]lslX~]], IlslX1 +s2X211,..., HslX1 + "'" +s,X,]]  does not depend on sl ..... s , ,  
and IIX~ll, IIX211 .... are i.i.d. Let S, : = X I +  ..- +Am. Then (a) implies (b): 

(a) IIS~ll/n ~ 0 in probability as n ~ ~ .  

(b) nP(llX, I I>n)~O.  

860/4/3-2 
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Proof Assume (a). Then 

P( max Ilgjll > n) ~< P(max I lSyn > �89 
l<~j<~n j<~n 

which by the P. L6vy inequality (which holds under the given conditions) 
is <<.2P(IIS.[I/n>�89 as n-~ ~ .  Then for P. :=P(IIXIII >n) ,  
( 1 - p , ) " ~  1 impliesnP,~O, which is (b). [] 

Proposition 3. There is a weak Glivenko-Cantelli class which is not 
a Glivenko-Cantelli class. 

Proof Let H be a separable Hilbert space with an orthonormal 
basis {ei}l<i<~- Let P = B 1 ,  the unit ball of the (dual) Hilbert space. 
So on H, I1" lip is just the Hilbert norm II" I[. Let P on H put probability 
pi/2 at kie i and also at -kie~ for each i, where pi=c/i 2 (C=6/7z 2) 
and ki=i/(l+logi), i=1,2, . . . .  Then for each f eF ,  ~l f ldP= 
Z~ pik~ ]f(ei)] < m by the Cauchy inequality, and ~fdP = 0 by symmetry. 
We have 

nP(]lx]] > n) <n ~ {p,: ki> n } <~n ~" {Pi: i>n (1  + log  n)} 

<<.c/logn~O as n ~  

so (since Hilbert space is B-convex) by the references given before Proposi- 
tion 2, (a) in Proposition 2 follows, so P is a weak Glivenko-Cantelli class. 

Now ~ Ilxll dP(x)= +co, which says in this case that P =  Fo.p is not 
order-bounded, so P is not a Glivenko-Cantelli class by Theorem 1 (or by 
the Mourier ~19) law of large numbers). [] 

3. UNIVERSAL GLIVENKO-CANTELLI  CLASSES 

A collection P of universally measurable functions on X will be called 
a weak universal Glivenko-Cantelli class if there exist some real-valued 
an(f, P), defined for each f e P ,  n = 1, 2 ..... and law P on (X, g) ,  such that 
I [ P , - a , ( . ,  P)ll~---* 0 in probability as n ~ oo. This notion turns out to be 
equivalent to that of universal Glivenko-Cantelli class defined early in 
Section 1 (although for a single P equivalence does not hold-- the weak law 
of large numbers is not equivalent to the strong law, as is well known-see 
Propositions 2 and 3 above). 

Proposition 4. For  any measurable space (X,~]) and class P of 
universally measurable real-valued functions on X, P is a weak universal 
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Glivenko-Cantelli class if and only if it is a universal Glivenko-Cantelli 
class. Also, each function f in such a class P must be bounded, and the 
collection of functions { f - i n f f : f e P }  is uniformly bounded (F is 
uniformly bounded up to additive constants). 

Proof Suppose P is a weak universal Glivenko-Cantelli class. If ~ is 
not uniformly bounded up to additive constants, take fk e P and points Xk 
and Yk such that [fk(Xk)--fk(Yk)[ > 8  k for k =  1,2 ..... Let G be the 
sequence {fk}k>~ 1. Since G is countable, the following LI "11~ seminorms of 
random elements are measurable (even though the P ,  may not necessarily 
belong to a normed space separable for 11" II ~ or be Borel measurable for it). 
Let P be the sum of point masses 1/2 k§ at Xk and at Yk for each k. Let 
P'n be an independent copy of P, .  Then [IP~ - P'nll ~ ~ 0 in probability since 
/V is a weak universal Glivenko-Cantelli class. Now, P n -  P', is 1/n times a 
sum of n i.i.d, random elements Vi= fix(i)-6Y(o which are symmetric [Vi 
can be interchanged with -V~ for any set of i's without changing the 
distribution(s) of the II'l[e seminorms of any partial sums]. Under these 
conditions, it follows from Proposi t ion2 that n Pr(llVlll~>n)---,0 as 
n --, ~ .  But now by definition of P in this case, for each k, and n = 8 k, 

n Pr(ll Vlll~>n)~n Pr{X(1)=xkand Y(1)= Yk} )8k/4k+1 ~ O0 

a contradiction. So P is uniformly bounded up to additive constants: for 
some M <  oo, s u p f - i n f f < . M  for all f ~ P .  

To finish the proof, we need to show that for each law P, as n --* 0% 
sup{[~fdP-an(f ,P)[: f ~ P }  ~0.  If not, then for some P, some e > 0 ,  
sequence n(k)--* oo and gk~.~, ]jgkdP--an(k)(gk, P)I >~. For  k large 
enough, Pr{[SgkdPn(k)--an(k)(gk , P)I >e/2} < 1  and, by Chebyshev's 
inequality, Pr{ [S gk d(P,(k)- P)[ > e/2} < 4M2/(e2n(k)) < �89 Evaluating at a 
point where neither of the latter two events occur and  subtracting gives a 
contradiction, proving Proposition 4. [] 

A notable example of a universal Glivenko-Cantelli class is the collec- 
tion of all subsets of a countable set. So, for the Glivenko-Cantelli property 
the atomic parts of laws pose no problem. We then clearly have the 
following: 

Proposition 5. A class ~ is a universal Glivenko-Cantelli class if and 
only if it is a Glivenko-Cantelli class for all nonatomic P in P. 

Here is a way to extend the universal Glivenko-Cantelli property to 
fairly general classes of functions from simpler classes, just as in Theorem 4 
for one P: 
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Theorem 5. For  m = 1, 2,..., let Fm be a universal Glivenko-Cantelli 
class of functions. Let {/3,,},,~> 1 be a universally asymptotically null 
sequence of classes of universally measurable sets. Let P be a uniformly 
bounded class of measurable functions such that for any f ~  P and each m 
there is a set A e J~m such that f ( 1 -  1A)~_Pm. Then P is a universal 
Glivenko-Cantelli class. 

Proof This follows from Theorem 4 and its proof. Actually, a direct 
proof would be slightly easier since P is assumed uniformly bounded. [] 

Likewise, Corollary 1 for sets has its counterpart in the universal case, 
where "sufficiently measurable" is as in Corollary 1: 

Corollary 3. Assume that C is a class of universally measurable sets; 
{/Sm }m/>1 is universally asymptotically null; for each m, C,, is a sufficiently 
measurable Vapnik-(2ervonenkis class; and that for each C s C and each m 
there is an A e Om with C\A E ~m. Then ff is a universal Glivenko-Cantelli 
class of sets. 

We do not know whether the condition in Corollary 3 is necessary for 
the universal Glivenko-Cantelli property for a class of sets. 

A set C c X is called universally null if it has outer measure zero for all 
nonatomic laws on .3 (and so is universally measurable, with measure zero 
for the completion of any nonatomic law). If all singletons are in _3, then 
all countable sets trivially are universally null. Uncountable universally null 
sets, otherwise quite unusual, may turn up in theorems on universal 
Glivenko-Cantelli classes. For  example, by Proposition 5 and Proposition 8 
below, the collection C of all subsets of a set D is a universal Glivenko- 
Cantelli class if and only if D is universally null. Then, for any nonatomic 
P, I l P n - P l l e - 0  a.s. A fixed universally null set could be included in all 
sets in universally asymptotically null classes (Theorem 5, Corollary 3). 

In a Polish (complete separable metric) space, an uncountable Borel 
set B cannot be universally null, since by the Borel isomorphism theorem 
(e.g., Ref. 7, Section 13.1) there exists a nonatomic law P supported on B. 
But in any uncountable Polish space, there exist uncountable universally 
null sets. In fact, there are uncountable sets, called Lusin sets, having 
countable intersection with any nowhere dense compact set, as shown by 
Lusin, (16) assuming the continuum hypothesis. It is known that any Lusin 
set (in the current sense) is universally null. For completeness here is a 
proof, kindly conveyed to us by W. Adamski via P. Gaenssler. For  any 
nonatomic law P on a Polish space and Borel set B, P(B)=sup{P(K): 
K ~  B, K compact and nowhere dense }. Suppose there is a Lusin set C and 
a nonatomic law # such that the outer measure/~*(C) > 0. Let B be a Borel 
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set with C c B and #*(C) = #(B). Also, there are closed, nowhere dense sets 
F~ c F2 c -.- c B with #(B) = supn #(Fn). Then for any compact K c  B, 

since (e.g., Ref. 7, Theorem 3.1.11) #*(Kc~ Un Fn n C) = limn #*(Kc~ F,  ~ C) 
= 0, because each K ~ Fn c~ C is countable and # is nonatomic, and since 

So, 0 < #*(C) = #(B) = sup{#(K): K compact, K c  B} = 0, a contradiction. 
Sierpiflski and Szipilrajn-Marczewski (2s) on the basis of results of 

Hausdorff, ( ' )  without the continuum hypothesis, proved that there exist 
uncountable universally null (not necessarily Lusin) sets in [0, 1 ]. A recent 
reference, giving others, is Shortt. (24) 

Corollary 2 has the following straightforward counterpart: 

Corol lary4.  Suppose X is the union of disjoint universally 
measurable sets Ao, A1,A2,..., such that A0 is universally null. Let 
be a collection of sets such that for each i > 0 ,  Ci := {Cc~Ai: C~ C} is a 
sufficiently measurable Vapnik-Cervonenkis class. Then C is a universal 
Glivenko-Cantelli class. 

Since the example in Proposition 1 is not universal Glivenko-Cantelli, 
a different example is needed of a universal Glivenko-Cantelli class for 
which the conditions of Corollary 4 fail. 

Proposition 6. There exists a universal Glivenko-Cantelli class of 
finite sets in I := [0, 1 ] not satisfying the conditions in Corollary 4. 

Proof Le t /3  m be the class of all intervals of length at most 1/m in 
I, m =  1, 2,.... Then {ff)m}m>~l is universally asymptotically null. Let C be 
the collection of all finite subsets of I such that each set C in C of 
cardinality m is included in some interval A in /5 m. Then Corollary 3 
applies as follows: Let Cm be the class of all sets with at most m -  1 
members, so S(Cm) = m  -- 1. For  any CE C', if C has fewer than m elements, 
take A to be arbitrary, say A = [0, 1/m], and C\A~ Cm. If C has m or 
more members, take an interval A ~ C with A ~/5 m. Then C\A is empty 
and so in Cm" Since each Cm is a direct image of /m 1, it has suitable 
measurability properties (Ref. 5, pp. 101, 108), so it is a universal 
Glivenko-Cantelli class and, by Corollary 3, so is C. 
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If a decomposition as in Corollary 4 existed, then some Ai must have 
positive Lebesgue measure, and for Ei := {Ai~C: C s  C}, then S(E , )=  
m < oe. But A~ has infinitely many points in some interval of length less 
than 1 / ( r e+ l ) ;  any m + l  of these points form a shattered set, 
contradicting Corollary 4. The proof of Proposition 6 is complete. [] 

Theorem 5 and Corollary 3 provided sufficient conditions for the 
universal Glivenko-Cantelli property. Here is a necessary condition: 

Proposition 7. If ~ is a universal Glivenko-Cantelli class of sets; then 
any set finitely shattered by C must be universally null. 

Proof. Suppose A is finitely shattered by C and not universally null. 
Then for some nonatomic probability measure P on (X, ,4), P * ( A ) > 0 .  
There is a measurable cover B of A, so that A c B, B is measurable, and 
P(B) = P*(A). Replacing P by Q defined by Q(C)= P(Bc~ C)/P(B) for all 
measurable sets C, we can assume that P*(A)= 1. 

We symmetrize: If Qn are also empirical measures for P, independent 
of Pn, then EIPn-Q~[[~-~0 a.s. as n ~ .  Since P is nonatomic, the 2n 
points supporting P~+Qn are almost surely all distinct. With outer 
probability 1, all these points belong to A (e.g., Ref. 5, Lemma 3.1.4), so 
l IPs -  Qn[I ~ = 1 a.s., a contradiction. [] 

For  example, in a Polish space, if ~ is a universal Glivenko-Cantelli 
class there cannot exist any uncountable Borel set K finitely shattered 
by 6", since as noted above such a set is not universally null. Condition (M) 
in Section 2, Theorem 3, above was defined (implicitly) in terms of p2n 
measurability for one probability measure P. A collection P will be said to 
satisfy condition (MU) if the sets in the definition of condition (M) are all 
p2n measurable for every law P on (X, 4). We then have another sufficient 
condition for the universal Glivenko-Cantelli property: 

Proposition 8. Let C be a class of measurable sets satisfying (MU) for 
which there are no infinite, finitely shattered sets; or, all such sets are 
included in one universally null set T. Then C is a universal Glivenko- 
Cantelli class. 

Proof Removing T, we can assume that there are no infinite, finitely 
shattered sets. Suppose C is not universal Glivenko-Cantelli, so it is not 
Glivenko-Cantelli for some P. Apply a theorem of Talagrand (Section 2, 
Theorem 3, above) to get a set A as described there. Let Q(C):= 
P(Cc~ A)/P(A) for any measurable set C. Then Q has no atoms and for all 
n and Qn-almost all xl ..... x~, C shatters {xl ..... xn}. Then there exist 
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X 0(3 sequences { ~}~= ~ of distinct points whose ranges are finitely shattered by 
C, in fact almost all such sequences for Q~, a contradiction. [] 

In the following Proposition 9, part (ii) shows that the necessary 
condition for the universal Glivenko-Cantelli property in Proposition 7 
is not sufficient, and part (i) shows that the sufficient condition in 
Proposition 8 is not necessary, even assuming (MU): 

Proposition 9. Assuming the continuum hypothesis, I : =  [0, 1] can 
be decomposed as a union 1=  ~)~ Y~ of disjoint, uncountable, Lusin 
universally null sets. Let C" be the union over ~ of the collections of all finite 
subsets of Y~. Then Y~ can be chosen so that either: 

(i) (~' is a universal Glivenko-Cantelli class of subsets of I, satisfying 
(MU), with HP]]c--0 and I/Pn]le--1/n a.s. for any nonatomic P, 
and where the condition of Corol lary4 holds with I=AouA 1 
where A0 is universally null and S({CnAI: C ~ C } ) =  1; or 

(ii) C is not a Glivenko-Cantelli class for any nonatomic measure P 
on I (C is a "universal non-Glivenko-Cantelli class"). 

Proof For (i), by the continuum hypothesis there exists a Lusin, 
universally null set Ao of cardinality c. Let A1 :=/~Ao. Let A~ = {Y~)~<c 
be an enumeration of A~ (without repetitions), indexed by the countable 
ordinals. Also, we can write A0 as a union of c disjoint uncountable sets 
T~, ~ < c. Let Y~ := T~ w {y~}. Then the Y~ are disjoint, Lusin universally 
null sets, as claimed. If xl ,  x2 ..... are independent with any nonatomic 
distribution P o n / ,  then there is probability zero that any two xi are equal, 
or that any of them belongs to A0. So the set on which two or more of 
them are in Y~ for the same ~ has P" probability zero for any n. 

For  the measurability property (MU) of C, consider the set W : =  
{x ~ 12": for some C ~ C, x~ ~ C if and only if n < i ~< 2n }. To show W is pZn 
measurable for any law P on the Borel sets of L let P = 2 Q + ( 1 - 2 ) / t  
where 2 is a number in [0, 1], Q is purely atomic, Q (A o )= I ,  and 
#(A~)= 1. Let B~Ao be a countable set with Q ( B ) =  1. Let VI, V2,..., be 
the nonempty sets of the form Y~ c~ B. Let Wo := {x ~ I2": for some j and 
finite set F~Vj, for all i = 1  ..... 2n, x ~ F  iff i>n}, Wl:={x~I2": 
x,  + 1 . . . . .  x2, = y for some y r B and xi vL y, i = 1,..., n }. Then Wo, W1, 
and Z := Wo w WI are Borel sets in 12", Z ~ W, and W\Z ~ {x: x~ ~ Ao\B 
for some i>n}, so P2~(W\Z)=0 and W is p2n measurable. So (MU) 
holds. The other conclusions in (i) follow straightforwardly. 

Now for (ii), the collection of all compact, nowhere dense sets in I has 
cardinality c, so by the continuum hypothesis we can write such sets as 
{L~}~a<~ so that /~ runs through the set of nonzero countable ordinals. 
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Each Y~ will be defined recursively as { y ~  } ~ < c, where ~ will run through 
the set of all countable ordinals, and t3 through that set and a finite 
sequence of negative integers - 1 ..... - j~  depending on e. We also use the 
continuum hypothesis to well-order I as I =  {x~}~<c. Let Yoo = x0. Given 
Yo~ for [3 < 6 choose Yo~ such that Yo~ r Yoa for [3 < 6 and Yo~ ~ U~<a L~, as 
is possible by the category theorem. Given Y~ for ~ < a, Y~ will be defined 
recursively. 

Consider the set of pairs (j, K) where j is an integer, j >/2, and K is 
a compact subset of I j such that P J ( K ) > 0  for some nonatomic P 
(depending on K). The set of all such pairs has cardinal c and so can be 
indexed as {(j~, K~)}I~<~.  So j~ is defined. By assumption on K~, there 
exists a point t of K~ none of whose coordinates ti, i = 1 ..... j~, belong 
to any of the universally null sets Y~ for ( < ~ .  Let y ~ = t  ~ for 
f l=  - 1  ..... - j~ .  Let y,o=X~ for the least ? such that x 7 is neither in Yr for 
any ~<c~ (countable many universally null sets) nor equal to any y~,  
fl < 0. Then, for any countable ordinal 6 > 0, given y ~  for [3 < 3, choose 
y ~  = y such that: 

(a) y ~ y ~ f o r a n y f l < 6  

(b) y C L ~ f o r a n y [ 3  < 6  

(c) yCU~<~ r~. 
Such a y exists because ~J~<~ L~u {y,e}, a countable union of nowhere 
dense compact sets, has complement an uncountable Borel set which can- 
not (as noted above) be included in a universally null set, specifically in 
U~ < ~ Yr So all the Y~ are defined. Since y,~ can belong to L~ only for 
fi ~< fl, Y~ c~ Lr is countable for all c~ and [3, so Y~ is a Lusin set and hence 
universally null. By (a) each Y~ is uncountable, and by (c) the Y~ for 
different ~ are disjoint. 

Let P be a nonatomic law on / .  To see that C is not Glivenko-Cantelli 
for P, consider the pn outer probability, call it p*, of the set of all x = 
(x~ ..... x , )  such that for some ~, all x~ are in Y~. If p* < 1, then there is 
some compact set K c P  with P " ( K ) > 0 ,  disjoint from Y~ for all ~. But 
then K =  K~ for some e, and by choice of Y~B for [3 < 0, Ks intersects Y~, 
a contradiction. So p* = 1 and, by definition of C, with outer probability 
1 it shatters {x~,..., x,} and by a theorem of Talagrand (Theorem2 in 
Section 2 above) (taking n even, and e = �89 /3 = ~), C is not a Glivenko- 
Cantelli class for P, finishing the proof. [] 

4. U N I F O R M  GLIVENKO-CANTELLI  CLASSES 

In analogy with universal Glivenko-Cantelli classes, a collection P of 
universally measurable functions on (X, .4) will be called a weak uniform 
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Glivenko-Cantelli class if there exist some real-valued a , ( f ,P ) ,  f e F ,  
n =  1, 2 ..... P e P ( X ,  A), such that for all e>0 ,  

lim sup P r * { l l P ~ - a . ( - , P ) l l p > e } = O  
' ~  P ~ P ( x , 2 )  

Since weak uniform Glivenko-Cantelli classes are weak universal, it follows 
from Proposition 4 that each function f in such a class is bounded and that 
these classes are uniformly bounded up to additive constants. Given a 
collection P of bounded functions, we will write F0 = P if ~ is bounded and 
J~o = { f -  inff:  f e F} otherwise, and F = sup {I/l: f e Fo }. 

Proposition 10. The following are equivalent: 

(a) P is a weak uniform Glivenko-Cantelli class. 

(b) P is a class of bounded universally measurable functions and for 
all e>0 ,  

(c) 

lira sup Pr*{I IP~-PI Ip>r  
n ~  PEPiX,  2)  

P is a class of bounded universally measurable functions and for 
all r > 0 (or, for some r > O) 

lim sup E * II P . - Pll r - O p - -  

n ~ m  P c  P(X,2)  

If any of (a), (b), or (c) hold, F0 is uniformly bounded. 

Proof Obviously (c) =:- (b) =~ (a). In order to prove (a) =:- (b) it 
suffices to show 

lim sup sup I P f -  an(f, P)I = 0 
n ~  P f ~  

The class P is uniformly bounded up to additive constants by Proposi- 
tion 4, therefore, Fo is uniformly bounded. Then, with M = IIFLI ~ < ~ ,  we 
have P r { [ P n f - P f [ > e } < ~ 4 M 2 / ( n 8  2) for all n = l , 2  .... and f e P ,  by 
Chebyshev's inequality. By definition, (a) implies 

lim sup sup P r { i P ~ f - a n ( f ,  P)] >e} = 0  
n ~ o o  p f E F  

Thus for all e > 0  there is n~<oe such that for all n>n~, f e Y ' ,  and 
P e P ( X , A )  there exists r for which ] P . ( c o ) ( f ) - P f l  <<.~ and 
I P : , ( ~ ) ( f ) - a . ( f ,  P)[ ~<e, and the conclusion follows. (b)=~(c) follows 
easily since, in both, D can be replaced by -to, which is uniformly bounded 
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since (b) implies (a); for any real function g, Pr*(g>e)=Pr(g*>e) 
[Ref. 5, Lemma3.1.6(a)], and for a uniformly bounded sequence of 
measurable functions, convergence in probability is equivalent to con- 
vergence in rth moment for any r > 0, which holds in this case uniformly 
in P. 

We call P a strong uniform Glivenko-CantelIi class if for all g > 0, 

lira sup Pr*{sup IrPm-Pilp>e}=O 
n ~  P ~ P ( X , A )  m>~n 

We will show that the weak and strong uniform Glivenko-Cantelli 
properties are equivalent, under measurability hypotheses, to a condition 
on the size of Fo for certain metrics (which are nonrandom). These are 
different from, but related to, some metrics used by Vapnik and 
Cervonenkis, (3~ Kol~inskii, (14) and Pollard(23); see also Gin6 and Zinn. (1~ 
The measurability that the proof will require is that F0 be nearly linearly 
supremum measurable for all P~P(X, A) (e.g., Gin6 and Zinn(l~ a 
condition which is satisfied if P is image admissible Suslin (Ref. 5, p. 101). 
For x=(xi,.. . ,xn)~X ~, n=l ,2 , . . . ,  and p E ( 0 , ~ )  we define on Fo the 
pseudodistances 

ex, p ( fg )=  n -1 If(xi)-g(xi)l  p 
i = 1  

ex,,,(f, g) = max If(xi)- g(xi)[, f, gEPo 
i<~n 

Let N(e,-Fo, ex, p) denote the e-covering number of (F0, ex, p), e >0. Then, 
we define, for n = 1, 2 ..... e > 0 and p ~ (0, ~ ], the quantities 

Hn, p(~, F0) = sup log N(e, Fo, ex, p) 
x E X  n 

Theorem 6. Let P be a family of bounded functions on (X, ,4) such 
that F0 is image admissible Suslin. Then the following are equivalent: 

(a) F is a weak uniform Glivenko-Cantelli class. 

(b) P is a strong uniform Glivenko-Cantelli class, 

For 0<p~< ~ ,  

(Cp) lim H,,,p(~,~'o)/n=O forall e > 0  
t t  ~ or 

and Fo is uniformly bounded. 
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Proof We show first that (c~) implies (b). Let {e~} be a Rademacher 
sequence independent of {X~}. (We assume (s Z, P r ) = ( X ,  A, P ) ~ |  
([0, 1], B, 2), the X~ being the coordinates on (X, A, P)~ and 8~({Xj}, u) 
depending only on u s [0, 1 ].) We denote by Ep integration with respect to 
P~, and by Pr~ probability conditioned on {Xi}, i.e., 2-probability. By 
symmetrization (e.g., Ref. 10, p. 936f) and boundedness of Fo, we have that 
for all ~ > 0 and for all n large enough (depending on e) 

Pr{llP~- ellr ,>g} ~<4 Pr { i = l  f e~fxjnpo>~/4} 

For n = 1, 2 ..... let xn(~o) = (XI(~)  ..... X.(~o)). By definition of N(e, Fo, e~,l), 
for each ~o there is a map 7~. = 7rn~ Po~-+Po such that card{7~.f : fEPo} = 
N(~/8, Fo, ex..o),l) and 

e~.(o~),l(f, ~ . f )  <~ ~/8, f ~ ~'o 

Let M = IlFl] ~ < ~ .  Then, by Hoeffding's inequality, 

{ { 
i = l  i = 1  

<~ 2(EN(e/8, ~'o, ex.(o~),l)) exp{ --e2n/(128M2) } 

where measurability follows from the image admissible Suslin condition. By 
(c1), for all n large enough N(e/8, Po, ex,1)<~exp{e2n/(256M2)} for all 
x ~ X ~. Hence, for all e > 0 there is n~ such that if n > n~ then for some 
C= C(M, ~) = 8(1 - e x p {  -e2/(256M2)}) 1 < <~, 

sup ~ Pr{lIPk-Pllp>e} <~Cexp{-e2n/(256M2)} 
PEP(X,%) k>~n 

and (b) is proved. 
Next we show that (a) implies (c2). Here M = IIFII ~ < ~ by Proposi- 

tion 4. Symmetrizing, 

2EIIP,,- PIIp>~ E ~ ~;(6xj- P)/n - M E  
j 1 j = l  F0 j = l  

So, if F is a weak uniform Glivenko-Cantelli class and Fo is image 
admissible Suslin, Proposition 10 gives that 

lim sup E ~= ej6 xjn ~o=0 
n ~  P E P ( P / , A )  1 
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Then, by Lemma 2.9 in Gin6 and Zinn, (~~ we also have 

n 

lim sup E ~ g/S xjn =0 
n ~ o o  P ~ f f ( X ,  2 )  j = l  Po 

where {gi} is an orthogaussian sequence independent of {X~} (we take 
{g~} defined on ( [0 ,1] ,  ~, 2), like {ei}). Let now x=(x~,.. . ,x,)~X ~, 
Px =n-1Zl~i<., 6x(i) where x(i):=xi. For j =  1,..., n, let m(j)(.) be i.i.d. 
random variables uniformly distributed over {1,..., n}, independent of {g~} 
(and not necessarily defined on the original probability space t'2). Then 
Xm~j) are i.i.d. (Px) random variables independent of {g~}. Specializing the 
last displayed equation to P~ gives 

n 

lim sup E ~= gj6xm~j)/n po=O 
n ~ o o  x ~ X . n  j 1 

Now we claim that 

n 

n 

P0 = -~0 
E ~= g#Sx,/n ~ < ( 1 - e - l ) - m E  g}3x,o~J 

i 1 j 1 

To prove this inequality we will proceed as in the proof of an inequality in 
Gin6 and Zinn, ~12) Proposition 2.2, which uses symmetrization arguments 
due to Pisier, ~21) Proposition 5.1. Let A,7= {m(j) = i}, i, j =  1 ..... n. Then for 
each j<<.n the sets Aaj ..... Anj form a disjoint partition of a probability 
space, the sets in different partitions are independent, and Pr(A0)= 1In, i, 
j =  1 ..... n. Let gu for i, j =  1,..., n be i.i.d. N(0, 1) random variables. By 
disjointness and independence, the two sets of random vectors 

n 1 n {(gj 1A~j,..., gjlA,)}j= a and {(glj A,y ' ,gnj lA,)}j=l  

have the same distribution. Therefore, 

E • gi3x,,,s,/n P~ = E 2 g} 1Aij6x~ n = E gol Aij6xj/n 
j 1 j 1 i 1 FO i , j = l  

Conditionally on the events {A~j}, the random variables ~-'~=lg/jln0, 
i =  1,..., n, are independent N(0, Z~= 1 1Au). Hence, using the Tonelli-Fubini 
theorem, Jensen's inequality, and the fact that E(~'.7_ 1 1A,)1/2~> 1 - e  - l ,  
we obtain E[IZ~,j=agulao.3x,/nllpo = EtIzn=~ (5~=l-lA)l~ge3xjn[l~. o 
(1 -- e -  a) Eli ~7= 1 gi3x,/n II p0, and the claim is proved. Consequently, 

lim sup E ~ g~6~,/n =0 
n ~ ~176 x ~ g n  i = l -go 



Uniform and Universal Glivenko-Cantelli Classes 503 

By Sudakov's (27) inequality (e.g., Ref. 8, p. 26), there is a universal constant 
C such that 

E ~, gi6xjn >~ C sup e(log N(e, Fo, ex,2))1/2/nl/2 
i=1  F'0 e > 0  

(c2) follows from this inequality and the previous limit. 
By uniform boundedness of Fo, for 0 < p < q < ~ we have 

On, p(5(p A 1)/(q /x 1), F o ) ~  On, q(5, Fo) 

Hn, p(5(q^ 1)/(p ^ 1)/(2M)(q-p)/( p v 1 ) F o )  

and therefore conditions (Cp), 0 < p < 0% are all equivalent. 
Obviously (coo) implies (Cp) for all p. So, to finish the proof of the 

theorem it only remains to be shown that for example, (cl) implies (coo). 
For this we follow an argument of Talagrand (Ref. 28, p. 982). Let x--  
(xl ..... xn) ~ X ~ and 0 < ~ < e < �89 Let 7z: Fo ~ Fo satisfy ex, l(f, nf) ~< ~5/2 for 
all f E P o  and card{7tf:f~Po}=N(75/Z, Po, ex,1), and let ~ = { f - r c f :  
f ~ Fo }. If f and g are in the same re-equivalence class of Fo, then z~f = zcg 
and therefore the ex, o~ z-covering number of each of these N(~e/2, Fo, ex, 1) 
equivalence classes is not larger than N(~, G, ex, o~). So, 

N(e, Fo, ez,~) <~ N(~5/2, 7" o, ex,1) N(e, G, ex, oo) 

If g e ~, then 5Z7= 1 I g(x~)l ~< ~en/2. Hence there are at most m = [-an] i's for 
which Ig(x~)l >5/2. L e t / 1  be the set of functions on {xl ..... x,} which are 
zero at n -  m of these points and take values of the form ke/2, k ~ ?7, 
[kl<~4M/e, at the remaining m points. Then, min{max~l(g-h)(x~)[: 
h ~/4} ~< 5/2, and we obtain 

(note t h a t / 1  is not included in G, but we can replace each h e /4  such that 
the e/2-ball centered at h, B(h, 5/2), intersects G so that B(h, e/2) c B(g, 5)). 
From this, (q )  and Stirling's formula yield 

lim sup H~.~(e, Fo)/n <~ c~ [log cq + (1 - ~) [log(1 - c~)[ + ~ log(1 + 8M/e) 

Letting ~ ~ 0 we get (co~). [] 

Remark. Let y(1), y(2),..., be distinct points and fk :=kl{y(k)}. Let 
/~={fk}k~>l. Then Hn, p(e, F o ) = l o g ( n + l ) ,  so (Ce) holds for all p > 0  
except that Fo is not uniformly bounded. 
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We do not know if the weak and the strong uniform Glivenko- 
Cantelli properties are equivalent without any measurability assumptions 
on F. But there are Vapnik-Cervonenkis classes ~ (with bad measurability 
properties) of index S(C)=  1, and so by Sauer's lemma (e.g., Ref. 5, 
Theorem 9.1.2) satisfying 

Hn, p(e, C) ~< log(n + 1), 0 < p ~ oo 

which are not universal Glivenko-Cantelli. One example (Ref. 5, 10.3, 
pp. 103-104) is the class C of all initial segments of the least uncountable 
ordinal ~ .  Then for every probability measure P on ~ which is zero on 
countable sets, I lPn-PI]e = 1. Assuming the continuum hypothesis, this 
happens simultaneously for every nonatomic Borel probability measure 
on an uncountable Polish space S, using a well-ordering of S. Also 
Dobri6 (Ref. 4, Theorem 3.1), shows, given any particular nonatomic law P 
on a Polish space (without the continuum hypothesis), that there is a 
class C of disjoint countable sets, so that again S (C)=  1, such that 
P~*(P[Pn-Pl le--  1 for all n ) =  1. 

Given a class C of subsets of ii, for xl,..., x,  e X let Ae(x~ ..... xn) be the 
cardinality of the collection of sets of the form {xl ..... x,} c~ C, C E C. Then, 
if x = ( x l  ..... x,), Ae(Xl ..... x , )=N(e ,  C, ex, o~) for all ~e(0, 1). Hence, if 
condition (c~o) holds for C, then for some n, sup{Ae(x): x ~ X  ~} <2"  and 

is a Vapnik-Cervonenkis class. Conversely, if ~ is a Vapnik-(Tervonenkis 
class, then Vapnik and (Tervonenkis (29) proved that Hn, oo(8, C) ~< c log n for 
some c <  oo and all ne  N, so a condition much stronger than (coo) holds 
for 6'. Thus, we have the following: 

Proposition 11. Let C be an image admissible Suslin class of sets. 
Then C is uniform Glivenko-Cantelli if and only if C is Vapnik- 
Cervonenkis. 

This proposition is not new: Vapnik and Cervonenkis (29) prove, at 
least implicitly, that if t~ is Vapnik-t~ervonenkis (and satisfies 
measurability conditions which follow from image admissible Suslin) then 

is uniform Glivenko-Cantelli at rate 1/n ~ for any ? < �89 see also Pisier. (22) 
Moreover, in the other direction, Assouad and Dudley (~) prove the 
stronger result that if ~) is the class of all laws with finite support and 
supe~oEPIIPn-PI[e<�89  for some n (and so a fortiori if C is uniform 
Glivenko-Cantelli) then C is Vapnik-(Tervonenkis. 

The universal Glivenko-Cantelli class of all finite subsets (or all sub- 
sets) of a countably infinite set is not Vapnik-Cervonenkis and hence not 
uniform Glivenko-Cantelli by Proposition 11. To define other examples of 
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such classes of functions, for any metric space (S, d) and real-valued 
function f on S, let 

[[fll~L := sup If(x)[ + sup I f ( x ) - f ( y ) l / d ( x ,  y) 
x x ~ y  

Then we have the following: 

Proposition 12. For any separable metric space (S,d)  and 
0 < M <  o% PM := {f:  [[fl/~L ~< M} is a universal Glivenko Cantelli class. 
It is a uniform Glivenko-Cantelli class if and only if (S, d) is totally 
bounded. 

Proof The universal Glivenko-Cantelli property holds since almost 
surely Pn~P for convergence of laws (Ref. 31), which is metrized by 
fi(P, Q) := sup{ 1~ fd(P- Q)[: [If If ~L ~< 1 } (e.g., Ref. 7, Theorems 11.4.1 and 
11.3.3). 

If (S, d) is not totally bounded, then for some 6 > 0 and infinite A c S, 
d(x,y)>6 for all xr  in A. For any subset BcA, there is some fs with 
f = 6  on B, f = 0  on A\B, and [[ftlsL ~ 1 + 6  (Ref. 7, Proposition 11.2.3). It 
follows from Theorem 6 that P~ +6 and so (by constant multiples) any PM 
with M > 0 is not a uniform Glivenko-Cantelli class. 

If (S, d) is totally bounded, then for M < 0% FM is totally bounded for 
the supremum norm. So for any e > 0, Hn.o~(e, (P~)o) is bounded uniformly 
in n, and P~, is uniform Glivenko-Cantelli by Theorem 6. [] 

The non i.i.d, version of the Glivenko-Cantelli theorem also holds 
uniformly in uniform Glivenko-Cantelli classes. This is the subject of the 
next theorem. Let Qi be probability measures on (X, 4),  let X~ be the 
coordinates of Hi(X, .~, Qi) and let P ,  be the empirical measure of 
X~,..., X~, n = 1, 2 ..... Then, we have the following: 

Theorem 7. Let P be a class of bounded functions such that Fo is 
image admissible Suslin. Then the following are equivalent: 

(i) F is a (weak or strong) uniform Glivenko-Cantelli class. 

(ii) l i m , ~  sup{EllPn-n 1 ~n 1Q;I[~: (Qi)~P(X,  A)~} - 0  

(iii) l i m , ~  sup{Pr{supm~>n I lPm-m - l ~ i m l  Q;l lp>e}: 
(Qi)~P(X, A)~} = 0  for all e>0 .  

Proof. The proof of ( C l ) ~ ( b )  in Theorem6 does not make use of 
the equidistribution of the variables Xi and it applies verbatim to show that 
(Cl) =~ (iii). Therefore, by Theorem 6, (i)=~ (iii). (iii) implies (b) in Proposi- 
tion 10, which implies Fo is uniformly bounded, so (iii) =~ (ii) by the proof 
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of (b) =*- (c) in Proposition 10, which also extends, with its cited references, 
to the non i.i.d, case. And obviously (ii) =:, (i) by taking Q~ = P, i = 1, 2 ..... 

[] 

Finally, here are some permanence properties of uniform Glivenko- 
Cantelli classes. It follows from the definition that if P and G are uniform 
Glivenko-Cantelli then so are a F +  bG, a, b c ~, and ~ w  ~. Condition (coo) 
in Theorem 6 can be used to prove the following: Let p c (0, co) and let P 
be a bounded image admissible Suslin uniform Glivenko-Cantelli class. 
Then ~P = { [fl p sgn(f):  f s  P} is a uniform Glivenko-Cantelli class [this 
follows by comparison of IfP(s)-gP(s)l with c If(s)-g(s)[ p^l for some 
c <  oe. The same comment applies to IFIP= {Ifl~: f c F } .  

Let now B be a separable Banach space, P e P(B) and Xi i.i.d. (P). 
Mourier ~ showed that if ~ flxli dP(x) < co then 11~2~'= 1 Xjn - j  x dP(x)ll 

0 a.s. In particular, letting X =  Ba, the unit ball of B,' and F =  B'a, the 
unit ball of the dual B' of B, F is universal Glivenko-Cantelli. The example 
of all the finite subsets of X countable (which, for the law of large numbers, 
is equivalent to the power set example) is of this type: Just take 
X =  { e k } ~ = t c l l ,  the canonical basis of ll, and P equal to the set of 
extreme points in the unit ball of co with nonnegative coordinates. We see 
next that in the context of separable Banach spaces this is in some sense 
the only example of universal but not uniform Glivenko-Cantelli classes. 

A Banach space B will be called uniform for the law of large numbers 
if 

n 

lim sup E ~= (Xf-EXf) /n  =0 
n ~ o o  p ~ i f ( B 1  ) i 1 

where {Xf} is an i.i.d. (P) sequence of random variables. The relevant 
geometric concept for this property is B-convexity (Ref. 3; see, e.g., 
Woyczyfiski(32)). B is called B-convex if there exist k c ~ and e ~ (0, 1 ) such 
that 

L 
inf ~ ~iXi < k ( 1 - e )  

~i = __+1 i = 1  

for any xicB with Itxill = 1, i =  1 ..... k. ll is said to be finitely representable 
in a Banach space B if for every n = 1, 2,..., there exist a linear map I ,  : 
IT~B such that Ilxll/2<~lllnxll<~21lxl[, xel~ (where 17 is ~n with the 
l l - n o r m  Ilxlt = Y~7= ~ Ixil ), An important property of B-convex spaces is the 
following (Ref. 9; see, e.g., Woyczyfiski(32)): B is B-convex if and only if ll 
is not finitely representable in B. A second important property is that B is 
B-convex if and only if B is of Rademacher type p for some p c ( t ,  2] 



Uniform and Universal Glivenko-Cantelli Classes 507 

(Ref. 20; see, e.g., Woyczyfiski(32)). As mentioned in Section 2, B-convex 
spaces are also characterized by the weak law of large numbers. Here is 
another characterization of B-convexity based on the law of large numbers. 

Theorem 8. A separable Banach space B is uniform for the law of 
large numbers if and only if it is B-convex. 

Proof The "if" part of this theorem is known (see Woyczyfiski(32)); 
we give a proof of both parts, based on the above properties, for complete- 
ness. If B is B-convex, then it is of type p for some p ~ (1, 2], and therefore 
we have for some fixed constant c, 

E ~ (X~-EXf)/n P~cE[IXfIIP/nP-1--->O uniformlyin PeP(B1)  
i=1 

Conversely, if B is not B-convex them 11 is finitely representable in B. Let, 
for N =  1, 2,..., eiN=Iu ei, i= 1 ..... N, where {e~}U= 1 is the canonical basis of 
l u and I u is an operator as in the definition of finite representability. Let 
Q N = N - l z N =  1 6e,N and let {xN}N= 1 be i.i.d. (Q N) random variables. Then, 
the left-hand side part of Proposition 2.2 in Gin6 and Zinn (12) gives 

E N N ~ieiN/N ,~=1 e'XN/N ~ > 2 - 1 ( 1 - e - 1 ) E  ,=1 ~ 

N eiei/N ~ > 4 - 1 ( l - - e - 1 ) E  ~ = 4 - 1 ( 1 - - e  - 1 )  

i=1 

where {e,} is a Rademacher sequence independent of {Xi}. Since 

N N ~ ~i /N 2E ~= (X N-  EX~)/N >>. E ~ ~XN/N - 2E 
i 1 i=1 i=1 

it follows that 

E N 
limsup sup ~" (X~-EXf) /N ~ > 8 - 1 ( 1 - e - ~ ) > 0  

N~oo P~ P(BI) i=1 

that is, B is not uniform for the law of large numbers. [] 

Theorems 6 and 7 give other different necessary and sufficient condi- 
tions for B to be uniform for the law of large numbers. Another equivalent 
condition is: Whenever a family of laws / t c  P(B) satisfies the uniform 
integrability condition limM~ ~ supe~n S Ilxll 1 {,x~t >M} dP(x) = 0, then /~ 
also satisfies lim, ~ ~ supe~n EllY~7=, (Xf- EXf)/nll = 0. This condition 

860/4/3-3 
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on B clearly implies that B is uniform for the law of large numbers. On the 
other hand, if B is uniform for the law of large numbers, this property 
follows by an easy truncation argument. 

Example 4. Dudley (6) and Gin6 and Zinn (n) prove that if {A(i)} is 
a partition of X then the class F =  {Zi~176 xila(i): ~ix2i<~ 1} is universal 
Donsker but not uniform Donsker. Let B' be the dual of a B-convex 
sequence space, e.g., B ' =  lp, 1 < p < 0% and let B] be its unit ball. Then 
Theorem7 immediately gives that P={S~,~=lxila(o �9 (x~)eB'l} is a 
uniform Glivenko-Cantelli class: To each P on X assign /~ on B 1 by the 
equation P{e~} = PA(i), to obtain that, by duality, P is uniform Glivenko- 
Cantelli if and only if the law of large numbers holds on B. uniformly over 
all the probability measures supported by the canonical basis. Since this 
last property does not hold for B =  11 (see the proof of Theorem 8), the 
class of functions F =  {Zc/v=lXilA(i): lXi141} is not uniform Glivenko- 
Cantelli. On the other hand, P =  {ZF=~xilA(o: [x~[ ~<a/} with a ~ 0  is 
uniform Glivenko-Cantelli: Assuming without loss of generality 1 >~ ai~ 0, 
and letting, for each e>0 ,  n(e)=max{i:2a~>~e} we have for n =  1, 2,..., 
H,,oo(e, F) ~< log I ] ~  ([2a]~] + 1) ~< Z ; ~  2aj~ <~ 2n(e)/e; therefore 
H,,oo(e, F)/n--* 0 for all e > 0 and Theorem 6 gives the result. 

Example 5. Let F= {fm}2=l" It is proved in Gin6 and Zinn m) that 
P is uniform Donsker if Ilfmlloo = o(1/(log m) ~/2 (and there are classes P 
with IIf,.ll~o = O(1/(logm) 1/2 which are not even pregaussian for some P, 
e.g., fm=em/(logm) 1/2, m>~2, where em are Rademacher for P). If 
IIfml[ | ~ 0 (and IIf,.l[ | < ~ for all m) then P is uniform Glivenko-Cantelli 
by Theorem 6, since either (a) or (coo) there is easy to check. On the other 
hand there is a class P =  {fm] with I l f m l l ~ -  1 which is not Glivenko- 
Cantelli for some P (and so not even universal Glivenko-Cantelli): a 
sequence of indicators of sets A,, independent for P with P(A,,,)= �89 for 
all m. 
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