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Abstract. Refinement of programs is investigated in the context of fair transition 
systems. Two kinds of refinements, property preserving and fixed-point preserv- 
ing, are defined. Conditions are developed under which common program trans- 
formations such as data refinement are property preserving and fixed-point pre- 
serving. These conditions and relevant program refinements are illustrated 
through a number of examples. 

1 Introduction 

Stepwise refinement of programs has been a successful method for the develop- 
ment of programs. Originally intended for sequential programs [2, 6, 8, 9, 11], 
the technique has also extended well to concurrent programs [1, 3, 4, 5, 7, 
12, 16, 17, 20, 21, 22, 28]. Its main advantage is a separation of concerns since 
issues such as appropriate data structures, efficiency, and the peculiarities of 
the underlying architecture can be handled one at a time. Program derivation 
through stepwise refinement can be roughly classified into two kinds: property 
refinement and program refinement. While the former deals with the refinement 
of a set of properties, the latter deals with the refinement of a program text. 
This paper investigates program refinements in the context of a fair transition 
system [18]. 

A fair transition system is an abstract computational model characterized 
by a set of variables, a set of states, a set of transitions, initial conditions, 
and fairness requirements. Fair transition systems encompass most existing sys- 
tems and have been widely used for modeling reactive systems. For  our purposes 
in this paper, we choose the framework o f  Unity [7] as the representative fair 
transition system. The main reason behind our choice is the simplicity of Unity's 
logic and the ease with which refinements can be expressed and proved in it. 
Even though we concentrate on one specific formal framework, most of our 
results should translate across other frameworks based on fair transition systems. 

* Work supported in part by NSF Grant CCR-9008628. A preliminary version of this paper 
appeared in [27] 
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We consider two kinds of program refinements those that preserve all 
properties (safety and progress), and others that preserve the fixed-point (i.e., 
if the original program terminates, then so does the refined program, and the 
set of final states of the refined program is contained in the set of final states 
of the original program) [27]. The first kind of refinement, referred to as a 
property preserving refinement, is useful for reactive programs whereas the second 
kind of refinement, referred to as a fixed-point preserving refinement, is useful 
for terminating programs. We concentrate on a few commonly occurring pro- 
gram transformations, viz., data refinement, atomicity refinement, and streng- 
thening of guards. We develop conditions under which these transformations 
are property preserving and fixed-point preserving. We also illustrate the applica- 
bility of these refinements through a number of small examples. Though the 
presented refinements are individually quite simple, together they can be quite 
a powerful tool in the development of programs [-3, 5, 28]. 

Data refinement has received considerable attention in the literature. Hoare 
was the first to consider it in the context of implementation of abstract data 
types for sequential programs [-10]. Subsequently, a number of authors have 
generalized his work to concurrent programs [-4, 5, 20, 21]. Refinement of atomi- 
city has also been investigated extensively. Lipton was the first to consider 
the refinement of atomicity for concurrent programs [,15]. He considered the 
semantics of operations and developed conditions under which the refined pro- 
gram would preserve partial correctness. Lamport and Schneider have general- 
ized Lipton's theorem to a larger class of safety properties besides partial correct- 
ness [14]. Back generalizes Lipton's conditions further by considering total cor- 
rectness. He considers the framework of action systems and develops conditions 
under which a refinement of atomicity is fixed-point preserving. 

Recently, Sanders [22] has proposed a mixed specification language that 
incorporates both a program text and a set of explicit program properties. 
Any fair execution of the program text that satisfies the explicit program proper- 
ties is considered an acceptable behavior of the program. She develops the 
idea of refinements for mixed specifications and presents a number of interesting 
examples. 

The rest of the paper is organized as follows. Section 2 discusses Unity and 
presents a brief introduction to its logic. Section 3 discusses the two kinds of 
program refinements and their properties. Section 4 considers three kinds of 
program transformations - data refinement, atomicity refinement, and streng- 
thening of guards. A number of examples that illustrate the usefulness of these 
transformations are also given here. Finally, Sect. 5 includes some concluding 
remarks. 

2 A brief introduction to Unity 

We discuss the syntax of Unity in Sect. 2.1, the logic of Unity in Sect. 2.2, and 
program compositions in Sect. 2.3. 

2.I The Unity syntax 

A Unity program consists of four sections - a declare section that declares 
the variables used in the program, an always section that consists of a set of 
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proper equations, an initially section that describes the initial values of the 
variables, and an assign section that consists of a non-empty finite set of assign- 
ment statements. An assignment statement consists of one or more assignment 
components separated by Jj. An assignment component is either an enumerated 
assignment or a quantified assignment. An enumerated assignment has a variable 
list on the left, a corresponding expression list in the middle, and a boolean 
expression on the right called the guard (which by default is true): 

(variable-list) :=(expression-list)/f (guard). 

A quantified assignment specifies a quantification and an assignment that is 
to be instantiated with the given quantification; a quantification names a set 
of bound variables and a boolean expression (the range) satisfied by the instances 
of the bound variables. 

Example I. Examples of assignments are: 
1. Exchange x, y, provided predicate b holds. 

x, y:=y, x if b 
2. Add A [i] into sum and increment i, provided i is less than N. 

sum, i:=sum+A[i], i+1 i f i < N  [] 

Example 2. Examples of quantified assignments are: 
1. Assign 0 to all components of array A [-0.. N]. 

(lli:O<_i<__g: :A [i] :=0> 
2. Given arrays A [ 0 . . N ]  and B [ 0 . . N ]  of integers, assign the maximum of 

A [-i] and B [i] to A [i], for all 0_< i___ N. 
(Iri:O<_i<_g::A[i],=max(A[/], BliP)) [] 

An assignment component is executed by first evaluating all expressions and 
then assigning the values of the evaluated expressions to the appropriate vari- 
ables, if the associated boolean expression is true; otherwise, the variables are 
left unchanged. 

The set of assignment statements in the assign section is written down either 
by enumerating every statement singly and using ~ as the set constructor, or 
by using a quantification of the form (Dvar: range: :statement). Symbol [7 is 
called the Union operator. 

A program execution starts from any state satisfying the initial conditions 
and goes on forever; in each step of execution some assignment statement is 
selected nondeterministically and executed. Nondeterministic selection is con- 
strained by the following fairness rule: every statement is selected infinitely often 
[7]. 

Example 3. The following program assigns the maximum of variables x and 
y to variable z. Its assign section consists of two assignment statements each 
of which has one assignment component consisting of an enumerated assign- 
ment. 

Program max 
initially z = 0 
assign 

z,=x if x > y  
Dz'=y if x<_y 

end 
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The following program sorts integer array A [0 . .  N], N_> 0, in ascending order 
by swapping adjacent elements if they are out of order. Its assign section consists 
of N statements, one for every pair of adjacent positions. 

Program sort 
assign 

( [ l i :O<_i<N:  :A [i], A [ i +  1] :=A [ i+  1], A[i]  if  A [i] > A [ i+  1]) 
end [] 

2.2 The Unity  logic 

Program properties are expressed using four relations on predicates - unless, 
invariant, ensures, and leads-to. The first two are used for stating safety properties 
whereas the last two are used for stating progress properties. The formal defini- 
tions of these relations are based on the idea of the strongest invariant of a 
program advocated by Sanders [23]. The strongest invariant of a program P 
is denoted SI -P  and characterizes the set of states reachable from the initial 
state. It is defined as the strongest solution of X in the equation 

( I N I T  ~ X) /x  (X  ~ (V s : s~assign : wp(s, X))). 

Here wp denotes the precondition predicate transformer due to Dijkstra [8]. 
The predicate SI -P  denotes the set of states that are reachable initially as well 
as the states that are reachable after executing some statement in the assign 
section of program P. When program P is clear from the context, we write 
the strongest invariant simply as SI. 

2.2.1 Unless. For  any two predicates p and q, the property p unless q holds 
in a program iff for all statements s in the program the following implication 
holds: 

SI A p A - n  q ~ wp(s, p v q). 

Informally, if p is true at some point in the computation, then either q never 
holds and p holds forever from this point on, or q holds eventually and p 
continues to hold until q holds. Note the use of SI  to restrict the attention 
to only reachable states. 

Example  4 

1. The value of x never decreases. 
x = k unless x > k, for all k, or 
x > k unless false, for all k. 

2. Philosopher u stays hungry until eating. 
hungry,  u unless eating, u 

3. In Program max, variable z retains its old value until it gets max (x, y). 
z = k unless z = max (x, y), for all k. [] 

Derived rules. The following rules can be derived from the definition of unless 
relation. 
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Reflexivity rule: 

S I  ~ (p =~ q) 

p unless q 

Irreflexivity rule: 

p unless ~ p 

Weakening rule: 

p unless q, S I  ~ (q =~ r) 

p unless r 

Conjunction and disjunction rules: 

(V i: : p . i unless q . i )  

( V i : : p . i ) u n l e s s ( V i : : p . i v q . i ) / x @ i : : q . i )  {conjunction}, 
(3  i: :p. i )  unless (V i: :-1 p. i v q. i) A (3 i: :q. i) {disjunction} 

For the case of two pairs of predicates, the rules simplify to the following. 

p unless q, p' unless q' 

p A p' unless (p A q') V (p' A q) V (q A q') {conjunction}, 
p v p' unless (--1 p A q') V (--1 p'/X q) V (q A q') {disjunction} 

2.2.2 Invariant.  For any predicate p, the property invariant p holds in a program 
iff p holds initially and the program never falsifies p, i.e., 

initially p A p unless false.  

Alternatively, an invariant of a program is any predicate that is implied by 
its strongest invariant. 

E x a m p l e  5 

1. Variable x is always positive. 
invariant x >_ 0 

2. An eating philosopher u has all the required forks. 
invariant eat ing,  u ~ hasforks ,  u [] 

2.2.3 Ensures.  For any two predicates, p and q, the property p ensures q holds 
in a program iff p unless q holds in the program and there exists a statement 
s in the program such that 

S I  A p A ---1 q ~ wp (S, q). 

Thus, if p is true at some point in the computation then q holds eventually 
and p continues to hold until q holds. 

Derived rules. The following rules can be derived from the definition of ensures 
and unless relations. 

Reflexivity rule: 

invariant p ~ q 

p ensures q 
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Weakening rule: 

p ensures q, invariant q ~ r 

p ensures r 

Conjunction rule: 

p unless q, p' ensures q' 

p A p' ensures (p A q') v (p' A q) v (q/x q') 

2.2.4 Leads-to.  The relation leads-to is denoted as v--~, and is defined to be 
the strongest relation satisfying the following three rules. 

�9 p ensures q ~ pv-~q, 
�9 (p~-~q ix q~-~r) ~ p~-~r, and 
�9 For  any set W, 

(Vm : m s  W: p .mv--,q) ~ ((3 m:  m ~  W: p .m)v--~q). 

The first two rules imply that ~-~ includes the transitive closure of ensures and 
the third rule allows us to induct over sets. Given that pv--~q in a program, 
we can assert that  once p becomes true, eventually q becomes true. However,  
unlike p ensures q, we cannot  assert that p will remain true as long as q is 
false.  

Examp le  6 

1. A hungry philosopher u eventually eats. 
hungry ,  u v-~ eat ing,  u 

2. If a message m is sent, then it is eventually received. 
send.  m ~ r e c e i v e ,  m 

3. In Program max, 
t r u e ~ - + z = m a x ( x ,  y). [] 

Derived rules. The following rules can be derived from the definiton of leads-to 
and other relations. 

Reflexivity rule: 

invariant p ~ q 
p~--~q 

Strengthening rule: 

invariant p ~ q, q ~ r 

p~--, r 

Weakening rule: 

pv--~q, invariant q ~ r 

pv--+ r 

Impossibility rule: 

pv--+ fa lse  

invariant ~ p 
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Completion rule: 

(V i: :p. i~--~q, i, q. i unless b) 

(Vi: :p.i)~--~(V i: :q.i)  v b 

PSP (Progress-Safety-Progress) theorem: 

p ~ q, r unless b 

p Ar~--~(q A r ) v b  

Induction rule: 

(Vk: :p A x = k~--~(p A X < k) v q) 

The domain o fx  is well-founded under <.  
p~---~ q 

509 

[]  

2.2.5 Fixed  point. The fixed-point of a program P, usually represented by FP-P, 
denotes the collection of states that are invariant under the execution of every 
statement of the program. It is obtained by replacing the assignment symbol 
,= by the equality symbol = in every statement of the program and taking 
the conjunction over all such predicates. For  example, the fixed-point of program 
max in Example 3 is 

(x>_y ~ z = x ) A  ( x < y  ~ z = y ) .  

Similarly, the fixed-point of program sort is 

( V i : : A [ i ] > A [ i +  1] ~ A[i]  = A [ i + I ] ) ,  

which simplifies to ( V i : : A [ i ] < A [ i + l ] ) .  When program P is clear from the 
context, we write the fixed-point simply as FP. In general, the fixed-point of 
a program includes states that are not reachable by the program. The set of 
fixed-point states that are reachable is obtained by taking the conjunction of 
the fixed-point and the strongest invariant of the program; for a program P, 
this is represented by the predicate FP-P/~  SI-P. 

Derived rules. The following rules can be derived from the definition of fixed- 
point and other relations. 

Stability at fixed-point: 

F P  /~ p unless false 

Point predicate i rule 1" 

For  any point predicate p, 

p unless false - invariant p ~ F P  

Point predicate rule 2: 

For  any point predicate p, 

p ~ - 7  p =- invariant (p ~ -7 FP) [] 

The preceding definitions of unless and ensures rely on the definition of the 
strongest invariant of a program. However, when reasoning about a program 

A point predicate is a predicate that is true at exactly one point in the state space. 
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we are seldom interested in computing the strongest invariant. One way to 
infer program properties without calculating the strongest invariant explicitly 
is through the use of the substitution axiom [7]. This axiom allows a program 
invariant I to be replaced by true and vice-versa in the context of the program. 
The validity of this axiom stems from the fact that the strongest invariant of 
a program implies any invariant of the program. Consequently, any property 
inferred by applying the substitution axiom can also be inferred by a direct 
application of the definition of the unless, ensures, and leads-to relations [23]. 

2.3 Program composition 

Program composition in Unity is achieved either by union or superposition. 

2.3.1 Program composition by Union. Let F and G be programs with compatible 
declare sections (i.e., the declarations of the variables are non-conflicting), com- 
patible always sections (i.e., the two sets of equations are consistent), and compat- 
ible initially sections (i.e., the initial values of the variables are non-conflicting). 
Then, their composition is a new program denoted F~G;  every section of this 
program is obtained by a union of the corresponding sections of F and G. 
Since the states reachable by a program may change when it is composed with 
another program, reasoning about a composite program requires considerable 
caution. For example, it may be incorrect to infer the property p unless q for 
a composite program if it holds for each of the individual programs. We solve 
this problem by introducing the notion of a context [-16]. The context of a 
program F is another program representing the environment in which program 
F executes. All program properties are specified relative to a context, which 
is specified within a pair of square brackets following the statement of the proper- 
ty. For example, p unless q in F [G] denotes that program F satisfies the property 
p unless q when placed in a context G. The formal definition of program proper- 
ties relative to a context mirrors the definition of the properties without a con- 
text. For  example, the unless and ensures properties are defined as follows. 

p unless q in F[G] =(Vs : s~F  : SI-(F~G) Ap A --7 q ~ wp(s, p V q)) 
p ensures q in F [G] - p unless q in F [G]/x (3 s : s ~ F : SI-(F ~ G)/~ p A --n q 

wp(s, q)) 

Note that SI-(FgG) denotes the strongest invariant of the composite program 
F~G. Its usage in the above definition amounts to considering all program 
states that are reachable by the actions of F and G as opposed to considering 
only the states reachable by actions of F. All the theorems stated earlier for 
unless, ensures, and leads-to continue to hold for the above definitions. A special 
program nil is defined to be the identity of composition, i.e., F~ nil= nil DF = F. 
The definitions of unless and ensures in Sect. 2.1 follow as a special case of 
the above definitions under the substitution G..=nil. Henceforth, we assume that 
the assertion P in F is an  abbreviation for the assertion P in F [nil]. 

The substitution axiom can be used to rewrite a program property with 
the help of an assertion I only if I is an invariant of the composition of the 
program and the context mentioned in the property. Reasoning about a compos- 
ite program is carried out by the following restatement of the union theorem 
[7]. 
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p unless q in (Fr lG)[H]-p  unless q in F[GOH]Ap unless q in G[FrlH], 
and 

p ensures q in (FOG)[H] =-(p ensures q in F[G•H]/xp unless q in G[FOH]) 
v (p unless q in F[G 0 HI/~ p ensures q in G [F D HI). 

Leads-to properties do not compose in general. However, the following theorem 
defines a limited composition of these properties [25]. 

Composition of leads-to: 

p~--~q in FIG], r =*. FP-G 
p~-~,q v -q  rin F~G 

2.3.2 Program composition by superposition. Superposition is another mechanism 
to structure programs in Unity. Suppose we are given a program F and a 
statement r that does not assign to any of the variables of F. Then, the statement 
r can be superposed on program F in two ways - either it can be combined 
with a statement s of F to yield an augmented statement sHr, or it can be 
added by itself to F, thus resulting in the composite program FSr. In either 
case, all the unless, ensures, and leads-to properties of the original program 
are preserved. Moreover, the fixed-point of the transformed program implies 
the fixed-point of the original program and all invariants of the original program 
are preserved. This result is referred to as the superposition theorem. 

3 Program refinement in Unity 

There are two kinds of program refinements in Unity: those that preserve all 
unless (safety) and leads-to (progress) properties [7], and others that preserve 
the fixed-point (i.e., if the original program terminates, then so does the refined 
program and moreover, the fixed-point of the refined program implies the fixed- 
point of the original program). The first kind of refinement is useful for reactive 
programs whereas the second kind is useful for terminating programs. Formally, 
the two refinements are defined as follows. 

Let F and G be two programs. We say that G is a property preserving 
refinement of F iff for all predicates p, q the following two assertions hold. 

�9 (p unless q holds in F) ~ (p unless q holds in G), and 
�9 (p ~ q holds in F) ~ (p ~ q holds in G). 

Note that the preservation of ensures properties is not required in this definition. 
This is because leads-to (and not ensures) is used as the basic relation for specify- 
ing progress properties, and preservation of leads-to is all that is required in 
most situations. Similarly, we say that G is a fixed-point preserving refinement 
of F iff the following two assertions hold. 

�9 (true~--~FP-F in F) ~ (true~--,FP-G in G), and 
�9 (FP-G/x SI-G) ~ (FP-F/x SI-F). 

An invariant of a program provides a simple way to obtain a refinement that 
is both property preserving and fixed-point preserving. Suppose we have a pro- 
gram F and an invariant f=-g that holds in the program. Then, any occurrence 
of f in the text of the program can be replaced by g to obtain a program 
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G that is a property preserving and fixed-point preserving refinement of F. 
The explanation is as follows. Since the invariant f =  g holds at all the reachable 
states, all the program properties of F continue to hold in G. This implies 
that G is a property preserving refinement of F. It is also possible to show 
that SI -F  /x F P - F - S I - G  /x FP-G.  Consequently, if true ~-~ FP-F,  or equivalently, 
true~-~SI-F/x F P - F  in program F then we can assert the following in program 
G: 

true ~ S I -F  /~ FP-F,  or equivalently, 
true ~ SI -G /x FP-  G, or equivalently, 
t r u e ~  FP-G.  

This implies that G is a fixed-point preserving refinement of F. We refer to 
the above result again as the substitution axiom since we are now substituting 
in a program's text instead of in a program's properties. 

It is not too difficult to construct fixed-point preserving refinements that 
are not property preserving. The existence of property preserving refinements 
that are not fixed-point preserving is more interesting. The relationship between 
the two kinds of refinements is considered next. 

Theorem 1. A property preserving refinement that does not introduce any new 
variables (i.e., does not modify the state space) is also f ixed-point  preserving. 

Proo f  Consider a program F and its property preserving refinement G. Let 
p be a point predicate such that p =~ (SI-F/x  SI-G). Now, observe the following. 

p ~ F P - F  
=*- {stability at fixed-point} 

p unless false in F 
=~ {G preserves all unless properties of F} 

p unless false in G 
= {point predicate rule 1, p =~ SI-G} 

p =~ FP-G 
= {point predicate rule 2, p =~ SI-G} 

-7 (p~--~ p in G) 
=~ {G preserves all leads-to properties of F} 

-7 (p ~ - 7  p in F) 
= {point predicate rule 2, p ~ SI -F}  

p =~ F P - F  

Thus, (SI-F /x S I - G ) ~  ( F P - F - F P - G ) .  Next, we show that S1-G =*~ SI-F.  The 
first condition for fixed-point preserving refinements then follows because G 
preserves all leads-to properties of F and the second condition for fixed-point 
preserving refinements follows from predicate calculus. 

t r u e  

=~ {property of ~-~} 
false ~--~ false in F 
{SI-F is invariant in F} 
-7 SI-F~--~ false in F 

=~ {G preserves all leads-to properties of F} 
SI -F  ~-* false in G 
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=*- {impossibility theorem} 
invariant SI-F in G 
{definition of strongest invariant} 
SI-G =~ SI-F 

This completes the proof. []  

Example 7. For  an example of a property preserving refinement that is not 
fixed-point preserving, consider any terminating program F and add to it a 
statement t::  x :=x + 1, where x is a fresh variable. It follows from the Superposi- 
tion theorem that program F0  t is a property preserving refinement of F. How- 
ever, since F0  t does not terminate, program F0  t is not a fixed-point preserving 
refinement Of F. []  

The following theorem also relates the two kinds of refinements. 

Theorem 2. I f  G is a property preserving refinement of F and if both F and 
G terminate, then G is also a fixed-point preserving refinement of F. 

Proof The first condition of fixed-point preserving refinements is satisfied be- 
cause G terminates. For  the second condition, we have to show that 

(FP-G A SI-G) =*. (FP-F /x SI-F). 

Observe the following. 

true ~ FP-F in F 
true~--~(FP-F A SI-F) in F 
true ~-~ (FP-F A SI-F) in G 
-7 (FP-F A SI-F)~-*(FP-F A SI-F) in G , 
FP-G A -7 (FP-F A SI-F) unless false in G,  
FP-G A -7 (FP-F A SI-F)~--~ false in G , 
invariant FP-G =~ (FP-F /x SI-F) in G , 
SI-G ~ (FP-G ~ (FP-F /x SI-F)) , 
(FP-G A SI-G) =*. (FP-F A SI-F) 

assumption 
SI-F is invariant in F 
G preserves leads-to properties of F 
strengthening 
stability at fixed-point 
PSP theorem on above two 
impossibility theorem 
definition of strongest invariant 
predicate calculus []  

Theorem 3. The relations "'is a property preserving refinement o f "  and "is a 
fixed-point preserving refinement of'" are preorders (i.e., reflexive and transitive). 

Proof Follows from the reflexivity and transitivity of implication. [] 

4 Some useful program refinements 

In this section we discuss some program refinements that are useful in the 
formal derivation of programs. In Sect. 4.1 we consider the subject of data refine- 
ments. In Sect. 4.2 we consider the strengthening of guards. Finally, in Sect. 4.3 
we consider the question of atomicity refinement. 

4.1 Data refinement 

Data refinement is a very effective tool in program derivation as it provides 
a programmer the freedom to express an algorithm using a convenient abstract 
data type. Later, the chosen abstract data type can be implemented by an avail- 
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able data type on the target machine while preserving the correctness of the 
original algorithm. In this section we develop conditions under which data refine- 
ment can be carried out for reactive programs. 

Let FOs be a program using a variable x of abstract data type X. Assume 
that statement s: :x:=f(x) if p(x), which performs operation f on the abstract 
object x provided guard p holds, is the only statement modifying x. We wish 
to examine conditions under which variable x can be implemented by a fresh 
variable y of the concrete data type Y. For  this purpose, let t: :y:=g(y) /f q(y) 
be a statement that performs operation g on concrete object y provided guard 
q holds. Intuitively, in order for program FOr to simulate program FOs, there 
should exist a function h (called the abstraction function) from Y to X such 
that h(y) equals x at all times. Before we state the theorem, we discuss some 
preliminaries. 

Notation. For  any expression e, define e' to be the expression obtained by a 
syntactic substitution of term x by the term h(y) and define F' to be the program 
obtained by syntactically substituting x by h(y) everywhere. We say that program 
G is a property preserving refinement of program F under the coupling x=h(y )  
if the following two conditions hold for all predicates b, c. 

�9 (b unless c holds in F) ::* (b' unless c' holds in G), and 
�9 (b ~ c holds in F) =~ (b'~-* c' holds in G). 

Similarly, we say that program G is a fixed-point preserving refinement of pro- 
gram F under the coupling x = h(y) if the following two conditions hold. 

�9 (true~-~FP-F in F) ~ (true~-~FP-G in G), and 
�9 ( F P - G A S I - G / x x = h ( y ) ) ~ ( F P - F A S I - F ) .  [] 

Define conditions A 0, A 1, and A 2 as follows. 

�9 {h (m) lm is an initial value for y} = {n In is an initial value for x} . . . .  (A 0) 
�9 p(h(y))=*, h(g(y))=f(h(y)), for all y . . . .  (A1) 
�9 p(h(y))=_q(y), for all y . . . .  (A2) []  

Theorem 4. Program F'Ot is a property preserving refinement of FNs under the 
coupling x = h(y) if conditions AO, A 1, and A2  hold. Furthermore, if there exists 
a function r from the program variables to a well-founded set such that 

FP-(F 0 s)/x p (x) A g (y) :t= y/x r = k ~ wp (y :=g (y), r < k) ... (A 3) 

then F' • t is a fixed-point preserving refinement as well. [] 

Conditions A0-A2 ensure that h(y) equals x at all times in the transformed 
program. Condition A3 ensures that if the original program terminates then 
so does the transformed program (function r defines an upper bound on the 
number of state transitions). 

Proof Let statement u be defined as y :=g(y) / f  p(x). The proof is in four steps. 
In the first step, we show that program FO(s]lu) is a property preserving refine- 
ment of FOs. We also show that FO(sllu) is a fixed-point preserving refinement 
of FOs if Condition A3 holds. In the second step, we replace x by h(y) in 
the text of F and u based on conditions A0 and A 1 and show that the resulting 
program f'gl(sHu') is a property and fixed-point preserving refinement of pro- 
gram F•(slLu). In the third step, we use Condition A2 and the substitution 



Program refinement in fair transition systems 515 

axiom to obtain a property and fixed-point preserving refinement F' B(sH t). Final- 
ly, in the fourth step, we delete statement s and show that the resulting program 
F'Ot  is a property and fixed-point preserving refinement under the coupling 
x = h(y). The desired theorem then follows from the transitivity of the refine- 
ments. 

Step 1. From the superposition theorem F r](sJ] u) is a property preserving refine- 
ment of FI]s. It remains to prove that F[3(s]lu) is a fixed-point preserving refine- 
ment of F~s .  Let FPo be the fixed-point of FFls and let FP~=-FPoAFP-u  be 
the fixed-point of program FF] (s 4[ u). Clearly, FP1 implies FPo. Since s uperposition 
preserves all invariants, the strongest invariant of FS(sJlu) implies the strongest 
invariant of FO s. This implies that the second condition for fixed-point preserv- 
ing refinements is satisfied. Our remaining proof  obligation is to show that 
if FQs terminates then so does FH(srru). 

Assume that true~--~FP o in FFls. Since leads-to properties are preserved in 
FO(sllu) and since leads-to is transitive, it will suffice to show that FPo~-~FP~ 
in FD(sHu). Observe the following. 

FPo A -~ FP-u  /x r = k =~ wp(y. '=g(y),  r < k) , property A 3 
FPo /x --7 FP-u  /x r = k =~ wp(u, r < k) , definition of statement u 
FPo/x -7 FP-u/~  r = k  =~ wp(u, FPo /x r < k )  , u does not modify FPo 
F P o / x - q F P - u / x r = k = ~ w p ( s [ r u ,  F P o A r < k )  , stability at fixed point 
(V v : v ~ F : FPo A --7 FP-u  /x r = k =r wp(v, r < k v (FPo A ---1 FP-u  A r = k))) ... (A 4) 

, stability at fixed point 
FPo /x --7 FP-u  ix r = k  ensures FPo /x r < k in FO(sl[u) , definition o f  ensures 
F P o / x ~  FP-uAr=k~--~FPo A r < k  in FO(s]lu) , definition of ~--~ 
FPo A --7 FP1/x r = k ~-~ FPo A r < k in F 0 (sl] u) , definition of FPI 
FPo/x --7 FP~ A r = k ~--~(FPo/x -q FP1/x r < k) v FP1 , consequent weakening 
F P  o/x -7 FP1 ~-*FP1 , induction over k 
FPo /~ FP1 ~--~ FPx , reflexivity 
FPo~-.FP1 , disjunction 

Step 2. We first prove that h (y)= x is an invariant of program F0  (s][ u). 

h(y) = x =~ f (h(y)) =f (x )  , Leibniz's rule 
p(x)  /x h (y )=  x =~ f ( h ( y ) ) = f  (x) , predicate calculus 
p(x) /x  h ( y ) = x  ::*. h ( g ( y ) ) = f ( x )  , condition A 1 
h (y)= x ~ wp (s I[ u, h (y)= x) , definitions of s and u 
(Vu : v e F  : h ( y ) = x  ~ wp(v, h ( y ) = x ) )  , F does not modify x, y 
h(y )=  x unless fa lse  in FO(sllu) , definition of  unless 
invariant h ( y ) = x  in FF](s[]u) , condition A0 

Next, we substitute using invariant h(y)= x in the text of program F and state- 
ment u. The resulting program is F'F](s[lu'). It follows from the substitution 
axiom that this refinement is a property and fixed-point preserving refinement 
of program Ffl(s[[u). 

Steps 3 and 4. Shown in the appendix. (End of Proof) 

Though Theorem 4 assumes y to be a single variable, it can be easily extended 
to the case of y being a vector of variables. The theorem is motivated by Hoare's 
correctness conditions for implementation of abstract data types for sequential 
programs [10]. As in there, we assume that the abstract state is functionally 
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dependent on the concrete state. This functional dependence has been later 
generalized to an arbitrary abstraction relation between the abstract  and the 
concrete states [6, 20, 21]. 

Observation 1. A simple way to satisfy condition A 3 is to ensure that 

p (h (y)) ~ (h (g (y)) = h (y) ~ g (y) = y), 

for then the antecedent of Condition A 3 reduces to false. [ ]  

If the program under consideration includes mutiple statements si that  modify 
the abstract  variable, then it can be refined by including a new statement ti 
corresponding to each abstract statement s~. The correctness conditions for the 
refinement now include Condition A0, and a set of conditions A 1-A3 corre- 
sponding to each pair of statements (s~, ti). (All the conditions corresponding 
to A3 should however refer to the same function r). The proof  is once more 
in four steps. In the first step statements u.i, one for each s~, are added to 
the program. The proof  of correctness of this step is same as before except 
that in property A4 the universal quantification has also to range over state- 
ments (@u.j), j#:i. The proof  obligation for these new statements is easily met 
because each statement sj is at a fixed point and statement u .j can only decrease 
r at each state change. The remaining three steps and their proofs of correctness 
are similar to the proofs provided for Theorem 4. 

Given a property preserving refinement of an abstract  object x by a concrete 
object y through an abstraction function h, it is possible to add a statement 
t: :y . '=g(y) / f  q(y), and obtain a proper ty  preserving refinement provided q(y) =~ 
h(g(y))=h(y) for all y. Statement t refines a skip statement s : : x : = x  if q(y) 
of the abstract  program. Condition A 1 is satisfied because f is the identity 
function and q(y)=> h(g(y))=h(y). Condition A2 is satisfied vacuously. Such 
statements that preserve h(y) by merely restructuring the concrete object are 
called restructuring statements. As an example, consider implementing a bank 
account x by a checking account y and a savings account z through the abstrac- 
tion function h(y, z)=y+z, i.e., the sum of accounts y and z is meant  to simulate 
abstract account x. In this case, if conditions AO-A2 (which link program vari- 
ables x, y and z and are needed for the proof  of correctness of the refinement) 
hold, then a restructuring statement s: :y, z:=y-1,  z +  1 if y>~ 1 that transfers 
one dollar from y to z can be added without affecting the correctness of the 
refinement. The addition of restructuring statements allows the concrete object 
to repeat a state by stuttering without changing the abstract  representation 
[1, 13]. 

Restructuring statements cannot be added freely in the case of fixed-point 
preserving refinements because the new program may never reach a fixed-point. 
For  example, for the banking account instance if we add a restructuring state- 
ment u: :y, z : = y +  1, z - 1  if z_> 1 in addition to statement t, then the new pro- 
gram may not terminate even if the original p rogram terminates. This is because 
there is no function that  bounds the number  of state changes before the new 
program reaches a fixed-point. 

Example 8. Consider the following program in which variable x is a natural  
number. 
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Program simple 
initially x -- 0 
assign 

x : = x + l / f x > 5  
[~Z:=X 2 

end 

We wish to replace variable x by a flesh variable y of the type queue. The 
abstraction function h that we choose here maps a queue to the number of 
elements in the queue, i.e., h(y)=size(y). 

The incrementing of x is replaced by the appending (the symbol ' ; '  denotes 
concatenation) of some arbitrary element e to the queue. Condition A0 is sat- 
isfied by setting y to null initially. Condition A 1 is satisfied because size(y; e)= si- 
ze(y) + 1. Condition A2 is satisfied vacuously. Condition A 3 is satisfied because 
size(y; e):~ size(y) (see Observation 1). Thus, we obtain the following refined pro- 
gram that is a property and fixed-point preserving refinement. 

Program simple 
initially y = null 
assign 

y:=y;  e / f  size(y)> 5 
Dz :-=(size(y)) 2 

end []  

Example 9. In this example taken from [7], we consider replacing a shared 
variable by unbounded F IFO channels. Consider a variable x that is shared 
between two processes F and G. Process F accesses x only by statement s 
and process G accesses x only by statement t; these statements are defined 
as follows: 

s: : x , = x O d  if p, and 
t: :vs, x , = f  (vs, x), g(x) if b(x) A q. 

Variable vs represents local variables of G. Both x and d are assumed to be 
of the same type and | is an arbitrary function of the type X x X ~ X. It 
is further assumed that predicates p, q do not mention x. It is apparent from 
examining the statements that process F only modifies x while process G tests, 
reads, and modifies x. 

We wish to replace the shared variable x by two variables: one, a channel 
from process F to G called c and the other, a local copy of x at G called 
y. Thus, type(y)=X and type(c)=X*. We wish to transform statement s to 
a statement s' in which variable d is appended to the channel variable c. Similarly, 
we wish to transform statement t to a statement t' in which process G accesses 
variables y and c instead of variable x. 

s': :c.'=c; d / f p ,  and 
t': :vs, y,=f(vs, yOc) ,  g(y) if b (yOc)  A q. 

The question then arises: under what conditions does this transformation pre- 
serve all unless and leads-to properties? The answer lies in the conditions A0, 
A1, and A2 of Theorem 4 presented earlier. Here x represents the abstract 
object and the pair (y, c) represents the concrete object. We choose an abstraction 
function h as follows: 
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h(y, c ) = y G c ,  

where function | is generalized to accept strings in its second argument as 
follows: 

| 
Y - ].(y Q head (c)) @ tail(c) 

if c = null 
otherwise. 

Condition A0 of Theorem 4 is satisfied by choosing initial values for y and 
c such that initial value of x = initial value of y | c. Condition A 2 of the theorem 
is satisfied as b(y �9 c)= b(h(y, c)). Henceforth, we concentrate on the satisfaction 
of condition A 1. In order to satisfy it, we have to show that 

1. h(y, c; d)=h(y, c)(~d, and 
2. b(y |  c) =~ h(g(y), c)=g(h(y, c)). 

The proof of satisfaction of the first condition is as follows: 

h(y, c; d) 
= {definition of h} 

y| d) 
= {definition of 0 ,  induction} 

( y @ c ) |  
= {definition of h} 

h(y, c)@d 

In order to prove that the second condition is satisfied, we assume property 
B0 defined as follows: 

b (x @ c) =~ (g (x | c) = g (x) | c), for all x, c . . . .  (B 0) 

Based on this property, the proof of the second condition is as follows. 

second condition 
= {definition} 

b(y �9 c) ~ (h(g(y), c)=g(h(y, c))) 
= {definition of h} 

b (y G c) =~ (g (y) �9 c = g (y @ c)) 
= {assumption B0} 

true 

This proves that the transformation of statements s, t to statements s', t' preserves 
all unless and leads-to properties if Condition B0 is satisfied. Note that property 
B0 follows from the simpler property BO' defined below. (The proof is by induc- 
tion on the length of sequence c.) 

g(x @ d) = g(x) @ d ... (B0') 

Having completed and proved the first refinement, we now add a restructur- 
ing statement u to the transformed program. 

u: :y, c,=y@head(c), tail(c) if c,#null 

This transformation fulfills the conditions of restructuring statements because 

c + null ~ h(y, c) = h(y @ head(c), tail (c)). 
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At this point let us recapitulate what we have done so far. We set out with 
the task of replacing shared variable x by an asynchronous channel from F 
to G. Statement s' in process F represents the transmission of a data item to 
channel c and so fits in with the message passing paradigm. Statement u (which 
is a part of process G) represents the reception of a data item (along with 
an update of local variable y) and therefore, also fits in with the message passing 
paradigm, However statement t' (which is a part of process G) is not yet in 
the right form as it mentions the channel variable c. Thus, this statement will 
require further transformation. We will return to this example in the next subsec- 
tion after we have stated and proved another theorem about  program transfor- 
mations. []  

4.2 Strengthening o f  guards 

Strengthening the guard of a statement obviously preserves all safety properties 
of a program because any state that is reachable in the refined program is 
also reachable in the original program. In this section we develop conditions 
under which this program transformation preserves other desired program prop- 
erties. 

Notation.  Given a program, we say that a function g of the program variables 
is non-increasing if the execution of any statement of the program does not 
increase the value of g, i.e., g = k unless g < k. [] 

Theorem 5. Let  F be a program and let s: :A if  p be a statement. Le t  s tatement 
t: :A i f  p/~ q be obtained by strengthening the guard o f  statement s. Then, program 
FOr is a property and a f ixed-point  preserving refinement o f  the program F•s 
if  the following two conditions hold in F in the context  o f  statement s. 

�9 p~-~q 

�9 There exists a non-increasing function g from the program variables to a 
well-founded set such that 

(g = k A q) unless ( 7  p v g < k), for all k. []  

Proof. The proof is in four parts: first, we show that F O t preserves all the 
safety properties of F[~s; second, we show that FDt  preserves all the progress 
properties of F[~s; next, we show that the conjunction of the fixed-point and 
the strongest invariant of FDt  implies the conjunction of the fixed-point and 
the strongest invariant of FOs; finally, we show that if FDt  terminates then 
Ff l s  also terminates. Before we proceed with the proof, we note that since state- 
ment t is obtained by strengthening the guard of statement s, S I - (F~ t) ~ SI-  
(F 0 s) and FP-(F  0 s) =~ FP-(F  D t). 

Part  i .  

b unless c in FOs , assumption 
(Vu : u e F O s  : SI-(FOs) /x b A ~ c ~ wp(u, b v c)) , definition of unless 
(V u : u ~ F 0 t : SI-(F D s)/x b/~ --7 c =~ wp (u, b v c)) , t has a stronger guard than s 
(V u : u e F D t  : SI-(FDt)  A b/x --7 c =~ wp(u, b v c)) , SI-(FDt) ~ SI-(FOs) 
b unless c in F 0 t , definition of unless 
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Part  2. Shown in the appendix. 

Part  3. 
p A --1 q =~ FP- t  , observing t 
F P - F  A p A -'1 q ~ F P - F  A FP- t  , predicate calculus 
F P - F A p A - - q q = ~  FP-(FDt)  , F P - ( F [ 3 t ) = - F P - F A F P - t  
F P - F  A p A --n q unless false in FD t , stability at fixed-point 
p ~-~ q in F n t , property C 5 in the appendix 
F P - F  A p A --7 q ~-* false  in F D t , PSP theorem 
SI-(F • t) => --1 (FP-F A p A --n q) , impossibility theorem ... (C 7) 

Let R denote the fixed point of assignment A that is a part of statements s 
and t. Now observe the following. 

FP-(F[] t) A SI-(F D t) 
= {definition of FP-(F  [3 t)} 

F P - F  A FP- t  A SI-(FD t) 
= { r P - t - ( p  A q =~ R)} 

F P - F  A (p A q =~ R) A SI-(F D t) 
= {predicate calculus} 

F P - F  A ((p ix -7 q) v (p :=> R)) ix SI-(F D t) 
= { r P - s  - (p  =~  R)} 

F P - F  A ((p A --1 q) V FP-s)  A SI-(F[] t) 
= {predicate calculus} 

(FP-F A p A --7 q A SI-(F [3 t)) v (FP-F A FP-s  A SI-(F ~ t)) 
= {simplifying using C7} 

F P - F  A FP-s  A SI-(F [3 t) 
= {definition of FP-(F[]s)} 

FP-(FI3 s) A SI-(FD t) 
=*, {SI-(FBt)  ~ SI-(FFls)} 

FP-(F[3s) A SI-(F[3s) (End of Part 3) 

Part  4. 
true~-~ FP-(FBs)  in F ~ s  , assumption 
true ~-~ FP- (F  [] s) in F B t , preservation of leads-to 
true~-~ FP-(F[]t) in FDt  , FP-(FFls) =*, FP- (F~ t )  (End of Proof) 

Corollary 1. Let  s tatement s be A if  p, statement t be A if  p A q, and F be any 
program. Then, program F ~ t  is a property and f ixed-point  preserving refinement 
o f  F ~ s  i f  the following two conditions hold in F in the context  o f  statement 
$2 

�9 p~--~q, and 
�9 q unless --n p. 

Proof. Define g to be a constant function. Thus, g is non-increasing and bounded 
from below. Consequently, both the conditions of Theorem 5 are satisfied. []  

Corollary 2 [-7] Let  statement s be A if  p, statement t be A if  q, and F be any 
program. Then, program F[3t is a property and f ixed-point  preserving refinement 
o f  F[]s i f  the following three conditions hold: 

�9 invariant q ~ p in F[]s, 
�9 p~--~q in F[-s], and 
�9 q unless -7 p in F I-s]. 
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Proof Let statement u be A /f p A q. Then, it follows from Corollary 1 that 
F~u is a property and fixed-point preserving refinement of FDs. Because q ~ p 
is an invariant of FDs, q ~ p holds initially in F~s  and q ~ p unless false 
holds in FDs. Since the initial conditions remain unchanged and FDu preserves 
all the safety properties of FDs, it follows that q =~ p is also an invariant of 
F~u. Therefore, p A q--q  in FSu. Consequently, the guard of statement u can 
be changed from p A q to q by the substitution axiom, thus yielding program 
F D t. The theorem follows. []  

Theorem 5 was first proved in [26] and used in [28] to synchronize processes 
that accessed a common resource. Processes accessed the resource when a certain 
predicate was set to true by an underlying mutual exclusion algorithm. This 
predicate was added to the guard of each statement that accessed the resource. 
The correctness of the refinement followed from the starvation-freedom property 
of the mutual exclusion algorithm. 

Example 9 (Continued from previous subsection). In the last section we discussed 
the implementation of variable x shared between processes F and G by a channel 
c from F to G and a local variable y at G. We transformed the pair of statements 
s (in F) and t (in G) to three statements s' (in F), t' (in G), and u (in G). The 
transformation was proved to be correct provided Condition B0 (or the stronger 
condition B0') held. The transformed statements s' and u were in the right form 
whereas statement t' needed further refinements. Here, we use Theorem 5 to 
transform statement t' into statement v defined as follows: 

v: :vs, y :=f(vs, y), g(y) if b(y) A q 

This statement is in the right form as it mentions variables local to process 
G. 

In order to carry out the transformation from t' to v, we assume the following 
two conditions: 

b(x) ~ b (xOd) ,  for all x, d, and ... (B1) 
b(x) ~ f (vs, x O d ) = f  (vs, x), for all x, d, vs . . . .  (B2) 

The proof  of correctness is in two steps: first, statement t' is transformed to 
statement t": :vs, y..=f(vs, y O  e), g(y) if b(y)A q and later, statement t" is trans- 
formed to statement v. These two steps are detailed next. 

First, consider the refinement of statement t' to t". It can be shown by 
induction on the length of c and Condition B1 that b ( y ) ~  b ( y |  c). Therefore, 
by Corollary 2, the guard of statement t' can be strengthened to b (y) A q provided 
the following two conditions hold in the remainder of the program (i.e., the 
program without statement t'): 

1. yGc=m~-+ y=m,  and 
2. b(y) unless false. 

For a proof  of Condition 1, observe that on account of statement u, y (9 head(c) 
= k ensures y = k. The required condition follows from the repeated application 
of this progress property. For  a proof  of Condition 2, observe that statement 
u is the only statement in the remainder of the program that modifies variable 
y. Furthermore,  from Condition B 1, b(y) =~ b(y �9 head(c)). Consequently, b(y) 
unless false holds over the remainder of the program. This completes the proof 
of correctness of the transformation of statement t' to statement t". 
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Next, we consider the refinement of statement t" to statement v. It follows 
from repeated application of conditions B 1 and B 2 that 

b(y) ~ f(vs,  y | c)=f(vs, y). 
Consequently, by the substitution axiom, the expression f(vs, y |  c) may be 
substituted by the expression f(vs, y) in statement t". As a result, we obtain 
statement v, as desired. 

Summing up the sequence of refinements, the statements s and t can be 
replaced by the statements s', u, and v provided Conditions B0, B1, and B2 
hold. Similar conditions were defined by Chandy and Misra in [7] as the Asyn- 
chrony Condition. Our stepwise derivation of the condition provides a useful 
illustration of the program refinement theorems discussed here, in addition to 
providing some insight into their theorem. Recently, Sanders has also presented 
a development of the Asynchrony Condition in the framework of mixed specifica- 
tions [22]. 

If, in addition, we want the above program refinement to be fixed-point 
preserving, then it can be shown, on the basis of Observation 1, that the following 
two conditions suffice: 

p ~ x O d # x ,  f o r a l l x ,  d, and ... (B3) 
b ( x G c ) A q  ~ ( g ( x ) Q c = x O c  ~ g(x)=x), for all x, c . . . .  (B4) []  

The following example taken from [-7] illustrates an application of the refine- 
ments developed here. 

Example 10. Let statements s and t be defined as follows: 

s: : x , = x - d  if p, and 
t: :vs, x ,=vs+ 1, x + e  if x < 0  A q, where d > 0  and e>0 .  

Conditions B0' (which implies B0), B1, and B2 for this example translate to 
the following three properties respectively. 

( x - d ) + e = ( x  + e ) - d ,  
x < 0  =~ x - d < O ,  and 
x < 0  ~ v s + l = v s + l .  

Because all these conditions hold, statements s, t can be transformed to the 
following set of statements that use a channel c and a local variable y while 
preserving all unless and leads-to properties. 

c:=c; d if p 
y, c , = y -  head (c), tail(c) if c 4: null 

Ors, y ,=vs+l ,  y + e  i f y < 0 A q  
It follows from conditions B3 and B4 defined earlier that this refinement also 
preserves the fixed-point provided p ~ d > 0 is an invariant of the program. []  

4.3 Refining atomicity 

Concurrent algorithms that use a fine grain of atomicity are more efficient as 
more processes may execute concurrently. On the other hand, it is easier to 
prove algorithms with a coarse grain of atomicity as a less number of interleav- 
ings may need to be considered. Consequently, one method for program develop- 
ment is to derive a program with a coarse grain of atomicity and later refine 
it into another program that uses a finer grain of atomicity. Techniques that 
allow the atomicity of an algorithm to be reduced without compromising its 
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correctness have been investigated by a number of authors. Lipton examined 
the semantics of operations and proposed the idea of left- and right-commutativity 
[15]. Later he used these definitions to define left and right movers and developed 
conditions under which a single coarse grain atomic operation could be replaced 
by a sequence of fine grain operations consisting of some right movers followed 
by a single operation followed by some left movers. Such a replacement would 
preserve the partial correctness and the deadlock freedom properties. 

Lamport and Schneider generalized Lipton's theorem and presented a set 
of conditions under which a larger class of safety properties (not just partial 
correctness and deadlock freedom) would be preserved in the transformed pro- 
gram [14]. In a related work, Back considers the refinement of atomicity in 
action systems [3]. His approach is also based on the idea of left and right 
movers. However, the transformed fine-grained action system now preserves 
the total correctness (in our terminology, a fixed-point preserving refinement) 
of parallel programs. Similar results concerning refinement of atomicity appear 
in a joint work by Back and Sere [5]. Theorems similar to those discussed 
above can be developed in the context of Unity (or other state transition systems) 
by developing an appropriate notion of left- and right-commutativity and by 
defining left and right movers. However, instead of duplicating the existing work, 
we focus here on atomicity refinements that preserve all program properties, 
i.e., we concentrate on atomicity refinements that are property-preserving. 

The need to preserve general program properties severely constrains the 
kinds of refinements that may be applied. In particular, it is no longer possible 
to replace a coarse-grained operation by a sequence of left movers and right 
movers. It appears that refinements now can no longer decompose the state 
transformation achieved by a statement since that would amount to violating 
some safety properties. For example, consider an assignment statement s: :A/ f  b 
consisting of an assignment A and a guard b. It does not appear that the assign- 
ment A can be decomposed without violating some unless properties. However, 
it may be possible to decompose the guard b that defines when the assignment 
can be applied. Such modifications will be useful when the guard is quite com- 
plex, perhaps involving quantifications. (The usage of the term atomicity refine- 
ment for such guard simplifications may appear to be misleading but such refine- 
ments do reduce the number of shared variables that need to be accessed by 
a statement.) 

In the remainder of this section, we concentrate on refinements that decom- 
pose the guards of statements while preserving the assignment components. 
We consider two kinds of complex guards - one in which the guard is a disjunc- 
tion of predicates and the other in which the guard is a conjunction of predicates. 

4.3.1 Transforming existential quantification in guards 

Theorem 6. Let F be any program and s: :A if (3i: :p./) and t: :<0i: :t.i>, where 
t.i: :A if p.i, be any group of statements. Then, the program FOr is a property 
and fixed-point preserving refinement of the program F 0 s if p. i unless -7 (3 i: : p. i) 
holds in F [-s] for each i. [] 

Proof First, we show that the strongest invariants of F[7s and F0 t are identical. 

X ~ wp(s, X) 
= {definition of s} 

X ~ wp (A if (3 i: : p. i), X) 
= {definition of wp} 
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x ~ (((3 i: :p. i) ~ wp(A,  X)) ^ (--7 (3 i: :p. i) ~ X)) 
= {predicate calculus} 

( X  => ((3 i: :p. i) =:, wp (A, X))) /x  ( X  ~ (--n (3 i: : p .  i) => X))  
= {predicate calculus} 

(v i: : x  ~ (p. i ~ wp(A ,  X)))  
= {(X ~ (--7 p.  i ~ X))-= true} 

(v i: : ( x  ~ (p. i ~ wp(A ,  x ) ) )  ^ ( x  ~ (-7 p.  i ~ x ) )  
= {predicate calculus} 

(Vi: :X ~ ( (p . i  =*, wp(A ,  X)))A (-q p . i  => X) )  
= {definition of wp} 

(V i: : X => wp (A if  p.  i, X) )  
= {definition of t. i} 

(Vi: :X ~ wp( t . i ,  X ) )  

Based on the above derivation, 

( g u : u ~ F B s : X  => wp(u, X) )  
= {predicate calculus} 

(Vu : u ~ F  : X => wp(u,  X) )  A ( X  => wp(s,  X ) )  
= {previous derivation} 

(V u : u ~ F : X => wp (u, X) )  /x (V i: : X ~ wp (t. i, X) )  
= {predicate calculus and definition of t} 

(V u : u e Frl t : X ~ wp(u,  X) )  

It follows therefore that S I - ( F g s ) -  SI-(FO t). 
The remainder of the proof is in four parts: first, we show that F0  t preserves 

all the safety properties of F n s ;  second, we show that F B t  preserves all the 
progress properties of F[] s; next, we show that the conjunction of the fixed-point 
and the strongest invariant of FDt  implies the conjunction of the fixed-point 
and the strongest invariant of FOs;  finally, we show that if FOr terminates 
then Frls  also terminates. 

Part  I. Let b unless c be a property of F0s.  Then, SI- (FOs)  /x b/~ --n c => wp(u,  b v 
c) for all statements u in F and SI-(F[ls)  /x b /x --n c => wp(s,  b v c). Since SI-  
( F O s ) - S I - ( F O t ) ,  the desired proof  of b unless c in F D t  will follow if we show 
that SI-(FFIs) A b ,x ---q c => wp( t .  i, b v c) holds for each i. This proof  is as follows. 

SI- (FOs)  A b ix - t  e ~ wp(s,  b v c) , b unless c in FOs  
S I-( F O s) ix b ,x --q c => wp ( A i f (3  i: : p .  i), b v c) , definition ofs 
SI-(FOS) A b A--q c A p . i  ~ wp(A ,  b y e )  
SI - (FOs)  /x b A--n c A--n p . i  ~ (bvc)  
SI - (F  0 s)/x b A -n c => wp (A i f  p.  i, b v c) 
SI - (FOs)  A b/x --7 c ~ wp( t . i ,  b v c) 

Parts  2, 3, and 4. Shown in the appendix. 

, definition of wp 
, predicate calculus 
, above two 
, definition of t. i 

(End of Part 1) 

(End of Proof) 

A simplified version of Theorem 6 was used in [28] to map a program onto 
a set of processes. There, we had a program fragment (0 j :  : A . j  i f  (3 n: :p . j .  n))  
in which statement A .j represented a task, n ranged over a given set of processes, 
and predicate p . j . n  was true if and only if task A.j  was mapped to process 
n. By applying the above theorem, we obtained a refined fragment (0 n:: (0 j : :  A .j 
i f  p . j . n ) )  in which the term of the outer quantification represented the code 
of process n. 

4.3.2 Transforming universal quanti f ication in guards 
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T h e o r e m  7. Let  F be any program and s: :p := true if  -3 p/x (V i: : q. i) be any state- 
ment. Consider a refinement of  statement s in which the predicates q. i are computed 
asynehronously with the help of  fresh variables y .  i as follows: variables y .  i are 
initialized to false and statement s is replaced by program G = (s' II t') [3 <[3 i: : u. i}, 
where statements s', t', and u. i are defined as follows: 

s' : :p:=true if  -3 p/x (V i: :y. i), 
t ' : :< J[i: :y. i:=false if  --7 p ^ (V i: :y. i)>, and 
u.i:  : y. i . .=true if  --q p A q.i .  

Then program FOG is a property and a f ixed-point  preserving refinement o f  pro- 
gram F[3s if  program F satisfies -7 p/x q. i unless false, for each i, in the context 
of  program H = (sl[ t) [3 <[3j: : u .j>, where statement t is defined as < fli: : y .  i:=false 
i f - 'np /x (Vi : :q . i )>.  [] 
Proof  The refinement from F[3s to F[3G consists of two subrefinements: first 
from F[3s to F[3H, and the second from F[3H to F[3G. Because of transitivity 
of refinements, it is sufficient to prove that each of the two subrefinements 
is a property and fixed-point preserving refinement. These proofs are detailed 
next. 

First, consider the subrefinement of F [3 s to F n H. In this refinement statement 
t is synchronously superposed to statement s and statements u. i  are asynchron- 
ously superposed to the program. Thus, by the superposition theorem, program 
F[3H preserves all unless and leads-to properties of F[3s. Therefore, this is a 
property preserving refinement. Also from the superposition theorem, the fixed- 
point of F[3H implies the fixed-point of F[3s. Moreover, since superposition 
preserves all invariants, the strongest invariant of F[3H implies the strongest 
invariant of F[3s. This proves the second condition for fixed-point preserving 
refinements. Our remaining proof  obligation is to show that if F[3s terminates, 
then so does F[3H. Let R. i denote the fixed-point of statement u.i. Then, 

FP-(F 0 s) =- F P - F  /x (p v (3 i: :-7 q. i)), 
FP-(f[3(sllt))-- FP-(F[] s), 
R . i = p  v--n q . i  v y . i ,  and 
FP-(F I3 H) ==- FP-(F  [3 s)/x (V i: : R.  i). 

We prove the following two properties of program F [1H for each i, 

FP-(F[3 s)/x R .  i unless false, and ... (E0) 
FP-(F [3 s) ~ FP-(F  [3 s)/x R .  i . . . .  (E 1) 

Based on these properties, observe the following. 

true~--~FP-(F[3s) in F[3s , assumption 
true ~-, FP-(F[1 s) in F [3 H , preservation of leads-to 
FP-(Fns)~--~FP-(FOs)/x (V i: :R. i) in F[3H , completion theorem on E0, E 1 
true ~ FP- (F  [3 s)/~ (V i: : R. i) in F D H , transitivity on above two 
true ~ FP-(FB H) , definition []  

Proof  o f  EO. 
FP-(F  [] (s [I t)) A R .  i unless false in FI3 (s I[ t) 0 u. i [<[3j :j :# i : u .j>] 

, stability at fixed-point 
FP-(F  D s)/x R .  i unless false in F r] (s II t) I3 u. i [<rlj : j .  i: u .j>] 

, FP- (F  [3 (sll t) - FP- (F  D s) 
FP-(FDs) ^ R .  i unless false in <Oj : j # i" u. i> [F[3(sllt)[3u. i] 

, observing u .j 
FP-(FOs) /x R .  i unless false in F O H  , union theorem 
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Proof  of  E 1. 

FP-(F[7 (s[I t)) unless false in F 0 (s I] t) [<Bj: :u .j>] , stability at fixed point 
fP- ( f [3s )  unless false in f[](s[lt)[ ([3j: : u . j ) l  , FP-(F[3(sllt))=--FP-(F[]s) 
FP-(Fgs)  unless false in <[3j: :u . j )  [,fB(sHt)] , observing u .j 
FP-(FDs) unless false in fg(sl[t)D<gj: : u . j )  , union theorem 
FP-(F[3s) ensures FP-(FOs) A R .  i in u. i [,F D(sl[ t)0 <[3j :j ~= i: u .j>] 

, observing u. i 
FP-(F[3s) ensures FP-(FrTs) A R .  i in F g H  , union theorem 
FP-(F[] s) ~-~ FP- (F  0 s) A R .  i in F[] H , definition of leads-to 

This completes the proof of correctness of the first subrefinement. 
Next, consider the second subrefinement from F[3 H to F[7 G in which state- 

ments s and t are replaced by statements s' and t' respectively. In both of 
these transformations the guard -Tp A (V i: :q.i) has been replaced by -7 p A 
(V i: :y. i). Therefore, our proof  obligation will follow from Corollary 2 in Sect. 4 
if we prove the following properties. 

1. invariant -7 p/x (Y i: : y. i) ~ -7 p A (g i : : q. i) in F[] H, 
2. --7 p A (Y i: : y .  i) unless p v (~ i: :-7 q. i) in F g <[7 i: : u. i> in the context s LI t, and 
3. --7 p A (V i: : q. i) ~-~ ~ p A (Y i: : y. i) in F 0 <0 i: : u. i) in the context s LIt. 

These three properties are proved in the appendix. (End of proof) 

Theorem 7 originates from the two-phase handshake used in network protocols 
and can be understood as follows. The statement that sets program variable 
p to true represents a controller process and the statements that set predicates 
q. i represent subordinate processes. After setting q. i to true, a subordinate pro- 
cess waits for an acknowledgement from the controller (in the form of variable 
p being set to true) before resetting it to false. The controller polls each subordi- 
nate (through local variable y.i)  and sets p to true when it finds every y . i  
to be true. The correctness of the refinement is based on the fact that the subordi- 
nate processes do not reset predicates q. i while they are being polled by the 
controller. It is possible to introduce more asynchrony into the above refinement 
by setting variables y. i to false asynchronously. However, it has to be ensured 
that the next phase of polling q. i does not begin until every y. i from the previous 
phase have been reset. 

The refinement of a synchronous computation of guards by an asynchronous 
computation is similar to the idea of delay insensitivity discussed in the context 
of electronic circuits by Seitz in 1-24] and Martin in [19], and in the context 
of programs by Chandy and Misra in [-7]. A program is said to be delay insensi- 
tive if for all the assignment statements, the right hand side of the assignment 
does not change as long as the left hand side of the assignment does not equal 
the right hand side. Thus, delay insensitivity allows an electronic circuit to 
be designed without using a common clock. For  example, consider the statement 
s: :p.-=p v (q A r) that represents a combinatorial logic-gate. (Note that this state- 
ment is equivalent to the statement p,=true if -7 p v (q/x r).) For  this statement 
to be delay insensitive, the program that s is a part of should satisfy the following 
property: 

-7 p A q A r unless p . . . .  (P) 
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In other words, a state in which p is false and q and r are true persists until 
p is set to true. On the other hand, the conditions for refinement of atomicity 
derived earlier ensure that the expression on the right hand side of a statement 
can be computed piecemeal. Delay insensitivity in general does not ensure this 
piecemeal evaluation; it ensures asyncbrony among different statements as 
opposed to atomicity refinement which ensures asynchrony in the execution 
of a statement. For example, consider the statement s defined earlier and let 
us try using property P as the condition for atomicity refinement. In that case, 
it is possible that predicates q and r keep oscillating between true and false 
such that they are never true at the same time. Consequently, condition P is 
vacuously satisfied. However, if q and r are evaluated asynchronously then it 
is possible that both will be found to be true and the subsequent setting of 
p to true will be incorrect. This shows that condition P is not acceptable as 
the correctness requirement. As is evident from Theorem 7, the correct condi- 
tions for the refinement of atomicity in this case are: 

-q p/x q unless false and --n p/~ r unless false. 

5 Concluding remarks 

In spite of numerous logics and methodologies, concurrent programming has 
remained a very difficult and complex task. There are two possible explanations 
for this complexity. First, most of the concurrent programs are unstructured 
and written in an ad-hoc way. This makes the separation of concerns next 
to impossible and consequently, the proofs are inextricably entangled. Second, 
most of the concurrent programs contain a lot of irrelevant information that 
has nothing to do with the underlying algorithm's correctness. It is far easier 
to prove the algorithms that the programs are based on than the programs 
themselves. Program derivation through stepwise refinements is one possible 
solution to the aforementioned problems. Such a formal derivation achieves 
the separation of concerns by postponing efficiency and architectural decisions 
until late in the design process. In this paper we discussed the program refinement 
phase of stepwise refinements by considering property preserving and fixed-point 
preserving refinements. We developed a small theory of these refinements and 
discussed conditions under which some common program transformations are 
correct. We hope that these theorems will be a first step towards building an 
adequate set of tools for program transformations. Once a sufficient number 
of theorems have been developed, it may be possible to implement recurring 
themes in parallel program derivation (viz. abstract data type implementation, 
process synchronization and scheduling) automatically while preserving the cor- 
rectness of the original program. 

The absence of local variables in Unity implies that every variable is treated 
as a shared variable. Consequently, program refinements need to consider prop- 
erties across all variables and not just those variables at the interface. We are 
currently examining the introduction of local variables in Unity and the develop- 
ment of a theory of program refinements that distinguishes between local and 
interface variables. 
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A p p e n d i x  

Proof of Theorem 4 

Step 3. Based on assertion A2, we replace p(h(y)) by q(y) in the guard of state- 
ment  u'. The resulting program, F'[3(sll t), is a property and fixed-point preserving 
refinement of p rogram F' •(s Ilu') on account of the substitution axiom. 

Step 4. In this step, we delete statement s and obtain the desired program F'[3 t. 
We prove that this p rogram is a property and fixed-point preserving refinement 
of f'O(sl[t) under the coupling x =  h(y). 

First, we show that  x = h(y) is an invariant of p rogram F' 0(sll t). We showed 
earlier that  x = h (y) is an invariant of p rogram F 0 (s LI u). Because program F '  0 (s I[ t) 
was obtained from this p rogram by appealing to the substitution axiom, x = h(y) 
is also an invariant of p rogram F' •(sll t), as required. 

Next, we show that p rogram F ' 0 t  is a proper ty  preserving refinement of 
program F'[3(sllt) under the coupling x=h(y). Consider p rogram F'O(s[)) and 
a proper ty  p unless q that holds in it. F rom the substitution axiom, the property 
p' unless q' also holds in it. Because program F'Ot and predicates p', q' do 
not mention x, it can be shown (by a result similar to the superposition theorem) 
that the proper ty  p' unless q' also holds in the program F'O t. A similar result 
can be proved for any leads-to property p v--, q that holds in F'O (s [[ t). This proves 
that F'Ot is a property preserving refinement of F'[3(sl[t) under the coupling 
x - -  h (y). 

Finally, we show that p rogram F '0  t is a fixed-point preserving refinement 
of p rogram F'D(sllt) under the coupling x=h(y). Assume that trueF-~FP- 
(F'[3(sllt)) in p rogram F'O(sllt). Because program F'r]t does not mention x, it 
can be shown that  true~FP-(F'O t) in p rogram F'O t. This proves the first condi- 
tion for fixed-point preserving refinements. For  a proof  of the second condition, 
note the following. 

�9 FP-(F'O(sIIt))-FP-(F'[3t)/x x=h(y), and 
�9 SI-(F' 0 (sll t)) --  SI- (F'  0 t) A x = h (y). 
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Therefore, (FP-(F'fqt) /x SI-(F'Ot) /x x =h(y)) => (FP-(F'D(sI[t) /x SI-(F'D(sl[t)), as 
required. This proves that F'Iq t is a fixed-point preserving refinement of F '  0(sll t) 
under the coupling x = h(y). []  

Proo f  o f  Theorem 5 

Part 2. Let b~-+c be a property of  FIqs. We prove that b~-+c in Frqt by induction 
on the proof  of b~-~c in F[3s. 

Base case: b ensures c in F[3s. 

From the definition of ensures, b unless c in Ffls  and there exists a statement 
u in F[3s such that  SI-(F[3s)/x b/x --n c =*, wp(u, c). If u belongs to F then the 
proof  follows as the refinement preserves all the safety properties and statements 
in F remain unchanged. Otherwise, u = s, i.e., 

SI-(F[3s) /x b/x ~ c ~ wp(s, c) ... (CO) 

Since statement s consists of an assignment guarded by predicate p, it follows 
that 

S I - ( F O s ) / x b A - n p ~ c  . . . .  (C1) 

We prove the following two properties of p rogram F[q t. 

b A p ~ - ~ ( b A q ) v e ,  and ... (C2) 
b A q / x g = k ~ - ~ , c v g < k ,  ... (C3) 

Based on the above properties, observe the following in F S t: 

SI-(F D s) i", b/x ~ p ~ c 
SI-(FDt) A b A -q  p =~ c 
SI-(F ~ t) ~ (b ix -1 p ~ c) 
invariant b/x -7 p ~ c 
b A--q p ~ c  
b~--~(b /x q) v c 
g = k unless g < k 
b /x g=k~-~(b /x q A g = k )  v c v g < k  
b /x g=k~-+c v g < k  
b unless c 
b A g=k~-~c v ( b  A g <k)  
b~--~c 

Proo f  o f  C2. 

p~--~q in F[t]  
(p /x q) ~ FP- t  

p~-~q v ( p  A q) in F•t 
p~-~q in F[3t 
b unless c in F[]t 
b/x p~-*(b/x q) v e in FD t , PSP theorem 

Proof  o f  C 3. 

SI-(F [3 s)/x b/x --7 c ~ wp (s, c) 
SI-(F[3s) /x b/x q/~ -7 c ~ wp(t, c) 

property C 1 
SI-(F[3t) ~ SI-(F•s) 
predicate calculus 
property of SI ... (C4) 
implication rule 
disjunction with C2 
g is non-increasing 
PSP theorem 
transitivity with C 3 
preservation of safety properties 
PSP theorem 
induction over k []  

, assumption 
, t i s A i f p A q  
, composit ion of leads-to 
, predicate calculus ... (C5) 
, preservation of safety properties 

, property (CO) 
, definitions of s, t 
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S I - ( F  [7 t) A b A q A --7 C =*" wp (t, C) , S I - ( F  [3 t) ~ SI-(FI7 s) 
SI-(F[3t)  A b A q A g = k A - - 7  C =~ wp(t ,  cAg_<k) , g isnon- increas ing 
S l - (Fr l t )  A b A q A g = k  A -7 c =~ wp(t ,  (b A ~ p) v c v g < k) 

, property of wp 
b/x  q A g = k ensures  (b A -7 p) v c v g < k) in t [F]  , 

b unless c in F[3s 
b unless c in F [s] 
q/~ g = k unless  -7 p v g < k in F [s] 
b A q A g = k unless (b A --7 p) V e v g < k in F [s] 
b A q A g = k unless  (b A -7 p) v c v g < k in F [t] 
b A q A g = k  ensures  ( bA-7p )  v c v g < k i n  F O t  
b A q A g=k~--~c v g < k  in  F ~ t  

This concludes the base case. 

Induction step: 

�9 bF--~r in FOs,  r ensures  c in F[3s. 
b~--~r in F D t  
r~--~c in F[3t 
b~--~c in F r l t  

�9 b = (3 i: : b. i) and b. i ~  c in F[7 s, for all i 
b.  i~-*c in F r l t  
(3 i: :b.  i)~-+c in F g t  
b~--~c in F[3t 

definition of 
ensures  ... (C6) 
assumption 
union theorem 
assumption 
conjunct ion  
SI-(V[3t)  ~ S I - (FOs)  
union theorem with C 6 

, property C4 

, induction hypothesis 
, proof  similar to base case 
, transitivity 

, induction hypothesis 
, disjunction over i 
, b - ( 3 i : : b . i )  [] 

P r o o f  o f  Theorem 6 

P a r t  2. Let b~--~c be a property o f  FDs.  We prove that b~--,c in F R t  by induction 
on the proof  of b~-~c in F[3s. 

Base case: b ensures  c in F [3 s. 

F rom the definition of ensures,  b unless  c in F[3s and there exists a statement 
u in F[3s such that  S I - ( F [ 3 s ) A b A - - T c ~  wp(u,  c). If  u belongs to F then the 
proof  follows as the refinement preserves all the safety properties and statements 
in F remain unchanged. Otherwise, u = s ,  i.e., S I - ( F ~ s ) A b A ~ c ~  wp(s ,  C). 
Therefore, noting that SI-(F11s) --  SI-(F[] t), 

SI-(F[3t)  A b/x  -7 (3 i: : p .  i) ~ c, and ... (DO) 
S I - ( F D t ) / x b A ~ c A p . i = > w p ( A , c ) , f o r e a c h i  . . . .  (D1) 

We prove the following two properties: 

b A p . i  unless  c v ( b A - 7 ( 3 i : : p . i ) )  in F [ 3 ( [ 3 j : j # i : t . j >  in the context t . i  
and ... (D2) 
b A p .  i ensures  c v (b A --7 (3 i: :p. i)) in t. i in the context 
F O ( [ 3 j : j # i :  t . j>  . . . .  (D3) 

Based on the above properties, observe the following in F[3 t: 

b A p .  i ensures  c v (b A -7 (3 i: : p .  i)) , union theorem on D 2, D 3 
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b A p.i~-~c v ( b  A ~ (3i: :p.i)) 
b /x (3i: :p.i)~--~c v ( b  A - n  (3i: :p.i)) 
(b /x ~ (3 i: :p. i))~--~c 
(b /x (3 i: : p . i))~-+ c 
b~-+c 

, de f in i t i on  of  ~--~ 
, d i s j u n c t i o n  over  i 
, i m p l i c a t i o n  ru le  wi th  D 0 
, t r ans i t i v i t y  o n  a b o v e  two 
, d i s j u n c t i o n  o n  a b o v e  two [] 

P r o o f  o f  D 2. 

SI-(F[3 t)/x b/x --7 c/x p.  i ~ wp(A ,  c) 
S I - (F  [3 t)/x b/x p .  i/x ~ c/x p .j =*, wp (A, (b /x p .  i) v c) 

SI - (FOt)  /x b A p . i  /x --7 c/x --7 p . j  ~ (b A p . i )  v c 
SI-(F[3t) /x b /\ p . i  /\---n c =~ w p ( A  if  p . j ,  (b A p . i )  v c) 
SI-(F[3t) A b/x p.  i/x -7 c ~ wp( t  .j, (b /x p.  i) v e) 
b A p .  i unless c in  ([3j : j  + i : t . j )  I F  0 t .  i] 

b unless c in  F [7 s 
b unless c in  F Is]  
p. i unless -7 (3 i: :p. i) in  F [ s ]  
b A p.  i unless c v (b/x -7 (3 i: :p. i)) in  F Es] 
b/x p.  i unless c v (b /x -7 (3 i: : p .  i)) in  F [ t ]  

, c o n d i t i o n  D 1 
, p r o p e r t y  of wp a n d  

p red i ca t e  ca lcu lus  
, p r ed i ca t e  ca lcu lus  
, a b o v e  two 
, de f in i t ion  of  t . j  
, de f in i t ion  of  unless 

... (D4) 
, b ensures c in  F 0 s 
, u n i o n  t h e o r e m  
, a s s u m p t i o n  
, c o n j u n c t i o n  
, S I - ( F  [3 s) - S I - ( F  [3 t) 

b/x p.  i unless c v (b A --7 (3 i: :p. i)) in  F [3 (,j : j  4= i : t . j )  [-t. i] 
, u n i o n  t h e o r e m  wi th  D 4  

P r o o f  o f  D 3. 

S I - (F  [3 t)/x b/x --7 c/x p.  i ~ wp (A, c) 
SI-(F[3t) A b A p . i A  ~ c A p . i ~  wp(A ,  c) 
SI-(F[3t) A b  A p . i A  ~ c/x ~ p . i  ~ c 
SI - (FOt)  /x b/x p . i/x -n c ~ w p ( A  if  p . i, c) 
S I - ( F [ 3 t ) A b A p . i A  ~ c ~ wp( t . i ,  C) 
b A p . i  ensures c in  t . i [ F [ 3 ( D j  : j+-i:  t . j ) ]  

, c o n d i t i o n  D 1 
, p red ica te  ca lcu lus  
, a n t e c e d e n t  - f a l s e  
, a b o v e  two 
, de f in i t ion  of t .  i 
, d e f i n i t i on  of  ensures 

b/x p .  i ensures c v (b /x -7 (3 i: :p. i)) in  t.  i [F• {[3j :j 4= i: t . j ) ]  
, w e a k e n i n g  

Th i s  c o n c l u d e s  the  base  case. 

I n d u c t i o n  s tep:  

b~--~r in  Flqs, r ensures c in  F[3s. 
b~--~r in  F[3 t , i n d u c t i o n  hypo thes i s  
r ~ c in  F [7 t , p r o o f  s imi la r  to base  case 
b~--,c in  F[3 t , t r ans i t i v i t y  

b - (3 i: : b .  i) a n d  b .  i ~ c in  F [3 s, for all  i 
b. i~-~c in  F 0  t , i n d u c t i o n  hypo thes i s  
(3 i: :b. i)F--~c in  Flqt  , d i s j u n c t i o n  over  i 
b~--~c in  F[qt , b - ( q  i: :b. i). ( E n d  of  P a r t  2) 
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P a r t  3. Let  R be the fixed-point of  assignment A. Observe the following 

F P - ( F  D t) 
= {definition of  fixed-point} 

F P - F  A ( V i :  : p . i  =~ R)  
= {predicate calculus} 

F P - F  /~ ((3 i: :p.  i) ~ R)  
= {definition of  fixed-point} 

F P - ( F D s )  

The required p roo f  obl igat ion then follows as SI-(FDt)==-SI-(FDs).  
Par t  3) 

P a r t  4. 
true ~ FP-(F[3 s) in F ~ s , a ssumpt ion  
true ~ F P - ( F  D s) in F 0 t , preservat ion of  leads-to 
t rue~-*FP-(FD t) in F g  t , FP-(F[-l s ) - -  F P - ( F D  t) as shown earlier [ ]  

(End of  

P r o o f  o f  Theorem 7 

P r o o f  o f  I.  We prove the following properties of  p rog ram FFIH. 

p /x  -7 y .  i unless  -7 p /x  --n y .  i . . .  (E2) 
~ p / x - n y . i / x q . i u n l e s s ( - q p / x y . i / x q . i ) v ( p / x - - q y . i )  ... (E3) 
- n p A - q y . i A - ~ q . i u n l e s s - n y . i / x ( p v q . i )  ... (E4) 
- n p A y . i / x q . i u n l e s s p A - ~ y . i  ... (E5) 

Based on these properties,  observe the following in p rog ram F[3H:  

(p v q . i) A -n y . i unless (--7 p /x ~ y . i A -q q . i) 

--3 y . i unless ---3 p A y . i A q . i. 
-n  y .  i V ( 7  p/X q . i) unless  f a l s e  
ini t ial ly  -3 y .  i 
invariant  -3 y . i v (--7 p A q . i) 
invariant  -1 p /x  y .  i ~ q.  i 
invariant  -3 p /x  (V i: : y .  i) ~ -3 p/x (V i: : q. i) , 

P r o o f  o f  E2 .  

p unless -3 p in F [ H I  
-3 y .  i unless  f a l s e  in F [ H I  
p /x ~ y . i  unless  -3 p A--q y . i  in F [ H ]  
p /x  -1  y .  i unless  f a l s e  in H [F ]  
p/x  -7 y .  i unless  -1 p /x  --n y .  i in F[3H 

P r o o f  o f  E 3. 

-7  p/~ q.  i unless  f a l s e  in F [ H I  
--7 y .  i unless f a l s e  in F [ H I  

v ( - n p / x y . i A q . i )  
, disjunction on E2,  E3  
, disjunction with E 4  
, disjunction with E5  
, observing F B H  
, above two 

weakening the invariant  
conjunct ion  over i 

, irreflexivity 
, y .  i is a fresh variable 
, conjunct ion  on above two 
, p ~ F P - H  
, un ion  theorem 

, assumpt ion  
, y .  i is a flesh variable 
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-7 p A --7 y .  i/x q.  i unless fa lse  in F [H]  , conjunct ion  on above two 
-7 p A ~ y . i A q . i unless (--7 p A y . i A q.i) V (p A--7 y . i) in H [ F] 

, observing H 
--7 p A T  y . i A q . i unless (-7 p A y . i A q . i) V (p A ~ y . i) in F D H 

, un ion  theorem 

P r o o f  o f  E 4. 

--7 p A -7 q. i unless p v q.  i in F [ H I  , irreflexivity 
-7 y .  i unless fa l se  in F [ H I  , y.  i is a fresh variable 
-T p A --7 y .  i A --7 q . i unless --7 y .  i A (p V q . i) in F [H] 

, conjunct ion  on above  two 
--7 p A --7 y .  i A -7 q. i unless fa lse  in H [F ]  , -7 q. i ~ F P - H  

-7 p A--7 y . i  A - n  q . i  unless --7 y . i  A (p V q . i )  in F D H  
, un ion  theorem 

P r o o f  o f  E 5. 

-7 p A q.  i unless fa l se  in F [H]  
y .  i unless fa l se  in F [ H ]  
m p A y .  i A q .  i unless fa l se  in F [ H I  

, a s s u m p t i o n  

, y .  i is a fresh variable 
, con junc t ion  on above  two 

-7 p A y .  i A q.  i unless p A 7 y .  i in H FF] , observing H 
-q p A y . i  A q . i  unless p A - n  y . i  in F D H  

P r o o f  o f  2. 

p unless p in F [ H I  
(V i: :y.  i) unless fa lse  in F [ H I  
--7 p A (V i: :y .  i) unless p in F [/4] 

, un ion  theorem 

, irreflexivity 
, y .  i is a fresh variable 
, conjunct ion  on above two 

~ p A ( V  
7 p A ( V  
-- lp  A (V 

i: :y .  i) unless p in (~  i: : u, i> [ F  D (s II t)] , observing u. i 
i: :y .  i) unless p in FD(• i :  :u. i> [silt] , un ion  theorem 
i: : y .  i) unless p v (~ i: :-7 q.  i) in F D (D i: :u. i> [-slL t] 

, weakening 

P r o o f  o f  3. 

-7 p A q.  i unless fa l se  in F [H]  
y .  i unless fa lse  in F [H]  
-1  p A q.  i A y .  i unless fa l se  in F [H]  
-7 p A q.  i A y .  i unless fa l se  in <[] i: : u. i> I F  [l(s [It)], observing u. i 

p A q.  i A y .  i unless fa l se  in F 0 <D i: : u. i)  [s[I t] , un ion  theorem 
-7 p A q . i  A--7 y . i  unless -7 p A q . i  A y . i  in ([]i: : u . i )  [F[](s[[t)] 

, observing u. i 
--7 p A q . i  A y . i  unless ~ p A q . i  A y . i  in (Di: : u . i )  [F•(sl[t)] 

, reflexivity 
-7  p A q.  i unless ~ p A q.  i A y .  i in <0 i: :u.  i> [F0(slBt)] 

- n p A q  

" - 7 p A q  
- - T p A q  

, assumpt ion  
, y .  i is a fresh variable 
, conjunct ion  on above  two 

... (E6) 

, disjunction on above  two 
�9 i ensures -7 p A q. i A y .  i in (~ i: : u. i> [-F D (s I1 t)] 

, observing u. i 
�9 i unless fa lse  in F [H]  , assumpt ion  
�9 i ensures ~ p A q.  i A y .  i in F D (D i: : u. i)  [s I1 t] 

, un ion  theorem 
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-7 p/x q. i ~ - 7  p/x q. i/x y .  i in F I7 (• i: : u. i> [s II t] , definit ion of leads-to 
--7 p A(Vi: :q.i)~-~-7 p A (Vi: :q. i  A y . i )  in F~ (~i:  :u.i> [sllt] 

, comple t ion  
theo rem with E 6 

-7 p A (V i: :q./)~--~--7 pA (Vi: : y . i )  in F[](~i:  :u.i>[sJlt] 
, weakening  [ ]  


