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Summary. In this paper, we consider the geometry of gyroscopic systems with sym- 
metry, starting from an intrinsic Lagrangian viewpoint. We note that natural mechanical 
systems with exogenous forces can be transformed into gyroscopic systems, when the 
forces are determined by a suitable class of feedback laws. To assess the stability of 
relative equilibria in the resultant feedback systems, we extend the energy-momentum 
block-diagonalization theorem of Simo, Lewis, Posbergh, and Marsden to gyroscopic 
systems with symmetry. We illustrate the main ideas by a key example of two coupled 
rigid bodies with internal rotors. The energy-momentum method yields computation- 
ally tractable stability criteria in this and other examples. 
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1. Introduction 

Geometric control theory has led to the development of a large body of results to 
analyze and design nonlinear feedback systems. There is a beautiful structure theory 
of nonlinear control systems that relates internal representations (state space models) 
to external representations (input-output models). Methods from the differential ge- 
ometry of foliations play a key role in the solution of fundamental problems such as 
disturbance decoupling, noninteracting control, and so on, compare [21], [33]. In- 
spired in part by the success of the linear theory and partly by the search for suitable 
feedback invariants [10], the paradigm of feedback linearization has had diverse ap- 
plications [38]. Much of this work is however concerned with generic dynamics and 
often does not specialize well to the context of natural mechanical systems. However, 
there is a growing body of literature devoted to development of a geometric control 
theory for Hamiltonian systems. See [12], [33], [22] for recent developments. 

A parallel intellectual program to geometrize mechanics has been very success- 
ful and has had tremendous impact on many areas of mathematics (e.g., symplectic 
geometry and topology) and physics (e.g., gauge theory, geometric quantization). 
Some of the roots of this program may be traced to the problems of stability [4], 
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symmetry and reduction, [44], [43], [13], and [32], and investigation of the topology 
of phase space [42]. Modern expositions of these developments may be found in [1], 
[5], and [6]. An exciting recent result is the block-diagonalization theorem for simple 
mechanical systems with symmetry, [39] and [41]. This theorem provides refined 
criteria for stability assessment for natural mechanical systems by careful exploitation 
of the underlying geometric structure. 

One of the principal goals of the present paper is to demonstrate the applicability of 
geometric ideas to a large class of feedback systems derived from natural mechanical 
systems. Here the feedback controls are of the gyroscopic type. A key point is that sim- 
ple mechanical systems with symmetry, when subject to exogenous forces determined 
by suitable classes of feedback laws, also admit Hamiltonian and Lagrangian struc- 
tures. In [9] and [7], the Hamiltonian structures so derived are viewed as deformations 
(by feedback gains) of the Hamiltonian structure governing the open-loop unforced 
system. There, the methods of geometric mechanics such as reduction, reconstruction 
phases, and the energy-Casimir algorithm for stability analysis are brought to bear on a 
key example of rigid body control using external torques (as implemented by gas jets) 
and internal torques (via reaction wheels/rotors), and the relationships between these 
two methods of control. In the present paper, taking an intrinsic Lagrangian view- 
point, we develop a systematic theory of gyroscopic feedback systems with symmetry. 
Key examples of such systems include dual-spin satellites, and rigid-body satellites 
with magnetic torques, and so on. 

The principal reason for taking a Lagrangian viewpoint is that it leads very nat- 
urally to the incorporation of exogenous forces/controls. Furthermore, in the setting 
of constrained nonholonomic systems, the Lagrange-D'Alembert principle is the basic 
principle of modeling. (See, however, related remarks about vakonomic mechanics and 
the role of variational principles for constrained systems in [6].) Good representations 
of higher-order tangent bundles together with the intrinsic/invariant formulation of 
Lagrangian mechanics lead to effective modeling of the systems of interest. Here we 
give variational principles for relative equilibria and their stability. One of the contri- 
butions of this paper is the extension of the (energy-momentum) block-diagonalization 
theorem to gyroscopic systems with symmetry. Thus, we are able to establish a set of 
refined stability criteria for a wide class of feedback systems by fully exploiting the 
underlying geometric and group-theoretic structures. 

The outline of the paper is as follows. Section 2 lists relevant notations in geomet- 
ric mechanics and group action. In Section 3, we give a brief treatment of Lagrangian 
mechanics in invariant form. We formulate the Lagrange-D'Alembert principle in ge- 
ometric terms. Our exposition follows Vershik and Faddeev [45] in large part, except 
for certain conventions. We then display a useful representation of the second tangent 
and cotangent bundles associated to SO(3). In Section 4, we axiomatize the notion 
of gyroscopic feedback system with symmetry. The dual-spin equations are derived 
as an example. In Section 5, we characterize relative equilibria by the Principle of 
Symmetric Criticality. We give a careful exposition of the concept of relative stability 
in the abstract setting. In Section 6, we prove the block-diagonalization theorem for 
gyroscopic systems with symmetry. This extends naturally the previous work of Simo, 
Lewis, Posbergh, and Marsden on block-diagonalization of simple mechanical systems 
with symmetry. A distinctive feature of the present work is that all computations are 



Gyroscopic Control and Stabilization 369 

done on the velocity phase space TQ, or loosely, on the "Lagrangian side." We are 
aware that D. Lewis has carried out a similar program [27], but the present work was 
done independently and was primarily motivated by feedback stability problems.* 
The correct modification of the amended and augmented potentials to incorporate 
gyroscopic terms yields stability criteria that explicitly display said terms. This is 
further made clear in the detailed example of two coupled rigid bodies with internal 
rotors (the multibody dual-spin problem of [48]) studied in Section 7. 

There are other aspects of gyroscopic feedback controls that we do not explore in 
this paper but that we think are quite promising. Control strategies based on bifurcation 
of relative equilibria may be effective in a variety of problems. We see instances in 
[54] and [8]. In the present setting it would be worthwhile to investigate bifurcations 
with respect to the gyroscopic feedback parameters. In the context of the dual-spin 
problem, this has been carried out by Krishnaprasad and Berenstein who gave a 
bifurcation diagram [25]. Also, in [7], the authors show in an example how the 
phenomenon of geometric phase shift is affected by gyroscopic parameters. We hope 
to discuss these aspects in a later paper. Some of the results in this paper appeared in 
the Ph.D. dissertation of Li-Sheng Wang [46]. 

We would like to thank Professor Jerrold Marsden for critical and helpful advice 
on an earlier version of this paper. 

2. Notations and Preliminary 

In this section, we introduce the notations used in later sections. First, we collect 
together some basic geometric objects of Lagrangian mechanics. We follow Vershik 
and Faddeev [45] closely, filling in details where needed. 

Let Q be a smooth manifest with local coordinates x ,  TQ be the tangent bundle of 
Q with local coordinates (x, v), and zr : TQ ~ Q be the canonical projection from 
TQ to Q. Let T/'Q be the second tangent bundle with local coordinates (x, v, u, w). 
Let T(x,v) be the tangent space of TQ at (x, v), that is, T(x,v)TQ, and denote the 
vertical tangent subspace of T(x,v) consisting of vectors tangent to the fiber of TQ 
by T v In local coordinates, each vector in T v (x,v). (x,v) can be written as (0, w), for 
some w E TxQ. The tangent map Ter of the canonical project, Ter : T T Q  ~ T Q ,  
can be expressed in local coordinates as Tzr(x,v)(u, w) = u E TxQ,  which projects a 
vector in T(x,v) to its horizontal component. Define the map Y(x,v) : TxQ ~ T(x,~)TQ; 
u ~ (0, u) E T v which establishes an isomorphism between TxQ and T v Let (x,v), (x,v)" 
X : TQ ~ T T Q  be a vector field on TQ. The variable X is called a vertical vector 
field if X ( x ,  v) E T v or X ( x ,  v) = (0, w), for some w ~ Tx Q This is equivalent (x,v) 
to saying Tcr- X = 0. There is a unique vertical vector field X ev  called the principal 
verticalfield defined by x ~ V ( x ,  v) = Y(x,~) " v = (0, v). 

* A feedback law is a rule that determines exogenous forces/controls as functions of the current 
state of a dynamical system. The feedback stabilization problem is to find feedback laws that 
achieve prescribed characteristics in the closed-loop system. 
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Now we consider the dual spaces. Let ~o be a 1-form on TQ. It is said to be 
horizontal if for all vertical vector fields X,  w(X) = 0, or in local coordinates, 
o~(x, v) = (a ,  0), for some a E T;Q. The dual of the map T~'(x,v) : T(x,v)TQ ~ TxQ 
can be defined implicit ly through 

Trc(x,v) : Tx Q --~ Tix,v)TO, 

(Tlr(*x,v)~, (u, w)) = (a, r~r(x,~), (u, w)} = (a ,  u), 

where a E Tx* Q . Thus, in local coordinates, T~(x,v)a = (a ,  0). Similarly, the dual 

of Y(x,v), denoted by Y(x,v) : T(*x,v)TQ --~ TxQ, is defined by, in local coordinates, 

(~*x,v~(~, /3), u)  = ((~,  /3), ~x,v~ " u)  = (/3, u).  

* Ol Equivalently, Y(x,v)( , /3) = /3. 

With these dual mappings,  we define the bundle map T : T*(TQ) --~ T*(TQ) as 

zx T * �9 * In particular, for ( a , / 3 )  E T~x,v)T Q, we have "r(x,v) = ~'(x,v) "Y(x,v)' 

r(x,v)(a,/3) = T~'(x,v ) �9 y(x,v)(a,/3) = (/3, 0). (2.1) 

Thus r(x,v) maps any cotangent vector (covector) to a horizontal covector. Globally, 
~- maps any 1-form on TQ to a horizontal 1-form on TQ. On the other hand, we may 
define a bundle map from the second tangent bundle into itself, 7. : TTQ ~ TTQ 

A 
as r.(x,v) = Y(x,v) " TTr(x,v). In local coordinates we can associate to each (u, w) E 
T(x,v)TQ, r,(x,v)(U, w) = (0, u). In other words, ~',(x,v) maps any second tangent 
vector to a vertical tangent vector, and, globally, ~-. maps a vector field on TQ to a 
vertical vector field on TQ. 

To treat second-order equations, we need the following concept. A vector field on 
TQ, X E ~g(TQ), is a special vector field if and only if r .X = X Pv. In local coor- 
dinates, assuming X(x,  v) = (u, w), it says ,r.X(x, v) = (0, v), which is equivalent 
to the condition u = v. It then follows that this definition of special vector field X is 
the same as saying X gives rise to a second-order equation on Q,  compare p. 213 of 
Abraham and Marsden [l] .  

Let  T f~)  denote the space of  horizontal covectors at (x,  v) in TQ. Define the map 
o" : T~v)'---~ TxQ to be, in local coordinates, O'(x,v)(a, O) A=a, for a E T~Q. This 
map will be used later in defining the Legendre transformation. The maps Y, ~', ~'*, 
and ~r are intrinsic and do not depend on choices of local trivializations of  the bundles 
involved. 

Now we collect together basic notions of  group actions on Riemannian mani- 
folds necessary to discuss natural mechanical systems with symmetry. Let (Q, << 
. , .  >>) be a manifold with Riemannian metric << . , .  >>. We sometimes write 

K(x)(Vx, Wx) = < <  Vx, wx >>x, for x ~ Q,  and Vx, Wx ~ TxQ. The Riemannian 
metric induces a vector bundle isomorphism K b : TQ --~ T 'Q ,  defined by 

(Kb(vx), Wx)x = < <  Vx, Wx >>x, V Vx, Wx ~ TxQ, 

where ( ' ,  ")x denotes the pairing between elements in T*Q and T~Q. Here, and in 
what follows, the notation (., .) is used to denote the dual pairing between appropriate 
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spaces. By the Riesz Representation Theorem, this isomorphism is well defined and we 
may write K # = (Kb) -1 : T*Q ~ TQ,  which is also a fiber-preserving mapping. By 
definition, for ax E T*Q and wx E TQ,  we have (ax,  wx)x = << K #" ax,  Wx >>x. 
Via the isomorphism K #, an induced inner product on T*Q can be defined, for 
a x , ~ x E T * Q ,  

< Olx, [~x >T*Q ~ << K #  " ax ,  K # �9 >>x. (2.2) 

Let G be a Lie group, and dp : G x Q ~ Q be a group action of G on the 
manifold Q. We shall use the notations dp(g, x)  =- dPg(X) =- g �9 x interchangeably to 
denote this action. The tangent lift D r associated with qb is defined as qbg ~ -- TdPg �9 
TQ --~ TQ,  or, in local coordinates, dPg~(x, v) = (~g(X),  TxdPg �9 v). The cotangent 
lift dP ~* associated to qb on the cotangent bundle T ' Q ,  dP T* : G x T*Q ~ T ' Q ,  
is dP~*(ax)A= T*dPg-1 �9 ax,  where Z*f~g-1 is the dual of  TdP g-1. In local coordinates 
we have (dJg*(X, a), (g �9 x ,  V))g.x = (a, Tg.~ dpg_~ �9 V)x. It is straightforward to verify 
that the tangent lift and cotangent lift are both well-defined actions on the spaces TQ 
and T*Q respectively. 

Let the Lie algebra of  a Lie group G be denoted by qJ, with its dual q3*. Recall 
that the Lie algebra ~3 is identified as the tangent space to G at the identity element e 
or, equivalently, the set of  left invariant vector fields on G,  compare also [34]. Given 

E ~3, for a group action qb on a manifold Q,  we define 

Ca(x ) ~ d ,=0 -- ~ (I)expe~:(X) ~ TxQ, 

the infinitesimal generator of the action corresponding to ~:. The group G acts on ~J 
through the adjoint action 

Ad : G  x q3 ---~ q3; 

where Lg, Rg denote the left and 

(g ,~)  ~ Te(Rg-, OLg)~ = Adgs  e, (2.3) 

right translation of a group element by g ~ G,  
respectively. The map g ~ Adg is also called the adjoint representation of G in ~.  
The infinitesimal generator of  this adjoint action, 

gtz~(r/) = d ~  ~=0 adexp~( 'q)  

can be shown to be equal to the Lie bracket of  ~ and r/, namely, 

~(r l )  = [~, rl] ~ ad~71. 

(We follow the sign convention for Lie brackets used in [1]). The group G also acts 
on the dual of  the Lie algebra q3* through the coadjoint action 

Ad* : G x q3* --~ q3*; (g, IX) ~->Ad*g_lix, 

which is defined by, (Ad*gt x, ~) 5 (ix, Adg~) ,  for all ~ E q3, where (-, .) denotes 
the duality pairing on q3* x q3. The corresponding infinitesimal generator, ~ .  can be 
shown to be determined by 

(~ . ( ix) ,  7/) = - ( i x ,  [~, ~7]) & - ( a d r  rl), 
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for all ~7 ~ q3. From the previous definitions, it is easy to establish the identity, 
(ad*cix, ~7) = (t x, ad~l) .  With the above structure, group G acts on Q and q3* 
through the actions (b and Ad* respectively. A map J : Q ----> ~* is called Ad*- 
equivariant if J o qbg = Ad;_l o J. For IX E q3*, we define the isotropy subgroup of 
Ixby 

with isotropy Lie algebra 

G~ = {g E G :Adgix = IX}, (2.4) 

wo~ = {~1 ~ wo : adnix = 0}, (2.5) 

which can be shown to be a subalgebra of q3. 
The notion of invariance is now ready to be introduced. A Riemannian metric is 

G-invariant if it is invariant under the pull-back of the mapping qbg; that is, for all 
g ~ G,  ( b g . K  = K ,  or in local coordinates, K(x) (v ,w)  = K( g . x ) ( Tx d Pg .V ,  
TxdPg �9 w), V v, w ~ TxQ. It then follows that the inner product on T*Q defined 

T* in (2.2) is invariant under the cotangent lift, namely, < ~x, fl~ >7"*0 = < qbg C~x, 
f~gT*[~x >T'Q,  for all g ~ G. This can be shown by using the following identities, 

K #.dprg *.oz~ = T / b g . K  # . a ~ ,  forc~x E T * Q ,  (2.6a)  

K b 'Txcbg 'wx  = ~ g * ' K  e ' w x ,  fo rw~  E T Q .  (2.6b) 

Similarly, a 1-form Y ~ T*Q is called G-invariant if qbg �9 ~" = ~', for all g ~ G. 
A smooth function V : Q ---> ~ is a G-invariant function on the manifold if, for all 
g ~ G, V(dPg(X)) = V(x). A vector field Y on Q is a G-invariant vectorfieM if for 
all g E G, (rpg). �9 y = y ,  or Y(x) = Tdpg �9 y(g-1 . x), for x E Q, g E G. 

Recall that a differential operator on the full tensor algebra can be defined from 
its restrictions on functions and vector fields, compare the theorem of Willmore [52]. 
Accordingly, the Lie derivative of a vector field on the tensor algebra can be found 
from its Lie derivative on functions (directional derivative) and Lie derivative on vector 
fields (Lie bracket). The following two lemmas are essential to the developments in 
Section 6. Their proofs can be found in, for example, [1] and [46]. 

Lemma 2.1. Let Y, K be G-invariant vector field and Riemannian metric, respec- 
tively. Their Lie derivatives with respect to vector field rio, where r 1 E q3, vanish, 
namely, LnQY = O, and LnQK = O. 

Lemma 2.2. Let X1, X2 ~ ~g(Q), the vector fields on Q. For ~7 ~ q3, we have 

L~TQ << X1,  X2 ~> x = << LrIQXI, X2 >> x + << X1, L,1QX2 >~ x �9 

3. Lagrangian Mechanics in Invariant Form 

Lagrangian mechanics provides a systematic formulation of mechanical problems from 
a unified point of  view. In contrast to working on the cotangent bundle as in most 
of Hamiltonian mechanics, Lagrangian mechanics formulates the problems on the 
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tangent bundle, or the velocity phase space. As we shall see, it admits greater freedom 
in interpreting and formulating intuitive physical notion~ such as exogenous forces 
and the principle of virtual power. In this section, we present the invariant form of 
Lagrangian mechanics through local representations and show that the invariant form 
of the Lagrange-D'Alembert Principle gives rise to the Euler-Lagrange equations in 
local coordinates. Moreover, a similar equation can be applied to model mechanical 
systems on the special orthogonal group (rotation group) SO(3) in a global sense. 

Let Q be a smooth manifold viewed as the configuration space. Let TQ and TTQ 
denote its tangent bundle and second tangent bundle, respectively. Since Lagrangian 
mechanics is about second-order equations, we need to consider the corresponding 
elements in the jet spaces of Q, namely the second tangent vectors. Let L : TQ ~ 
be a smooth function (or Lagrangian). The corresponding differential 1-form dL : 
TQ ~ T*(TQ) can be written in local coordinates as 

(dL(x,  v), (u, w)) = TL(x,v~ �9 (u, w) (3.1) 

or, in terms of Frrchrt partial derivatives, dL(x,  v) = (D1L(x, v), DzL(x, v)). The 
horizontal 1-form OL on TQ corresponding to L is defined to be, compare (2.1), 

| A= Z" dL. (3.2a) 

In local coordinates, OL(X, v) = Z(x,v) " dL(x,  v) = (DzL(x, v), 0). Taking the 
exterior derivative of the 1-form OL, we associate to L a 2-form on TQ, OL : 
TTQ • TTQ ~ ~, defined as 

~L ~ - d  OL. (3.3a) 

If we write | = Dv,L dx i , then, by taking exterior derivatives on both sides, we 
get 

OL = -dDv~L A dx i = DxJDv~L dx i / k  dx j + DvJDviL dx i / k  dv j.  (3.3b) 

On the other hand, let (ul, Wl), (u2, wz) E T(x,v)TQ. From (3.3a), we derive the 
following formula in local coordinates, 

v)((ul, wl), (u2, w2))= (o,D L(x, v). u, + v). w2). 
-- ( O 1 O 2 Z ( x ,  ~') " b/1)'U2 -- ( O 2 D 2 t ( x ,  v )  " Wl)'b/3. 

(3.3c) 

Next, we give the intrinsic form of Legendre transformation, which maps the 
velocity phase space to the momentum phase space. The Legendre transformation 
corresponding to the Lagrangian L can be defined as 

eL : TO ~ T'Q,  (x, v) ~ (x, O'(x,v ) �9 OL(X, V)), (3.4) 

or, equivalently, fL(X, V) = (X, DzL(x, v)), compare the definition through fiber 
derivatives in pp. 209, 219 of [1]. 

Assuming now that gL is a diffeomorphism (or L is hyperregular), we have 
~ 1  : T*Q --> TQ. (This condition implies that, in local coordinates, DzDzL(x, v) 
is nonsingular.) Denote the space of k-forms on a manifold M as ink(M). By the 
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pull-back of eL I , (eLl) * : ~r2(TQ) --o nr2(T*Q), we can define a 2-form on T*Q as 
A w0 = (eL1)*l)L. Although Oz is L-dependent, tOo defined above is invariant under 

the change of L. In fact, letting (x, p)  be local coordinates of  T'Q,  where (p ,  w) = 
(D2L(x, v), w), for w E Tx Q, it can be shown that too = dx A dp, which is the 
canonical symplectic 2-form on the cotangent bundle. 

Thus, when the Legendre transformation is diffeomorphic, the two approaches, 
either based on the cotangent bundle or directly on the tangent bundle, are equivalent. 
Moreover, (T'Q, too), (TQ, ~L) are both symplectic manifolds, carrying associated 
Poisson structures. 

Remark 3.1. The closed 2-form 12L in (3.3a)  is well defined for every Lagrangian L. 
It is, however, nondegenerate, and therefore a symplectic structure, only when L is 
regular. For a singular or irregular L, f~L becomes presymplectic, namely I)L is no 
longer of maximal rank. Discussions of  this case may be found in, for example, [14] 

[151. 

With the symplectic 2-form I)L, one constructs a correspondence between vector 
fields and 1-forms, IIz  : nrl(TQ) ~ ~g(TQ) through, for to ~ nr l (TQ) ,  

I'~L(IIL(to), Z) = w(Z), V Z ~ ?~(TQ). (3.5) 

In terms of the inverse of IlL, an alternative expression is f~L(X, Z)  = I I / I ( X ) ( Z ) ,  
for all Z E ~g(TQ), or 

IILI(X)(")  = f~L(X, "). (3.6) 

It can be shown that IlL maps horizontal 1-forms to vertical vector fields [45] [46]. 
Now define the energy function on TQ, HL : TQ ~ ~, as, 

HL A= dL(XPV)_ L, (3.7) 

where X Pv is the principal vertical field defined in Section 2. In local coordinates, 
we have Hr(x,  v) = (eL(X, V), V) -- L(x, v), which is exactly the same notion as 
the energy defined on p. 213 in [1]. In particular, the function dL(X ev) is sometimes 
called the action corresponding to L. From the energy function HL on the velocity 
phase space, define the Hamiltonian on the momentum phase space as 

H : T * Q ~  H = HL o eL 1 . (3.8) 

The Hamiltonian system (T'Q, too, H) is the customary object of  study in Hamiltonian 
mechanics. 

The Lagrangian vector fieM determined by L is defined as, 

XI4L A= IIL(dHL), (3.9a)  

or, equivalently, OL(XHL, Z) = dilL(Z), for all Z ~ ~g(TQ). In local coordinates, 
the matrix form is Xr[OL]Z = VHTZ. Thus we may write the Lagrangian vector 
field as 

XttL = ([~L]-I)TVHL �9 (3.9b) 
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One could also think of XHL a s  the Hamiltonian vector field corresponding to the 
Hamiltonian HL on the symplectic manifold (TQ, fIL), and thus HL is a first integral 
(conserved quantity) along the vector field XHL. We say that we can define consistent 
equations of motion if such an XHL exists. It can be shown that XHL is a special vector 
field and thus gives rise to a second-order equation. 

Now we introduce the important notion of Lagrangian force. Recall that in La- 
grangian mechanics [45], virtual displacements can be thought as special vector fields 
on TQ, and forces can be modeled as horizontal 1-forms on TQ. For a Lagrangian 
L, the associated Lagrangian force on a virtual displacement X, FL(X), is defined 
through 

FL(X)(Z) ~ OL(X, Z) - dilL(Z), V Z E ~(TQ). (3.10a) 

The Lagrangian force FL(X) is a 1-form on TQ. This 1-form can be shown to be a 
horizontal 1-form on TQ. In fact, in local coordinates, with X(x, v) = (v, w), we 
have 

FL(X)(x, v)(u, w2) = (-D1D2L(x, v).v-O2O2L(x, v) .w+OiL(x,  v)).u. (3.10b) 

Thus it is a well-defined force. 
Definition in (3.10a) holds even for L singular, compare Remark 3.1. If L is 

hyperregular, we may write, compare (3.5), FL(X) = IIL-I(x) - dilL. This is the 
definition used in [45] for the Lagrangian force. In the above setting, the Lagrange- 
D'Alembert Principle can be now stated in the following form. 

Principle 3.2. Lagrange d'Alembert Priniple. For a holonomic mechanical system, 
on the virtual displacement (special vector field) that determines the real trajectory 
of motion, the sum of the Lagrangian force and the exterior force vanishes. 

For natural systems, the Lagrangian force consists of resultant force of inertia 
and forces coming from the potential energy. Thus the principle here corresponds to 
the classical D'Alembert principle, see for example, [26]. As discussed in [26], a 
fundamental entity in analytical mechanics is virtual work, instead of the classical 
notion of force. Here we present a unified treatment in terms of horizontal 1-forms, 
where the classical forces are represented by the coordinates of this 1-form. 

Let to be an exterior force or a horizontal 1-form. The D'Alembert principle says 
that 

FL(X) + w = O, (3.11) 

where X is a special vector field. The trajectories of motion of the mechanical system 
with Lagrangian L obey the flow of this vector field. In the absence of any exterior 
force and with L being regular, from (3.10a), we write I)L(X,Z) = dilL(Z), for 
all Z E ~(TQ), which, by definition of XHL, implies that X = XI-1L, that is, the 
Lagrangian vector field gives the real trajectories of motion. 

Now we express the D'Alembert principle in local coordinates where (3.11) reads 

FL(X)(x, v) + ~o(x, v) = O. 
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Letting o) = (a, 0), X ( x ,  v) = (v, w),  we have, compare (3.10b), 

( - D1DzL(x ,  v ) .  v - DzDzL(x ,  v ) .  w + D1L(x,  v)).  u + ol �9 u = O, V u E TxQ. 

By including time derivatives as v = 2, w = ~, we get 

d 
--~DzL(x,  v ) .  u = D1L(x ,  v ) .  u + a �9 u, V u E TxQ. (3.12) 

Integrating both sides with respect to the variable t, this equation can be rewritten as 

if; ;o DzL(x ,  v) " u - DzL(x ,  v) " ut dt  = (DaL(x, v) " u + o~ �9 u)d t .  

This corresponds to the Principle of  Virtual Power in analytical mechanics, compare, 
for example, [51]. The tangent vector u is sometimes called test function. In the case 
that the pairing is nondegenerate, for example, in the finite dimensional case, we can 
write (3.12) as 

d 
- ~ D 2 L ( x ,  v) = D1L(x,  v) + or, (3.13) 

which is the classical form of the Euler-Lagrange equation. 

Example 3.3. (On the group SO(3)). Now we illustrate the Lagrange-D'Alembert 
principle in the setting of the special orthogonal group SO(3) as configuration space. 
Recall that each element A in SO(3) is an element in GL(3), the group of all 3 x 3 
nonsingular matrices, which satisfies the condition A r A  --= 1 and det(A) = 1. Let 
the operator ^ denote the natural isomorphism from ~3 to so(3), the space of 3 x 3 
skew-symmetric matrices, defined by (o) (0 o3 w) 

w2 = w3 - w l  �9 (3.14) 
W3 --W2 W1 0 

Given A E SO(3), recall that (A, AI~) is an element in TSO(3) .  In rigid body mechan- 
ics, the variable 1~ corresponds to the instantaneous angular velocity of the motion 
in body coordinates. With the representation of the elements in the second tangent 
bundle T T S O ( 3 )  as 

(A, A O , A f t , A ( f t ~  + ~)), (3.15) 

and the trace pairing in GL(3) 

1 T 
(A ,B)  = -~tr(A B), forA, B ~ GL(3), (3.16) 

we can write elements in T*TSO(3)  canonically as 

(A, A f t ,  a (b f i  + ~), ab) .  (3.17) 
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Here u, w, a, b are vectors in N3, and the pairing between T*TSO(3) and TTSO(3) 
becomes 

((A,A~,A(t)~+gt),AI)), (A,Z~,Afi ,A(gt~+~))l= a . u + b . w .  

We remark here that these parametrizations of TTSO(3) and T*TSO(3) are glob- 
ally defined via the embedding of SO(3) in GL(3). Our goal has been to make 
the pairing analogous to that on Euclidean space. The global representations (3.15), 
(3.17) of the second tangent bundle and the dual of the second tangent bundle on 
SO(3) also prove to be useful in computing the derivatives or variations of X function 
(Lagrangian) on TSO(3) and in deriving the reduced Poisson bracket [49]. In the 
following, we state the Lagrange-D'Alembert principle in terms of these representa- 
tions. 

On TSO(3), let a system be described by a Lagrangian L. The Lagrange- 
D'Alembert principle in the invariant form (3.11) applied to motions on SO(3) gives 
rise to the Euler-Lagrange equation, namely for all Aft E TASO(3), 

d A (~-~D2L( ,AO),ACt) = (D1L(A,A~),Afi) + (o~,Afi), (3.18) 

where ce is the exterior force. See [46] for detailed discussions. 

4. Gyroscopic Control 

In this section we demonstrate a class of feedback control laws that transform a 
simple mechanical system with symmetry with exogenous forces (controls) into a 
gyroscopic system with symmetry, compare Theorem 4.4 latei- in this section. Al- 
though the concept of a Lagrangian system with symmetry is by now well known 
(see [1], and [5]), in the interest of keeping our treatment self-contained, we give 
a rapid expos6 of the basic ideas around the concept of a gyroscopic system with 
symmetry. 

Definition 4.1. A gyroscopic system with symmetry is a 5-tuple, (Q, K, Y, V, G), 
where 

(1) (Q, K) is a Riemannian manifold. 

(2) Y is a vector field on Q, called a gyroscopic field. 
(3) V is a function on Q, a potential. 
(4) G is a Lie group with an action qb : G • Q ----> Q, which leaves K,  

invariant and is referred to as the symmetry group. 
(5) The associated Lagrangian L : TQ ---> ~ is given by 

Y, V 

1K t.(vx) = ~ (x)O,x Vx) + I,:(x)(vx, r ( x ) ) -  V(x). (4.1) 
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On the other hand, in the framework of Hamiltonian mechanics, a gyroscopic 
system with symmetry is characterized by a Hamiltonian H : T*Q --~ ~ of the 
following form, 

= 5l < _ - K ' ( Y ( x ) )  + v ( x ) .  (4.2) 

where < . ,  �9 >T*Q is the induced metric on T*Q defined in (2.2). 
The word word "gyroscopic" comes from the second term in the Lagrangian (4.1), 

which includes the gyroscopic field Y. This term is linear in the velocity variables 
and is responsible for the paradoxical behavior of gyroscopes. The Coriolis force in a 
rotating reference system and the magnetic force due to electric currents are examples 
of the effect of gyroscopic terms in the Lagrangian function. To see how the gyroscopic 
term enters the dynamical equations, we restrict our attention for the moment to a 
gyroscopic system (without symmetry consideration) on N" (or in local coordinates) 
described by the Lagrangian 

1 
L ( x ,  v) = < v, M ( x ) v  > + < f"(x),  v > - V ( x ) ,  (4.3) 

where M ( x )  is a symmetric positive-definite second-order tensor, vectors x ,  v( = 2)  

are in Nn, f" is a map from Nn to Nn, and V is a real-valued function. The notation 
< -, �9 > denotes the inner product on the Euclidean space Nn. This is a gyroscopic 
system in the sense of Definition 4.1 with 

K ( x ) ( v , v )  = v r M ( x ) v  and Y ( x )  = M ( x ) - l f " ( x ) .  

Abstractly, f" should be regarded as a 1-form in T*Q.  

To obtain the dynamical equations associated with the Lagrangian in (4.3), we 
invoke the classical Euler-Lagrange equations, compare (3.13). First, we find 

OL 
- M ( x ) ' v  + f"(x).  

3v 

By taking time derivatives, we get 

d 3L 
M ( x ) "  i~ + ( x ) "  v " v + =- - ( x ) "  v, 

d t  3v  d x -  - 

where 3 M / O x  is a third-order tensor, and 3 f " / 3 x  is a second-order tensor. With 
standard notations in tensor algebra, compare, for example, [3], the above equation 
can be rewritten as 

OoMxx Of" 
d OL _ M ( x ) "  i~ + (x)  : vv  + --~x(X)" v. (4.4) 
dt  dv 
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Now we compute the partial derivative of L with respect to x. By definition, 

vrM(x)v) �9 w = vrM(x + ew)v 

- ded ~=0M(x+ew):(vv) 

/OM , 

where (OM/3x)* is the cyclic transpose of 3M/?x  defined through 

OM(x)* u ' v  w A OM(x) w u v, V u, v, w E  
3x O x  

Accordingly, we have 

On the other hand, 

-•x OM , 
(v~M(x)v) = -STx (X) : (vv). 

379 

(4.5) 

1 : ~_~_(x)r. ?V 
2 ~~x (x)* (vv) + v - 7x(X) ,  

-~x (x) :(vv) - 7xx (x). 

M(x) " b + --~x (X) : (vv) + (x)" v = - -  

which can be further written as 

j_~( d v ~ ' ( x  + eW) V~(x)) .w = ~ ~:0 

= (~xP(x) " w)" v = (~-~(x)r �9 ~)" w, 

where the superscript r denotes the transpose of the second-order tensor. Thus we 
have 

0@(vrY(x)) = O0~(x)r'v. (4.6) 

By substituting (4.4), (4.5), and (4.6) in the Euler-Lagrange equations, we obtain 
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~ ~ 

(47~ 

2 (x)* - (x). (4.7b) 

The equations of  motion for a gyroscopic system with Lagrangian of the form (4.1) 
can be then expressed as, 

OV 
M ( x ) .  2 = ~- �9 5c �9 5c - f i .  2 - 7 - ( x ) .  

d X  
(4.8) 

Note that f i  is a skew-symmetric tensor, thus the second term on the fight of (4.8) gives 
the gyroscopic force in the dynamical equations as discussed in [11]. We remark here 
that the component form of M ( x ) - l ~  is nothing but the Christoffel symbol associated 
with the geodesic flow. Compare, for example, [1]. By multiplying both sides of  (4.8) 
with M -1 , we get 

~V 
- M ( x ) - l ~  - �9 k �9 k = M(x) - l~  " -  k - M ( x ) - l - 7 - ( x ) . _  - .. - - 

d X  
(4.9) 

In terms of  covariant differentiation, we can write the left-hand side of (4.9) as V~2. 
Moreover, with f" being a 1-form, by taking exterior derivative of  Y, we obtain, in 
local coordinates, 

w)= w).v 

= D f ' ( x ) "  v"  w - D f ' ( x )  r �9 v" w = f i "  v �9 w. 

Thus we may write 

f i t .  2 = df ' (x) (Sc ,  .), 

which is actually a 1-form. On the other hand, the third term on the right of (4.8) 
also corresponds to a 1-form, namely, d V .  Recall that K # transforms a 1-form to a 
vector field. We define the following notations 

g r a d V  & K # . d V ,  

(curvei~)#  A= g # . d f ' ( x ) ( 2 ,  "). 

Here grad V denotes the gradient of  V. As a consequence, (4.9) can be expressed in 
its invariant form as follows. 

Theorem 4.2. The invariant f o r m  o f  the equations o f  motions o f  a gyroscopic system 

(Q,  K ,  ~', V) is 

V:~2 + (curv~ Y)# = - g r a d  V. (4.10) 
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These are the equations of motion of a charged particle in a magnetic field d ~'. They 
are thus a special (simplest, abelian) case of Wong's equation for the motion of a 
particle in a Yang-Mills field [53], [17]. The term (curv~]~') # is the corresponding 
force of interaction with the field. 

Example 4.3. We consider the dynamical system treated in [11] in the following form. 

)? = -c~x - g~, y, = - / 3 y  + gSc. (4.11) 

The skew terms in velocities - g ~  and gSc constitute the gyroscopic forces that do 
not network but affect the stability of the system. It is easily checked that this is a 
gyroscopic system with the Lagrangian in the form (4.3) with the following entities, 

0 
M(x,y)  = (~ 0),1 ~'(x'Y) = (gOY)' V(x'Y) = l ( xY ) (o  f l ) (~)"  

With the equations of motion of a gyroscopic system (4.8), or (4.10), we are ready 
to state the main ideas of gyroscopic control. This notion is isolated here to highlight 
the role of the gyroscopic term from the viewpoint of designing control algorithms. A 
simple mechanical system with symmetry with exterior forces can be transformed into 
a gyroscopic system with symmetry by using suitable feedback laws, that we refer to 
as gyroscopic feedback. This process is described in the following theorem. 

Theorem 4.4. Consider a simple mechanical system with symmetry, (Q, K, V, G). 
Let the exterior force exerted on this system be denoted by a horizontal 1-form (o~, 0). 
Let ~" be any G-invariant 1-form on Q. Then, with the feedback law (gyroscopic 
feedback), 

t~(Vx) = - d  ~'(Vx, "), (4.12) 

the closed-loop system becomes a gyroscopic system with symmetry (Q, K, Y,  V, G) 
where, 

Y = K #"  ~'. (4.13) 

Proof. We prove this theorem in local coordinates where the Riemannian metric is 
expressed as 

K(x)(v, w) = vrM(x)w. 

Also the feedback law (4.12) can be written in local coordinates as 

(4.14) 

Recalling the derivation of Equation (4.8), the dynamical equations for (Q, K, V, G) 
with exterior force can be found to be, in local coordinates, 
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0V 
M(x) .  ~ = ~- �9 2 �9 2 7xx(X) + ~x, (4.15) 

where ~- is defined in (4.7b). With the feedback law (4.14), it is then easy to see that 
(4.15) becomes (4.8) which, in turn, corresponds to a system with Lagrangian in the 
form of (4.3). With the transformation rule (4.13) expressed in local coordinates, 

Y(x) = M(x)-l~'(x), 

the system can be further identified as a gyroscopic system with symmetry, 
(Q, K, Y, V, G). The G-invariance property of Y follows from the G-invariance 
of the Riemannian metric and the 1-form ~'. 

Accordingly, we have a family of gyroscopic feedback laws induced by G-invariant 
1-forms. The techniques used for analyzing gyroscopic systems with symmetry can 
then be applied to the study of the corresponding closed-loop system. In particular, 
the method for stability analysis based on the energy-momentum method that will be 
developed in the following is applicable. The gyroscopic term affects the dynamical 
behavior in many ways. For example, it changes the location of equilibria as well 
as their stability properties. As a consequence, suitable gyroscopic feedbacks may be 
chosen to fulfill design objectives. Much work remains to be done on general methods 
for selecting Y. The dual-spin problem illustrated below gives a simple example of 
gyroscopic systems with symmetry. 

Example 4.5. (Dual-Spin Problem). Consider the system consisting of a rigid body 
(platform) with on-board rigid symmetric rotors moving in free space, compare Figure 
4.1. With the rotors spinning at constant rates relative to the platform, the dynamical 
behavior can be captured by a gyroscopic system with symmetry. 

First we consider the system dynamics with locked rotors. We assume that the 
center of mass of the system is fixed in some inertial frame. Let B ~ SO(3) denote 
the orthogonal transformation from the body frame to the spatial frame, and then 
describe the attitude of the body. We have B =- B ~ ,  where the operator ^ is defined 
in (3.14) and 12 is the instantaneous angular velocity of the body relative to the body 

Fig. 4.1 Dual-spin configuration. 
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frame. Let J be the total moment of inertia of the platform with locked rotors. The 
Lagrangian for this locked system can be written as 

L(B, eft) = ~<a, Ja). 

With this Lagrangian, we now invoke Lagrange-D'Alembert Principle specialized to 
the current situation, compare (3.18). Using the parametrizations introduced in Sec- 
tion 3, the dynamical equations are nothing but the Euler's equation for rigid body 
dynamics, 

J ~  = - f ~  x Jf~. 

Next we let the rotors spin at constant rates. Let 0;, i = 1, 2, 3 denote the relative 
angles between the three rotors and platform, respectively, and 19 = (01, 02, 03). Let 
the corresponding moments of inertia of rotors relative to the spinning axis be denoted 
by (Isl)i, i = 1, 2, 3, respectively. The reaction force exerted on the platform from 
the rotors can be derived from the following gyroscopic 1-form, 

Y(B) = B(IS~)), (4.16) 

where I s = diag{(ISl)l, (Is2)2, (Is3)3}. In fact, by using the formula (4.12), we can 
show that 

Ba) = -8(a 6) 

With this exogenous force, the dynamical equations for the closed-loop system be- 
come, 

J(~ = -11  x (J,.Q + ISO). (4.17) 

It is readily checked that this system is a gyroscopic system with symmetry with the 
following entities, 

Q = SO(3), K(Bfq,  Bfi2) = <Ul, Ju2), 

r ( ~ )  = ~ ( j - ~ O ) ,  v(m = 0, ~ = so(3) 
(4.18) 

where Bill,  Bt~2 E TBSO(3). The group action here is G • Q --+ Q, (R, B) ~-+ RB, 
and the Lagrangian is 

L(B, BI~) = ~(f~, JO~) + (fL IS(~). (4.19) 

Keeping in focus our program of understanding the closed-loop behavior of a system 
with gyroscopic feedback, we return to the abstract framework of gyroscopic systems 
with symmetry. We remark first that a simple mechanical system with symmetry in 
the sense of Smale [42] is a special case of a gyroscopic system with symmetry. We 
simply take Y = 0 and consider the quadruple (Q, K, V, G). Many key results in the 
category of simple mechanical systems with symmetry can be extended to gyroscopic 
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systems [46]. First, for a gyroscopic system with symmetry, the Lagrangian (4.1) is 
invariant under the tangent lift qbT, which follows directly from the invariance of the 
metric K, the gyroscopic field Y, and the potential V. The Legendre transformation, 
compare (3.4), is given by 

eL(Vx) = Kb(vx + Y(x)). (4.20) 

Its inverse can be then found as, for O~x E T 'Q,  

~LI(O~x) ----- K#(c~x) - Y(x).  

It follows that ~r is a diffeomorphism, and L is hyperregular. As a consequence, the 
space (TQ, 12L = --dOL) is a symplectic manifold, where the symplectic form ~L 
is defined as in (3.3) through the 1-form OL, which in turn can be written as 

OL(vx) " (u, w) = K(x)(v  + r ( x ) ,  u). 

From Lemma 4.6, the group G acts on TQ through the tangelt lift qb T as a symmetry 
group. It can be further verified that this action is symplectic, namely, (dPT)*I~L = l"~r. 
Within this framework, a momentum mapping J : TQ --> ~* can be constructed such 
that the infinitesimal generator of the action qb T corresponding to ~: E q~ is the vector 
field induced by the function ( J ,  ~:) : TQ ~ ~, through the symplectic structure, 
compare (3.9). Consequently, we have the following theorem. 

Theorem 4.6. The gyroscopic system with symmetry (Q, K,  Y ,  V, G) has the fol- 
lowing properties: 

(i) The 1-form corresponding to L defined in (3.2) is invariant under the tangent 
lift, that is, ~ g j v-,L = | 

(ii) There is an associated Ad*-equivariant momentum mapping J : TQ ~ qJ*, 

J(vx)(~) = (eL(Vx), ~Q(X))x =<< vx + Y(x), ~Q(X) >>x, (4.21) 

where ~ E q~ is an element in the Lie algebra of G and ~Q(X) denotes the 
infinitesimal generator of ~ on Q. Here w~* denotes the dual of the Lie algebra 
q3. 

(iii) The momentum mapping defined in (4.21) is a vector-valued integral of any 
vector field induced by a G-invariant function on TQ through an analogous 
formula in (3.9). In particular, it is an integral of the Lagrangian vector field 
X H  z �9 

Proof. For (i), we note that (qbg~)*L = L, by Lemma 4.6. Since the exterior differ- 
entiation commutes with the pull-back operator, (i) follows immediately. Statements 
(ii), and (iii) can be shown by directly applying Theorem 4.2.2 and Corollary 4.2.14. 
in [1]. 

The quadruple (TQ, 12L, ~pT, j )  is an example of a Hamiltonian G-space. The 
energy function for the gyroscopic system can be derived as, compare (3.7), 
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HL(Vx) = (eL(Vx), Vx}x -- L(vx)  

1 
= < <  Vx + Y(x) ,  vx >>x - ~  << Vx, Vx >>~ - << vx, Y ( x )  >>x + V ( x )  

1 
= - << Vx, vx >>x +V(x ) .  (4.22) 

2 

It is easy to see that the energy function is not affected by the presence of the 
gyroscopic field Y. However, the dynamics are different from what one would see 
if Y = 0. The differences in the dynamical behavior arise from the Y-dependent 
symplectic 2-form f~L. In particular, the gyroscopic term in the Lagrangian gives rise 
to the magnetic terms in the symplectic 2-form. On the other hand, on the momentum 
phase space T ' Q ,  the Hamiltonian associated to the system is, compare (4.2), 

H ( a x )  = HL o e~l(O~x) 

_ 1 < <  K # ( a ~ )  _ Y(x), K#(O~x) - Y(x) > > ~  +V(x)  
2 

= ! < ~ x  - Kb(Y(x)), ~x - ~cb(r(x)) >~,Q +V(x). 
2 

Accordingly, on the momentum phase space, the Hamiltonian is affected by the gyro- 
scopic term through a momentum shift, while the canonical 2-form 090 is unchanged. 
This subtlety is best explained by the following example. 

Example 4.7. We consider again the system in Example 4.3. The energy associated 
with (4.11) on TQ is 

HL(X, y, k, ~) = ~(.~2 + ~2 + a x  2 + fly2), 

with the symplectic 2-form in matrix representation 

/ i) - g 0 

IaLJ-- o ~ -~ 0~ 
This can be checked from the differential equation (4.11), compare (3.9b), 

=- XHL(X ) = ([~'~L]-I)TVHL, 

where x = (x, y, k, p). The left-upper 2 • 2 block in [I~L] is called the magnetic 

part. On the other hand, on T ' Q ,  we have the conjugate momentum variables defined 
by 

Pl = k + gy ,  P2 = Y. 

The dynamical equation (4.11) can be written as 
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2 = P l - g Y ,  Y = P2, 

[91 : - a x ,  P2 : - B Y  + g(Pl - gY), 

which is a Hamiltonian system with the Hamiltonian function 

1 
H ( x ,  y,  Pl,  P2) = ~((Pl - gy)2 + p~ + ~ x  2 +/3y2) .  

The symplectic structure is the canonical symplectic 2-form O~o, that is, in matrix 
representation, 01 ) 

LJr o = o o o 
- 1  0 0 ' 
0 - 1  0 

In summary, the gyroscopic term affects the symplectic 2-form on the TQ side, 
whereas, on the T*Q side, it affects the Hamiltonian function. To gain more insight 
on how the gyroscopic field enters the symplectic structure f~L, we consider an even 
simpler case than (4.3). We assume that the second-order tensor M is independent 
of x in (4.3). It can be easily seen that the symplectic 2-form is now, compare 
(3.3), 

f~L(q, V)((Ul, W1), (b/2, W2)) 

0f" of" 
03X l,t 2 bl 1 + M w2 Ul ~x  ul u2 M W 1 U 2 

= ( u l w l ) "  Ox Ox 

- M  r 

The block Of"/Ox - Of"r/c)x is the so-called magnetic term. 

5. Reduction, Relative Equilibria, and Stability 

By recognizing the symmetry, under suitable regularity hypotheses, it is possible to 
reduce a gyroscopic system with symmetry (Q, K ,  Y, V, G) to a lower-order dynam- 
ical system. The reduction process has a long history. For Jacobi and Liouville [1] [5], 
this meant reduction of the Hamilton's equation via first integrals in involution. For 
Routh [37], this meant a process of eliminating ignorable variables. In the following, 
we shall discuss the reduction from two modem points of view, namely, symplectic 
reduction and Poisson reduction. 

First, we consider symplectic reduction in the sense of [32]. As discussed in Sec- 
tion 3, if L is regular, (TQ,  fIL) is a well-defined symplectic manifold. By the Prop- 
erty (i) in Theorem 4.6, the Lie group G acts symplectically on (TQ,  f~L). Also, 
from Property (ii) in Theorem 4.6, there is an Ad*-equivariant momentum mapping J 
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for this action. Thus all the conditions in the Symplectic Reduction Theorem, see 
Theorems 4.3.1, 4.3.5, pp. 299,304 in [1] are satisfied, and we can state the following 
reduction theorem specialized to gyroscopic systems with symmetry. 

Theorem 5.1. (Marsden-Weinstein). Consider the gyroscopic system with symmetry 
(Q, K,  Y ,  V ,  G). Assume that Ix E q~* is a regular value of the momentum mapping 
J, as defined in (4.21), and that the isotropy subgroup Gg, defined by Gg = {g 
G : A d * _ ~  - tz}, under the Ad* action on q3* acts freely andproperly on j - l ( p , ) ,  g -s 
then (TQ)g J- l ( I - t ) /Gt~,  has a unique symplectic form Ot, with the property 
7r*~f~t~ = i*~f~L, where 7rg : j - l ( ~ )  ~ (TQ)~ is the canonical projection and i~ : 
j-a(/./,) ~ TQ is the inclusion map. Letting HL be as in (4.22), the flow Ft of XHL 
induces a flow Ft ~ on (T Q ) t, satisfying 7r ~ "Ft = Ft ~ .~r g. This flow is a Hamiltonian 
flow on (TQ)g with a Hamiltonian function H~ satisyfing H~ . Trg = HL �9 ig, with 
respect to the symplectic structure f~m. 

The function HL ~ on the reduced space is called the reduced energy. The corre- 
sponding vector field HH~ on the reduced space (TQ)g is called the reduced dynam- 
ics. Thus in symplectic reduction, we first restrict the dynamics to a level set of the 
momentum mapping, and then factor out the isotropy subgroup. 

Next, we consider Poisson reduction [31]. We first recall the basic setup of Poisson 
manifolds. A Poisson manifold P is a smooth manifold equipped with an ~-bilinear 
map (Poisson structure) on the space of smooth functions, {., .}p : C~(P) x C~(p) 
C~~ satisfying the axioms, for f ,  g E C~(P), 

(i) {f,  g}p = -{g ,  f}p 
(ii) {fg ,  h}p = g{ f  , h}e + f {g ,  h}p 

(iii) {f ,  {g, h}p}p + {g, {h, f}p}e + {h, {f,  g}p}e = O. 

Associated to a Poisson structure, there is a unique twice contravariant skew- 
symmetric, smooth tensor field A on P such that {f ,  g}e = A ( d f ,  dg) ,  where 
d f ,  d g are differentials of f ,  g,  respectively. The tensor field A defines a vector- 

bundle morphism, A # �9 T*P ---> TP; ax ~-> A # ( a x )  E TxP, satisfying, 

/3x(A#(ax)) = A(x)(ax, ~x) V ~x E T•P. 

Let G be a Lie group and let ~ : G x P --) P ,  (g, x) ~-) ~g(X), be a group action 
such that ~ 8 ( ' )  is a Poisson morphism for every g E G, that is, ~g  : P --) P is an 
isomorphism and preserves the Poisson structure. Suppose that the action is proper 
and free. Then the quotient space P / G  is a manifold that carries a Poisson structure 
{', "}e/a induced from the one on P satisfying, for f ,  g E C~(P/G) ,  

{ f ,  g}p/G oTr = { f  o~r, g o ~r}p. (5.1) 

Here ~- : P ~ P / G  is the canonical projection. By construction, it is a Poisson 
morphism. 

G-equivariant dynamics on P induce dynamics on P / G .  Suppose h : P ---* R is a 
G-invariant Hamiltonian function on P,  that is, h(dgg(X)) = h(x), V g ~ G. Define 
a vector field Xh through 
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Xh[f] = 0 c, h}p V feC~(P) (5.2) 

where Xh[f] denotes the Lie-derivative of  the vector field Xh on the function f .  
The Hamiltonian h descends to /t : P / G  ~ ~ and determines a Poisson-reduced 
dynamics xh on P / G  by 

Xh[f] = { f ' h } e / a  V f e C ' ( P / G ) .  (5.3) 

Here h([x]) = h(x) for an equivalence class Ixl in P.  
Recall that the symplectic manifold (TQ, f~L) has a Poisson structure induced from 

the symplectic structure, namely, for f ,  g E C~176 

{f  , g}L(Vx) A = df(vx)'Xg(vx)--f~L(Vx~IIL(df),IIL(dg)), (5.4) 

compare (3.5). Since the energy function HL is G-invariant, we carry out the Poisson 
reduction as follows. Assume G acts on TQ freely and properly. Let ~ be theprojection 
from TQ to TQ/G, f ,  ~ ~ C~(TQ/G), the induced Poisson bracket of  f and ~ is 
defined analogous to (5.1) as 

= ( 5 . 5 )  

Referring to the framework of Poisson reduction, we can identify the induced Hamil- 
tonian fill and associated dynamics XB~ as: 

flit. o ~(Vx) = HL(Vx), (5.6) 

X/~L[f] = {f,  fliL) i V f ~ C~(TQ/G), (5.7) 

Here the vector field XBL is called the project Hamiltonian vector field on TQ/G.  
The reductions discussed here are on the Lagrangian side, or TQ side. We could 

perform a similar reduction process on T*Q side, or Hamiltonian side, by noting that 
the Hamiltonian function on T'Q, namely H in (4.2), is invariant under the cotangent 

lift cb r* (this follows from (2.6)). The underlying symplectic manifold is (T'Q, ~Oo), 
with the corresponding momentum mapping, 

J : T*Q ---> ~ (J(ax), ~) = (Olx, ~Q(X))x V 4: E ~3 (5.8) 

Since L is hyperregular, the reductions on TQ and T*Q are equivalent, but we shall 
use the one on TQ side in the following development, bearing in mind that the 
Lagrange-D'Alembert  Principle is formulated there. 

We proceed to discuss a characterization of relative equilibria. The concept of  
relative equilibrium goes back to Poincar6. In the context of  symplectic reduction, we 
define the notion of relative equilibrium as follows, compare Theorem 5.1. 

Definition 5.2. A point vx in TQ is called a relative equilibrium if 7r~(vx) E (TQ)~ 
is a fixed point for the symplectic-reduced vector field Xn~, where /z = J(vx). 

In the context of  Poisson reduction, we can define a similar notion, compare (5.6), 
(5.7). A point Vx in TQ is called a relative equilibrium for XHL with respect to 
the Poisson reduction if XFIL(~(Vx)) = 0. It turns out that the two notions of  relative 
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equilibrium are equivalent. In fact, it can be shown, compare [1], that, for both cases, 
vx is a relative equilibrium iff there exists a G E ~ such that the flow of XHL, 

F}.  L(vx) = ~exp(te)(Vx), (5.9) 

namely, the dynamical orbit is simply a group orbit. Thus if the observer were to be 
set in uniform motion according to the one-parameter group exp(tG), then for such a 
moving observer, a relative equilibrium will appear to be stationary. For instance, if 
G = SO(3), then F},L(Vx) corresponds to a uniform rotation about a fixed axis G in 
space with the rotational speed ]~:[. In a central force field, a relative equilibrium for 
the motion of a point mass corresponds to a circular orbit, compare [49]. 

Relative equilibria can be characterized by the following result of Souriau-Smale- 
Robbin. 

Theorem 5.3. Vx E TQ is a relative equilibrium for XH iff there exists a ~ E q3 
such that Vx is a critical point of H~ A= HL -- (J ,  G), where (J,  ~) : TQ ---> R is the 
real-valued function given by Vx ~ (J (vx), ~), associated to the momentum mapping 
J. 

In particular, for gyroscopic systems with symmetry, we have, compare (5.8), 
(4.22), 

1 
H#(vx) = ~ << Vx, Vx >>x + V ( x ) -  << Vx + Y(x),GO(X) >>x, 

1 
= - << vx - GQ(x), vx - GQ(x) >>x 

2 
1 

+ V(x)-  << r(x), GQ(x) >>x - ~  << ~Q(x), GQ(x) > > ~ .  (5.10) 

From Theorem 5.3, it is then easy to check that the necessary and sufficient conditions 
for Vx to be a relative equilibrium are 

Vx = Go(X), (5.11) 

and 

[ , ] dx V ( x ) -  << Y(x),GQ(X) >>x - ~  << GQ(X), GQ(X) >>x = O. 

We thus have the following algorithm (principle of symmetric criticality [35]) to find 
relative equilibria. 

Algorithm 5.4. 

0. Pick G E q3. 
1. Search for the critical points x e of the function 

1 
Vr : Q ~ R V~(x) ~ V ( x ) -  << Y(x),  GQ(X) >>x ---~ << GO(X), GQ(x) > > x  �9 

(5.12) 
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2. Substitute Xe in (5.11) to find the corresponding Ve = ~Q(Xe) .  

We note that the computation in step 1 is fully on the configuration space. Thus the 
process of searching for a relative equilibrium is greatly simplified. We remark that, 
for simple mechanical systems with symmetry, the principle of symmetric criticality 
stated above appears as Theorem 1.1 in Part II of Smale[42]. Smale also notes that 
special versions have been known earlier, for example, in the study of symmetric 
geodesics. See also p. 355 of [1], Theorem 16.7 in Hermann [19], Arnold [6], and 
Palais [35]. Here the augmented potential function V~ has one additional term to 
accommodate the gyroscopic effects. Through this term, we can change the number 
and locations of the critical points. This provides us an effective tool in controlling 
the phase portrait. Compare [46]. 

There is an additional symmetry in the augmented potential V~. First, we define 
the stabilizer of ~ to be G~ = {g ~ GlAdg(~) = ~:} C G, where Ad is the adjoint 
action of G on q3 defined in (2.3). The stabilizer G~ is actually a subgroup of G, 
and thus defines an action on Q. By an argument similar to the one in the proof of 
Lemma 4.6, it can be shown that Vr is invariant under the action of G~ on Q, that is, 

V~(Cbg(X)) = V~(x) V g E G~. (5.13) 

We assume that the quotient space Q/Gr is well defined. Denote the projection from 
Q to Q/Gr by ~rr By (5.13), we can define an induced function ~ on Q/Gr from 
the augmented potential such that the diagram in Figure 5.1 commutes, namely, 

o ~r~ = V~. (5.14) 

This symmetry of V~ will be used later in establishing a stability result associated with 

As mentioned earlier, reductions could be worked out on the Hamiltonian side 
as well. Thus there is a similar algorithm corresponding to Algorithm 5.4 on the 
T*Q side. We only need to find the corresponding conjugate momentum vari- 
able Pe, by substituting Xe obtained in Step 1 of Algorithm 5.4 in the formula, 
Pe = Kb(r(xe) - ~Q(Xe)). The point (xe, Pe) in the momentum phase space T*Q is 
then a relative equilibrium corresponding to the reduction on T*Q with respect to the 
cotangent lift action. 

We now address the stability of relative equilibria. Although both symplectic re- 
duction and Poisson reduction lead to equivalent notions of relative equilibria, the 

QIG  
Fig. 5.1 Symmetry of Ve. 
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associated stability issues are quite different. In the following, we shall state the 
main ideas in a somewhat more general setting than needed for this paper. However, 
we think that this added generality keeps the treatment free of confusing details. 
In general, let B, P be differentiable manifolds, and G be a Lie group. Consider a 
principal G-bundle, (P, G, B), namely, G acts differentiably on P freely and properly, 
B = P / G  is the quotient space of P with the canonical projection ~" :. P ~ B 
being differentiable. Moreover, P is locally trivial, that is, every point u E B has a 
neighborhood U such that there is a mapping from ~--I(U) to U x G, z ~ (~r(z), ~b(z)) 
that is a diffeomorphism and ~b(g �9 z) = g �9 ~b(z), for all g E G. See Figure 5.2 for 
an illustration of the geometric structure of such an object. For more details, see, for 
example, [34]. 

A vector field X on P is said to be projectable if for each f E ~(B), there exists a 
y ~ ~(B) such that X[foTr]  = f o 0 r ,  compare, for example, [30], [18]. Now, given 
a projectable vector field X on P, the corresponding projected vector field ~2 on B is 
defined in the following way. Given a smooth function f on B, the Lie derivative of 
2 on f is defined as 

y or o = X [ f  o (5.15) 

It is easy to verify that the vector field Xh defined in (5.2) is projectable with the 
projected vector field X~ defined in (5.3) in the above sense. 

Definition 5.5. For the principal G-bundle, (P, G, B), a point z E P is called a 
relative equilibrium of a projectable vector field X E ~g(P) if 7r(z) is an equilibrium 
of the associated projected vector field X ~ ~(B). Moreover, a relative equilibrium 
z ~ P is relatively stable modulo G if the equilibrium 7r(z) is Lyapunov stable with 
respect to the projected vector field X. 

Remark 5.6. In [28], the smooth manifold structure of the quotient space P / G  is 
not explicitly invoked in defining the notion of stationary motion and relative stabil- 
ity modulo G. However, when the group action is free and proper, P / G  is a manifold. 

! /  G'z 
z ,,,] 

lqlg. 5.2 Principle G-bundle. 

P 

B 
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This is the case considered in this paper, and hence Definition 8.13, p. 242 in [28] is 
equivalent to Definition 5.5. 

For a gyroscopic system with symmetry, the definition of relative equilibrium vx E 
TQ in Definition 5.4 matches with the Definition 5.5 by noting that the principal G- 
bundle is now (TQ, G, T Q / G ) .  Accordingly, the relative equilibrium Vx is relatively 
stable modulo G in TQ if ~(vx) is a stable equilibrium with respect to the projected 
Hamiltonian vector field XBL. On the other hand, in the symplectic reduction process, 
we have the bundle structure (J-l(l~), G~, (TQ)~). The relative equilibrium defined 
in Definition 5.2 can be regarded as a relative equilibrium with respect to this principle 
G-bundle. Correspondingly, we may define relative stability modulo G~ in J - l ( / z )  
with respect to the reduced dynamics XH~. Since the space (TQ)~ is diffeomorphic 
to a symplectic leaf in T Q / G ,  relative stability modulo G in TQ implies relative 
stability modulo G~ in j - l ( /~ ) .  The converse is illustrated by the following theorem 
from [28], Theorem 8.17, p. 244, see also [50] [24]. 

Theorem 5.7. Let v e be a relative equilibrium, compare Definition 5.2. Definiteness 
of the Hessian D2H~ at Try(vex) E (TQ)~ implies the relative stability modulo G in 
TQ of vex, if there exists a neighborhood W of Zr(v e) E T Q / G  such that the rank of 
the Poisson structure {., "}i, defined in (5.5), is constant in W. 

Those points Vx in TQ satisfying the constant-rank condition stated in the above 
theorem will be referred to as generic points. The following example demonstrates 
that the sufficient condition in Theorem 5.7 is essential. This example is from [28]. 
A detailed discussion can be also found in [24]. 

Example 5.8. Consider a symplectic manifold (P,  o9), where 

p = ~ 4  _~_ ((ql ,  q2, Pl, P2)) oo = d g l A d p l  + d q 2 A d p 2 .  (5.16) 

Let 

G = Af f+(~)  &{(a, b) E ~2} with the group structure 
(5.17) 

(a, b) .  (c, d) = (a + c, b + e a d ) .  

It can be shown that G defined in (5.17) is a Lie group. We define the action of G 
on P as 

G • P ---~ P ((a, b), (ql, qz, pl,  pz))~--> (a + ql, b + ea qz, pl,  e-a p2). 

It is easy to check that this is a symplectic action on P. This action is also free and 
proper. It follows that P / G  is a manifold (=  ~2). The symplectic structure o) in 
(5.16) defines a Poisson bracket on Uc(P), which, in turn, induces a Poisson structure 
on P / G .  Let a Hamiltonian function H be defined at H(ql ,  q2, Pl, P2) = Pze ql, 
which is a G-invariant function. It can be checked that (0, t, 0, 0) E P is a relative 
equilibrium corresponding to the vector field X~/. Moreover, this relative equilibrium 
is relatively stable modulo G~ in J - l ( /x ) ,  since the quotient space J-l(I.Q/G/x de- 
generates to a point. However, it has been shown in [24] that this relative equilibrium 
is not relatively stable modulo G in P.  Note also that the induced Poisson structure 
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does not have a constant rank at (0, t, O, O) and hence the condition in Theorem 5.7 
does not hold. 

There are several methods for determining relative stability in the appropriate sense. 
For example, the energy-Casimir method [20] [46], or the Lagrange multiplier method 
[29] [49] [46] can be used to determine relative stability modulo G in TQ. On the 
other hand, the energy-momentum method [39] [41] is useful in determining relative 
stability modulo G~ in J - l ( / z ) .  For simplicity, we will drop the underlying spaces 
in the definition of relative stability, for example, we say merely relative stability 
modulo G~. The underlying space is clear from the context. In the next section, the 
energy-momentum method will be adopted to study stability properties of relative 
equilibria for gyroscopic systems with symmetry. 

6. Energy-Momentum Method for Gyroscopic Systems 

As pointed out in Section 4, the use of gyroscopic feedback laws can affect the 
location of relative equilibria and their stability properties. In the work of Bloch, 
Krishnaprasad, Marsden, and Alvarez [7], an example of rigid body stabilization using 
such a control law is considered. Here we give a general method to explore stability 
under gyroscopic feedback laws. A key requirement is to obtain stability criteria that 
are explicit in the parameters of the feedback law, for example, the gyroscopic field. 

In this section, the relative stability modulo G~ will be examined via the energy- 
momentum mapping. Here we apply the energy-momentum method to the general 
framework of gyroscopic systems with symmetry. The block-diagonalization tech- 
nique for simple mechanical systems with symmetry is extended here to account for 
gyroscopic terms. The decomposition of the symplectic structure is also presented. 
Key references for this section are [39] [41]. 

Let (P,  o~) be a symplectic manifold on which the Lie group G acts symplectically, 
and let J : P ---> q3* be an Ad*-equivariant momentum mapping for this action 
(see Section 2 for definitions). Assume we could perform symplectic reduction on 
P in the sense of Marsden and Weinstein [32]. The reduced phase space is denoted 
by P~ = J-l(tz)/G~. Let H : P ---> ~ be invariant under the action of G. It 
induces a Hamiltonian function H t~ on P~ satisfying H ~ o 7r~ = H o i~, where 
'/Tp~ : J - l ( / z )  -"-> P~ is the canonical projection and i~ : J - l ( / z )  ~--~P is the inclusion 
map. We are interested in the stability property of a relative equilibrium associated with 
the reduced dynamics XH~ on the reduced space P~, or the relative stability modulo 
G~ in J - l ( /~) .  By construction, H ~ is a first integral of the reduced dynamics. Thus if 
H u has a strict local minimum at ~ru(ze) where Ze is a relative equilibrium, then H ~ 
serves as a Lyapunov function. Standard Lyapunov stability analysis can be applied 
to conclude stability. Since, for z E j - l ( / ~ )  C P ,  

H~(Ir~(z)) = H(i~(z))= H I/-l(~>(z), 

the condition for qT"lx(Ze) to be a strict local minimum of H ~ is equivalent to the con- 
dition for Ze to be a strict local minimum of H Ij-l(~) modulo the tangent directions 
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of the group orbit, G~ �9 z. This in turn corresponds to checking that the relative 
equilibrium Ze solves the constrained minimization problem, 

minimize H ( z )  subject to J ( z )  = t~e = J ( Z e ) .  

This problem could be further formulated as checking Ze to be a strict local minimum 
of H - (J ,  ~) in all directions o n  J - l ( / . / , e )  except along the tangent directions to 
the group orbit generated by G , ,  where ~ serves as the Lagrange multipler. These 
heuristic remarks are formalized in the following, giving rise to the energy-momentum 
method, compare [40], [41], [36], [39]. 

Define the energy-momentum functional 

HE(z) = H ( z )  - (J(z) ,  ~). (6.1) 

From the relative equilibrium theorem, compare Theorem 5.3, each relative equilib- 
rium of the system is a critical point of H E , for some ~ E c~, namely, 

DH~(Ze)" t~Z = 0 V t~Z E Tzee.  

From previous discussions, the definiteness of the second variation of H E on a subspace 
S ~ of TzeP satisfying 

5f = Tz J - l ( I X e ) / T z , ( G ,  �9 Ze), (6.2) 

implies the relative stability modulo G~ of the relative equilibrium Ze. One way to 
find such a space 5 ~ is to construct a complement of Tze(G~ . Z~) in ZzeJ-l(t.~e) 
such that TzeJ-l( tXe) = 5f 0 Tz,(G~ �9 Ze). S i n c e  T z e J - l ( t l o e )  = Ker D J ( Z e ) ,  which 
is the kernel of the operator DJ(ze ) ,  we summarize the energy-momentum method 
for relative stability as follows. 

Algorithm 6.1. (Energy-Momentum Method). 

0. Pick ~ E N. 

1. Solve the problem DHE(z)  �9 6z  = 0, V 6z E TzP,  for a relative equilibrium Ze. 
2. Compute /xe = J(ze) ,  and determine the space Ker DJ(z~) .  

3. Find S ~ C Ker D J ( z e )  such that Ker D J ( z e )  = ~ (~ Tze(G~ �9 Ze). 

4. Check the second variation of H E on 5e. Definiteness of the second variation 
implies stability. 

For visualizing the geometric picture, see Figure 6.1. 
Now we restrict our consideration to gyroscopic systems with symmetry introduced 

in Section 4. The underlying space is P = TQ with the symplectic structure f~L. In 
this setting, the momentum mapping is given by, compare (4.21), 

J(vx)(~)  = < <  Vx + Y(x) ,  ~Q(X) >>x, (6.3) 

and the energy-momentum functional is HE(vx) = KE(vx) + VE(x), where, compare 
(5. ~ 2), 
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Fig. 6.1 Energy-momentum method. 

1 
K e ( v ~ )  = ~ << vx  - Go(x ) ,  Vx - G o ( x )  >>~, 

1 
Vr = V ( x ) -  << Y(x), Go(X) >>x - ~  << Go(X), GO(X) >>~. 

We define the space 

~ & {no(x):  n ~ ~}, (6.4) 

which is a subspace of TxQ, and thus N & Ux~Q~x, is a subbundle of TQ. We then 
decompose TxQ = Nx • ~ where JV) is the orthogonal complement of Nx with 
respect to the inner product associated with the Riemannian metric. Every element 
v E TxQ can be thus written uniquely as v = rla(X) + ~, for ~7 E qJ, Y E Jr With 
this decomposition, the function K~ could be further written as 

g~<x, v) = ~ [ l~Q<x)  - GQ(x)II 2 + IMI 2 

Note that at relative equilibrium (Xe, GQ(Xe)), w e  have v e = GQ(Xe), and ~ = 0. Thus 
the second term in Kr is nonnegative and vanishes at a relative equilibrium with a 
positive semidefinite second variation. Define 

1 
~<x, ~> = ~ ll~(x)- ~o(x)ll = Jr ~(x>. (6.5) 



396 L.-S. Wang and P. S. Krishnaprasad 

From the above observations, relative stability modulo G/6 can be determined from 
this modified function on the space of Q • ~. Moreover, taking variations in the space 
Q x q3 corresponds to taking variations in the subbundle N C TQ.  We define the 
following embedding: 

I~, : Q X ~ ---> TQ, (x, '17) I---> (X, 7IQ(X)). 

H e n c e / ~  = H E o ~.  A G-action on the space Q x ~J can be constructed as 

�9 : G x ( Q  x~j)- - ->Q x~J 
(6.6) 

(g, (x,  rl)) ~-> (g " x, Ad grl), 

where Ad is the adjoint action defined in (2.3). It can be checked that 

~gr o ~ = ~ o ~g.  (6.7) 

Define the premomentum mapping 

] (x ,  rl) = J o s  rl) = J(x, rlQ(X)) (6.8) 

A straightforward argument shows that the premomentum mapping ] : Q x ~J --* ~J* 
is Ad*-equivariant. Thus the level set ] - l ( p , )  is invariant under the action of the 
isotropy subgroup G/6. Furthermore, let/-1 : Q x q3 ---> ~ be defined as H = /4 o s  
From (6.7), the function/4 is invariant under the group action ~ .  The functional ~ 
can be now written as/~r = /4 - ( ] ,  ~:). By the invariance properties o f / ~  and J ,  
the restriction o f / ~  on , ]-I(]z) ,  

/ ~  ]-1(/6) = /~ j-l(/6) -- ( ~ '  ~7~)" 

is invariant under the group action of G/6. As a consequence, the geometric picture 
is the same as in Figure 6.1. An algorithm analogous to Algorithm 6.1 can then be 
applied to check if (Xe, ~) is a local minimizer of/4~ restricted to J - l ( /x ) .  Before doing 
so, we introduce a few notations. The Riemannian metric restricted to the subspace 
Nx provides an x-dependent bilinear form on the Lie algebra q3. This, in turn, induces 
a pairing (locked inertia tensor associated to x E Q), Ilock(x) : N ~ N*, defined 
through 

(~, Ilock(X)~ ) ~ << ~Q(X), 7]Q(X) >>x, (6.9) 

for s c, r / E  q3. From the symmetry property of the Riemannian metric, we have 

(~, Iloc~(X )~) = (Itock(x )s rl), 

namely, Itock(X) is symmetric. Also, we assume that, at x, the locked inertia tensor 
has an inverse, Ilock(x) -1 : ~* ~ q3. On the other hand, the gyroscopic field also 
induces for each x E Q an element I t ( x )  in ~* defined by 

( I t (x) ,  r/) ~ << Y(x),  ~Q(X) >>x V r/ E ~J. (6.10) 
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We refer to I t (x )  as the (x-dependent) gyromomentum. The function/t~ can now be 
expressed as 

f t , ( x ,  ~7) = 2 (~7 - ~, I to~(x)07 - ~)) 

+ V(x)  - ~(~, Itock(X)~) -- (I t(x) ,  ~:) (6.11) 

= �89 - ~, I~ock(X)(n - ~)) + V~(x) 

with the premomentum mapping, from (6.3), (6.8), for ~7 E q3, 

(Y(x, n), ~) = (g(x, nQ(x)), ~) 

= << no(x), ~o(x) >>~ + << Y(x), r >>~ 

= (Itock(X)~?, ~) + (I t (x) ,  (), 

or we may write 

] ( x ,  7) = Itock(X)rl + I r (x) .  (6.12) 

For/z ~ ~*, the associated isotropy subalgebra ~ e  is defined in (2.4). With the inner 
product induced on ~d by the locked inertia tensor at x e, we define the orthogonal 
complement of (4~p. e to be 

Ize 
(6.13) 

Following the notations used in [39], we define the maps ~ : ~J ~ q3*, and ~ : ~3 
q3, by 

~ ( n )  ~ * ~ ( n )  A -_ ad  ~tze, = I l o c k ( X e ) - l ~ ( ~ 7 ) ,  (6.14) 

respectively. As proved in [39], we have the following lemma. 

Lemma 6.2. Provided that ~•  is finite dimensional or ~ is elliptic with respect to 
tZe 

the inner product induced by Izock(xe), we have 

(i) ~ maps ~3 onto Nx . 

( i i ) ~ m a p s ~ d o n t o ~ a  Cwo*, where~Tze = [/z ~ * : ( / z , r / )  = 0, V r / ~ d ~ e } ,  
is the annihilator of  qJ~,. 

With these notations, we are ready to apply Algorithm 6.1 to check if (x e, ~) is a 
local minimizer of/-)~ restricted to J - l ( tz ) .  We proceed as follows. 
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Step 0. Fix ~ ~ q3. 

Step 1. It is straightforward to derive 

DFI~(x, n)(~x, ~n) 
= DVs + (6~7, Itock(x)(~l - ~)) + 2(~1 - ~, (DI1ock(X)6X)(TI -- ~)). 

The relative equilibrium is given by the conditions DV~(xe) = 0, r/e = ~, which 
match with the conditions we obtained in Algorithm 5.4. 

Step 2. For the relative equilibrium determined by the pair (x e, ~:), we have 

]age = ] ( X e ,  ~ )  = Ilock(Xe)~ + Iy(Xe). (6.15) 

NOW we find the space Ker DJ(xe, ~). From (6.12), 

D](x,  ~7)(6x, 6T/) = d~  , =0 ](x + e~x, 77 + e6~l) 
(6.16) 

= (Dlloc~(X)6X)~? + Ilock(X)6~l + DIy(x)6x.  

Here again x + e3x denotes the integral curve corresponding to the tangent vector 
6x at x. For (6x, 6~1) to be in Ker D](xe,  ~), we must have, from (6.16), 

6~1 = --Ilock(Xe)-l((Dllock(Xe)bX)~ + DIy(xe)6X) 

= I1ock(Xe)-lident[(Xe)6X. 

where the map ident Y : qJ x TQ ~ 2" is defined by, for (x, 3x) E TQ, 

ident~(x)6x A= --((Dllock(x)6x)~ + DIy(x)6x).  (6.17) 

This map specializes to the map identr defined in [39] when Y = 0, that is, for simple 
mechanical systems with symmetry. The properties of this map play an important role 
in our subsequent development. We need the following lemma. 

Lemma 6.3. For x E Q and ~, v, ~1 @ % we have the following identities, 

(~, (OIlock(x)rlQ(x))v) = ([~, ~1], Itock(X)U) + ([u, r/l, Itoek(x)ff), (6.18) 

(~, DIy(x)~la(x)) = (I t(x) ,  [if, ~7]). (6.19) 

Proof. The proof of (6.18) can be found in [39]. Here we only verify (6.19). By 
definition (6.10), 
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d 
(~' Olr(x)rlQ(X)} = ~ ,=o 

d 

de  E=o 

(Iy(exp Er/.  x)~') 

<< Y(exp er / �9  x),  (e(exp er / �9  x) >)'experl'X 
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= LnQ << Y, ~'Q >> (x) 

= < <  Ln~Y(x), (a(x) >>x + << Y(x), LnQ(Q(X) >>x, 

by using Lemma 2.2. Also we have the identity LnQ~Q = [~', r/]Q. With Lemma 2.1, 
it follows that 

(~, DIy(X)~Q(X)) = << Y(x), [~', r/]Q(X) >>x = ( I t (x ) ,  [~', r/]). 

We now evaluate the map ident~'(Xe) restricted to the space Nxe. 

L e m m a  6.4. For ~7 E ~, at relative equilibrium (Xe, ~), 

ident~(Xe)~TQ(Xe) = ad*~lXe + Ilock(Xe)[~q, S~]. (6.20) 

Proof. From the definition (6.17), for arbitrary v E ~,  

(ident~ (Xe)~?Q(Xe), p) = -@,  (DIlock(Xe)~?Q(Xe)~)- (DIy(Xe)nQ(Xe), p). 

From Lemma 6.3, this could be further written as 

--([P, 7]], Ilock(Xe)~) -- ([~, 17], Ilock(Xe)V) -- (Iy(Xe), [P, 17]) 
= (Ilocl~(Xe)~ + Iy(Xe), ['q, P]) + (Ilock(Xe)[~, ~1], P), 

= (adnl-te, P) + (Ilock(Xe)[~, ~1], V), 

where the formula for/-re in (6.15) has been used. We thus established (6.20). 
The discussions in Step 2. can be summarized by writing 

Ker DJ(xe, ~:) = [ (Sx,  r/) E T(x,,~)(Q x qJ) : r/ = Itock(Xe)-lident[(Xe)6X}. 
(6.21) 

Step 3. As seen in (6.21), the component of ~ in Ker DJ(xe, ~) is determined from 
the variation 6x in Tx, Q. We thus only need to decompose the kernel space with 
respect to Tx~(Gtz  e �9 X e ) .  Since 

~X ]~e ~-~ Txe(Gt~" Xe)  ~--- {?~Q(Xe) ~ TxeQ : 17 ~ f~,t/,e}, (6.22) 

we find the orthogonal complement of Nx~' with respect to the Riemannian metric as 

= {6x E Tx,Q :<< 6x, "rlQ(Xe) >>Xe ~- 0, V 17 ~ ~/Ze} (6.23) 

Consequently, the space ~e can be written as 

= {(6x, ~7) E ~ • ~ :  ~q = Itock(Xe)-lident~(Xe)6X}. (6.24) 
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and we obtain Ker D](xe, ~) = ~ ~ T(Xe,~) ( a ] ~  e " (X e, ~)), where,  with respect to the 
action q~ defined in (6.6), 

T(xe,~)(a]s e " (Xe, ~)) = {(~Q(Xe), a d ~ )  : ~ E q~l~e}' 

can be shown to be a subspace of Ker D](xe, ~). 

Step 4. Now we check the definiteness of the second variation of H~ on the space 
) .  The block diagonalization techniques prove to be useful in this context. First, we 
note that, under conditions specified in Lemma 6.6 (see below), the space ~ can be 
decomposed as 

where 

= el/RIG ~ ~INT, (6.25) 

C~RIG ~ { ~Q(xe) : ff ~ q~e} '  (6.26) 

2_ ~IN7 ~ ( SX E ~ : (~, ident~ (Xe)6x) = 0, V ~ E ~6~,}. (6.27) 

It is this decomposition that the block diagonalization is based on. On the other hand, 
by definitions (6.14), (6.22), and (6.26), we have .N'~ = ~ e  O~Rm. The relationship 
between these spaces is geometrically depicted in Figure 6.2. 

Next we check the second variation of / t~  given by 

D2ffl~(xe, ~)" (AXl~I)  " (~x2, 7~2) 

= ('ql, Ilock(Xe)Tl2> + D2V~(Xe) " 8Xl  �9 ~x2 

= (ident~(x e)SX ~, Ito~k(Xe)-lident~(x e)SX2> + D2Vr e)" 6X 1 " 8X2, 

for (6x1,~71), (6x2,~72) E KerD](xe,~).  For convenience, a bilinear form on 
T~, Q x Tx, Q is defined as 

Ar ~ 4 VRIG 

Fig. 6.2 Decomposition of TxQ. 

VINT 



Gyroscopic Control and Stabilization 401 

B~(6Xl, 6x2) & (ident~(Xe)6Xl, Itock(Xe)-lident~(Xe)6X2) (6.28) 

4- D2V~(xe) " t~Xl �9 t~x2. 

Accordingly, 

O2ffl~(xe, ~)" ( 6 X l ,  Y]l)"  ( ~ x 2 , 1 7 2 )  = Bs ~X2) .  

We have the following key proposition. 

Proposition 6.5. For ~TQ(Xe) E ~RIC, and ~3x E V)ur, B~(rlQ(Xe), 6x) = O. 

Proof. We first find the second variation of V~. By the property that V is G-invariant 
and Lemma 6.3, we have 

DYe(x) .  ~TQ(X) = DV(x )  . rlQ(X) - ~(~, (DItock(x) " ~TQ(X))~) -- (DIy(x) �9 rlQ(X ), ~ 

= --([~, rl], Ilock(X)~ + It(x)).  

It is then easy to see that, compare (6.17), 

DZV~(x) �9 ~TQ(X) " 6x = --([~, rl], (Dltock(x) " 6x)~ + DIr (x )  . 3x).  
(6.29) 

= ([~:, r/], ident~(x)6x). 

Next we evaluate the bilinear form on ~Rm • ~/U~'. Combining (6.28), (6.29) and 
using Lemma 6.4, we obtain 

B~(~lQ(Xe), t~x) = (ident~(Xe)~TQ(Xe), Itock(Xe)-lident~(Xe)6X) + ([s c, r/], ident~(Xe)6X 

= (adntze + Ilock(Xe)[~7, ~], Ilock(Xe)-lident~(Xe)6X) 

+ ([~, r/], ident~(Xe)6X) 

= (adnl~e, Ilock(Xe)-lident~(Xe)6X) 

= (~(~q), ident~(Xe)3X), (6.30) 

where ~ is defined in (6.14). From Lemma 6.2, .~(~) E q3 • For 6x E ~VINT, by fl'e' 
the definition of ~llVr, compare (6.27), the desired property follows. 

With this proposition, the second variation o f / ~  on 5r at relative equilibrium 
is diagonalized into two blocks. Checking the definiteness of PDZffl~ on Se is thus 
equivalent to checking the definiteness of B~ on the spaces of ~Rio • ~RIG and 
~lNr • ~tS~ independently, under the assumption that (6.25) holds. These techniques 
often simplify the computations quite significantly. In particular, the form of B E on 
~Vnl~ • ~'Rm can be worked out explicitly. From (6.30), 

Br rlQ(Xe)) = (~(rl), ident~ (x~)rlQ(X~)) 

= (~01), adnl~e + I1o~(Xe)[rl, ~:]) (6.31) 

�9 -1  * * = (adnlZe, I~oc~(Xe) adnl~e) + (adntxe, adn~). 



402 L.-S. Wang and E S. Krishnaprasad 

This is the Arnold block analogous to the one in simple mechanical systems with 
symmetry [41]. The gyro-momentum is buried in/d'e and can affect definitiveness of 
this block. Definiteness of this block ensures the decomposition (6.25) of the space 
~ ,  which is proved in the following lemma. 

Lemma 6.6. Positive definiteness of B~ on ~?Rxc x ~VRlC implies that ~ - -  ]/ 'RIG (~ 
C~iN T . 

Proof. The proof is analogous to the one in [39]. We only consider here the finite 
dimensional case. Letting ~Q(Xe) E ~ G n c'~INT, we have ff ~ ~3 • and 

/ / ,e  ~ 

@, ident~(Xe)~a(Xe)} = 0 V ]D ~ ([~/~/~e. (6.32) 

We choose, in (6.32), v = s~(~') ~ q3 • which is ensured by Lemma 6.2. By 
/ / ' e '  

comparing with (6.31), we get 

Bs ~Q(Xe)) ---- O. 

Since, by assumption, B E is positive definite, this implies ~" = 0. Namely, 
~'RZ~ f) ~ N r  = {0}. On the other hand, dim~R1~ + dim~iNr = dimlY. Thus 
the decomposition (6.25) holds. 

With this Lemma, we do not need to verify the decomposition (6.25) explicitly. 
It is guaranteed by checking the definiteness of the Arnold block. We summarize the 
discussion in this step in the following theorem. 

Theorem 6.7. If the bilinear form B E is positive definite on both ~'RIC X ~Ir and 
~lNr • ~IPINV, then the relative equilibrium (Xe, ~a(Xe)) E TO is relatively stable 
modulo G ~. 

Now we have completed the process of Algorithm 6.1 of determining the relative 
stability for a gyroscopic system with symmetry. The block diagonalization of the 
second variation of H~ is achieved on the constrained subspace gf. A few explanatory 
remarks follow. First, we note a necessary condition for relative equilibrium. Namely, 
at relative equilibrium (x e, SO), 

adr --- 0. (6.33) 

This result holds in the general setting of Hamiltonian systems with symmetry, see 
Proposition 1.2 of [39] for the proof. Next we consider the amended potential intro- 
duced for simple mechanical systems with symmetry. From (6.12), we may construct 
a mapping from Q • q3* to Q x ~ as 

(x, l~ ) ~--> (X, Ilock(X )-l(tx -- Ir(x ))). 

With this transformation, the functional/~ on the space Q x ~* can be expressed as, 
from (6.11), 

{-I~(x, ~ )  = V~(x) - (~ ,  ~}, 
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where the function 

V~(x) ~ V(x) + ~(1~ - I t (x) ,  Ilock(x)-l(tz - It(x))), (6.34) 

is called the amended potential. It can be shown that, at relative equilibrium (Xe, ~), 
we have 

DVt~(Xe)t~x = DV~(xe)tSx, 

D2VI~(Xe) " t~xl " ~x2 = B~(tSXl, tSx2). 

Thus the stability conditions in Theorem 6.7 are equivalent to the conditions for the 
relative equilibrium to be a constrained strict local minimizer of the function V~. This 
conclusion is analogous in spirit to the Lagrange-Dirichlet theorem [6]. We phrase it 
as a theorem. 

Theorem 6.8. For gyroscopic systems with symmetry, the components of relative 
equilibria in the configuration space are the critical points of the function Vu. If the 
configuration component X e of a relative equilibrium is a constrained strict local 
minimizer of the function V~ (i.e., by taking out the neutral directions tangent to 
G~e �9 Xe), then the associated relative equilibrium is relatively stable modulo G~ . 

Remark 6.9. In most practical problems, the augmented potential V~ is easier to 
compute than the amended potential V~. From Theorem 6.7 and (6.28), it is clear 
that positive-definiteness of the second variation of V~ on Y is sufficient for stability. 
Following arguments similar to the discussion regarding V~, we get an analogous 
statement as in Theorem 6.8 with V~ replaced by the augmented potential V~. However, 
sufficient conditions obtained from V~ are clearly weaker than the conditions from ~ .  

Remark 6.10. Theorem 4.4 and Theorem 6.8 can be combined to assess the stability 
of closed-loop relative equilibria obtained by the application of a gyroscopic feedback 
law, compare 4.12, to a simple mechanical system with symmetry and exterior force. 

In the following, we consider two special cases. First, it is easy to see that for 
the case of Q = G, compare Figure 6.2, ~FINr = {0}. Consequently, we only need 
to consider the Arnold block for stability. Secondly, for the case of G = SO(3), we 
have 

~ ^  

ad~7 = ~ x 77 ad~t~ = /~ x ~=, (6.35) 

where ~=, r E so(3), and/2 C so*(3). Thus, condition (6.33) implies 

/-~e x~: = 0 or /~e = A~:, (6.36) 

where A E R is a scalar. It follows that ~#e is the subspace spanned by the vector 
~, which, in turn, implies that ~g, = ~ .  Recall that from (5.13), V~ is invariant 
along the group orbit, ~ �9 Xe. From Remark 6.9, we conclude that for this case, the 
function ~ defined in (5.14) is sufficient for determining stability. We summarize the 
discussion in the following corollary. 
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Corollary 6.11. We consider a gyroscopic system with symmetry (Q, K, Y ,  V, G). 

(i) For the case that Q = G, positive definiteness of B E at relative equilibrium, 
defined in (6.28), on ~'Rm x ~Rm implies relative stability modulo G~. 

(ii) For the case that G = SO(3), a strict local minimizer of the function ~ ,  defined 
in (5.14) on the space Q/G~ induced by the augmented potential V~ gives rise to 
a stable relative equilibrium. 

These observations are very useful in applying the energy-momentum method to spe- 
cific problems. 

After discussing the block-diagonalization of the bilinear form, or the second vari- 
ation of /4~, we consider the decomposition of the symplectic structure on T*Q 
side for gyroscopic systems with symmetry. We follow closely the derivations in 
[39]. Recall that for gyroscopic systems with symmetry, the symplectic structure on 
T*Q side is unaffected by the presence of the gyroscopic term, and is hence the 
canonical one. The associated momentum mapping is given by J : T*Q --~ q~* 
with (J(x,  p), ~) = (p, ~a(x)). We define the fundamental mechanical connection 
c~ : TQ ----~ q~ as 

o~(vx) s Ilolck(X)J(x, Kb(vx)). (6.37) 

It can be shown that c~ is a connection on the G-bundle Q ~ Q / G  and a(~a(X)) = ~. 
Given /x ~ ~*, a 1-form ~ : Q ~ T*Q is induced through the connection a ,  

( ~ ( x ) ,  vx) = (tx, oz(vx)). (6.38) 

Regarding N~, as a map from Q to T ' Q ,  we can find the corresponding tangent map 
TN,  : TO_ --~ TT*Q. Recall that the space ~ C TxQ is decomposed into VRm and 
~IUr as defined in (6.26), (6.27), respectively, by assuming that the Arnold's block 
is definite. We define 

~fRIG A= { Txe~tXe " ~Q(Xe) : ~ E ~ } ,  

WINT A= { Tx ~tz e . t~x : t~x ~ ~ , (6.39) 

W/~vr & [ ( 0 , 6 p ) :  (6 p, ~?Q(Xe)) = 0,'r rl E Wo} . 

It can be verified that 5 ~ = ~fRIG (~ ~INT (~ cW?N T. Also, we have the following 
proposition. 

Proposition 6.12. At the relative equilibrium, Ze = (Xe, Pe) E T 'Q,  we have 

(1) for r v E ~•  
/,6e~ 

O~o(Ze)(Tx,~,e " r Txe%~ " VQ(Xe)) = --(/Xe, [~', v]>, 

(2) for r ~ N~o, (6x, 8 p) E Wtsr @ WI*Nr, 

O)O(Ze)(Zxr162 " CQ(Xe), (~x ,  ~p)) = --(/Ze, [~', o~(~x)]), 
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(3) for 6xl ,  6x2 E ~ N T ,  

tOO(Ze)(Txe~be " t~X l, Tx,~be " ~x2) = d~be(t~x2,  t~Xl) -- (~/z e, [~X2, 6Xl]),  

(4) for r / E  N, (0, 6p) E ~WfN r, O)O(Ze)(Txe~l~ ~ �9 "OQ(Xe), (0,  ~ p ) )  = O, 

(5) for (0, ~Pl), (0,/~P2) E ~I/'?N T, O)O(Ze)((O, 6Pl), (0, ~P2)) = 0. 

The proof is omitted here. It is very similar to the proof of Proposition IV.4, pp. 
61-62 in [39]. Define the map 

p : ~ l  X ~INT X [q~" Xe] A ~ ~o, be 

where [q3. xe] a is the annihilator of q~. Xe in T ' Q ,  as 

p(r ~x,  6 p) = Tx,~#e " CQ(Xe) + T x e ~ i Z  e * 6X "3U (0, 6 p). 

This map induces a bilinear form 

top((r t~Xl, t~pl), (r t~x2, t~p2)) = Ogo(Ze)(P(r t~Xl, t~pl), 0(r t~x2, t~p2)). 

From Proposition 6.12, this bilinear form can be written as 

O)p((r ~Xl, tSPl), (r t~X2, t~p2)) 

= --(/J~e, [ r162  (]Ze, [r Ot(~X2)])+ (//'e, [r O~(~Xl)]) 

"}- d~be (6X2 ,  ~Xl) - -  ( ~ b e '  [~X2' ~Xl]) + (6p2, 6Xl) -- (6Pl, ~X2). 

This shows that the restriction of the symplectic structure can be block-diagonalized 
as in Figure 6.3. This is analogous to the case of simple mechanical systems with 
symmetry [39]. However, the gyroscopic effects enters through the definition of/xe,  
compare (6.15). 

Upon the completion of the discussion of the abstract framework, now we imple- 
ment the energy-momentum method in more detail for the special case of G = SO(3). 
This physically corresponds to the study of stability properties of rotating structures. 
Through the isomorphism between R 3 and skew symmetric matrices defined in (3.14), 
we define the locked inertia dyadic I~'o~k(x) as 

(~, Ilock(X)~l) = ~ " I~ock(X)rl, (6.40) 

where we have used the trace pairing, compare (3.16). The matrices Ilock(X), I~ock(X) 
are related by the following formula. For 

~•  ~ T (~"  X e] A be l \ 

{ _  _ Lie:P~176 . . . .  - _  _R _g_i_d:!nte a _Couplin_g_ _ _i . . . . .  0___ 
~ r I-Rigid-Internal  Coupling i Canonical Symplectic Structure ) A . . . . . . . . . . . . . . . . . . . . . . .  -" [~" x e] \ 0 : plus a Magnetic Term 

Fig. 6.3 Block-diagonalization of wp 
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Ilock(x) = 
( , 1 i , )  i2 

112 122 123 , I~oc~(X) = --112 111 + 133 
113 123 133 --113 --I23 

Also, we define 

where I~,(x) E ~3. Namely, 

-113 '~ 
--I23 /" 

111 + 122/ 

A 

Iv(x) = I~.(x), (6.41) 

(Ir(x),  r = I~(x) �9 r/. (6.42) 

With these two objects, we have the following new representations, 

]~  ~) : I~'o~(x)~" + I}(x), 

1 
V~ = V ( x )  - ~ " Ii~162 -- I~,(x)" ~, 

ident~'~ = - (DI fock(x)6x)~  - DI~,(x)6x ,  (6.43c) 

The bilinear form defined in (6.28) is now 

B~(6Xl ,  6x2)  identg, O(xe)6Xl o -1. Y,o = .I iock(Xe) ldent~ (Xe)6X2 
(6.44) 

q- D2Vs~(Xe) " 8X  l " •X2. 

The Arnold block in (6.31) can be then written as, compare (6.35), 

(adcTiXe ' -1 . . . .  * ^ I to&(Xe)  ad~ txe )  + (adnr le ,  ad#~}  

= ([&e X ~)"  o -1 I lock(Xe)  ( ~ e  X ~7) "+- (l&e X ~ )  " (?q X ~) 

(6.43a) 

(6.43b) 

It is thus clear that for the Arnold block, we need to check the definiteness of the 
matrix ITock(Xe) -1 -- (1/A)I along all directions except ~. Note that here A is not an 
eigenvalue of the locked inertia dyadic in contrast with the case of simple mechanical 
systems with symmetry. The gyroscopic field affects A through the gyro-momentum 
term, compare (6.36). The above formulae will be used in the following section for 
the example of two rigid bodies with rotors coupled via a ball-in-socket joint. 

7. Two Coupled rigid bodies with internal rotors 

We now apply the energy-momentum method developed in Section 6 to a multibody 
analog of the dual-spin problem. In [48], we show that, with an appropriate an damp- 
ing mechanism, the system depicted in Figure 7.1 asymptotically approaches one of 
the stable relative equilibria corresponding to an associated gyroscopic system with 
symmetry. Here we will compute certain stable relative equilibria. 
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Body 1 

X 2 X l  

B2d2 

Bid 

Body 2 

Fig. 7.1 Two rigid bodies with rotors. 

The system under consideration consists of two rigid bodies connected by a three- 
degree-of-freedom spherical (ball-in-socket) joint and three symmetric rotors mounted 
on the center of mass of one body along its three principal axes, see Figure 7.1. 
These rotors, called driven rotors, are set in constant motion relative to the carrier 
body. We assume that the assembly is moving in a free space. For simplicity, the 
inertial reference frame is placed at the center of mass of the assembly. This corre- 
sponds to the reduction by the translational invariance of the system as discussed in 
[16], [47]. Let m l ,  m2, ms~, i = 1,2,3,  and I1, 12, Isl, i = 1,2,3 denote the 
masses and the moments of inertia of body 1, body 2, and driven rotors, respec- 
tively. Let ~ = m2(ml + ms1 + ms~ + ms3) / (ml  + msi + ms2 + ms3 + m2), the 
reduced mass. As in the classical dual-spin example of Section 4, this system can be 
put in the category of gyroscopic systems with symmetry with the following entities, 
compare [46], 
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Q -- S 0 ( 3 )  • s 0 ( 3 ) ,  

K( (BI~I'B2~I2)' (al~'l 'a2'~'2)) = (ulT /AT)(~2  ~ 1 : ) ( ; : ) ,  

Y(B1,B2) = (BlYl,B2Y2) , V(B1,B2) = 0, 

where, 

o = s o ( 3 ) ,  

3 
J1 = I1 + ed~dl + ~'Is , ,  

i=1 
3 

J2 = I2 + r + ~ I D , ,  
i=1 

J12 = edlBTB2cl2, 

and the components y~, Y2 of the gyroscopic field are given by solving the equations 

J1 yl + J12y2 = l = ISO, J~2Yl + J2 y2 = 0. 

The associated Lagrangian is 

1 1 
L(B1, ~'~1, B2, ~-~2) = ~ < ~"~1, J i l l  > + ~ < ~~2, J2~2 > 

+ 13 < ~'~1, dlBTB2s > + < ~~1, l > . 

This system can be also viewed as a closed-loop system of a simple mechanical system 
with gyroscopic feedback as described in Example 4.5. 

Now we find the quantities introduced in Section 6. For the system under consid- 
eration, the locked inertia dyadic, compare (6.40), can be determined from 

< ~,I~ock(B,,B2)~l > 

= << ~Q(BI, a2), ~Q(B1, B2) >> 

= < ~, (B1J1B~ + B2J2B2 ~ + B1J12Bf + g2J~2B~)~/> .  

Thus we have 

I~ock(Bbg2 ) = B1J1B~ + B2J2B~ + B1J12B2 ~ + B2J~2B~(. 

The gyro-momentum in ~* induced by the gyroscopic field Y can be shown, compare 
definition (6.42), to be 

I f  = B1 I. 

Accordingly, the momentum mapping is 

O IX = Iloc~(X)~ + I.~(x) 
(7.1) 

= (BAJ1B T + a 2 J 2 a  f + BAJA2B2 T + B2JT2BT)~ + Bll .  
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The augmented potential function V6 is 

1 < ~ , I T o c ~ > -  < B l l , ~ >  g~(Bl, O2) = --~ 

= __l < ~, (BIJIB1T + B2J2BT + B1J12B f + B2J1T2B1T~: > 
2 

-- < ~ , B l l  > 

= __1 < ~,(B1J1B1T + B2J2BT + eB2dlB2d2 + ~3B~2B~l~: 
2 

- -  < ~:,Bll > .  

Now we apply the principle of symmetric criticality to find the conditions for 
relative equilibria. The first variation of the augmented potential is derived as follows, 

DV (B1,B2). (tI1BI,  2B2) = <   B1J1BT  +  Bll + u 1 > 

+ <  B2J2BT  + u2 > .  

From the above formula, we immediately read out the conditions for the configuration 
components of the relative equilibrium (Ble, B2e) as satisfying 

~: X (B1J1B1T~ + Bll)+ sBldl X (~r X (B2d2 X ~))= 0, (7.2a) 

X (B2J2BT~)+ eB2M2 X @ X (BId1 X ~)) = 0. (7.2b) 

These are very similar to the conditions derived in [47], except that a gyroscopic term 
enters. By taking dot product with ~: on both side of (7.2a), and letting sl = Bid1, 
s2 = B2d2, we obtain the coplanarity condition, compare [47], 

~:" (sl • s2) = 0. (7.3) 

Accordingly, the gyroscopic term does not affect the coplanarity condition for the 
relative equilibrium for this problem. With this condition (7.3), equations (7.2) may 
be re-expressed as 

~: X (B1J1B1T~ + Bll ) -  e(Bldl" ~XB2d2 X ~) = 0, (7.4a) 

~: x (B2JzB2~) - e(Bzd2" ~Bld,  • ~:) = 0. (7.4b) 

Now we find a particular relative equilibrium for this problem. Let {el, e2, e3}, 
{ fa, t'2, f3} be the coordinate frames corresponding to body 1, body 2, respectively, 
such that 

Jlei = Juei, J2fi = J2ifi, i = 1, 2, 3. 

It can be checked that if the following conditions hold, 
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= I~IB~ e~ = IsC[B2 fl, (7.5a) 

l = ll el, (7.5b) 

d l =  al e2, d2 = a2 fz, (7.5c) 

conditions (7.4) are satisfied. Thus the conditions (7.5) are associated to a relative 
equilibrium (Ble, B2e). From (7.5a), we know that 

Ble el  = B2e fl. (7.6) 

By substituting (7.5a), (7.5c) in the coplanarity condition (7.3), we get 

e l "  (e2 • B e f 2 ) =  0, 

where Be = B~eB2e. With (7.6), this only happens when B3 f2 = -+e2. Thus, we 
have two sets of relative equilibria expressed in terms of the relative shape variable 

Be, 

Be f l  = el, Be f2 = e2, Be f3 = e3, (7.7a) 

Be f l  = e l ,  Be f2 = - e 2 ,  Be f3 = -e3.  (7.7b) 

In the following, we will study the stability property of the relative equilibrium cor- 
responding to (7.7b) with (7.5). This configuration is depicted in Figure 7.2. 

The energy-momentum method is adopted here to determine the stability. We first 
need to compute the second variation of the augmented potential. It can be found as 
follows, 

O2V~(B1, O2)" (/~101, ~202)" (~101, ~202) 

- ded E=oDV~(eErqBl, eEt~ZB2).(ftle~lBl,~2e~r,2B2) 

= <  ftlB1J1Br ~ - B1J1Br ftl~ + f~lBll, ~1~ > (7.8) 

+ < ~2B2JzBT~ - BzJzBTt)2~,  t)2~: > 

+ 2e < (filBlldl)~:, (/~2~22d2~ > .  

Define 

A BL p, B~ e U l  = Ul, !12 -= U2. 

The components of ul,  u2 will be denoted by (u11, u~2, u13) and (u2b u22, u23), 
respectively. Also, we will use the notations, 

Ja = diag{ Ju,  J12, J13}, J2 = diag{ J2a, J22, J23}. 

At relative equilibrium (Ble, B2e) such that (7.7b), (7.5) hold, we can further write 
the second variation of the augmented potential as 
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+ 

Fig. 7.2 Relative equilibrium configuration. 

O2V~(nle, n2e) " (nleu1, B2e~2) " (Ble~l, n2eu2) 

= sl~12ala2(ull -- u21)2 + ((Jll -- Jl3)l~l + ll)l~[u~2 

q- ((Jll - J12 q- sala2)l~:] + t,)l lu 3 + (J2, - J23)l~12u22 (7.9) 

+ (J21 - J22 +  a a2)l 12u 3. 
From Remark 6.9, we check the positive definiteness of the second variation of the 
augmented potential on the space of ~ .  For the relative equilibrium under investiga- 
tion, we have the momentum mapping, compare (7.1), 

/~e = ((Jll '}- J21-4- 28ala2)]~l  if 11)Ble el. 

Thus the Lie algebra corresponding to the isotropy group is ~ e  = Span{Ble el}, 
with the orthogonal complement with respect to the locked inertia tensor, 

~•  = Span{Ble e2, Ble e3}. /ze 

The space ~ is given by 

c~ ~. { (Ble~l, n2e~2) :<< (nle~l, B2e~2) ' (~nle, ~n2e) >>= O, V ~ ~ q~#e} 

= {(nle~l,n2eU2):(Jll "4- sala2)Ull +(J21 + sala2)u2, = 0}. 

The second variation of the augmented potential restricted to ~ is now 

D2V~(Ble, B2e) I~vx~ " (BleUl, B2eU2) " (BleUl, B2eu2) 

2 17--//J21 + e.ala2 + 1 uZl 

-4- ((J11-J13)l~lq-l , )~lu22 § ((J,1-J12Wsala2)l~l+ll)l~[u~3 
2 2 (J21 - J22 + (J21 - J23)1~:] u22 "}- d- eala2)l~:[2u23. (7.10) 
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Consequently, we can read off  the sufficient conditions for stability from (7.10) as 

(Jll - Ja3)l~[ + l~ > 0, 

(Jll - J12 -k eala2)[#l + 11 > 0, 

J21 - J23 > 0, 

J21 - J22 + eala2 > O. 

The above discussions are summarized in the following theorem. 

T h e o r e m  7.1. For the multibody dual-spin problem, conditions (7.5), (7.7b) give 
rise to a relative equilibrium (Ble, B2e). Furthermore, assuming that 

ll 
11 > J13 - Jl l  and ~1 > Jt2 - Jn - 8ala2, 
I~1 

the relative equilibrium (Ble, B2e) is stable if 

J21 - J23 > 0 and J21 - J22 + ea~a2 > O. 

It may be checked that the positive definiteness conditions for the Arnold Remark 7.2. 
block are 

(J" - J13 + J2, - h3) l~ l  + l ,  > 0 ,  

(311 -- J12 -[- J21 - 322 -}- 2~a,a2)[~[ + 11 > 0. 

These conditions ensure the decomposition of the space ~ ,  compare Lemma 6.6. It 
is easy to see that these conditions are implied by the conditions in Theorem 7.1. 
However, this is not sufficient for stability. There are additional conditions coming 
from the other block. Thus, for such a coupled system, we could never regard the 
system as a whole rigid body. The coupling effects should be suitably accommodated. 

Now we consider the other relative equilibrium coming from (7.7a). The second 
variation of the augmented potential corresponding to the case that the relative shape 
is identity [i.e., that the two bodies are folded can be found from (7.8) to be, compare 
(7.9)], 

V2Ws B2e) " (Ble~l, B2eU2) " (BleUl, B2e~2) 

= - - 8 [ ~ [ 2 a l a 2 ( U l l -  U21) 2 q- ( ( . I l l -  J13)]~[ "q- 11)[~[u22 

+ ((Jll - J~2 - eala2)[sc[ + l l)1~[u~3 '}-(J21 - -  J23)l~12u~2 

+ (J21 - J22 - ~ a , a 2 ) l ~ 1 2 u ~ 3 .  

Even restricted to the space ~ ,  there is always one negative term. This fact suggests 
that this relative equilibrium may be unstable, irrespective of the rotor speed. Further 
analysis is needed to justify this statement. 
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8. Conclusions 

The Lagrange-D'Alembert principle is a starting point for modeling natural mechanical 
systems subject to exogenous forces. If the forces are determined through feedback 
laws, then the structure of the closed-loop system can be used to assess stability 
properties of the system. In the present paper, using an intrinsic formulation of the 
Lagrange-D'Alembert principle, we have identified a class of feedback laws that lead 
to gyroscopic systems with symmetry. The (energy-momentum) block-diagonalization 
theorem for simple mechanical systems with symmetry has been extended to gyro- 
scopic systems with symmetry, or the closed-loop system. Working consistently on 
the tangent bundle side, we establish the splitting that block-diagonalizes the second 
variation of the energy-momentum function at a relative equilibrium. The splitting 
depends on a quantity that we refer to as the gyro-momentum that can be computed 
in terms of the given gyroscopic vector field. 

The gyro-momentum also enters the stability criteria. From the viewpoint of this 
paper, the gyro-momentum is the key control parameter and thus it is possible, using 
the methods of this paper, to determine whether a specific gyroscopic feedback law is a 
stabilizing feedback law. This is illustrated in the example of Section 7 on two coupled 
rigid bodies with internal rotors. This example is a natural generalization of the single 
rigid body dual-spin problem studied by P. S. Krishnaprasad [23], Sanchez de Alvarez 
[2], and more recently in the collaborative work with Bloch and Marsden [7]. Other 
more complicated examples, including dual-spin satellites in central gravitational fields 
and with flexible attachments, appear in the dissertation of Wang [46]. 

In future work, we plan to investigate bifurcations of relative equilibria with respect 
to the gyro-momentum. Examples of this appear in the work of Krishnaprasad and 
Berenstein [25]. Control strategies based on bifurcation of relative equilibria may be 
effective in a variety of problems. We hope to discuss these and other aspects in a 
later paper. 
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