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Abstract. The purpose of this paper is to study a limit probability distribution 
of the set of the first ~c eigenvalues 21(~¢)<22(~¢)< ... <2~(~)  (with a fixed x 
and ~ or) of the boundary problem on the interval [0, X* °] 

d dy 
H y = - -~ a( t, co) -~  + q( t, co)y = 2 y , 

y(0)=y(~e)=0, 

where a(t, co), q(t, co) are the random stationary processes. Particularly the 
question of the repulsion between the first eigenvalues (small energetic levels) is 
studied. It has been proved that in the "divergent" case (q(t, co)=0, a(t, co)+-O) 
levels repulsion exists. As for the "potential" case (a(t, co)= 1, q(t, co) + 0) there is 
not any repulsion at all. This is one of the main differences between these two 
cases. 

Introduction 
d d 

Let H ( c o ) = -  ~ a ( t ,  co)~ +q(t, co) be a one-dimensional random Schr6dinger 

operator with stationary coefficients a(t, co)>0, q(t, co) (on a probability space 
(£2, ~ ,  P)), describing the quantum-mechanical behaviour of an electron in a 
random medium. As for its spectral properties, it is possible to study them either in 
~q°2(R1) or in ~?2(_ ~ ,  ~ )  when 2~°~ oo. The latter is more important for physical 
applications. A restriction Hzo(c0 ) of the operator H(co) on &o2(~, ~ )  is determined 
by some classical boundary conditions 7. Since the coefficients a(t, co), q(t, co) are 
stationary, many properties of the operator H(co) on a large segment are 
independent of the segment's position. That is why we shall further consider 
[O,~q ~] instead of [-&a,L~ °] since it is technically simpler. We shall study 
asymptotic of the eigenvalues (the energetic levels) Xi(Se, co) when 
2~ °--+ + oo and the eigenfunctions for the following boundary problem: 

Hip(t) = 2~(t) ; 7(~P(t)) = O, t = O, ~ ' .  
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If Nz(2)= ~ 1, then under very general conditions there exists a non- 
2~(Lf) -< 2 

random continuous limit 

1 2 ,  N(2)= lim ~ N ~ (  ) where ~ +  

which is called the limit spectral distribution function [I]. 
If q(t, co)~const with probability 1 (i.e. P-almost surely) then there exists a 

point X such that N(2)=0 and N(2)>0 when 2>2.  The point Y, is (P-almost 
surely) the left end of the spectrum S(H(co)) of H(co) in 5e2(R1). 

The character decay of N(2) at the left end of the spectrum in various models is 
different. Particularly in a model studied in [2] when q-~ 0 ("divergent case") the 
following asymptotics for N(2) was found 

N(2)~const.21/2, when 2 ~ ) , = 0 .  

However in a model with a = 1 and q(t, co) = ~ 6 ( t -  ~i), where z i are points of a 
i 

Poisson flow (this potential is often used in physics and is called 6-potential) the 
asymptotics for N(2) is a different one. Namely, using the results of [3] one can 
obtain 

N(2),,~const.exp(-n/21/2) when 2 -~2=0 .  

The purpose of this work is to study a limit probability distribution of the set 
of the first k eigenvalues 21, 2,2.. "2`k with a fixed k and ~ + ~ and to find out a 
structure for the corresponding eigenfunctions. A similar problem was solved in 
[4, 5] for eigenvalues in a neighborhood of a fixed internal point of the spectrum. 
Namely, for the case a(t, co)-1 and q(t, co)=F(x,(co)), where x,(co) is a diffusion 
process on a smooth compact manifold K and F : K ~ R  1 is a smooth Morse 
function such that min F = 0, it was proved that when 2`o > 0 and a, b(a < b) are 

fixed, a point process {2̀ i(o~q~)} is asymptotically a Poisson process in scale in 

the neighbourhood A,,b=(2`o--a/~,~, 2`o+b/2,~') with the parameter n(2`o), where 

dN(2°) is a state density. Its continuity was also eastablished. The n('~°)= d2` 
eigenfunctions ~p~(t, ~ )  corresponding to the spectral interval A,, b are decreasing 
exponentially. That is for any function ~p~(t, ~e, co) : 2`~(~)~A~, b there exists a point 
zi~ [0, ~ ]  such that 

d 2\1/2 
( l~ , ( t -  z~)l 2 + _ ) ~ c(e, co)exp((- a(2o) + e)lt-  ~t). ~Pi(t Ti) 

Here e > 0  is a fixed small constant, ~(2o) is a nonrandom positive function 
(Liapunov index) and c(~, co) is a constant bounded in probability when 5e-~ + ~ .  
Note that the asymptotic Poisson property of the spectrum {2~(5e)} near the point 
2 0 > 0 is interpreted physically as the absence of any interaction between the 
spectral levels. 

The results obtained in [5] alter the viewpoint suggested earlier, according to 
which there exists a repulsion between spectral levels in quantum disordered 
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systems (see the discussion in [5]). After [5] had been published it was suggested 
in a number of new papers in physics that the levels repulsion hypothesis might be 
secured at least for small energies 2 = o(1) when ~ + m. 

This hypothesis turns out to be true for some cases but for others it turns out to 
be false even for small energies. To distinguish these cases a supplementary 
classification of hamittonians is necessary. In particular the spectral properties of a 

d d 
"divergent" one-dimensional hamiltonian H = -  ~;a(t,o))-3t at the end of the 

d 2 
spectrum are similar to those of the operator H 0 = - ~ .  Namely there is a strong 

repulsion between the small levels and the corresponding eigenfunctions are not 
localized. 

Similar effects were observed of the spectrum end structure for difference 
analogues of divergent operators. Moreover, this was true even for the 
multi-dimensional case [12, 13]. Apparently, it is possible to prove that the 

situation for a "potential operator" H(co)= -dZ /d t2+  ~ ~ib(t-zi) with a genera- 
i 

lized b-potential at the end of the spectrum is in general similar to that near the 
point 2 o > 0. Now we can formulate more precisely our results. 

The first one in physical terms is the following: let us consider a divergent 
d d 

operator H = - ~ a(t, co)~ on [0, ~ ] .  Let a(t, a)) be a stationary random process 

with an finite expectation M 1 =~ and < oo. Let the process 

(a(i we k y co ver e to w ite no se; 

4i+ c o ) -  col = 4 ° + co) ~ t 2  , 

where 2°(£,e) are the eigenvalues of the averaged operator 

1 d 2 

H° = - M (~)1 dt 2' 

\~t~, t.v]! 

and ~ ( ~ ,  co), i=  1, 2...k have joint Gaussian distribution when k is fixed and 
5¢--, + oo. 

d 2 
The second result deals with the "potential case." Let H = - ~ + ~ ~ b ( t -  Q, 

where z i are the points of Poisson flow, z, do not depend on ~i and ~i are 
independent random variables having the same exponential distribution; then 

2 2 - 2 1 , 4 3 - 4 2 ,  ...,2k--2k_ 1 

are asymptotically independent and after corresponding normalization they have 
a limit exponential distribution. 



104 L.N. Grenkova, S. A. MolSanov, and Ju. N. Sudarev 

In the divergent case a Liapunov index is degenerated, a(0)=0, while in the 
potential case a(0)>0, which accounts for the difference between both cases. (The 
definition of a(2) see in [1, 4]). 

Let us proceed to the exact formulations starting with the divergent case. 

I. Divergent Case 

d d 
Let H ( ~ ) = -  ~a( t , o~)~  be an one-dimensional random operator on [0,+ ~), 

where a(t,o~) is a stationary process satisfying the following supplementary 
conditions: 

o(1) 1. 0 < ~ = M  < ~ ;  a ( t ~  <~)"  

2. The distribution of the normalized process 

a(s~ ,  c~) te = ~e(t), te  [0, 1] 

weakly converges when ~ + oo to the distribution of the Wiener process with 
some variance o-2>0. Thus in the sense of closeness of distributions in 
Levy-Prohorov metric 

~ i / 2  ds 
a(sSL ~o) t~ ~o-w,, te [0, lJ, 5 e ~  + oo. 

Condition 2 is valid at least for a large class of stationary Markov processes. 
We shall further give some examples where conditions 1, 2 are valid and the 
variance of the limit Wiener process can be calculated. Let us consider the spectral 
problem 

d d 
Hy  = - -~ a(t, co)-~ y = 2 y, t e [0, £~], y(0) = y'(£~) = 0. (I. 1) 

Note that a choice of such boundary conditions is connected with considerable 
simplification of some formulae; however it is not difficult to study the general 
case 

y(O) + hl y'(O ) = O, y(~f) + heY'(~,q ) = 0. 

Theorem I. The set of  the first k eigenvalues of  the spectral problem (I.1) when 
£f  --+ + oo and k > 0 is f ixed can be represented in the form 

2 . . . .  ~t2(1 +2i)2 (1+  ~/(~C,~', co)~ 

a = M ; (I.2) 
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where ~i(~, co), 0 <_ i <- k -  1 is a random vector having a limit Gaussian distribution 
with zero mathematical expectation and covariance matrix o'2B = ff2(bij), where bii 
are constants that can be effectively calculated 1. 

Proof. The idea of the proof is different from that of [2] but has many points in 
common with [12] which, however, deals with discrete time. We substitute 
variables putting x = t /~ ,  then our problem becomes equivalent to the following 
one 

H y = - d a (x ~ q ~ , c o )  d y = 2 ~ 2 y ,  x~[O, 1];y(O)=y'(1)=O. (I.4) 

Let us denote the eigenvalues of the boundary problem (1.4) by #i(~), i = 0, 1, 2 .... 
Then # i ( ~ ) =  2i(~e). ~2 ,  where 21(~¢), i=  0, 1, 2... are eigenvalues of the boundary 
problem (I.1). 

Now let us consider a homogeneous equation 

Hy=O. (I.5) 

This equation has two independent solutions 

du 
Yl(X) = const ; y2(x) = ! a (u~,  co)" 

The Green function of a nonhomogeneous problem 

Hy= f ,  (I.6) 
y ( 0 )  = y ' (1 )  = 0 

can be obtained with the help of these solutions in a standard way. 
Now the given spectral problem is reduced to an integral equation 

1 

y(x) = S G(x, z, co)25f2y(z)dz 
o 

z 1 

a(£gu, co~ + 2~2  i ! y(z)dz (1.7) 
o o a ( ~ u ,  co)  " 

Further we shall use the fact that 

a(s~e, co) te = ~se(t)~<rw~ when 5 ¢ ~  + oo 

under condition 2 in the sense of distribution, where c¢ = M , w t is a Wiener 

process. So we substitute ( z e + ~ ( z ) / ~  i/z) and ( x e + ~ ( x ) / ~  1/2) for i du 
o a(~LPu, co) 

and i du o a(£Pu, co~) in (1.7) respectively, and obtain 

1 b~s.t = O, i#=j so that the 2~ in general are asymptotically dependent even after normalization 
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1 

y(x)  = ~ (Go(x, z ) +  1 G(~e)g x z co))Z,~2y(z)dz (I.8) 
0 ~ i / 2  1 ~, ~ ~ 

Thus the Green function of the boundary problem (1.6) is presented in the form 
of the sum of the Green function Go(x, z) of the nonrandom boundary problem 

1 d 2 
H°Y - c~ dx  2 y = 2£a2Y' y(0) = y'(1) = 0 (I.9) 

and a certain asymptotically Gaussian and infinitely small kernel 
1 

~,~/2 G(*Se)( x, z, co), which is evidently expressed asymptotically through a Wiener 

process. 
Now we shall use classical perturbation theory. Let #0,i =;~0,i 2'z be the i-th 

eigenvalue of the nonrandom boundary problem (I.9), then 

1 

y(x) = #o,i (, Go(x, z)y(z)dz = #o, iffJoY(X) " 
0 

As the operator G o is inverse to the iperator HoY 

it is easy to understand that 

#0,~=~ ~-+ni  = ~ ( 1 + 2 i )  2, i ~ 0 ,  

and the normalized eigenfunction corresponding to the i th eigenvalue #o,~ is 

Yo, i(x) = V ~ sin((e#o, i) ~/2x) = ]/~ sin(flix), 

where 

fii = n(1 +2i) __fl{- i>O. 
2 ; #° ' i=  ct '  - 

1 d 2 
ot dx  2 y,y(O) = y'(1) = 0, then 

(I.10) 

The operator ~1 connected with the kernel G(l~e)(x, z, co) is random, depends on £a 
and has no limit when ~go__+ oo (there exists only a weak limit of its distribution). 
Therefore it is necessary to be careful using perturbation theory. Under condition 
2 the operator (131 is bounded in probability : for any e > 0 there exists a constant 
c = c(~) > 0 such that 

P{IllI311I>e(~)}=P{Aae(~)} <=~, ~>0 

for all 2 '  > 2 '  o. 
Let a sufficiently large £0 and an elementary event co be fixed. Consider the 

spectral problem (I.8): 

Y=#(@o+ ~ ) Y ,  (I.11) 

where ~ 2 /* = t~-q ~ , 
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1 

CoY = S Go(x, z)y(z)dz, 
0 

1 

¢~1y = ~ 6]-~)(x, z, o~ly(~)dz. 
0 

Following [14] we shall look for a solution y~ corresponding to the ~ eigenvalue 
#~ of Eq. (I.11) in the form of a perturbation of the function Yo,~ choosing the 
normalization 

1 

(Yi, Yo, i)~e~to, 11 = ~ Yi(X)Yo, i(x) dx = 1, i > O. 
0 

Multiplying both parts of Eq. (I.1t) by Yo,~ we get 

1 =/~/( oy~,Yo,i)+#il~qT~yi, Yo, i), i>O. 

But since yo,~=/%,~oYo,~, therefore 

1= #i +#i Yi, Yo, i , i>=0" (I.12) 
#0 ,  i 

Excluding #i from (I.12) we get 

/~o,i i > 0 .  

1 +#o,i ~-T/-~Yi, Yo,~ 

Then from (I.11) and (1.13) we get the expression for y~: 

i o+ 1 Yi= { fill , ~ ~ Y~' 
yo,,) 

o r  

and finally 

E 1 
Yi . - # o , i ~ Y l Y o , i )  Y~, 

(I.13) 

i>0 ,  

i>O, 

~ ( G t y i - ( t 1 3 1 y i ,  Yo.i)y~, i>O. (I.14) ( e -  m, lC~o)y~ = 

The operator (E-#o,  iGo) is invertible in the subspace of functions which are 
orthogonal to Yo,~ and besides 

I1(E-/%,~3o) -11<c~, i__>0. 

Therefore from (1.14) we obtain 

Yi = Yo, i + (E-- #o i113o)- t ~ ( ffJl Yi-- ( t131yi, Yo i)Yi) 
, , . ~  

= T(~)(o~)y i, i > O. 
(I.15) 
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The operator T(j)(co) on the set Ase(e) transfers the ball llyi-Yo,~[I---< 1 to itself if 

- 6c(e)Ci#o, i < ~ < 1 ~= ~(2c(e)+4c(~))= .W1/z = ~q~ / 

for all i = 0, 1, 2 . . . (k-  1) and £a > c2(k ' ~). Moreover in this sphere this operator is a 
contraction with a contracting coefficient 0. Therefore it is possible to solve Eq. 
(I.15) by iterations taking as the first term Yo,~, i=0,  1, 2. . .(k-1). Thus we get 

#o,i ( E _ #  ° 3113o)- Yi=Yo,i + ~ ," l(ffilYo.i-(tDiyo, i, Yo, i)Yo, i) +Ri,~e; 

I]R~,SI <~o2 < c~(i, ~) (I.16) 
La 

From (I.13) using (I.16) we obtain the expression for #o,i, i=0,  1,2. . . (k-1);  

#o,i =#o,i( l + ~ ( i F q y i ,  Yo,i)) -1 
& = 1 + # o , i ( ~  Yi, Yo, 

#2 
O,i r --Po, i -  ~iT~(qJlYo, i, Yo, i)+ i,~e, 

where 

[ri ~[ < c3(i' E) 
, £¢ 

Letting c}Z)(co)= 2 <13 -Po,i( lYo, i, Yo, i) we get from (I.17) 

~i~- ldo,  i "j- (p 1 / ~ - " ~  q- ri, Le ; [ri, se[ <<- 

obtain evident formulae for the random Now we shall 
i=0,  1, . . . (k-  1). 

As 

(I.17) 

(I.18) 

variables cl~)(co), 

1 1 1 

yo,,, yo,,) = f i Yo,,(x) Az)d dx + f Yo,,(x) Ax) of Yo,,(z)dzdx- 
0 0 0 x 

Then using (I.10) we get 

2fl~/1 . \ cl~e)(°)) = - ~ - i !  sm(flix) isin(fliz)~'~(z)dzdx 

1 

+ o isin(flix)~'~(x)!sin(fliz)dzdx)" 

Notice that under condition 2 a limit distribution of the random vector {cl~)(co)}, 
i = 0, 1 , . . . (k-  1) is Gaussian and coincides with the distribution of the vector 

{ -  ~ v! sin(flix) !sin(fl,z)w(z) dzdx 

+ oS sin(flix)w(x) ! sin(fl~z)azdx , i=  0, 1, 2 . . . (k-  1). 
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It is not difficult to obtain asymptotic formulas for the mean and the variance of 
the random variables c~S")(co), i=0,  1 . . . k -  1 and also to get the covariance matrix. 
We don't write out here these formulas, only notice that in general bij 4:0, i+j. 

Now letting ~i(£0, co) = ~ (elSe)(co) +"  q~ 1/2~ c3(i, ~) 
-~,~e'~ /, Irisol < - - ~ - - ,  we get the state- 

#i 
ment of the theorem. Namely 

pi=Po, i+ £01/~+r~,:~= 1-~ £ol/2 ], i=0 ,1 . . . ( k -1 ) ,  

and consequently 

2/(£0, co) = Pi(~'2co) 1 + £01/2 

7r2( 1 + 202 [ ~i(£0, co) ], 
- 4c~£02 1-~ ~T/g I i=0 ,1 ,2 . . . (k -1 ) .  

Now we shall give some examples where conditions i and 2 are fulfilled and the 
variance of the limit Wiener process is explicitly calculated. 

Example I is the most interesting since it generalize the well-known results [8] 
for the case of processes with continuous time. 

Example I. Let K be a compact metric space, xt(co ) be a homogeneous 
Feller-Markov process on K which is ergodic in the following sense : for any initial 
distribution v on the a-algebra ~(K) 

j v (dx )P( t , x , - )~ ( - ) ,  t ~ o o .  (I.19) 

where P(t, x, 17) is the transition function of x,(o)), rc is the probability measure 
which is obviously the stationary distribution for this process. The convergence 
is weak, so the condition (I.16) is essentially weaker than the classical Doeblin 
condition [9]. 

Now let f e  £02(rc). Suppose that the equation 

Ag = f (I.20) 

has a unique solution belonging to £02(n), where A is the strong infinitesimal 
operator of the process xt(co ). Note that from (I.16) it follows directly that 

~fd~=(Tr, f ) = O .  

Proposition I. Let xt(co ) be a stationary Markov process (i.e. an initial process with 
one-dimensional distribution ~). Then the normalized functional 

1 d ~(f)= 5ql/2 ~f(x,) u, se [0, 1] 

converges to the Wiener process with the variance 0 -2= --2(Ag,  g) in the sense of  
Levy-Prohorov, that is in the sense of  weak convergence of  the distributions in 
C[O, 1]. 
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This proposition is similar to the Gordin-Lifgic theorem [8] and like the latter is 
based upon the principle of invariance for martingales [10]. Here we give only an 
outline of the arguments. 

t 
1. A process ~t= g(xt)- ~ Ag(x~ds is a martingale. 

0 
2. Increments tl,,=(,,At-((,,_~)a~ form a stationary and ergodic martingale- 

difference sequence. 
3. Since g(xt) is restricted in probability the limit distributions 

~tse ~ Ag(xs)ds ~L,~,l/2 and 
0 

in C[0, 1] coincide. 
4. According to 2. all conditions of Billingsley's theorem were fulfilled, i.e. the 

successive sums of variables % after a corresponding normalization converge (in 
the sense of Levy-Prohorov) to the Wiener process. 

5. Let us find its parameters. We have 

But 

D~,z t = nDt/1. 

(~ At )2 
Dq 1 = M~ (x~t)- g(Xo)- ~ Ag(x~)ds = - 2A t(Ag, 9) + o(A t) 

0 

and nAt = t because 

D ( t @ z ) = - 2 ( A g ,  g)+o(1), 

and consequently 

~ - 2 ( A g ,  g ) t ,  

The proposition is proved. 

~ + ~ .  

Example Ia. Let K be a compact Riemannien manifold and xt(o) ) be a diffusion 
process on K with generator A (Laplace-Beltrami operator). Then rc(dx)= 6(dx) is 
the normalized Riemannian measure. Let f : K  ~ R  x be a continuous function on K 

and J?= ~f6(dx) be its mean value. Then 

t t 
S f(xs)ds =j?t + ~ ( f -  J?) (x~)ds. 
0 0 

But by the Fredholm alternative the equation 

Ag = f - j ?  

has the unique smooth solution in &o2(6). The limit variance of the functional 

1 i tl/2 ( f - f ) (x~)ds has the form 

o 2 =  J" (Aa, g)adx = I (Vg, Vg)2cr(dx), 
K K 
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where V 9 is the Riemannian gradient g. In other words 0 -2 coincides with the 
quadratic Dirichtet form of 9- 

Example lb. Let K =  S 1 and xt(o)) be a Markov chain, with continuous time on 
S 1 = [0, z~] (points 0 and n are identified) with the constant density 2 of jumps and 
with the distribution dF((y-x)rood 1) at the moment of the first jump from point 

x. Then Af(x)=2(- f (x )+ ~ dF(y-x)f(y)). It is evident that under natural 
$1 

conditions of irreducibility (see below) the process xt(co ) is ergodic with respect to 
the invariant measure on S t (Lebesgue measure). Let 

S 1 

Let us solve the equation A9= - f  If 

q-~x) +ct) 

f =  ~ a, exp(2ninx), 9 = ~ c. exp(2rcinx), 
- o o  - c o  

then it is easy to establish that 

an 
c , -  2 ( 1 - 7 , ) '  

where 

n + 0 ,  

1 

7, = ~ exp(2rcinx)dF(x) 
0 

are the Fourier coefficients of the measure dF. The irreducibility mentioned above 

means that lT,I < 1. It is clear that for the fixed measure dF (even if lim y, = 1) and 
n-*co 

for all "sufficiently smooth" functions f we can suppress the influence of the small 
denominators ( 1 -  7,) and obtain a smooth solution 9. 

Let us emphasize that for the process x~(co) in Example Ib (for some singular 
distribution F) Doeblin's condition was not fulfilled. Example Ib is a certain 
modification of [II]. 

1 
Example2. Let a(t, co) be a generalized renewal process, i.e. a process equal to ~ on 

the intervals the length of which form a sequence {~i} of independent random 
variables with the common distribution. {(i} is also a sequence of independent 
random variables with common distribution with mean equal to 0 and a finite 
variance. {(i} and {~i} are independent. Then using the Donsker-Prohorov 

t :~ ds 
theorem for . ! a ( s - ~  it is easy to show that the distribution of the process 

~ -  1/2 ~ d s  
a ( s - ~  weakly converges to the distribution of a Wiener process with 

o 
variance a 2 = D(~i~i). 
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2. The "Pieces" Model 

In this section we consider the simplest potential model, the so-called "pieces" 
model as the first approach to a model with generalized &potential whose 
hamiltonian has the form 

d 2 +ce 

H(co)= dt 2 F ~, ~i(¢o)8(t-zl), 
i = --o0 

where ~i is a Poisson flow of points and ~i(co) are independent random variables. 
Roughly speaking in the "pieces" model ~ = oo. The more exact definition is the 
following: let % i=  1, 2, . . .vz be the points of Poisson flow with parameter 2 
concentrated on [0, Z ] ,  v z be the number of points of the flow in [0, Z ] .  Let us 
consider the spectral problem 

d 2 

dt 2 y = 2y, y(0) = y(Z)  = 0, 

with the constraints y(z~)= 0, zfi  [0, Z ] .  This problem decomposes in fact into a set 
of spectral problems without potential on each piece A 1, 3 2 , - " A  + 1, bounded by 
the points of the flow. If for example v z = n, then our problem is a set of n + 1 
boundary problems with zero boundary conditions on every interval of the 
partition. The eigenvalues of the restriction of the operator H(co) to the/th interval 

7~2m 2 
of the partition are equal to 2~, m - A2 , me N, where A~ is a length of i th interval, 

n01 /7~2m 2 ) 
and consequently, the spectrum of the operator H(co)is equal to U ~ - - 5 ~ .  

i=1  men ( / ' i  J 
We are interested in the structure of the spectrum at the left end. It follows directly 
from the above given formulae that the study of the distances between the first 
eigenvalues may be reduced to the study of the sequence A~, i=1,2 . . , (n+1) .  

7~ 2 
Actually the minimal eigenvalue of the operator H(@ is equal to 2~ - ( max Ai] 2 

\~ [O,  Zl / 

and if A,+ 1 >A(,)> ... >Am is the ordered set of {A i }  in increasing order then 

~2 ~2 /~2 

22= ~- - ;  23 = A2 .. .2~= A2 , k < n .  2 
A(n) (n-  1) (n -k+  2) 

Now let us consider the interval [0, 5¢] and the sequence of intervals A1, 
A 2 . . . .  A ~se + r It is known that the random variables A 1, A 2 . . . .  A~e + 1 have the same 
exponential distribution. For  the sake of simplicity we assume that the parameter 
of the exponential distribution 2 =  1. The random variable v~o has a Poisson 

distribution with mean ~o [15] i.e. P { v s e = n } = e x p ( - ~ ) ~ - f  ;besides, from the 

2 We use the fact that when ~ + o o  and k < k  o the senior values A(,,+I) , A~,o,...A(,_k+Z) are 
equivalent in probability so that e.g. the second eigenvalue on the interval A(.+I ) is greater with 
probability approaching 1 than the first values on A(,), A(,_ ~),...A(,_k+ 2) (see below) 
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central limit theorem it follows that v~e=~+~l /2¢ ,  when 5¢~oo, where ~ is a 
random variable having asymptotically normal distribution with parameters (0, I). 

Let us list several properties of the exponential distribution which will be used 
in the proof of the main theorem concerning the distribution of the first 
eigenvalues of the random operator H(co) (for proofs see [-15]). 

Proposition I. Under the condition v~ =n the interval [0, ~ ]  is decomposed into 
n + 1 intervals by random points zi, i = 1, 2...  n and the distribution of the vector of 
lengths (Ap Az...A,+ 1), coincides with the distribution of the random vector 

( ~  q l  , ~ /72 , . . . ~  /~n+t ) , w h e r e q l ,  
ql -~- "'" ~-~n+ 1 ql  "~ "" ~1- ~n+ I 171 -I-/'~2 -t- *.. "1- qn + 1 

i = l , 2 , . . . ( n +  1) 

are independent random variables having common exponential distribution with 
parameter 2 = I. 

We can write 

A i = ~ "  qi q l + q 2 + " ' + t / " +  1, i = l , 2 , . . . ( n + l ) .  

Thus from Proposition i it follows that the study of lengths of the random 
intervals is reduced to the study of the sequence of independent identically 
distributed random variables. 

Proposition 2. Let ~11, qz...q, be independent random variables having the same 
exponential distribution with parameter 1. Let q(,)~ q(,-1)>=." >= ~10) be the ordered 
sample of ql, q2...tl,. Then the joint distribution density of the random variables 

t l( ,)-t l( ,_l),q(,_t)-~(,_2). . .q(,_k+l)-lnn, k < n ,  

when n--* oo is asymptotically equal to 

exp( -  Yl - 2YE - . . .  - kYk-- exp( -  Yk)), 

where Yl, Y2""Yk-1 >0, YkeR 1. 

Proposition 3. Let v ~ = n. I f  

~(n+ i) __ 

o r  

then 

~ l n ( n + l ) ]  n + l  A(,+ l) 

~(,+l)= n + l A ( . + t ) + l n ( n + l ) ,  

lira P {4 (" + 1) < x} = exp( - exp( -  x)) 

i.e. ~("+ 1) has a double exponential distribution in the limit n--*oo. 
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Proposit ion 4. The arguments used in Proposition 3 are applicable to the sequence of  
lengths 

= 2 ,  t/(,+ 1) 
Z~(n+ 1) t/, + t / 2 +  ... + t l ,+  i ' 

Zj(n) = ~(, t/(n) ...Zl(n_k+ 2) = 2  . /~/(n-k + 2) 
t/1 +t/2 + ... + t / ,+  1 t/1 +t/2 + "-  +t/~+ x ' 

and as a result we obtain that there exists a limit distribution for  

n + l  
2 ,  A ( n _ o - l n ( n +  l) ,  n--+oo. 

We assume now that  the number  of points  vao in the interval [0, 2 , ]  is not  fixed. 
As was ment ioned  above,  the r a n d o m  variable v~ has a Poisson distr ibution with 
pa ramete r  2 '  and vse = 2 ,  + 2,, /2{, where the r a n d o m  variable { is asymptot ica l ly  
normal .  So we obtain f rom Propos i t ion  4 tha t  if 

A(~se + 1) => Aft, z) ~ " -  2> d(vs e -k+ 2), 

then for the r a n d o m  variables ~(i)(2,, c o ) = _  d f~e_i+ 2 ) + l n 2 , ,  i =  1, 2 . . .k  the limit 
dis t r ibut ion exists when ~ 00. 

Let us re turn to the s tudy of  the first k eigenvalues 21, 22.,.2 k of  the opera to r  
H(co). As was stated earlier 

g2 
/~i(2,' co) = A 2 

(va, + 2 - i) 

but  d t ~  + 2 - -  i )  ---~ In £a _ ~(0 (2,,  co), therefore 

~Z2 2~Z2~(i)(2,,co) ( 1 ) 
2,(2,, oo) = - l n ~  + l n 3 2  . + 0  ln~-ff~ , 

when 2, -+o0.  Let us put  

- l n 3 2 ,  ( 
~"~(2,' co) . . . . .  2-U- , z , - - -  

7C 2 / 
4(2" co) = ~ 1 1 

~z2) 
ln~-2, ; _ {(0(2,, co)~ (p){(i)(2,, co), 

2~°(2 , ,  c9)_/ 
ln£.~ ]'  i= l ,2 . . . k .  

N o w  using Propos i t ion  2 it is easy to show that  the r a n d o m  variables 

~"~(2,, co)-  ~ ( 2 , ,  a~) . . . .  (~k- . ( 2 , ,  co)_ ~k~(2. ' co), ( ~ ( 2 , ,  co) 

are asymptot ical ly  independent  when 2,--+o0 and have the following joint  
distr ibution density 

P(Yp Y2...Yx) = e x p ( -  y~ - 2y 2 - . . .  - xy  k - e x p ( -  Yk)) 

Yl, Y2""Yk- 1 >0,  yk e R 1 , 

or, which is the same, r a n d o m  variables 

~x~(2. ' co), _ ( ~ ( 2 , ,  co)_ ~ x -  . ( 2 . ,  co)) . . . .  - ( ~ ( ~ ,  co)-  ~ ( 2 ' ,  co)) 
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have the following limit density 

1 
Px(X) = ( x -  1)~ e x p ( -  k x -  exp( - x)), Pk- l(x) 

= ( k -  1) e x p ( -  ( k -  l)x) Z {x>=or..Pl(x)=exp(-x) Zt~_>o}- 

Thus we have proved the following theorem 

Theorem 2. In the "pieces" model for the fixed k and Sg--r + oo the following 
statement is true: 

n2 ( 2((°(~'  c°)) i = l , 2 . . . k ,  
21(~, co) = ln--n-y~ I ln&V , 

where the random variables ~(i)(=LP, o9) have such limit distributions that random 
variables 

~(k)(, .o,~),  - -  (~(k)(,~LO) - -  ff(k -- 1 ) ( , ~ ) ) . . .  - -  ( ~ ( 2 ) ( , ~ )  - -  ~ ( 1 ) ( ~ ) )  

are asymptotically independent and have limit densities 

1 
Pk(X) = (X -- 1)! exp( --kx - exp( - x)), Pk- 1(x) 

= ( k -  1)exp(-  ( x -  1)k) ZCx>=Or..p,(x)=exp(-x) Zt~zo}. 

While proving Theorem 1 we have also proved that the eigenfunctions y,, YE'"Yk 
in the "pieces" model are localized on an interval of the length O(ln~).  

3. ~-Potential 

Let us consider the following boundary problem on the interval [0, &v] : 

d 2 day 
B y = -  ~ y + ~ / f ( t ,  co)y= ~-~ + ~ ~dS( t -z , )y=2y,  

• ~to,~el (3.1) 
y(O)=y(~)  =0 ,  

where the h are the points o fa  Poisson flow with parameter 1, (h} do not depend 
on ~i and ~i are independent random variables with the common distribution 

x=<0 
[exp ( - #x), x > O, /x > 0. (3.2) 

Let us introduce as usual [4] the amplitude and phase by the formulae 

y = r sin(O(t)), 
(3.3) 

y = r cos(0(0). 

It is known that a problem (3.1) is reduced to the following boundary problem for 
the phase 

dO(t) = cosZ(0(t)) + ( 2 -  ¢/'(t, co)) sinZ(0(t)). (3.4) 
dt 
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The equations for the first eigenvalue have the form 

0~(o) = o, 0 A 2 ' )  = ft. (3.5) 

For the second 2 2 it has the form 

0~(0) = 0, 0;~(5 °) = 2re, 

and so on. 
Thus we get the following picture. The random variable O(t) changes inside the 

interval [0, rc] according to Eq. (3.4). At the initial moment t = 0 it is at point 0. 
Then its motion consists of the determined motion with the speed cosZ(O(t)) 
+2 sin2(O(t)) towards rc and random jumps in the opposite direction determined 
by the random potential ¢/~(t, co). The minimal 2 for which the phase 0~(£,q °) equals 
7r coincides with the first eigenvalue 21 of the boundary problem (3.1). The 
equation 0x(~)= 27r defines the second eigenvalue 22 of the problem (3.1) and so 
on. It is convenient to identify intervals [zrk, re(k+ 1)l with the interval [0, 7r] and 
to imagine that the process instantly jumps from the point rc to the point 0. Notice 
that the process O(t) can return to the point 0 only after passing through the point 

• dO(O) 
rc since - - ~ -  = 1. It is technically simpler to deal with the whole axis ( -  0% + oe) 

rather than with the interval [0, 7z]. We make the following change of variables 

x(t) = - ctg(0(t)), t > O. (3.6) 

Then for x(t) we obtain the Riccati equation 

dx 
- x 2 + 2 -  ~ff(t ,  co) (3 .7)  

dt 

from which the Markov property of the process x(t) on the whole real axis follows. 
We shall calculate its infinitesimal operator A. Let our process at the initial 
moment be equal to x. For a short interval of time At it has no jumps with 
probability 1 - A t  + o(At) and under this condition it passes to the point 

x ( A  t) = x + (x 2 + 2) A t + o(A t). (3.8) 

With probability At+o(At)  a jump occurs and then the process x(t) is equal to 

x(A t) = x -  ~ + o(A t), (3.9) 

where ~ has distribution (3.2). Let us take now an arbitrary smooth function f (u)  
and calculate the mean value 

Mxf(x(A t ) ) -  f (x )  
At 

From (3.8) and (3.9) it follows immediately that 

Af(x)  = lira Mx f ( x (d  t ) ) -  f (x )  = _ f (x )  + f ' (x)  (x 2 + 2) 
~ t - * o  At 

o o  

+ l a S f ( x  - y) exp ( -  #y) dy. (3.10) 
0 
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Of particular importance here is "ca(x), which is equal to the first passage time to 
+ ~ under the condition x(0) = x;  

za(x) = min {t :x(t) = + oo[x(O) = x}. (3.11) 
t 

From what was said above it is clear that the condition 

~ ( -  or) > ~ (3.12) 

is equivalent to the condition 

2 t > 2  (3.13) 

(the condition o~-(1)~__ ox'(2)> £0 3 is equivalent to the condition 2 2 >2  etc.). 
So, if we know the asymptotic distribution of zz ( -  oo) when 2--+0 we obtain the 

asymptotic distribution of the first eigenvalue of (3.1). In order to get this 
distribution we use the method of moments. Let 

u(x, ~) = Mx(ex p ( - ~z~(x))). (3.14) 

From the general theory of Markov processes it follows that the function (3.14) 
is a solution of the problem 

Au-o~u=O, u(+ oo)= 1, (3.15) 

where A is the infinitesimal operator of our process x(t) given by (3.10). 
Thus we come to a boundary problem which looks as follows: 

(xZ+2) +# ~ u(x-y)exp(-#y)dy-(l+a)u(x)=O, 
0 

u( + oo) = 1. (3.16) 

Let us introduce a new function v(x) putting 

+oo  

v(x)=# S u(x-y)exp(-l~y)dy=#exp(-#x) i u(t)exp(#t)dt. (3.17) 
0 --oO 

For function u(x) and v(x) we get the following boundary problem 

(x 2 +2) dd~U x + v - ( 1  + e)u=O, 

dv 
= ~ ( u -  v) ,  

u(+ c o ) = v ( +  ~ ) =  t .  (3.18) 

Excluding v(x) from (3.18) we get 

2 d2u du 
x +2)~x2+(pxZ+2x+#2--1--~z)~ x #czu = O, 

(3.19) 
u(+ oo) = 1, u'(+ oo) = o. 

3 z~) is the time of ~ phase revolution, i.e. transition of process x(t) from - oo to + oo 
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Let us introduce the functions 
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0%(x,0) 
Uk(X ) = 0~ k (3.20) 

It is easy to see that 

Uo(X ) -  1, 
Uk(X ) = ( -  1) k M {Z~k)(X)}, k > l .  

(3.21) 

Differentiating (3.19) with respect to ~ and supposing ~ = 0  we come to the 
system of equations 

2 
(xZ+2)~x2k + ( # x 2 + 2 x + # 2 - 1 ) ~ x  {OUk-I +#Uk_I )=O,  

(3.22) 
Uk(+ oo)=O , U},(+ co) = 0 ,  k > l .  

Note that any Uk(X ) is expressed through u k_ l(x) in view of (3.22). This allows us to 
solve Eq. (3.22) recurrently for k = 1, 2 .. . .  (As for the boundary conditions in (3.22) 
they follow from the estimates 

M {~ak(x)} < c x, 
(3.23) 

where 

1 ( t )  
(0(t) = ~77g aretg ~17-~ , k = 1, 2 .... 

Integrating by parts in (3.24) we get the following expression for uk(x): 

J~ u k_ ,(z) d z -  k j ~ exp ( -  #z + ~o(z)) dz =¢ exp(#t -  q)(t))u k_ 1(0 
Uk(X) k dt. 

x Z2"'t-J~" x Z2°Vt~ -oo J t 2 - } - ~  

(3.25) 

Theorem 3. For any k = 1, 2... and any x:  - o o  <_x <<_O the asymptotic formula 

uk(x ) ~ ( -  1) kk! exp(rtk/21/2) (3.26) 

is valid when 2--+ +0  (uniformly in x).  

lim M {T~(x)} = 0, k= 0, 1, 2 .... 
x--+ + oO 

where c k does not depend on x for any k.) 
The first estimate in (3.23) follows from the fact that za(x ) is majorized by a 

small similar value in the "piece" model (see Sect. 2). 
Integrating (3.23) we obtain 

uk(x ) = - k ~ e xp ( -#z  + ~o(z)). i [u~_ ,( t)+#u k_ ,(t)] exp(p t -  q~(t))dt, 
x ~ az _ m 

(3.24) 
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Proof  We shall prove (3.26) by induction. Expression (3.26) is obviously true for 
k = 0. Let now (3.26) be true for a k -  1 ; we shall prove that it is equally true for k. 
Let us put 

gk- 1 (Z) = i exp(#t-- q)(t)) uk- l(t)dt" (3.27) 
_~ t2+2 

Now we shall estimate the second additional term in (3.25) when x = - oo 

+~ 0 e x p ( - # z +  ~0(z)) 
e x p ( -  #z + q~(z)) l(z)dz = ~ z 2 + 2 

x Z 2 + 2 91,- x gk-  I(Z) dz 

+ o o  
+ i exp(-#z+(p(z))  

o z 2 + 2 gk-  I(Z) dz.  (3.28) 

From the induction hypothesis 

[uk- l(x)l < [uk- i ( -  oo)[ < c exp(rc(k- 1)/2 l/z) (3.29) 

for some c and sufficiently small 2. Consequently from (3.27) and (3.29) we get the 
following estimate for z N 0: 

[gk- l(z)[ < i exp(#t-q)(t)) u &ldt  

< C exp(rc(k- t)/21/2 + #z) (exp (~z/22 l/z) - exp( - q~(z))) (3.30) 

< c exp(pz + rc(k- 1/2)/21/2). 

From (3.30) it follows that for the first term in the right-hand part of (3.28) the 
following inequality is true 

! e x p ( - # z + c P ( z ) ) g k - , ( z ) d z  < i exp(--#z+q~(z))[ l(z)ld z 
z2 + 2 = - ~  ~-+-~ gk-  

< c exp(r~(k- 1/2)/2~/:). (3.31) 

In order to estimate the second term in (3.28) let us put 

gk - 1(Z) = g k  - 1(0) -~- i 
exp(#t ~o(t)) 

o tz + ~  uk- l(t)dt = gk-  1(0) + Agk - 1 (3.32) 

when z > 0. From (3.30) it follows that 

and thus 

[A0k - 1t ~ ¢ exp(#z + re(k- 1)/2 l/z), 

i e x p ( -  #z + ~o(z)) Agk-  ld z < c exp(Tr(k- 1/2)/21/2). 
z2+2 = (3.33) 

Then 

e x p ( -  #z + q~(z)) o~ 
z2+2 gk_l (z )dz=gk_l(O ) ~ exp(-#z+q~(z) ) .  

o 0 a z  

+ ~ exp( -pz+~o(z ) )  Agk-  1 dz.  
o z Z + 2  

(3.34) 
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B u t  

~ e x p ( -  #z + cp(z))dz 

o z2+2 
-- - 1 + # 7 e x p ( -  t~z + q~(z))dz 

o 

iexp( 1 
_ rc d =exp(rc/221/2) iexp(-z+~o(~ ) 2 - ~ )  z - 1  

= exp(r(22 u2) [1 + o(1)], 2--* + 0. 

The last equality is true since it is obvious that 

exp ~o - < I ,  exp q~ - ~ 1 ,  when 

In its turn 

i exp(# t -  Uk- l(t)dt cp(t)) 
g.~ - t(0) = t ~ + 2 

- -  o 0  

= ~ exp(-#t+cp(t))  l(t)dt 
0 t2 + ~  U/~_ 

= ( -  1) k- l ( k -  1)! exp (n (k -  1)/21/2) I e x p ( -  #t + q~(t)) _ 
o 7 2 - ~  at 

2 ~ + 0 .  

(3.35) 

+ 7 exp( - lzt + ~o(t)) [u k _ 1( - t) - ( -  1) k - l ( k -  1)! exp(n(k-  1)/2uz)] dt 
0 t2+j~ 

Assuming the induction 

uk- 1(-  t ) -  ( -  1) k- l ( k -  1)! exp (rc(k - 1)/21/2) = o(exp(rffk- 1)/2u2)), 

(3.36) 

Notice finally that from (3.29) 

! ~ d z  <+~'Uk-l(Z)ldz~c.rc2-1/2exp(zc(k-1)/2 - ~  zZ+). - 

2 ~ + 0 .  

(3.37) 

=o(exp(rck/2U2)), 2--* +0 .  (3.38) 

And at last (3.27) follows from (3.25) and (3.31)-(3.38), 
Thus Theorem 3 is proved completely. 

CorollaryI. In the limit 2 - * + 0  the random variable i x -  

exponential distribution with parameter 1. 

Actually, from (3.21) and (3.26) it follows that when 2 ~  + 0  

. f f  - c ~ , ( - ~ )  \~l 

r~(- ~) 
exp(n/)~ u2) has an 
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But since the distribution is uniquely determined by all its moments 

1, x < 0  
P {'cz > x} T T - ~ o  e x p ( - x ) ,  x ~ 0 .  

From Corollary I it is easy to get 

Corollary 2. I f  N(2)= ~ 1 then there exists a nonrandom continuous limit 

1 
N(2)= ~-,+~olim f f N ~ ( 2 ) ,  

and 

(3.39) 

N(2),,~exp(-n/21/2), when 2--*+0 (as N(2)=(Mzz) - l ) .  

Notice that this result was obtained earlier in [3]. 
Let us connect parameters S~ and 2 by the expression 

L~'-exp(- 7~/21/2) = Z, (3.40) 

where z is a fixed positive number. From (3.40) it follows that 

2 = ~ 1 1 - ~ )  + + O  . (3.41) 

Let us introduce the normalized eigenvalues of problem (3.1) in the following 
way : 

Theorem 4. For any natural k there exists a limit distribution of  2k (when ~ ~ + oe) 
with density 

1 
Pk (X) = (k - 1)[ exp(kx - exp(x)), x s  R 1 . (3.43) 

Proof Taking into account (3.12), (3.13), (3.39), (3.41) and (3.42) we can write the 
following sequence of equalities 

P{2, >2} = P(,~, >lnz+o(1)} = P { v l ( -  oe) > ~ }  

= P {~ > In z} = z + o(1). (3.44) 

Putting z=exp(x)  we obtain 

P{'~I > x} ~ e x p ( -  exp (x)), xe  R 1 . (3.45) 

Differentating the right side of (3.45) we get (3.43), where k = 1. 
To find 2 k it is necessary to take into account that the transformed phase runs 

through the real axis k times, as it was mentioned earlier. Since every such 
transition is independent of previous transitions then 

P{~k > x} = P{~, + 42 + . . .  + {k >x} ,  
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where all ~i are mutually independent and have limit density 

p(x) = exp ( x -  exp (x)) (3.46) 

((3.43), where k = 1). 
Consequently the limit density of ~'k is a (k- 1)-times convolution of the density 

(3.46). From this (3.43) follows. 
Notice that Theorem 2 may be written in an equivalent form 

/g2 
2k= ~ ( 1 - -  ln2~),  k = 1 , 2 . . . ,  (3.47) 

where - ( k  have the limit density (3.43). 
And now we can formulate the main result of the paper. Namely the following 

theorem is true. 

Theorem 5. The joint limit distribution of 2~, 2 k_ 1...21 coincides with the distri- 
bution of the first k eigenvalues in the "pieces" model under the same normalization. 

Let us introduce random variables ~-i, i=  1,2...k similar to ~-i, i=  1, 2...k with 
the same points of partition in the "pieces" model. Obviously 

~i<=~i, i=  1,2...k, 

and with 5¢---, + oe 
(P) 

~.i-~i ,0, i = l , 2 . . . k  (Theorem 4). 

This means that the limit distribution of vectors (2k,}~k_l...21) and 
(}~k, 2k- 1"" "il) are identical. 
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