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Abstract. We determine the behavior in time of singularities of solutions to
some Schrodinger equations on R”. We assume the Hamiltonians are of the form

H,+ V,where Hy=1/24+1/2 Y wix}, and where V is bounded and smooth
k=1
with decaying derivatives. When all @, =0, the kernel k(t,x,y) of exp ( —itH) is
smooth in x for every fixed (¢,y). When all @, are equal but non-zero, the initial
singularity “reconstructs” at times t=—n and positions x ={— 1)"y, just as
Wy
if V=0;k is otherwise regular. In the general case, the singular support is
shown to be contained in the union of the hyperplanes {x|x, =(— I Js, 1,
when w;t/n =1, for j=j,,....j ’

e

0. Introduction

Let H = H, + V be a Schrodinger operator on L*(R”), where H , is one of the model
Hamiltonians:

(1) —1/2 4 Free Particle,
(2) —1/2 A4 +1/2 |x|* Isotropic Oscillator,

() —1/24+1/2 Y w;x} Anisotropic Oscillator,
k=1

and where the perturbing potential V' is a 0-symbol on R", i.e.|0%] < C,(1 + |x|) 1.
Then H generates a one parameter group of unitary operators U(t) = exp —itH,
whose Schwarz kernels we denote by k,(¢,x,y) (called “propagators™). Our goal is to
determine the wave front sets of these k,(t,x,y) when (t,y) are held fixed. This is the
essential step in finding out how U{(f) propagates singularities— or, more correctly,
how U(t) smooths out and later reconstructs singularities.

The main problem is that although these distributions are oscillatory integral
ones, ie. of the form

k(t,X,Y) = fa(t,x,y,@)eis("x’y’e)d{},
they are not Lagrangian distributions (cf. 4, 7). Consequently, WF(k(z,",))) &
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As, , ={(IE = (05/0x)(t,y,x,0),(85/66)(t,y,x,0) =0} and WF(U()p) & &' WF(e),
where @ is the Hamiltonian flow for H(x,) =1/2[EF +1/2 ¥ wix? + V(x).
k=1

Indeed, these relations fail for simple reasons. First, the Lagrangian manifolds
As, ,and phase flow @' are not even conic. Secondly, the amplitude a is not a symbol.
Finally, k(t,x,y) is known to be regular for small |¢| for a wider class of potentials (cf.
[S, 6]1). Hence singularities are instantly smoothed out, and the above relations
would appear to be vacuous; however, singularities can appear at later times, and so
the problem is really to locate them by a suitable replacement of these relations.

QOur central point in this paper is that despite such problems the smoothness,
decay and reconstruction of singularities for solutions of these Schrodinger
equations can in fact be determined from the geometry of the phase flows ¢'. The
ideais this. An oscillatory integral wave function i should have a local singularity at
x if and only if an “infinite amount” of its lagrangian projects over every
neighborhood of x (under the projection n{x,£)=x). Indeed, the lagrangian
represents the positions and momentum of the family of classical particles
corresponding (in the semi-classical interpretation) to . A singular point x of ¢
should therefore correspond to an infinite density of these particles coinciding at x
with various different momenta. Further, a co-direction & should be singular at such
an x if an infinite density of these coinciding particles pass through x with momenta
in the {-direction (ie. in every conic neighborhood of ¢).

Now, the unperturbed phase flows @, for the Hamiltonians (1)-(3) are not conic,
but they are of course linear. Consequently the lagrangian A;’ = {{x,&)|x =y} for the
initial data x =y is carried by @ into an affine lagrangian 4}, the lagrangian for
ko(t,,y). One can check from the explicit formulas for k,(t,x,y) (Mehler formulas)
that W F(k,(z,",y)) consists exactly of the (vertical) rays in A}, if such exist at time ¢, as
would be predicted from the preceding remarks.

When the Hamiltonians (1)—(3) are perturbed by O-symbols ¥, the phase flows
¢ remain asymptotic, as |x| + |£| = o0, to the @},. Hence the @‘A;’ are asymptotic to
the A}, and so one would predict that local singularities build up at the same places
and in the same directions as for the unperturbed ones. Our main result is that the
wave front sets are indeed stable under these perturbations.

This paper contains four sections. In Sect. 1 we treat perturbed free particle
Hamiltonians, and show that ky(¢,x,y) is smooth on R xR] for all ¢ if V is bounded
with bounded derivatives. In Sect. 2 we treat perturbed isotropic oscillators. Here we
show that the amplitude of k,, inherits enough “symbol properties” from V to allow
an analysis of singularities. The main point is to show that when t =mmr, k,(¢,",y)
becomes both rapidly decreasing in x, and regular away from x = { — 1)y, so that
this latter point is forced to be singular. In Sect. 3, we derive containment relations
for the wave front sets of perturbed anisotropic oscillators. Finally, in Sect. 4 we deal
with some routine technical problems which come up in Sects. 1-3 and which are
best confined to an appendix.

Section 1. Regularity of Perturbed Free Particle Propagators

In this section we wish to prove:
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Theorem 1. Let VeB, | 4oy +1(R"), then
exp((ilx — y1*)/21)

ky(t,x,y) = alt,x,y) ity

3

where ac (R} x R}) for each fixed t.
Proof. From (id, — H)U, = V-U,, we get the “Duhamel formula”

U, ()= Uf(r) +—1—j Ut —s)V U, (s)ds, (1.1
0

where U is the free propagator ¢~ ™.
Iterating and replacing U(s; —s;.;) by U(s)U(s;5,)" ", we get the norm
convergent “Dyson Expansion:”

Uyt)=U(t) + g: (—i)’i...&j ds; ...ds,U(1)
=1 0 ¢

[U(s)~ 'V U(spl. (1.2)

[UGs) VU]
Our first remark is that U(s j)‘1 VU(s;) is a DO whose amplitude is bounded

with bounded derivatives.
dwgdz;, |

U)  VUGYo(z) = -7 (2ris,)

. [Zj_wjlz Izj+1 _Wﬂz )}
‘ exP[‘( - + Vi{w)(z;. 1)) (1.3)
2s; 2s; T
Rewrite the phase as (z;,, —z;)'{(s;,2;,2;4 1,w;), Where
1/z,,.,+z;
55525524 15W)) =*( - Wj)- (14)
S 2

| =% cancels the

Changing variables to £; and noticing that the Jacobian
j

denominators in (1.3), we get

U(s) 'V U(s)o(z)
z)-¢,] ( i1t sjéj>¢(zj+1>dzj+1dfj

7 explilz,, —
” 2mi)" 2
= jp(sjazjvzj+1)¢(zj+ Mz 15 (1.5)
with
. i1ty a,
P(85:25525+ U= feXp[3(2j+1 - Zj).éj}V<j—2——l - ijj)(zn;)n~
(R x R % RZ .., which

By hypothesis, V((z;+; +2;/2) — 5, 8)€Brs 6w+
concludes our first remark..
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Next, taking kernels in (1.2) we get

© t Si-1 4
kV(t9x9y) = ko(t,an’) “+ Z ( - l)l j . S j j ko(t’xazl)p(sl 721 722) e P(Suzz,)’)diz-
=1 0 0
(1.6)
We now concentrate on the / term
__l t  St-1 2} ) o =
émt),,,z [ ] dsyods T Tdod explid(ex i lbiexzly, (16D
and
23 - Z1|Z
Ql(tsxazaésy)z 2f +(22_Zl).él +”'+(yn—zk)‘£k
and

oy 1 z,+24 . Z+y
bz(t,X,Z,f,Y)=(“2—m)‘;.7< B _51C1>~--V< 5 —Ska),

(b, is independent of x since the amplitude of ky(z,x,y) is).
To put this term into the desired form a,(t,x,y) exp((i|x — y|*)/2t)/2ni)"'?, we first
take the Taylor expansion of @, about its critical point. Evidently,

C@l = {(t,x,é’,f,y)121 ===y,

gfbuzézﬁlizx“yy. (1.7)

t t

Nl

Let &=(x— y)/t; therefore @ =(|x — y|*/2t) +3(Z — 3,& —&). Hess (@) [
where (Z—y,f—w E=(z, ~y,...,55— W&, —&,...,&, — &), whence we get

ml
\f”‘m ‘<

_ul2 1 — 2 _
o =" B (- e -t

—@=- ¢ -9 (18)
Factoring exp((i|x — y|*)/2t) outside the integral, changing variables Z; =
(z;— »,&;=(¢;— &) and dropping the bars, we get for the I term
exp((ilx — y|*)/2¢)
Qnit)"”?

al(t:xay)y (19l)

with

1z}
az(taan’)-—j _f S jexP[(E%'f'(Zz_Zl)il +"‘+("Zz)51))]

I If @¢(x,&y) is a phase function with (x,y) free variables and ¢ the integration variables,
Co = {(x)|V:2 =0}
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! . . t—s. s, -
(st t')y+j-x)dazé,

and with z,, , =0.
We now need to show that a(t,x,y)=1+ ) a(t,x,y) converges in the space
=1
2,(R} x R}) for each fixed ,
The convergence proof is an integration-by-parts argument reminiscent of [11,
Appendix]. We will break it up into a sequence of four claims ; some of the proofs will
be deferred to Sect. 4.

Claim L. 830%a,(t,x,y) =
¢ Si-1 J Z\~17]re
o)
0 A

1
H J 1> 2no<D >2nc.>< H<D >2n0<ZJ+1 >-—2no

. « lijl t P lasl+185)
Ii'lglggl [5‘][/3 ,-Ul

181= 18]
1851 fas]
; ; t—s; S, I_S 7 7 P
(At i S;y 2y 2 dzdE,
2 t t t ¢

where @] =3(1z,|%/t) +(z, — 2,)¢; + - + (= z))§;; n, is arbitrary, z,,, =0’

Proof. Pass 0704 under the sign of integration in (1.9)); since @; is independent of
(x,y) one may immediately expand

1
+z (t—s;) 5;
o [y (257 50 4 )

by Leibniz’ rule and the chain rule. Next integrate by parts using:

<Zj+1 Z)> 2<D >2 T A j=L. 1z, =0), (1.10a)
<€j_§j~1> 2<Dz}_>zei¢’=ei¢', j=2...,1 (1.10b)
Zy 24 > i

where we recall that (up =(1+[u®)"/%,D, =(1/)V,, (D, >>=(1—4), etc.

Using the product of the operator of (1.10b) to the n, power, followed by those of
(1.10a) and (1.10¢) to the n, power, and integrating by parts (taking transposes) we
get the claimed expression for d20%a,.

2 Kuy=(+[uH?
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Claim II. 330%a, is a sum of terms of the form
t

Si-1 27— no
j j W@ H<Z;+1 >_2"°'}:1+%+<%*‘51>}

0

1 !
CTICE = &) T PYs, st 20 [T VIt S0,
j=2 j=1
where [| Pill, < C, (9)', and V;=V((z;,; +2,)/2 = 5,55+ ((t — 8)/9) + (5,/)x). Here
and hereafter C’ J(Disa constant dependlng only ont and n,, raised to the I power.’

Proof. We have only applied Leibniz’ law to the expression in Claim I. Dif-
ferentiations of bracket factors such as {z;,; —z;> ~>™ only produce bracket
factors to alower order, and we may absorb the extra decaying factors in P,. (P, does
not decay altogether, since some terms involve no differentiations of bracket
factors.) Differentiations of V{*!*1#D can go no higher than 6n,, since V; depends
only on (z;,2;+ 1 ,¢;), and one can only perform 2n, dlfferentlatlons with respect to
each. The factors ofs may be absorbed in P,. Proof that || P,| , < C, (2) and further
details will be given in Sect. 4.

Claim1Hl. Each term in the sum of Claim IT is bounded by C,,, (0} V {4+ + 151(t/1)
for ny = [/2] + 1.

Proof. We have only to estimate

t S1—1 21 1
(RSP I N N | R CPEE-
0 0 j=1

-~ ng

2
l+.ﬁ+(—z"l““é1>
it t

! 1
I =m0 7o x I ;V}Iajlﬂﬁjh"'éé"’)ldlzdlg_
ji—2

j=1

First, change variables to y; =z;,, — z;,n, = —z,/t + & ;=& — & for j= 2.

The Jacobian determinant may be computed by adding the [** column to the
{i— 1) (note y, =— z;) and repeating; this puts the matrix in upper triangular
form and shows |[det J| = 1. Then bound

i Vg“"+pj)+ séno|| < V1o +18) + 6mo -

t 81123 21

We are then reduced to [ Vil{ 115+ 6n § - - - j H H {v;» ~*°dv;, aside from some
0

harmless factors of n/it. For 2n, > n, the 1ntegrals converge, so take ng = [n/2] + 1.
Absorbing the bound for | {v;> ~?"dy; into the bound for P}, and integrating over ¢
we get [V {1y 415+ 21+ 1 Cro{O (/1) as a bound for the expression above.

Claim IV. The number of terms in the sum of Claim II is bounded by C},

Proof. This is again a consequence of Leibniz’s law, and is deferred to Sect. 4. The

3 Vil hitt =6n0 jg the result of (a) differentiating V' |o] +|£,{ + (no more than 6n,) times and then
substituting coss((z;, ; +2z;)/2) —sins;; +{sin{t — s;)/sin )y + (sin sy/sinf)x in for the argument
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main point is that although there are ! factors of {z;., —z;» ~2m and of V;, each
depends on only two z; variables; hence the number of terms for the product grows
like a power of the number for each factor, which is independent of

Modulo the remaining details in part 4, we have proved Claims I-IV. Summing
up, let us state the

Conclusion. Let a=1+ Y a(t,x,y). Then if VeB, . g21+1)> 46%, for each t.
=1

P:joof. According to Claims I-1V, [ g ||+ 4 = Cm(t)‘(t/ MV f[a} +18 +60n/21+ 1y Sulm-
ming over [, we get [afl,+ 5 S explC &)1 lguy+1p+6mm21+1- T2king the ma-
ximum over |[afl + || f]] £ k yields the conclusion, and thus the proof of Theorem L

Section 2. Reconstruction of Singularities for Perturbed Oscillator Propagators
In this section we will prove the following theorems:

Theorem II. Let VeSYR"),H= —1/24 +{x|? + V(x) and k;(t,x.y) be the Schwartz
kernel for exp(— itH). Then

¢ if t#=mn

{(— D"y} t=mn.

Moreover when t =mm,k,, is rapidly decreasing in x away from the singularity.

sing supp k, (t,",y) ={

Theorem III. Let VeB(R"),H = — 1/24 + }|x|* + V(x), and U(t) = exp — itH. Then
8@ty = trU (1) is a temperate distribution on R, and sing supp S < {2nm}, the period set
of the unperturbed motion.

Remark. Most likely, WF(k,(mmn,,y)) = {( — 1)"y,&)|éeR"}*, ie. there are no regular
directions at the singularity. This is certainly predicted by the phase space picture.

The key element in the proof of these theorems is the following description of the
amplitude and phase functions of the perturbed propagators:

Definition 2.1. Let a(x,¢,y) be a complex-valued function on R? x RE x R}. Thenais
an isotropic multi-symbol of order 0, written aeISY(R} x RY x Ry) if

(i) |03050%al S Af, 5, x> TPKY>PLED?, 0 p <o,

(ii) 103050%al < Bf, 5, x> {y)> 77 <EX*, 0= p <L,

(iii) 103050%al < Cf, 45, ,<x>P<y>PLE> ™7, 0 p =T,
for some constants A4f, , . etc. Here (u) = (1 + [u|?)"/* If there are no {-variables,
ie. m =10, we speak of an isotropic bi-symbol. The word isotropic is used because

differentiations in any component of the x, y or £ variables produces equal decay in
all of them.

4 This has been verified by Alan Weinstein, in “A symbol class for some Schrédinger Equations on R",”
to appear in the Am. J. Math.
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We can now state the basic lemmas.

Lemma2.l. Let H= —1/24 + 1/2|x]* + V(x), with VeSYR", and let k,, be as above.
Then for t % mmn,

a(t, )¢5
(2rising)"?

1 x2+y2
St {227}

is the oscillator action and acIS*(R] x RY).

kV(taxay) =

where

Lemma 2.I1. With the same hypotheses as above, now let
t=mm, then k,(t,x,y) = [e =7 eq(x £ y)dE,

where oeISO(R2 x R} x RY).

Lemma 2.XI1. If we assume only that V e B(R"), then the same conclusions hold except
that ac B(R; x R}) and ce B(Ry x RE x RY).

We now proceed to the proofs. There is a good deal of overlap with Sect. 1, but
we feel the differences make a separate exposition desirable.

Proof of Lemma 2.1. Start again from the Dyson expansion

[=5]

Uy(t) = Z - z)’j @2.1)

S

[ UOLUGs,) 'V U(s,)...Uls) YV U(s) s, ... .ds,, 22

where U (t) is now the oscillator group. For ¢ # mn, the kernel of U (r) is well known

eiS(t,x, ¥

Kt xy) = 23
X9 = i sin iy @3)

1 x? +y?
S(t,x,y)zgl;;(cost( > - xy ).

U(s) "'V U(s;) is again a yDO:

where

i[S(s;,W;,2;4 )] — S(8;.w;.2;
Uls) ™'V Uls)e(z) = HCXP(I{ = r;mjsm)s])n (5:%;:%)

: V(Wj)¢(zj+ 1)dede+1
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Writing  S(s;,w;,2;4 1) — S(8;,w;,2) = (241 — 2))¢;

1 Zipq +2;
szsinS](cossj( ’“2 ’)—WJ-),

changing variables in the integral to {;, we get
Uls) "V U(s)$(z)) = [ p(5;25254 )D(2;41)d2;4 15 (2.4)

where

jexp(i(zj+1 —z)¢)
(— 2miy

: V(cossj(z—jﬂzj>-— sinsj5j>d(:j. (2.5)

Taking kernels in the Dyson expansion, we get

kv(t»X,J’) = k(tsX,J’)

o0 si-y}
+ Y (= [T Tk(tx,z)p(s;,21,2,) .. p(sy,z, pd'zd's.  (2.6)
1=0 )

p(sj25525 1) =

Concentrate on the /** term. Substituting in (2.5), we get

b s, 2 ) )
[ mgi@’(&x,y,ii) bi(sy, . ...Sp.t %2, )d'zd Ed's, 2.70)
0 o
where
b =80txz)+,—2,) &+ F Y —2) &, (2.8])
and
1 1 _,
CRTTTTTTRE |4 Sitl YY) dins. £ )
b= (2751)(2msmt 2 Z (COSS ( 5 > Slnsﬁ%)
Then
Cd’l = {(xayﬁ_z:g)lzl == Z =y’£1 == =
1
b =GOSy~ 0}k 2.91)

Write £ =(1/sint){costy — x). Taking the Taylor expansion of @, about its critical
point, we get

®=S(tx) + 3otz =P+ (- )
= =Dt et — = DE=),

Changing variables in the integral Z;, =z, — y, £; = £, — ¢ and dropping the bars, we
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get for the [ term

eiS(t,x,y) t Si-1 I '
sy} | T Teoblnpantdsdadt, (10D
where
, lcost
?i= 2smtz 1+ @ =28+ -+ (=2)&, 2.11)h
and
LA\ Zir1 T2 sin(t —s;) sms
b o= ZitrTE N oo 2 .
= <2n )J]:[ (coss ( 2 ) sins;¢; + o y+ Smt
Then
iS(t,x,y) 1
kylt,x,y) = Qrisin t)"fz Z alt,x.y),

where a, =1 and for />0,

t Spe1 [ ) o
alt.xy)=1{... ‘j; V... Jeolbi(s,x,y,2.¢) d'sd'zd'¢. (2.12)

0

We now need to show that g, is a bi-symbol. Again we will break up the proof
into a sequence of four claims

Claim 1.

(N 1)
8“8”(1(1,‘ x’y) T}\’Nd Sd Zd
ncost [cost 2y ~Lymo
. D 2 = e
(< z‘>( +1s1nt+(sintz1 él)) )

1
- H <fj»~1 - f;> —2nD<Dzl>2n0

i+2

1
U Zjp1 ™ >—2n°<D51>2"°
1
.Y (3‘ )(é) [1 awatsv, @.13])
la;(+-~-+?a1|=‘m| aJ\B) j=1
B+ +{pid =B
where V; = V(coss{((z;,, +2;)/2) —sins;¢; + (sin (¢t — 5,)/sin 1)y + (sin 5;/5in 2)x).

Proof. As before, we have rid the phase of dependence on (x,y) so may apply Leibniz
laws directly to the amplitude. Then we integrate by parts as before.
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Claim II. 030%a, is a sum of terms of the form

1t sy 2 2N\ —np
I e R R )]

3 o isint sint

! i
’ H €ioa —§j>_2"0 X H {zje1— 2 2no
j=2 =1

1

.PI(S,{,Z,f) X ( H otji+ Bl + S 6np)

_ (sin sj>l“f|<sin(t - Sj))lﬁﬂ),
sint sint (2.14])

where || P,j| , = C,lo st)-

Proof. Same as before; the statement about || P,| , is deferred to Sect. 4.

Chim HI Each term in this sum is bounded by C,4, (0 x
Wi fammﬁ,,o(t’/l!)-(x) “r{y>", where 0<r<|¢, and similarly if roles of x
and y are switched. Here || V||, is the max of the first m 0-order symbol semi-norms of
V, and n, > [n/2].

Proof. The product
184

! ins. el sin (s —
H Y sl +1840 + S6n0) o S s; Y Sm(t SJ‘)

J —_—
e

sint sint

is bound by

!
Z;y1t2Z;
it1 J :
|\V|||la|+|ﬂ|+6no'1—[ <cossj( 2 )“Smsjfj
j=1

i — i — el + 185D | o7 5]
Sll’l(f sj)y+s1.nij> itlB; SI‘HSJ- i
st sint sint
sin(t —s,) |#/

sint

Since V is 0-symbol, and since any extra bracket factors® may be bounded by 1. Now
apply the inequality

n+E 12y TKE» /2

5 By extra, we mean those from the < 6n, differentiations
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with
Ziwy +2z; sin(t —s;)
J*1 J : g
= C0§§;| = | —sms;§; +
¢ ’( 2 ) i sint
and 7= (sins;/sint)x. Next use [sins;/sinf]'®! to cancel the coefficient of x in
{(sins;/sin )x» ~1*!. Bound the bracket factors to the power —|g;| by 1.

Finally, apply <1, +1,) < /240, > (1),
with

7, =COSS§ Gt —sin .____—sin(t—sj)
! N2 M=y

Summing up, we get the product bounded by

1
Co sl V”aatﬂﬂi +6n0) I1 {yylalx) ~lail
j=1

(z.,+z) . fasl
: <cossj-i“2—’——smsj<fj ,

where we have absorbed factors of /2, t/sint, etc. into C,(2).

Remarks (i). We may of course reverse the roles of x and y in this argument, ie.
bound the bracket factors to the ( — |o;]) power by 1, put x in the numerator, y in the
denominator, and cancel the coefficient of y.

(i) Cancelling coefficients seems necessary to get the decay laws we want. Hence
differentiations in x do not produce decays in y or vice versa. However,
differentiations in any x-component will produce decay in all x-components because
all have the same coefficient.®
This is responsible for isotropicity of the symbol.

(iii) We may bound any inverse bracket factor by 1. Hence in estimating x-decay,
e.g., we may ignore some of the factors of

. . —Ja;]
Z;,+2z; ) sin(t —s;) sins; g
coss;| <"1 | —sins;&; + (_ ’)+ —ix
2 sin t sint

Then going through the steps above with fewer factors, we can bound the product by

H
Cop#ONV g+ 151 +6m0y [T <¥D7ExD T %
i=1

Zi 2z, . .
. (cossj<f—2——’) —sins;¢; ",

where 0 < r; < |o;|. This remark, which will be important later, is responsible for the
definition of 0 order bi-symbol given earlier.

6 Le. (sins;/sint)
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Resuming the proof of Claim III, we have now succeeded in bounding
184l

sins;|!*![sin(t — ;)

1
l_[ Y Uesl +1B51+ = 6n0)
J

sint sint
by

CatO 1V a4 151+ 6m0y <X 7Y

1

]_[ Coss; (—1—2&>— sins &; 1%,

or with |a;| replaced by 0 < 7; = || and |«| replaced by r=r, + -+ - + 1, =< [o}. Thus we
must only shown that

ncost cost Z\"ro
5 J- fK st <—t‘5>>
1
1:[ gy x H {zjpy — 2,0 P P(s,1,2,8).

1
C, 41 1—[ coss; (—2iz~j)—sinsjéj>’“f|

<! (t)i
= a’ﬁ’no l!-

As a result of Claim II and the fact that C, () is independent of /, we may pull
[ Py(s, t,2,8)C, (O], =C ! a.mo(t) outside the integral. Then we change variables as
before, setting

COSst
M=Gne ™
r’j=éj——1_€j> ]éza

W, =2z;,,—2

o Zie1 =0

Letting J~* be this linear change of variables, we have |detJ|=1 and

cost .
|J= —ti Writing
sin

21

1
Zj= 1Z Jj,mwm and éj_ Z Jl+1 mwm+ z ']l+] mnm’

I+i=m

i
Zjy1 +2; . @
[I <C°SSJ(J—2_J>‘SlnSj5j>I 4

COS S,
( ](J]+1 m+J]m)+Slns]JJ+l m) m
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21

+ Z <r’m(SinSle+j,m)>m|aj|

m=1+1

H H 1 faji
gI__]( (Smt)(smt)< D lwd . <m>> ,

where we have repeatedly used (u+v)> < \/2<u> {wy and {Au> £ |<u) for
[4] > 1. Taking the product over j and recalling |o,|+...+ oy =, we get=

(12/sin ¢y H {wytel H <n;>'*. Absorbing (|2/sin t|**) into C, 4 .., and noting
J=
that what is left is

H Sty 214

Jooo 1 TLTCo) 70> e, S Cligagy

for 2n, — || > n, we can finally conclude the proof of Claim IIL when n, 2 [#/2] +
max ([Jod/2,181/2]) + 1. (Replacing o] by r < |a| only simplifies the proof)

Claim 1V. The number of terms in the expression for 030%4,(t, x, y) is bounded by
Cno a8
Proof. This consequence of Leibniz laws will be checked in Sect. 4. The details are
identical to those in Sect. 1.

Summing up, Claims I-IV imply that

|320%at, x, y) < Y 10505a,(t, x, y)| S exp(IC, 5 4, (1)) XD 77CYD,
1

where 0 < r < |of,ng = [n/2] + max{[|a|/2],[18//2]} + 1. And likewise for y. Thus
aeISOR} x RY).

Proof of Lemma 2.11. Simply write

ky(mm, x,y) = [dlk, ( X, f)k,,<m7t——-2-,f, )

{3l (500 -5

by Lemma 2.1.

Since a(r/2,x, &), amn — 7/2, &, y)e ISY(R" x R") their product ¢ is a fortiori in
ISRy x RE x RY). In fact, of course, differentiations in x produce decay in x
independently of y; however, this observation plays no essential role, so we ignore it.
Then note that the phase is — &-(x — (— 1)"y). This concludes the proof.

Proof of Lemma 2111. Identical to the proofs of Lemma 2.1 and 2.I1 except for Claim
1. Now we only assert the analogue of that in Sect. 1, namely that each term is
bounded by C; ;.. VIl + 5 +6noqy> Where || ||, is the C* norm rather than a
symbol norm. Here n, > [n/2] as in Sect. 1.
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Theorems II and HI follows easily from these lemmas.
Proof of Theorem I1. By Lemma 11, sing supp ky(t,", ) = ¢ if t #mn. If t =mn, we
may write by Lemma 2.11
ky(mm, x, py = | 7™ Cq(x,E y)dE,
with 6e ISO(R” x R% x R}). For x # ( — 1)"y we may integrate by parts using

= (= D"y)-3
= (= mP

44

whence for any r
ky(mm, x, y) = [e™ "~ ZUmIYLY o(x, &, y)dE.

L' has two nice effects on o since o is isotropic, L lowers its order in &; and || L'e ||,
=0(1/|x — (= 1)"y}), so for fixed y, L introduces decay in x. However these effects
compete, since to estimate decay in £ one must compensate with growth in x.
However we only need enough decay in ¢ to render the integral absolutely
convergent. So we apply (L')" "% and set p =n + 1 in Definition 2.1 to get

WL o, & ) S e — (= Dy TF7 0D LE T T,

which for fixed y is 0(| x| ). Since x is arbitrary, and the integral converges we have
|k, (mm, x, y)| = 0(|x| %) for all k, as desired.

Finally we note that k, (mn, -, y) cannot be locally L* near ( — 1)"y else it would be
globally L? in x. But then U, ( — mn)k,(mm, -, y) would be ?, a contradiction since it
is 8(x — y). Hence sing supp k,(mn,",y) = {(— 1)"y}.

Proof of Theorem 111, 1t is well known that S(¢) = tr U(t) is a temperate distribution

on R. We briefly recall this proof. For 0e#(R"), define U, = [g(t)u(t)dt. Since

i0,U = HU one has by partial integrations that U, = [(H "MU(t)-(i0,)'0(t)dt. Since

this holds for any k, one knows that Ug:¥'—.% is continuous and so its kernel

Uglx,y) is S (R} x R}), therefore §e S (R")— tr(Uy) = § Uglx, x)dx = {S(1), 0()>
R

defines a continuous linear functional. Then

t t .
S(t) = [kit, x, x)dx = | { a<5, X, z>a<§, z, x)e“”“”“” dxdz,

where by Lemma 2I1 the amplitude is Z(RIxR]) if t=2mn and
@ = (1/sin (t/2))(cos (t/2))(x? + z%) — 2xz). Then.
2n

(1 —Ax)eicp:(l + = 24
i sin“{y/2)

(cost/2x — z)*ne'® = p(x, z)e'®

(1 — 4z) iq’—(l n,

A= TS w)
So S(t) = [ fe((1 — 4,)p(x, 2) 71)y™((1 = 4,)p(z,x) ™)™ x alt/2, x, Z)a(t/2, z, x) and as
in the proof of Lemmas 21, 2JI this is bounded by C, lalZ,, x

(cost/2z — x)2> e'? = p(z, x)e'®
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[ §px,2)"™p(z,x)""dxdz. Changing variables to
&, =cost/2x — z, with Jacobian cos?#/2 — 1 #0

&, =cost/2z—x

for t # 2mn, the integral is bounded by C(r) [ [(&;> "™ (&, ) ~™d¢ dé, < oo for
ng > [n/2]. Buta and @ are continuous in ¢ away from ¢t = 2mmn, and the estimates are
uniform in ¢ in compact sets away from 2nZ, so S(¢) is continuous there as well.” So
sing supp S(f) < {2mn}. QED.

Section 3. Reconstruction of Singularities for Perturbed Anisotropic
Oscillator Propagators

In this section we wish to explain the modifications of Sect. 2 needed to handle
anisotropic oscillators. In particular, the amplitudes of the perturbed propagators
will now be anisotropic symbols, and the locus of singularities will lose the
isotropicity of Sect. 2.

We will prove:

Theorem IV. Let VeSR"), H= —1/24+ Y wix? + V(x), and k,(t,x,y) be the
k=1

Schwartz kernel for exp( — itH). Assume that the {w,} are irrationally related, then

WF(kV(tv ) 7.}")) = WF(k(ta',Y))'

Remarks. We assume {w,} are irrationally related for simplicity. If some are equal,
and the rest irrationally related, the conclusion would still follow. If some are
unequal but rationally related, it seems we cannot describe the wave front set as
precisely as in Theorem IV. This will be explained in remarks during the proof.
First, we summarize how the amplitudes and phases change when the
oscillations are anisotropic.
a} The phase is now S{t, x, y} =

" W X2 + y?
Y —%| cos == L e X |
K1 Sinayt 2

b} The unperturbed propagator ki, x,y) =

H
y D £SGE
k=1 \ 2misin wyt

¢) We now define ordinary bi-symbols and multi-symbols by a component-by-
component rewording of (Definition 2.1a). Definition 3.1a): Let a(x, y) (respectively
(x,£,y)) be a complex-valued function on R} x R? (respectively R? x R% x R}); then

aeS° (R x RI(SO(RE x R? x RY) if

7 Smoothness is proved in the same way as continuity
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(i) 10505al < A7, 5, x> 72y Y0 () Ty 0P,

with 0 £ p; < |« |. Analogously for y.
(ii) |6%080%al < A7, , ﬂ xRy 8 0™
=1

with 0 < p, £l |; analogously for y and £,
Then the analogue of Lemma 3.1 is:

Lemma 3.1. With H and k,, as above, let us assume t + mnjw, for k=1,...,n. Then
ky = a(t,x,y)k(t,x,y) with aeSO(R} x RY),

Proof. All goes the same as in Lemma 2.1 up to (2.1.0). We now get:
The /th term in the Dyson expansion is

t Spm g
kit,x,)-f... | [...[e%b(s,x,y,z Ed'sdz'dE, (3.1.00)
0 1
where
" COS W, t
%=z 21 sma):t (z)” + Z (zj+1—2)5;
and

k k

1
Zipq + 25 .
b =] V(cos a)ksj(le——i)—sm wys;E%
j=1

sin @ (t — ;) Sin @, s;
+ k gk g 2 Laf B0
sin f sSin L

(3.1.1)

where k = 1,...,nand the arrow denotes the vector with those components, e.g. (Z;)

= (Z}.l,
We integrate by parts exactly as before except that now
n popard 2
(D, Y2 = (1 +1< 5 Cf““’”) + (Cf’s Dl g’;) > x &0
i\ S sinot sin @, t
{Write the parenthetical expression on the right as p.} All else is as before.
For Claim II we now need to change the chain rule factors to
i "

k=1

sin @y s; (o |sin ay(t — s;)

sin @yt

?

sin w,t

where o; = (a},...,a}), etc.

Claim IIIis where a real change is needed. Indeed, let us now do the cancellations
last. Bounding each V{l«I+14;1+=6m) by its norm times its bracket® and using
(u+0d~ 1< ﬁ( u){v) ! to put ({,z) dependence in the numerator, we may now
write

8 Le. the bracket of its argument
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Claim III. Each term is bounded by
j' Slj-l ].i[ < Slna)k t—.S)yk+kain(1)ij>>la’j
o jo1 sin wyt sin ol

. (smwks ) ﬁl’,(st?&)

sin w,t

1 !
p T <o =& P x [T <zur —20 7%
i=2 j=1

1 k k Jasl
Zigq t 2% —— i
. H <<COSQ),(S}( i+t J>_sma)k8j€§>>
p 2

1 ; i =lajl
sin ot — s, sin w,s; i
< i ’)yk+ k ’x"> x

Sin oyt sin gt

: o
sin o,s; [1*/

I S1-1
<! .
=C,, no(t)bf g | sint

where (@)% = (u})4 ... (@)4.

The proof is exactly as before, as is the proof of Claim IV. Again, n, depends only
on the dimension, and |«

Summing up,

0%60a =Y 0208,
1

where

t Sp1 !
}6§6§Q,I§C;’ﬁ(t)£,.. g ds ]

k=1

1 k
Sin s, |«¢

sin w,(t — s, sin w, s, et
< i )yk+ k Jxk> %

sinm,t sin w,t

sin w,t

Now the chain rule factors |sin , s,/sin w,?| can only cancel the coefficients of x*; the
remaining components in the corresponding bracket factors do not go to zero as
|| 00 uniformly in s; after cancellation. However we apparently require this
uniformity to get a 1/1! in the estimate on this term. So it appears the best we cando
is (i) use (1 + 4|~ (1 + |u,]?)~?! to ignore badly behaved components, then (ii)
use

3
af

Sin @ys; %

sin @, (t — s; $in @, s; ot
< k J)yk+ k) k> 2

sin wyt Sin w,t

sin w,t

_ o
scexry Y

(or more generally < C(t)< x*> —# with p¥ < oy and finally, (iii) integrate in d's to get

I i
<Ly T TT 8t
j=1k=1 :
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n . ktl
= CLy0 [T <x> #CydP . where p*<
k=1 -

Summing in / then gives the desired conclusion of Lemma 3.1.

Remarks. To see that our method requires this cancellation of coefficients, consider
a,{t,x,y) in dimension 2. We bound &7 a, by the function

jdx <(sin w,(t —~s)y1 +sin wlsxlsinwz(t - s)y2 +sina>2sxz>>~m
O

sinw, ¢ sin o, f sSin w,t sinw,t

n

sinw,s

sinw,t

Fix yand x* and consider decay in x*. By dominated Convergence, the integral goes

to zero; however we have asked in the lemmas for a high rate of decrease. We may
H

estimate this rate by |ds{sinw,sx?) ~"|sinw,s|". Now assume the anisotropicity
0

condition that w, and w, are irrationally related. We then claim that
H 4

j ds{sin w,sx*> ~™|sin w,s|™ can decay no more rapidly than J" z(sin w,sx*)ds, where
O 0

x is the characteristic function of [ — 1, 1]. Indeed, sin w, s is bounded above zero on
some fixed intervals around those {mm/w,} in [0, t]. But for large enough
x? y(sin w,x?) will be zero off those intervals anyway. Thus the sin w,s| can’t affect
the decay rate, and of course y decays more rapidly than (- > ~™ for any m.

H

However | y(sin w,sx?)ds just counts the amount of time that sin w,sx* spends in
0

[ —1, 1], and if any mn/w,e(0,¢) this is ~ const 1/{x?.

So our bound function for d% a, cannot decay more rapidly than {(x) ! as
|x} = <0, which is not good enough to allow our analysis of singularities.

(2) Of course if some of the w; are equal, one gets an isotropic decay in their
respective directions. If two are pairwise rationally related, there are some obvious
relations between differentiations in one of the directions and decay in the other. We
ignore these possibilities for simplicity, and assume the frequencies are irrationally
related.

Now let us prove Theorem IV:

Proof. Fort£mnjw,i=1,...,n weknow from Lemma 3.1 that WF(k(z,", v)) = ¢.
Now let t = mn/w,, say. We need to show

WF(kV%?—,',y>= (= 1"y % *EL 0, O)),

1

where * denotes a free entry.
Write ky(t, x,y) = [ ky(t — /20, x,2)k(n/20,,z, y)dz.

Also write the action function S as ) S,(t, x,, ¥).
k=1
From Lemma 3.1,

) T 7 T n
kyzfexp i< S I—E{;:,X,Z + 8 ia,z,y a t—-go':,X,Z a E,z,y dz.
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Now S(mn/w, — n/2w,,%,2) + S(n/20,,2z, ) = — w,(x; —(— 1)y,} + &, where & =
Y Sumn/w, — /20, X, 2,) + S(7/20,, 2;, y,). Our first observation is that if we

k#1
integrate out the (z,,...,z,) variables, we will be left with a symbol in z,.

Namely,leto(x,z,,y) = {... [ dz,...dz,e®a((2m — )n/2w,, x, 2)a(n /2w, z, y). Then
& is independent of z,, so

r _ P r ¥y (2M‘— ll r2 (_.n_
& o=(..{dz, . dze ngi:r(rl)aha( 0. 2 xa 20, )

Then integrate by parts using

. 1 .
(1—202)e® = (1 + =+ (2, @)2>e‘¢,
14

where
sin&mﬁ
_ w,
=T &((2m—l)n> oW
smwl 5 smw1 5
)
O o= [dz,... dz,e? H{ (1 —2)(1 + (1/iyk+(2,,8)) 13"

: " ora,07a
z Z]al z: Y2
rtra=r N1

As usual we can push the derivatives past the convergence factors, eventually
arriving at sums of terms of the form

I 1
{...fdz,.. dz,e® [] (I + 7% +(5zk‘p)2>
k=2

P )D:.o (2 ! 02 al ——
"P(x,v,2,... .0 7 |0" ,
VoEzen o 20, 4 20,
where z' =(z,,...,2,).

Then D207 a,02a,| < C, ,{z;) "y, »'{x, )", where we use p,=0 for k=

zzx

2,...,n. P is bounded, so each term is bounded by a constant C, times

—ng

H —Ro
{2y )7y Yy >rf. L fdzy o dg, ] (1 +.L + (6Zk@)2> .
k=2 W
This integral is a product of one dimensional integrals. Since 9, @ is affine in z, with
a non-vanishing coefficient of z, (due to anisotropicity), the integrals converge as
long as ny = 1.
Thus {6, 6] £ C,{z, > 7"(x, )" {y,;)". Moreover

ky (mm, x, y) = jeXp( — i, (x; — 1)"yy)zy)o(x, 2y, y) dz,.
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Clearly, then, if x, # ( — 1)"y, we may integrate by parts as before using i/ew, (x, —
(—1)"yd,, repeatedly to render the integral absolutely convergent, and uniformly in
{x, y) so that k(mm, x, y) is regular in x for x away from {( — 1)"y,,*,...,*)}. Thusfar
we have determined sing suppky(mm, -,y). At a point X=((— 1"y,
Xp,..., X, )Esingsupp k(mrn, -,y) we must find Z..

Let V be the open conical set {#eR"|n; # 0 for some j =2,..., n}. We sketch the
proof that for £V there is a ¢eCT, H(X) =1 but

Bk (mnjo,, -, )8 =0 ") for all N.
The left side is
[ fo()o(x, 2, y)exp(— i{w,(x; —(— ™y, )z, +1x°E}) dz, dx.

Then integrate by parts with (1 4+ (w,z; +1&,)*)7'(1 —0,,)* once to insure con-
vergence in dz,. Next integrate by parts in (z¢;)” 15xj N times with all j such that
¢; # 0. Since ¢ providesconvergence in dx, the integral converges and is O{z ™ Mfor all
N. Then &€V are all in the complement of X, so 2; ={(£,,0,...,0)|¢,eR} as
claimed.

This concludes the proof of Theorem IV.

Remarks. The same proof works if some w, are identical. But if, say w, =1, w, =2
then the unperturbed oscillators has singular support at( — y,, y,) at t = . Factors
of sin2s can cancel those of sins, but not vice versa, so the d, derivatives of the
amplitudes decay in x, but not necessarily to the same rate in x,. At t =7, one can
write

k(TC,X, y) = jexp [l((xl + yl)Zl + (xz - yz)zz)]a(xaza Y) dZ,

but now ¢ is not isotropic. So integrating by parts as in the isotropic case does not
yield convergence; one has to use instead (1/i)(1/(x, + y,))d,,, i.e. to assume x, #
¥1- So a priori the singular support = {( — y,,¥)}. This seems unlikely, but cannot as
yet be disproved.

Section 4. Details from Sects 1, 2, and 3
The purpose of this section is to fill in the gaps from Sects 1, 2, and 3.

First, we must make copious use of Leibniz’s laws to settle the claims in 1 — 3. We
need to show that the operators

i 1
Ly =((1=4,)p7 Y [T<D, > [] <zjuy — 2,072
L L
may be written ! !

!
Lf,no= z p"”o H <Zj+1_zj>-2nopo:,ngDaa (4‘1)
=1

faf = 2no

B H.nc05£+ cosr ¢ 2
p= isint sint ! !

where
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(or analogously in other cases), | Py, [, = Cf,o (t), and the number of terms is < Cﬁ,o‘
Here as before C, (¢) is a constant depending only on (n,, t); we do not relabel from
step to step.

To see this, we apply Leibniz law in the form of [9], p. 10). The operators
{D,;»?" are of the form P(D,;) with P(¢)= (¢ »270 They are constant coefficient
operators sO

i
<Dzk>2n0 1:[1 <Zj+1 z > 2no Z D ( H <Zj+1 Zj>—2no>P(ak)(DZk)’ (42)

243 k'

where P@(&) = g1 P(&)/(8¢% - -0E%). Of course |o ] < 2n,. Iterating, we get:

! !
H <Dzk>2n0 H <Zj+1 “Zj>k2"0
k=2 i=1

1 !
= Z a — D DZ(H<ZJ‘+1_ZJ‘>_2"0>
1!

(2, ..ar) %2

-P*(D,)- - P(D,). 4.3)
Next, we unravel ((1 — 4z,)p '), Again,

1
(1=4,)p7 = L DA (D),

ay 10
where P(&) = (1 + |£]2) and P*(§) = (a|a|l,p/ag‘;z,..ag.‘n_
terating, we get

e X DR TIDE (o DR p T P(DE). PAD,,). (44)
ol ey O Lot

Now push P_’na(DZl). . .P"l‘(DZI) past the multiplications in the big sum (4.3) above.
P (D,)...P*(D,) is constant, say Q(D, ), where &=/(a, ,...,a}). Applying
Leibniz rule again, we get L, , =

1
(LA TR ﬂx)a!al ,O(l'

(pr-l(a (D). )D D

!
1<z, —zj>2"°> x 02D, )P*(D,,)...P*(D, ). 4.5)
j=1

This is finally in the form (4.1). We must now show
;1D )P=(D,,)..P*(D,) _
dloy Tyt

#{p} = C,,.

ZCD ..Df:

zr*

)

where max {C,} < C!

no*

H
(i) D¥(p~ ‘...p"(Dj?p"’l)...)Dgi...D;( 1<z, —z,.>‘2”°)
i=1
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H
Py 252,64, 0)p n<zj+1_zj>_2n0:
where | P, , | £C, (1)

(iii) The number of terms in Y =CL.

Proof. (i) |B;] is bounded by the degree of P*({) < 2n,. So the number of relevant
terms is bounded by *{B;}|;1 < 2ny} = C},..
Let us consider max|C,|. Recall that P(§) =(1 + |€]2yo,sothatat & =(1,...,1)all
derivatives of P are positive. Write P*(¢)/al =) Aﬂéﬁ. Then each A is bounded by
B

P*/al(1), where 1 =(1,...,1). We are writing
P2(E,) P“'(c,

o, !

Z Agf”‘ éﬂl

Since distinct ;s come from distinct factors, Aﬂ Ay, Ap, = P2/a,l(1)...
Pa(1) /oyl Fmally the same argument applies to Q%'(1), so

max|Cy S Q2 () (1)

Now take max (P*/a;)(1)=C,, and the result is C, .

ja;l S 2ng
(ii) First consider D%--D% H {zjpqy— 20 ™.
j=1
Applying Leibniz rule, and the fact that only two bracket factors are operated on by
a given D_ to get

08y,
Z ( 142 )DZD::(Z;g_Z > 2noDy3Daz VZ<Z3_ZZ>'2no
SAN 5 Vi

®yPa.-
vil Zlay
138 ) LR S I B . - 2np [yo = yi - 2no
XDZZDZI 1 {zp—z_y> Dz; {z;) .

Next note that {x—yp>~2" behaves like a symbol in (x—y), in fact
10208 (x — yd ™20 S Cpy (x — yy~ 2o~ lel =181,

Proof. Let z=x—y, and Az) = {z>° Then

OA(z)" " = > (—=ng)e.(—ng—0,,)Az)"™° 1_[ %),
IRt i =
Now
0 [a;] > 2
j=< 0or2 lo] =2
<lzi l“j}zl

=[l1e7A1< [ Howalx [ |ova<izp,

i=1 Jlejl =1 HMest=2
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o factors |077A| bounded each by |z|. This bound is achieved if all |o;| = 1 and ¢ = |a].
Then

6247 < (A "™C, A%z |,
But
|Z|d'1-g é/l_d/z = <Z>—a — Ia:<z>—2no < <Z>—2no“laf_

Finally substituting z = (x — y) and differentiating in 80 produces 8*** A(z)|, -, -
up to sign due to linearity of the substitute. This concludes the proof.

zZ2 zZ)

1
Write D22 D21z, —z, >~ 2" D=1z = P, (2) [[ {2, —2, Y 2. It fol-
=1

lows from the above that each factor D% *! D% ™" (z;,, — z;> ~*™ may be bounded
by {z;4,—z;>"*C,, where C, is the symbol norm of {x—y}»~ 2™ or order
(2ny, 2n,). That is, C, =max{C,|C,, is best constant in |0205(x—y> 2| <
Co:ﬂ <x - Y>_2"°_M—w' } with %a! é 2”0’ lﬂl é zn()'

Thus | P, (2)]| < C},; it does not necessarily decay. Now let

ng?

P,= ¥ ("‘“'“’)Pa,v(z).
O1oelit Slad \%e N
Again, bounding P, , and summing the binomial coefficients yields 1131’"01 sC.
Finally, p~! is also a symbol in ({cost/sint)z, — &,). Defining now A(u) = (1
+ (1/i)(cost/sin ) + |u[?) yields A~™ a symbol in u of order 2n, as before without
change. Substituting u = (cost/sint)z, — £, only changes the previous argument by
putting in factors of cost/sin ¢, which makes all estimates t-dependent. However this
can clearly be made continuous in ¢ for t # mn, so that all estimates may be assumed
uniform in ¢t on compact sets disjoint from {m=n}. Then
Die(p~'...p7'DBp™Y
is a product of differentiations of p~1, and multiplications by p ~* all of which only
increase the order of p ~*. We then certainly get p ™™ and may sum the other factors
to get Py(z,¢,,1), which is bounded by a C, .
Fmally let P, , (zy,...,2,&,,8) = Pg(z,{,, )P, ,.(z1...,2). This concludes part (i).
(iii) This is obvious since if C, = {a;[|a;| <2n,} then the number of terms is
bounded by C} .
This concludes the proofs of the major claims of power law growth of the
bounding constants.
Finally, we show that if one of the standard classical Hamiltonian systems (i)-(iii)
is perturbed by VeS®(R”"), then the associated lagrangian submanifolds A, are
asymptotic to the unperturbed ones. More precisely,

Proposition 4.1. Let Hy(x.l) be one of case ()Hiii), and let H(x,()=H,+ V(x),
VeSO (R™. Let (xo(t,y,n) &o(t, y,1)) be solutions of the unperturbed initial value
Hamilton's equations and let (d(t,y,n), &t v,n)) be the perturbed solutions.
Then (x(t,y,n), S@ym) =ty Lolt,ym) +(o(l), o(l)) for fixed ()
as |p| - 0.
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Proof. First use the variations of constant formulas:

x(t, y, Xolt, ¥, t{Glt,s
= e} aamf Ve s
where G(t,s) are the initial value Greens’ functions
) Glt,s)=(t —ys),
it} G(t,s) =sin(t —s),
i} G(t,s) = sin w,(t — s)/ ;.

We then need to show
j G(ts)V'(x(s,y,n)) and '( (0G/at) (t,9)V(x(s,yn))ds are ofl) for fixed (t)) as

lﬂl —o0. But VESO :[V (X(S,JW)) < C< X,S,y,rf)> 1 Since X(Ssy,’?) xO(Say”?) + 0(1)

we have {x(s,,m)> 1< G, (xofs,),m)> 71 by the (u+v> 1< /2¢ud"1(v)
inequality. Now

Xo(s, y,m)=1) y+sn,
ii) cossy + sinsy,
iil) cosw;sy + sine; sy.

So, writing the coefficient of 5 as p(s} and applying the same inequality to any of the
sums i)-iii) we get | V'(x(s, y,17)) | £ C{y><{p(s)y> ~*. For almost all s, { p(s)y >y ~* =0
as|n|— oo. Allconstants and Green’s functions are bounded continuous functions of
s. So by the dominated convergence the integrals

}G(t, V' (x(s, y,n))ds and
[¢]

t

oG
[V (e m)ds
0

are (1) as |5|— oo.

Remarks. Let L, be the Lagrangian manifold y, A} where y, is the unperturbed
phase flow, and let A} = y'A}, where y'(y,n) = (x(t, y,1), £, y,1)). Equip both with
initial value coordinates # determined by the diffeomorphisms ¥}, :AS - L} andy' :Ag
—A}. Then the Euclidean distance in T*R" between L; and A outside the
coordinate balls [#| £ r is bounded by the length of the pair of integrals in the
proposition. Hence this distance approaches zero as the balls increase. So we are
justified in saying that L} and A} are asymptotic.
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