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Abstract. The algebraic structure of chiral anomalies is made globally valid on 
non-trivial bundles by the introduction of a fixed background connection. 
Some of the techniques used in the study of the anomaly are improved or 
generalized, including a systematic way of generating towers of "descent 
equations". 

I. Introduction 

Chiral anomalies have been studied at a slow pace over a period of almost fifteen 
years during most of which the general lack of interest following the active 
pioneering period [1,2, 1] did not stimulate very active efforts [3-6]. Recent 
revival [7, 8] of the subject has, however, encouraged us [9-13] to develop further 
some of the methods which slowly emerged and cast the results into a form suitable 
to make contact with the recent mathematical understanding of the connections 
between some of the algebraic structures which have been discovered and the 
topology of gauge field orbit spaces and of gauge groups [14-19]. 

In this paper, we shall limit ourselves to the algebraic aspects of the structure of 
chiral anomalies, but, by introduction of a background field (fixed connection), we 
shall extend the local results so far obtained in such a way that they become 
globally valid on non-trivial bundles. This gives new insight into the problem and 
is also of physical interest, in particular in the gravitational case, when non- 
parallelizable manifolds are considered [20, 21]. 

Section II is devoted to the description of the main two technical tools to be 
used in the sequel: the "Russian" formula and the extended Cartan homotopy 

* This work was supported in part by the Director, Office of Energy Research, Office of High 
Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy 
under contract DE-AC03-76SF00098 and in part by the National Science Foundation under 
research grant PHY81-18547 
1 The pioneering period is extensively covered in [1 ]. From this period, we shall however select 
out [2], especially relevant to the subject of this paper 



158 J. Mafies, R. Stora, and B. Zumino 

formula. It ends by the statement of a straightforward application, the "triangle 
formula" which will be repeatedly used in the sequel. 

Section III goes over the definition of anomalies through the W.Z. consistency 
conditions [2] which are stated in terms of cohomology. There follows the writing 
of the corresponding W.Z.W. (Wess-Zumino-Witten) action [2,7] in three 
equivalent forms. 

Section IV treats in detail the problem arising when the anomaly vanishes on a 
subalgebra Lie K of the structure Lie algebra Lie G [7, 12] and the corresponding 
Bardeen action together with the covariant form of the vertex anomaly are 
exhibited. The chiral case, where the structure group G is a direct GR x GL of two 
isomorphic factors, and where the diagonal anomaly vanishes [24-28] is treated in 
detail. 

If. Technical Equipment 

For a gauge theory with structure group G, a compact Lie group, we shall be 
concerned with a principal bundle P(M, G) 2, where M is of even dimension 
d = 2n - 2, compact, without boundary. Connections on P(M, G) are represented 
locally by one-forms with values in the Lie algebra Lie G of G. Gauge 
transformations of P(M, G) are locally represented on M by functions into G with 
suitable gluing properties. They form a group ~¢ which acts on the (affine) space of 
connections A: 

g ~ ,  Ao=g-lAg+g-- ldg .  (1) 

The curvature F of A is defined by 3 

F(A) = dA + ½ [A, A]. (2) 

Then 

F(Ao) - Fg( A) -- g-  ~F( A)g. (3) 

The Lie algebra Lie (f of the gauge group is locally represented by functions to 
Lie G with the bracket law 

ul, u2 ~ 
x e M [u,, u2] (x) = [ul(x ), u2(x)]. (4) 

Expressions involving connections, their curvature, gauge transformations and 
infinitesimal gauge transformations (elements of Lie N), are globally defined 
provided they are locally gauge invariant, i.e., invariant under 

2 An elementary exposition can be found in [6] 
3 Notice that in this paper the bracket is defined 

[A, B] ~ AB-- ( -)"bBA, 

where a (b) is 1 ifA(B) is an anticommuting element and zero otherwise 
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F(A i) -~Fh(A i ) 

gi +h- lgi h 

ui__~h- luih 

h :local map (M-*G). 
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(5) 

We shall see in Sect. III that the definition of anomalies goes through the 
consideration of the cohomology algebra H* (Lie fq, F~o~) of Lie f# with values in the 
representation space F~o~ of f# consisting in local functionals of a given set of 
connections, i.e., integrated locally gauge invariant polynomials of the coefficients 
of these connections and their derivatives. This is a graded commutative 
differential algebra [22] defined by the structure equations 4 

s:v = - + I v ,  v3, 

S e A  = - d r -  [ A ,  v]  = - D ( A ) v ,  (6) 

Sed + d s e = 0 ,  Se2 = 0 ,  

where Se is the appropriate coboundary operator and v, which generates 
H*(Lie(~), is what physicists call the geometric Faddeev Popov ghost, where- 
as A, or possibly several of them, generate F~o c. 

The operator Se can also be interpreted 5 as an antiderivation with respect to a 
set of parameter 21, 22 . . . .  upon which the group element g(x, 2) may depend [11] 
since, if one considers that also the connection A depends on these parameters 
through 

A(x, 2) - o - l (x, OA(x)o(x,  ,0 + O- l(x, ,0do(x, ,0, (7) 

and the Faddeev Popov ghost is defined by: 

v = g -  lSeg, (8) 

then Eqs. (6) follow immediately. 
A convenient change of generators is to go from (v, A) to (v, A + v), and from d 

to the total differential d + S# 6 Then, by virtue of the structure Eqs. (6) one has the 
"Russian formula" [11, 12, 19] 

.~(A+v)=-(d+se)(A+v)+½[A+v,A+v] 

= dA + ½ [A, A] = F(A). (9) 

Of course, the Bianchi identity holds, 

dF(A) + [A, F(A)] = (d + Se)~-(A + v) + [A + v, f f (A + v)] = 0. (10) 

4 This is the geometric part of the BRST algebra [4], which has an additional contractible piece 
involving the second Faddeev-Popov ghost ~ and the gauge fixing Lagrange multiplier 7: 

5:~=7, 2:?=0 

5 Under the homomorphism which maps H* (Lie ~) into H~Rh,m(f#) [35] 
6 For an interpretation ofA + v as a connection on P(M, G) x f#, see a forthcoming paper by R. 
Coquereaux 
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This purely algebraic formulation easily extends to the consideration of the Lie 
algebra of vector fields on M needed to describe gravitational anomalies [8, 13, 20, 
21], whereas connection can be made with the topological considerations of 
[14-16] by identifying v with the Maurer Cartan form of N and 5 ~ with the 
differential on N as mentioned above. 

Sometimes we shall consider the connected component of the identity in N, 
which will be denoted No. It is exponentiable if G is simply connected, which we 
shall assume, when needed. 

We now turn to the ex t ended  Car tan  homotopy  formula .  Consider a family of 
connections smoothly parametrized by a set of variables tl, t2, ... which we shall 
denote At(x) .  Besides the usual antiderivation d with respect to x, we introduce an 
antiderivation dt with respect to the parameters {t} and an even operator ft [11] 
defined in such way that the following graded algebra is satisfied 

d 2 = dZt = ddt + dtd = O, 

dt = Etd- dft, (11) 

dtf t  - [ f i t  = O. 

The operator [t is a homotopy derivation which increases the degree in dt by 
one and decreases the degree in dx  by one. Its action on the algebra of polynomials 
generated by a particular set of forms will be defined so that (11) is satisfied and the 
algebra of polynomials is stable under application of d, dt, and [t. It is easy to check 
that the unique action of ~t on polynomials in {At, F t =-- d A  t + 1 [ A t ,  A t ] ,  dtAt ' dtFt} 
satisfying these requirements is given by 

~tF t  = d t A t ,  ~'tAt = vf tdtA t = ~ td tF t  = 0.  (12) 

The general problem of defining the action of Et on different algebras of 
polynomials will be considered in the Appendix. 

From Eqs. (11) it follows immediately 

[f(t~t), d] = d t f ' ( f t )  = f ' (Et )  dt (13) 

for f (Et )  a polynomial in Et. Taking f ( ~ t )  = ee', as given by its Taylor expansion, we 
obtain from Eq. (13), 

e~d - de t* =d te  ~ = ee~dt . (14) 

If ~ is a polynomial in the forms {At, Ft, dtAt, dtFt} (or in any other set of forms on 
which the action of t~t has been consistently defined), Eq. (14) can be written 

(d + dt)eet~ = ettd.~ . (15) 

Expanding both sides of this equation, we obtain 

at ~-.v 2 =  (p+ 1)~ d ~ - d  ( p +  1)! 2.  (16) 

This expression can be integrated (for fixed x) over a domain T in the space of 
parameters {t} with boundary ~T. Since the integrand is a form both in {x} and {t}, 
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we need to establish a convention for this "incomplete" integration. For ¢e a form of 
degrees (r, s) in (dx, dt) we adopt the following definitions: 

c~=- ~ ~'flx~dt~= ( ~x~ c%flx~) dt~' 
Xr X~ 

(t7) 

T~ Ts 

i.e., the non-integrated differentials are taken out of the integral to the right. It is 
easy to see that this convention implies the following rules: 

d I I I f d#, (18) 
Ts Ts Xr Xr 

whereas Stokes theorem keeps its familiar form: 

S d~= S c~, ~ dt~= ~ c~. (19) 
Xr+ 1 ~Xr+ 1 Ts+ 1 OTs+ t 

Had we adopted the opposite convention (differentials out to the left), Stokes 
theorem would have picked up additional signs. Integration of Eq. (16) with the 
above convention gives: 

OT ~ 2~= ! (p+ 1)~ d~+(-)P+"d ! (p+ 1)~ 2,  (20) 

where q is the degree of ~ in {dt}. 
Equations (16) and (20) are the extended Cartan homotopy formula in 

differential and integral form respectively. They are valid for any ~ belonging to an 
algebra of polynomials on which the action of Y, has been consistently defined and 
for any parametrization, and they include as a special case the ordinary Cartan 
homotopy formula, Eq. (24) below. The also contain the following particular cases: 

1) If~ is a polynomial in A, and Ft closed with respect to x, i.e., d.~ =0, then by 
Eq. 05) we know that ee*~ is closed with respect to the total differential operator 
d + d,. Equation (20) reduces to 

Jr~ (p+EP'+~ ~. = (- )Pd ! 1 ~'" (21) 

This new set of descent equations has been studied in [-33-35] in the case where ~ is 
a symmetric invariant polynomial in F, and T a (p + 1)-simplex with At given as a 
convex combination of connections A ~ 

p+ l  p+l  

At = 2 t~ A~, 32 t~=l.  (22) 
i=0 i=0 

2) For A parametrized as in Eq. (7) we have d a -  ~ .  If we take ~ -- COz, _ 1, with 
dcoz, _, an invariant symmetric polynomial in F and we consider the action of (a 
on the algebra of polynomials in {A, F, v, dr} (v is the geometric Faddeev-Popov 
ghost), then Eqs.(16) become the ordinary "descent equations" for the forms 
a)~,_,-v that we will consider in Sect. III (see also [11, 12]) 

~OO~n_ l_p= --dooP+_*2_v. (23) 
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The integral Eqs. (20) give the relations among the cocycles recently defined in 
[29-32, 35]. See the Appendix for the appropriate definition of :;~ and a detailed 
derivation of these results. 

3) Since they will be used repeatedly in what follows, we consider in detail the 
first two equations in (21), with the restrictions indicated above. For p=0 ,  

-P(F~) a symmetric invariant polynomial and A t = tA 2 -t-(1- t)A1, we get 
1 

P(F"2) -P(F])  = nd ~ P(d,A,, F~- i) = nd ~ dtP(A 2 - A~, F~- x) 
Tt  0 

- -  d c o 2 n _  i(A2, A1), (24) 

where dt is an ordinary differential. Equation (24) is of course the ordinary Chern 
Weil version of the Cartan homotopy formula [11, 12]. Notice that c%,_ ~(A2, A~) 
is invariant under simultaneous gauge transformations of A1 and A2. For p = 1, 
A t = tlA i + tzA 2 + (1 - t 1 - -  tz)A 3 and T 2 the corresponding simplex we get 

-- ~ :tP(Ft)=°o2n-a(A1,A2) +~Ozn-i(Az, A3)+°~2n-I(A3, Ai) 
OT2 

_ n(n-1)  d ~ SP(d,A~,dtAt, F~ -2) 
2 r~ 

n (n-  1) i i- , ,  
- 2 d ~ dt i ~ dt2SP(Az-A3, A 1 --A3, fn-z'~t : 

0 o 

-dz(A~, A2, X3), (25) 
where dt~ and dt2 are ordinary differentials, and SP is the symmetrized form of the 
polynomial P (see [9, i1]). Equation (25) will be used very often in the rest of this 
paper, and we shall refer to it as the "triangle formula." This formula had been used 
previously in [11, 26] with a different derivation. 

IlL Chiral Anomalies as Elements of H 1 (Lie ~ ,  Floe) 

In the known field theory models involving a gauge field A, and possibly a fixed 
background gauge field Ao 7 whenever P(M, G) is not trivial, anomalies appear as 
the right-hand side of an anomalous Ward identity [2, 5] 

5:F( . ,  A, Ao) = S d (v ;  A, Ao), (26) 
M 

where F( . ,  A, A0) is the vertex functional of the theory under consideration in 
which the dot collectively denotes all other fields, which transform linearly under 
f¢. d (v ;  A, A0) is linear in v and depends locally on A and A0. Thus, from the 
algebraic property 5:2= 0 we get the consistency condition 

5:~(v;  A, Ao)=0,  (27) 

which characterizes d(v ;A ,  Ao) as a representative of an element of 
H 1 (Lie ~, F~oc) , since F( . ,  A, Ao) is ambiguous up to local counterterms consistent 
with power counting and other symmetry laws as implied by renormalization 
theory. This mere fact has to be stressed since it implies that, in general, there is no 
standard formula for d(v ;A ,  Ao). d (v ;A ,  Ao)+5:~oc+dZ is just as good a 

7 In the sequel we shall not transform Ao, i.e., 5:Ao=0 
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candidate if F~o c is an admissible counterterm, X a local form. We shall see in the 
sequel several examples in which this ambiguity helps the anomaly to assume quite 
different disguises, not to speak of the case of gravitational anomalies [8, 13, 20, 21] 
which will not be covered here. 

Although there is only one case in which H 1 (Lie ~¢, F~oc) has been computed 
[5], namely the case of perturbatively renormalizable theories in four dimensions, 
a large class of solutions of the consistency conditions is known, which it is fair to 
call the Adler-Bardeen [23] class, and may very well exhaust the set ofalt solutions, s 
It is obtained as follows: Consider symmetric polynomials of degree n on Lie G, 
invariant under the adjoint action of G (these are tabulated for all compact simple 
groups and can therefore be obtained for all reductive groups). Then, a 
simultaneous application of the Russian formula (9) and the Cartan homotopy 
formula (24) yields 

1 
P(F"(A)) - P(F"(Ao) ) = n(d + 5 e) ~ dtP(A + v - A o, ~ (A , ) )  

o 

= (d + ~9°)692, z(A+v,  Ao), (28) 

where At = t(A + v) + (1 - t)Ao and 

Y ( A t )  = (d + SO)At + I [A  t, A,] . (29) 

Expanding coz,_ I in powers of v, 

2n- 1 
co2,_l(A+v, Ao)= ~ co~._z_p(v;A, Ao), (30) 

p=O 

where the lower index denotes the form degree and the upper index denotes the 
power of v (the degree in {2} space) that is involved, we get 

P(F"(A)) - P(F"(Ao) ) = &o°._ l , 

a~.,p+l p = 0 ,  1, ..., 2n- -2 ,  (31) ~ ( ' O ~ n - -  I -- p~-"  - -  ~ t ~ 2 n - -  Z - -  p , 

~ o ~ " -  1 = O. 

This is the set of"descent equations" considered for instance in [11] generalized to 
the case in which there is a background field. This shows in particular that 

d ( v ;  A, Ao) = co12,_ 2(v; A, A0) (32) 

solves the consistency condition (27). 
Remark that all formulae so far written are global on P(M, G) and that only for 

a trivial bundle one can choose A 0 = 0  and recover the usual local formulae 
[11, 12]. Also for two different background fields * 2 Ao, A0, the anomalies differ by a 
coboundary. Combining the Russian formula with the "triangle formula," we have 

co2,_l(A~,A+v)+OOz,_a(A+v, A2)+ co2,_ l(Ao ,2 Ao )1 

= (d + 5e);~(A0Z, An, A + v). (33) 

8 As this paper was being completed M. Dubois-Violette, M. Talon, C. M. Viallet kindly 
informed us that they had computed H*(Lief~,d)where d is the space of local funcfionals of 
A, F(A), confirming the general belief if G involves at most one U(1) factor 
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The term linear in v gives the difference of the anomalies in background fields 
1 2 Ao, Ao as an allowed ambiguity 

(D21n 2(/) ; 2 1 . 1 A, Ao) - o)2,_ 2(v, A, Ao) 
=5:z (A~  ' 1 1 2 Ao, A) + dz2 n_ 3(ao, a~, A + v). (34) 

In a recent paper [30] a new "simpler" expression for 0)2,- ~ - v( v; A, 0) has been 
proposed. This new expression has a reduced dependence in the field A, attained 
through the inclusion of powers of dv which contribute to the form degree. This can 
be generalized to the presence of a background field by expanding instead of 
O)2n_ I ( A  + v,  Ao) the following form 

(2)2. - 1 (/) ; A, Ao) -~ co2. - 1 (A + v, A o + v) + (.02n _ 1 ( A o  oV/-), A o )  

1 
= n  ~ d t P ( A - A o , . ~ " - * ( A t ) )  

0 

1 

+ n I d#P(v, J~"- I(A~)),  (35) 
0 

where A t = t A + ( 1 - t ) A o + v  , A u = # v + A  o and ~- is given by Eq. (29). By the 
"triangle formula" the relation between chz,_ ~ and 0)2,-~ is 

doz,_~(v;A, Ao)=OOz, ~(A+v,  A o ) + ( d + 5 : ) ) ~ ( A + v ,  A o + v ,  Ao) .  (36) 

This means that the new c5~,_1_ p will differ from the old ones by allowed 
ambiguities [12, 30]. 

Now, it is a remarkable fact [2] that, although 0)2*,-2@; A, Ao) represents a 
non-trivial class in H 1 (Lie if, ~oc), this class can be "killed" by enlarging Floe(A, Ao) 
into Fioo(g;A, Ao), where g belongs to ~qo. We define the action of 5: on g by 

5f  g = -- vg . (37) 

We lift the whole situation to P(M x [0, 1], G) = P(M,  G) x [0, t ]  by considering 
a family of connections A~ on P ( M ,  G) such that 

A t = A  o for t = 0 ,  A I = A ,  (38) 

and a family g~ of gauge transformations satisfying 

go = idN , gl  = g .  (39) 

We continue v, 5: into V, S such that 

SV = - }  IV, V], 

SA t = - dto t V -  [At, V],  (40) 

S g ~  = - V 9 ~  , 

and define 

r ~ ( g t ;  At, Ao) = I (o2°,- I(A,, Ao) - o)2°,_ 1 (A,e:, Ao)), (41) 
Mx[O, 1] 

where dto t = d + d t is involved everywhere. 
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First we have 

SF~zw(Ot; At, Ao) = S ~(v;  A, Ao). (42) 
M 

This is because, by construction, the second term in the right-hand side of Eq. (41) 
is invariant under S, and 

So)°,-~(At, Ao)= -d ,o td(V;At ,  Ao). (43) 

The result follows by application of Stokes theorem and the vanishing of the 
integrand for t = 0 [notice that the rule given by (18) has to be used, with S instead 
of dt]. 

Secondly, we will show that, for a suitable choice ofgt, F ~  can be expressed as 
an integral over M of a functional which manifestly local in the gauge potential A, 
but not obviously local in g. To this end, write 

r~,w= I (coO _l(At ,ao )_coo _l(A*o, ,Ao)) 
Mx[O, 11 

~ S coo_~(At~(,),Ao) = -- ! ds ~s m~[o, 1] 

1 
=- ~ S ~ coo_ ~(Atg~(,), Ao), (44) 

0 Mx[O, 11 

where gt(s) is a family such that gt(0)= idN, gt(1)=gt. 
The latter expression reads [2], 

1 ( 
r ~ w = -  I d~ I dtoJ g;l(~) ~g,(s). A A 

0 Mx[O, i] (~S ' tOt(s)' O/ 

= -  I ds ~ 5J \ g l l ( S ) ~ - - S  ;AOds),AO] (45) 
0 M 

where, after commuting S with the integral over M x [0, 1] [see Eq. (18)], we 
have contracted 

s c o O n -  1 1 ~- = - -  d totco2n-  2 - -  dtot ~4  

with ~s' using 

~gt(s) 
v~- 2-- =o/10) Os OS 

(46) 

Taking advantage of the exponentiability of No, we may for instance choose 

gt(s) = e s¢ett) , ~0(0) = 0, q)(1) = 1 (47) 

with ~ e Lie N. 
Now, Fwzw as given by Eq. (44) can be split into two parts [7, 24-28]: 

a purely mesonic part 

/~, = - I c°°.-a (Aoe,, Ao) 
Mx[0,1] 

= -  i ds I d g ; l ( s ) ~ - -  s Aog,(~),Ao 
0 M 
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and a gauge field part 

F A = - ~ co°._ l(A,g,, Ao) + a)°._, l(Ao, Aoa,) 
Mx[O, 11 

+ coo _ 1 (A0g,, A~g), (49) 

where we have used the gauge invariance of coo_ ~. After using the "triangle 
formula" and Stokes theorem we get 

F A = ~ )~(A a, Aog, Ao). (50) 
M 

To sum up 

t 

Fwzw=- ~ ds ~ ~(~,Aoo(~),Ao)+ ~ z(Ao, Aoo, Ao), (51) 
0 M M 

where )~ is given by Eq. (25), and 

g(s ) -  g1(0 = e~¢, g = e ¢ . (52) 

It is easy to see that the change of Fw~w under a change of the background field 
from A~ to A 2 is given by 

Fw~,(g; A, z , 1 Ao) - F~zw(g , A, Ao) 

- I (Z( A , A 0  z, 1 2 1 - A o )  - z ( A  o, A o, A o ) ) .  (53) 
M 

Finally, let us point out that along this section we have been very careful to 
distinguish between A, g, ~ ,  and v and their corresponding continuations into 
M x [0, 1] which we wrote A,, gt, S, and V. In the next section, to keep the 
notation from becoming too heavy, we will always write A, g, 5 ~, and v, 
considering the t-dependence implicit when necessary. 

IV. The  Covariant  Bardeen Ver tex  A n o m a l y  9 

Assume [7, 12] there is a subgroup K of G with the property that the invariant 
symmetric polynomial P vanishes when its arguments are restricted to Lie K, and 
that P(M, G) is reducible to K (e.g., its transition functions may be chosen to lie in 
K), so that A o may be chosen to belong to Lie K. Then, we may decompose A and v 
along Lie K and an invariantly defined orthogonal complement (Lie K)± 

A = AK + A±, AK, vg ~ Lie K ,  
(54) 

v = vK + v i ,  A±, v± ~ (Lie K)±. 

The anomaly d ( v ;  A, A0) as it stands does not vanish along K; there, it reduces 
to d(vK; A, Ao), where A does not belong to Lie K. 

Define the Bardeen (local) counterterm 

V,(A, Ao)  = - .I ( o ° . - l ( A ,  Ao) + co°,_l(Ao, AK) + o ° , -  I(AK, A)) 
Mx[ O, 11 

= z(A, Ao). (55) 
M 

9 This is not to be confused with the covariant current anomalies [13], which can be derived 
from the present formulae (see also [19]) 
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The first term cancels the canonical anomaly. The second term is identically 
zero, since its arguments are both in LicK. The covariant anomaly 
d~ov(V; AK, A j_, Ao) is thus given by 

5ao)°.- I(A, AK)= -- d~Ccov(V; AK, Al), (56) 

and clearly does not depend anymore on A o. 
We use the family 

A t = t(A + v) + (1 - t) (A K + vK) = Ar  + v~: + t(A± + v±), (57) 

so that the homotopy formula yields 

with 

P ( ~ " ( A  + v) ) - P( °SYn( At~ + VK) ) 

=P(F"(A))  
1 

= n(d + 5/') ~ dtP(A± + vi ,  ~ ' -  ~(At)) 
0 

= (d + 5T)co2,_ I(A + v, AK + vK) (58) 

~ ( A , )  = (d + 5f)A t + ½ [At, At] 

= F(A K + tA±) + t2[A±, v±] 

- t [ A ± ,  v±]± - [A±, V±]K+ O(V2). (59) 

This expression for ~ ( A t )  is obtained by using 

5~Ar = - d r  K - [A K, VK] -- [A±, v±]~, 

SPA± = - d v a  - [AK, v±] -- [A±, vK] - [A±, v±]± , 
(6o) 

~°v~ = - ½ [v~, vK] - ½ [v±, v±],,, 

~¢vi = - [v~, v ± ] - ½ [ v i ,  vN~.  

Collecting the linear terms in Eq. (58) fields 

~/~ov(v; A t ,  A±) 
1 

= n ~ dtP(v±, F ' - I ( A  K + tA±)) 
0 

1 

+ n(n -- 1) ~ dtP(AL, t2[A±, vii - t[A±, v±]± 
0 

-- [A+, vl] K, F"- 2(A K + tA±)), (61) 

which for A± = 0 reduces to the well known result 

d¢ov(V; At, 0) = nn(v±, F ' -  I(A~:)). (62) 

Remark, as a check, that the vK dependence has disappeared as it should, i.e., 

~¢~ov(Vr; AK, A±)= 0. (63) 
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Although the anomaly does not depend on the background field, F B does, and it 
is clear that its variation is given by 

F~(A, A 2 ) - F B ( A , A ~ ) =  ~ )~(A, 2 ~ . - Ao, Ao) (64) 
M 

It is also possible to obtain a new expression/~w~ for the W.Z.W. action which 
gives the covariant form of the anomaly and is expressible in terms of 0 E fC/:(f. By 
Eq. (56), a functional which gives the anomaly directly in the covariant form is: 

/~w=w(g; A) = ~ (coo,_a (A, AK) -- co°, _~ (Ao, Ao~:) ) . 
Mx[O, 1] 

We consider g ef¢ decomposed in the following way: 

(65) 

g = Ok, 0 ~ ~ f /W ,  k ~ NZ. (66) 

Since by (56) and (63) coo_ I(A, AK) is invariant under gauge transformations 
k e :/f (or at least under k e 3if0) we have the following identity: 

c o o  l(Ao ,AoK)=coo ,(Ao ,AoK) ' (67) 

and therefore 

F~z~(g; A) = Fwzw(0; A), (68) 

i.e.,/~wzw depends on 0 alone. By using the "triangle formula" it is easy to get the 
following expression for/~wz~ in terms of the more conventional Fwzw: 

F~zw(0; A) = F~w(O; A, Ao) + FB(A, Ao) - FB(A O, Ao) , (69) 

where Fwzw(O;A, Ao) is given by Eq.(51). Notice that under a change in the 
background field, the variation of Fwz~ is cancelled by the variation of the 
counterterms [Eqs. (53) and (64)] as it should be, since by definition Fwzw(g; A) is 
intrinsically independent of Ao. It is only to get an expression local in A and 
globally defined on a nontrivial P(M, G) that we are forced to introduce the 
background field in the right-hand side of Eq. (69). 

It should be noticed that the variation of 0 under a gauge transformation (i.e., 
5~0) depends on the particular way the decomposition of Eq. (66) is defined. 

The most popular application [-2, 7, 24-28] of this formalism is when 
G = GR x GL. In this case the following notation is used 

(gR, gL) ~ ~ = ~R X ~ L ,  (g, g) e Y = diag if ,  

A = (AR, AL) , A R = V + A, A L = V -  A, 

a K = (V, V), A± = (A, - A), 

UR~VV~-VA,  VL~VV- -VA ,  

V K = (VV, VV) , V± = (VA, --  VA) , 

P(F"(A))  - P(F"(AR) ) - P(F"(AL) ) . 

(70) 
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In this case the covariant vertex anomaly is given by specializing Eq. (61), with 
the result 

~ c h i r a l , "  . , r  ~ 
coy (V A ,  V ,  A )  

1 
= n S dtP(VA, F ' -  I(V + tA)) 

0 

1 
+ n(n-- 1) ~ dtn(A, (t 2 - 1) [A, VA], F ' -  z(V + tA)) 

0 

--( /)A "-+ --~)A, A ~  - A ) ,  (71) 

which for A = 0 reduces to: 
d~tchirali  ~ov (va; V, 0) = 2nP(v A, F ' -  1 (V)). (72) 

However, one may get a shorter formula for the full anomaly by choosing, instead 
of 

F8 = S (coo_ I(AR ' Ao ) _  0 0 - o)2.- I(AL, Ao) +(D2n- 1( v ,  AR) 
Mx[O, 11 

- co° ._  I(V, AL)), (73) 
the following expression 

r•=-- ~ (co°_l(AR, Ao)+¢oo I(Ao, AL)+O)o I(AL, AR) ) 
Mx[O, 1] 

= ~ Z(AL, AR, Ao), (74) 
M 

which differs from FB by 

r . - r ; , =  - S (co°.-,(V, AR) 
Mx[O, 1] 

+ ¢0 °" - I(AR, AL) + 0)0.- I(AL, V) 

= ~ Z(AL, A~,V) .  (75) 
M 

Then, the new covariant anomaly satisfies 

5Po9°.- I(AR, AL) = -- -~¢ov'~ .z,~hi~.l~.,~A ,"--,V A) , (76) 

and is obtained from the identity 

P(F(AR) ) - P(F(AL) ) 
1 

= n(d + 5 p) ~ dtn(AR + v~ - A L - v L, ~ "  - 1(At)) 
0 

= (d + 5P)o~°,_ ~(AR + vR, AL + rE), (77) 

where now: 

At = t(Ag + VR) + (1 -- t) (A L + VL), 

= (d + 5P)At + ½ EAt, At] 

= F(tAR + (1 - t)AL) + 4t(t--  1) [A, VA] + O(V 2) 

= F(V - (1 - 2t)A) + 4t(t - 1) [A, VA] + 0@2). 

(78) 
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Picking the term linear in v in the right-hand side of Eq. (77) yields the wanted form 
of the anomaly 

~5~' c h i r a l (  " V, A) 
c o y  ',,~A ~ 

1 1 

=2n S dtP(vA, F~~)+8n(n-1) ~ dtP(A,t(t-1)[A, vA],F~-Z), (79) 
0 0 

where 

As before 

Ft-=F(V-- (1-20A) .  

d,¢hir~lt • v 0) = 2nP(v A, F" -  . oov ,VA,--, x(V)) (80) 

Equation (69) with either F~ or F~ can be used to construct a W.Z.W. action 
which depends only on 0 e fir  x ffL/diag~. A possible decomposition of g is [26] 

(gR, gL) = (e, gLgR 1) (am OR), 
(81) 

0-- (e, gLg~71) e ~R x ~L/diag ~.  

From (35), we know how OR and gL transform: 

~ g a g R  = - -  19RgR, 5PgL --- -- VLgL, (82) 

and if we define U = gLg[~ 1, we obtain immediately the action of 5 e on 0 

~5¢,U = 5#(gLg ~ 1) = 5#gLg ~ t + g L ~ g  ~ 1 

= -- VLgLg[~ 1 + gLg[~ lVR = -- VLU + UvR. (83) 

Appendix 

Here we consider the problem of defining the action of ~t on the algebra of 
polynomials generated by a particular set of forms At, Ft . . . . .  This is applied to 
polynomials in {A(x ,  2), F(x ,  2), v, dr}, where v is the geometric Faddeev-Popov 
ghost and 

A ( x , 2 ) = g - l A ( x ) g + g - l d g ,  g = g ( x , 2 ) ,  
(a.1) 

A(x ,  2) = dA(x ,  2) + ½ [ A(x ,  2), A(x ,  2)] = g -  i F(x)g  , 

and the meaning of the resulting extended Caftan homotopy formula is exhibited. 
In general, given a family of connections A~ with curvatures Ft, we want to 

extend the algebra of polynomials P(At,  Ft) with values, e.g., in the enveloping 
algebra e(Lie G) of the relevant Lie Algebra in such a way that it becomes stable by 
applications of d (exterior derivative with respect to base space), dt (exterior 
derivative with respect to parameter space) and Et, a homotopy derivation which 
increases the degree in dt by one and decreases the degree in dx (x e base space) by 
one, such that 

E t d - d E t = d  t, 

4 d t - d / t = O ,  (a.2) 

ddt + did = O . 
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Table 1 

g 

0 

1 

2 

0 1 2 

A t Ft 

dtA, 4A ,  ¢F,  
d,F, 

ff fltat ff tdtFt 
t~F, 
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So, we need in general the generators in Table 1. 
Notice that the generator of degrees (3, 0) in (dx, dr) is not independent, since by the 
Bianchi identity we have dFt = FzA~-  AtFt. Similarly, the generator of degrees (0, 3) 
can be written as 

z f  ZdtFt = (EfltAt) (EtAt) - ( f t A t )  (EtdtAt) . (A.3) 

Also, the following generators are identically zero (they would have a negative 
degree in dt) 

f 2 A t = d 2 d t A t = E ~ r t = o .  (A.4) 

Now we may subject the free algebra generated by elements in the table to relations 
consistent with Eq. (A.2). We consider two examples: 

1) Impose the relations 
EtF, =dtAt ,  

(a.5) 
t~tA t = ~tdtAt = E2t Ft = ~tdtFt = O . 

Only  At,  Ft ,  dtAt,  and dtF t remain as independent generators. This is the case 
considered in Sect. II, Eq. (12). 

2) Introduce a new form v t of degrees (0,1) in (dx, dr) and impose the following 
relations: 

~tAt = vt ,  
(A.6) 

f tF t=  ~tvt = O. 

From EtF~ = 0 we get 

0 = EtF t --  f f tdAt + fftA2t 

= (d~t + dt)A, + (dtAt)At + At(dtAt) 

= dvt + dtAt + [vt, At].  

This defines dtAt as 

dtAt = _ dv t -  [v,, At] .  

From fZ, F t = 0 we get in a similar way 

0 = f~Ft = 2dirt + [vt, vt], 

which defines dtvt: 

(A.7) 

4v, = - ( A . 8 )  
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In this case the remaining independent generators are {At, Ft, vt, dvt}. From (A.7) 
and (A.8) it is clear that we can identify vt with the geometric Faddeev-Popov ghost 
v, dt with 5 P and At with A(x,  2) as given by (A.1). Therefore, we define the action of 
Yx on polynomials in {A(x, 30, F(x,  2), v, dr} by 

~ A  = v, 

t'~F = ~ v  = 0, (A.9) 

d ~dv = (dd a + 5P)v = SPy = - ½ [v, v] . 

We shall now write the extended Cartan homotopy formula for ~ given by 

=--co°, - 1( A, Ao),  dco°,-1 = P(F'(A))  - P ( F ' ( A o ) ) ,  (A.10) 

where P is an invariant symmetric polynomial, i.e., 

dP = ~ P  = 0. (A.11) 

In this case Eq. (i6) becomes: 

f~ ( f~+l °°°"-1 ) (A.12) pT. o,°, l = - d  \ \  , 

since by Eq. (A.9) #aP = 0. 
This coincides with the ordinary descent Eq. (31) if we identify 

e ) ~ , _ l _ , -  p[ co°,_1. (A.13) 

To evaluate this expression we need, in addition to Eq. (A.9), the action ofga on 
Ao and Fo. We set 

EzA o = t~zFo = 0, (A.14) 

which is consistent with 5PAo = 5PFo = 0 and Eq. (A.2). (Strictly speaking, we are 
considering the algebra of polynomials in {A, F, Ao, Fo, v, dr} with the constraints 
t°zF = (av = t~zAo = fzF0 = 5~A0 = 5aF0 = 0 and gaA = v.) 

It is clear that the formula for o{,_ 1 -v given in Eq. (A.13) coincides with the 
one obtained by expanding co2,_ I(A + v, A0) in powers of v [Eq. (30)], since ~z 
carries A into A + v into itself. 

The integral form [Eq. (20)] of the extended Cartan homotopy formula, with 
(A.13) is 

S c o l , - i - v = ( - )  ~'d I tu2,4'+*-Z-p- (A.15) 
OTp+l Tp+t 

If Tp is a p-simplex which has as vertices the gauge group elements 
{go, gl . . . . .  gv} and we define 

%(A, A o ;go, gl . . . .  , g p )  = 5X flp(A(x), Ao(x);go(x ) . . . . .  gv(x)), (A.16) 

where fly is the following density in x-space 

fip(A(x), Ao(x); go(x), gl(x),  ..., Or(X)) 

= S o~, -1-p(v;  A(x), Ao(x)),  (a.17) 
T 
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then c~p is a p-cocycle in the (simplicial) gauge group cohomotogy with cobound- 
ary operator given by: 

p + I  

(Aap)(A, A o; go, 91 . . . . .  gp) = Z (-)iap( A, Ao; 9o, g~ . . . . .  Oi,..., gp+ 1). (A.18) 
i = 0  

This can be easily checked for cq: 

(Acq)(A, A0; 9o, 91, 92) = cq(A, A 0; 91, 92) - cq(A, Ao; go, gz) + ~1( A, Ao; 9o, 91) 

= ~  ~ o 9 ~ , _ 2 = - ~ d ~ o ) 2 ,  3 = 0 ,  (a.19) 
X OT2 X T2 

where Eq. (A.15) has been used in the last step. In general, Eq. (A. 15) can be written 
as 

Aflp= ~ ofl~n_l_p=(-)Pdflp+l, (A.20) 
OTp + 1 

which vanishes upon integration over x-space. Notice that iteration of Eq. (A.20) 
gives all the higher cocycles once fll is defined. The cohomology of the gauge group 
and an explicit construction of its cocycles has been considered recently in [29, 30, 
34], whose results are recovered quite directly here. 

By considering different parametrizations and different algebras of poly- 
nomials, the formalism presented at the beginning of this appendix can be used to 
obtain new sets of "descent equations" from the extended Cartan homotopy 
formulae, Eqs. (16) and (20). 
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