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Abstract. Low temperature expansions for the Gibbs states of weakly interact- 
ing transverse Ising-like models are developed, by conditioning the states on a 
sub-algebra of observables. The conditioned states have effective classical 
Hamiltonians which are estimated by the solution to a simple implicit 
equation. Provided the interaction is sufficiently weak but fixed independent of 
temperature, and the temperature is sufficiently low, exponential clustering of 
the correlation functions holds. 

1. Introduction 

Let Ha(e ) be the transverse Ising Hamiltonian associated with a finite volume 
A C7/v, 

HA(~ ) : -- ~ a~(i)-- 8 Z [/A(A)aZ(A) • (1.1) 
I~A AC A 

Here, a~(A)= @ ~z(i) and (~x(i) and a~(i) are the Pauli spin matrices acting at the 
i~A 

site i 

(°1 ;) ( ;  0) 
taken in a basis so the first term of the Hamiltonian is a spin-flip term, the second a 
classical Ising term. To simplify the analysis, we assume that Ha(e ) is translation 
invariant, i.e. that A is  rectangular and that periodic boundary conditions are 
imposed. Finally, we assume that the coefficients VA(A), which are real, are equal to 
zero for the cardinality of A, IAI, exceeding some constant C, independent of A. 

The purpose of this article is to show if e is fixed and sufficiently small, then the 
Gibbs state corresponding to HA(e ) , 

( X ) A , e , f l  =(tr exp ( -  flHA(g)) )- 1 trX exp ( -  flHA(e)) (1.3) 

1 Work partially supported by NSF-MCS 74-07313-A 03 
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exhibits clustering of correlation functions in the thermodynamic limit, at 
sufficiently low temperature; in particular, the truncated correlation functions 

lim (0-~(A)0-~(B + x))~. p,~ (1.4) 
Ai'2~ v 

decay exponentially fast as x~oo ,  for f i= T-1 >rio(e). 
The physical intuition for this result is simply that quantum fluctuations 

caused by the spin-flip terms of the Hamittonian overwhelm any tendency of the 
Ising terms to correlate the spins at remote sites, The result can be regarded as a 
partial converse to that of Ginibre [ t ]  who, for example, shows that if the Ising 
term is nearest neighbor ferromagnetic, then long range order obtains at low 
temperature, provided ~ is sufficiently large. (Ginibre's estimates actually require 
that ~ o o  for T ~ 0  for long range order; this restriction has been removed by 
Kirkwood [2] who shows long range order for T > T  o and e>eo, with e o 
independent of To, by a reflection positivity argument.) 

The strategy for proof is a familiar one; we render the quantum Gibbs state 
( . ) , t  into a classical Ising model state in one higher dimension, the extra 
dimension corresponding to the "time', t, 0 -__ t =< ft. However, we do not employ the 
Trotter product formula. Rather, we condition at a set of times 
0, t o, 2z o . . . .  , ( N - 1 ) t  o with c o =r/N,  N an appropriately chosen integer. Define 
hA(a 1, 0 "2, t ,  ~) by the transfer matrix expression 

exp(--lhA(0-1 , 0 "2, t ,  ~ ) )=  ((71 [exp - zHA(e)[0-2). (1.5) 

Here, 0-1, a2e { _ 1, 1} a are classical Ising configurations; as ortho-normal basis for 
the Hilbert space @ tl; 2 with the usual inner product, we take the set of vectors 

A 
1o-)=@~ Io-(i)) with la(i)) an eigenstate at site i which is spin up or down with 

respect to 0-~(i) according to whether a(i) is + 1 or - 1. With this notation, we have 
that if X(O,o), X(to,0-), . . . ,X((N-1)to,  a) are multiplication operators at times 
0, "co,..., ( N -  1)%, then 

(X(O) . . .X( (N-  1)~0) ) =(2~A(~))- 1 ~ (X(0, a ° ) . . .X( (N-  1)t 0, a N. 1)) 
ffl, ..., ¢rN 

ex ( 
where 2~a(~ ) is the partition function and a ° --- o -N, i.e. the expectation can be written 
as a classical Ising expression. Provided that h A is small in the appropriate sense 
one can then apply high temperature Ising expansion methods [3-7] to establish 
the clustering property. 

How do we make hA(o- 1, 0-2,%,~) appropriately small? Clearly if "co is very 
small, 0-1 and 0-2 are highly correlated so that h A cannot be small. On the other 
hand our estimate for hA(o-l,0-2,~o,e), which we obtain as the solution to a 
differential equation, breaks down for large "co. The idea, then, is to choose t o to be 
an intermediate time so that the correlations between 0-1 and 0-2 can relax but the 
effects of the perturbation, terms of O(a), have not had sufficient time to grow too 



Quantum Ising Lattice Systems 407 

large. That such a choice for z o (and e) can be made is the main content of this 
article. 

We note that the estimate for h A (actually its local density) is in terms of a 
function which is defined implicitly and which has been analyzed in detail by 
Hagedorn and Rafelski [8]. This estimating function also arises in an expansion 
for the ground state of Ha(e ) [9] ; in fact, the analysis presented here is to be 
regarded as a time-dependent version of the ground state case. 

The (classical) high temperature Ising expansions referred to above provide 
bounds on the decay of the correlation functions Eq. (1.4) which are uniform in N 
[recall N is the number of factors contained in Eq. (1.6)]. For this reason, we 
obtain exponential clustering of correlations for a sequence of temperatures 
defined by fl=Nzo, N =  1, 2, . . . .  Since, for a given e Suitably small, z 0 can range 
over an interval, it follows that clustering holds at all sufficiently low temperatures. 

We conclude with miscellaneous remarks. First, although it appears that one 
can only compute expectations of observables at the times 0, %, 2%,...,  ( N -  1)z o, 
this is actually not the case. By adding a (possibly time-dependent) perturbation 
2Wto  the Hamiltonian H A and then differentiating an expectation with respect to 
2, one could in principle compute, for example, a Duhamel correlation function. 

The second remark is that the method is applicable to other spin models, e.g. a 
discrete rotator model with a(i)=(cos(2z~m/n), sin(2rcm/n)), m=0,  1, ..., n - 1  and 
with the spin-flip term of the Hamiltonian Eq. (1.1) replaced by a sum of discrete 
Laplacians on the unit circle. For the case a(i) = + 1, it is of interest to replace the 
spin-flip terms of Eq. (1.1) by terms of the form 0-x(i)ax(j) for example. The resulting 
Hamiltonian is, up to a constant factor, unitarily equivalent (dual) to a 
Hamiltonian of the form Eq. (1.1) with quadratic Ising terms [9]. An expansion for 
this modified model analogous to the expansion described here would provide a 
proof (alternative'to that of [1, 2]) of long range order at low temperature for the 
ferromagnetic quadratic Ising term model Eq. (1.1), at large e. This work will be 
described elsewhere. For a general proof of long range order in quantum Ising 
systems relying on reflection positivity (see [10]). 

Finally, we remark that other more heuristic results concerning the critical 
behavior and critical indices for transverse Ising models can be found in the work 
of Elliott et al., for example, [11]. The one-dimensional nearest neighbor 
transverse Ising model can be solved explicitly at zero temperature (see [12]). 

2. Weak Interaction Expansion 

We introduce the following notation: 
1) L e t f E C { - 1 , 1 } a x { - 1 , 1 }  A) and 

f ( a ' , a ) =  ~ f(A,B)a'(A)a(B), (2.1) 
A, Bc A 

where o- ' ,aE{-1,  1} A and C(X) is the space of continuous functions on X and 
a(A)-- I-I a(i). Then we define the cardinaIity o f f  to be C(f) = sup ]B], the range 

i~A ~ A, Be A 

o f f  to be f(A,B):t:O 

r(f)= sup sup ] i - j [ ,  
A, B c A  i , j~B 

f ( A ,  B) 4= 0 
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and the super range of f to be 

R ( f ) =  sup sup t i - j t ,  
A, B c A  i , j ~ A w B  

f ( A ,  B) * 0 

where [i-j[ = i [ig--jkl. In particular, if f~  C({ -  1, 1} A) and f ( a ) =  Z f(A)a(A), 
k = l  A c A  

then we define the cardinality of f to be C( f )=  sup IAI and the range of f to be 
A c A  

f (A) :~ 0 

r(f) = sup sup [ i - j  1, and the super range off, R(f),  to be r(f). 
Ac  A i, jEA 

f ( A )  4:0 

2) Let f be given by Eq. (2.1). Define 

fm(a', a) = ~ ]'(A, B)a'(A)a(B). (2.2) 
A, Bc A WL =~ 

We call each term o f f " ( # ,  a) an m-term of f(a' ,  a). Define the norm II" 11o by 

l[fll0 = ~ Ij~(A,B)I. (2.3) 
A, B c A  

It is obvious that 

IIfH o ~ IIfH o~ = sup If(a', a)[. 
~7, (r' 

3) Let hA(if '  , a, t, ~) be defined in Eq. (1•5). By a Perron-Frobenius argument, 
<a'Te-tHA(~)Ia) > 0  for all t>0 ,  so h A is well-defined. Define 

hA(i,a',a,t,e ) ~ , = 2(hA(a, a, t, e)-- hA(a, ai, t, e)), (2.4) 

where ai(j)= a(j) if j 4= i and ai(i) = - a(i). 
4) Define an operator K on C({ -  1, 1} A x { -  1, 1} a) by 

Kf(a',  a) = ~ PBlf(a', B)a(B) " ' + f ( a ,  0), (2.5) 

for f(a',  a) = ~ f(a' ,  S)a(B), (0 is the empty set). Then we have 
BC A 

BC A iEA 

• z 0 • t = K -  1 • (f0,  a ,  a) + f  (2, a )), (2.6) 
leA 

where f(i, a', a)= ~ f(a', B)a(B)=~(f(a', a)-f(a' ,  a,)) and f°(i, a'l, - j , -  7(a', 0)/[A[. 
BM 

Remark• Note that f(i, a', a) has the following important property (closure 
property) [9]. If f(_i, a', a) and f( j ,  a', ¢) have terms f '(a', B)a(B) and f"(a', B)a(B), 
respectively, then f'(a', B ) = f ( , ' "  a' B). 
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It is easy to see that 

~ (o'le-t~(~)[o -) = (o'le-mA(~)(- HA(~))[ ~ ) 

= ~ @'le-t'A(~)ax(i)t(r) + c(a'le-~u(~)la) VA(c 0 , (2.7) 
i e A  

where 
VA(G)= ( (7 E VA(A)(72(A)~ -- E VA(A)(r(A) • 

\ ~cA / ~ 

For the moment, we omit the subscript A. By Eq. (1.5), Eq. (2.7) can be written as 

_ 1  a , ~ h(o", o-, t, e) = ~ exph(i, (¢, o, t, e) + eV(o). (2.8a) 
i e A  

Using identity (2.6), we rewrite Eq. (2.8a) as 

--~gl -1 ~7, ~ ~ (h(t," o; ~, t ,e)+h°(i ,a' , t ,e))= ~ exph(i,(/ ,a,t ,e)+eV(cr). (2.8b) 
"J ~ i ~ A  i ~ A  

Letting K act on both sides of Eq. (2.8b), we obtain 

1 0  
(h(i, cr,a,t,~)+ h°(i ,a' , t ,~)):  K (~exph(i ,a ' ,a , t ,e)+~V(a)) .  (2.8c) 

2 &t i~A 

Since A is a finite set, h(i, a', o, t, ~) and h°(i, (/, t, e) are analytic in e for small e. 
Then we have c o  

h(i,~r',a,t,~)= ~ " " ' (2.9) e h,( t ,o ,a , t )  
n = O  

and oo 

h°(i,a',t,~;)= ~ e ~h,O,c~,°" , t). (2.10) 
n = 0  

An easy calculation shows that 

expho(i,o',o,t)=(~'e'ZJ~(')~x(i))/(a'et~"~("cr) 

= (cosh 2 t -  c¢(i)cr(i))/sinh 2t. (2.1 t) 

Substituting these expansions for h and h ° into Eq. (2.8c) and equating 
coefficients of e ~, we get 

1 ~  ~(hl(i,c¢,cr, t)+hOl(i,~,,t))=K[~i (expho(i,a, cr, t))hl(i, cr,,(r,t)+ V(o')], 
2a t  

and (2.12a) 

1 0 , 
_ = ~ _ ( h , ( i , c ; , a , t ) +  o . , [~, • , , h , O , a , t ) ) = K  (exphoO,(~,cr, t))(h,(i ,o,a,t) 

Z i U t  IV 

+ P~(hl(i, o', ~, t),..., h,_ 1(i, cr', a, t)))], 

(2.12b) 
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for n>2,  where P,(X~, ...,X,_~) is the polynomial defined by 

exp(~X~+e2X2 + . . . ) = 1 +  ~ 8"(X,+Pn(X 1 . . . . .  X,_~)) .  (2.13) 
t l= l  

Theorem 2.1. Assume that r(Va), C(VA), and l] Va l[ 0lAI- 1 are finite and independent of 
A. Then for every 3 >0, there exist z > 0 and 8 o >0 such that for all te [z, 2z] and 
181 ~ [0 ,  eo] ; 

i) the expansion [or h in powers ~?f 8 is absolutely convergent; moreover 

8"llha,(i, ~', a, t)llo <~5 (2.14) 
n = 0  

for all l e a  and the inequality holds uniformly in A;  

ii) t[ ha,(i, ~7', ty, t, 8) -- hA(i, if', a, t, 8)II o = O( ea(i' r~A)/R) (2.15) 

for all ie A C A' ; where d(i, OA) is the distance between i and OA and R = r(Va). 

iii) Z Z e"llhA,(i, cr',~,t)lloexp(li--jl)< °e (2.16) 
j~Nv n>= !i_RJ [ 

for all i~A, and the series converges uniformly in A. 

In fact, the results of our theorem imply exponential decay of the two point 
function [5]. Therefore, we have 

Corollary. For j3 > 3z and 18I < 80, and some c~ >0, 

I@~(O)~(i))~,~- (~z(O))~,~(a~(i))p,~[exp~li[ < oo, (2.17) 
i~Z v 

and the series converges uniformly in ft. Here ( - )~ ,~=l im (')A,~,~ defined by 
Eq. (1.3). a*2gv 

Proof of the Theorem. In outline the proof of the theorem proceeds through several 
lemmas. Lemma 2.2 below specifies the initial conditions satisfied by the h,'s, t~0.  
The differential equations satisfied by the h,'s are all of the same form [-see 
Eq. (2.22) below]. Lemmas 2.3 and 2.5 provide estimates on the cardinality, range 
and norm of the solution of Eq. (2.22) given the cardinality, range and norm of the 
"source" term. Lemmas 2.4 and 2.6 apply these results to the h,'s to obtain 
estimates for their cardinality, range and norm. Lemma 2.7 then shows that the 
series for h(i, ~/, a, t, e) is bounded term by term by an implicity defined analytic 
function. 

Lemma 2.2. For all integers m >= 0 and n > 1 

Moreover, for m > 0 

lim h"~(i, a', a, t) =0.  (2.18) 
t~O 

lim (sinh m 2t)hm(i, ~', a, t, e) = O. (2.19) 
t~.O 



Quantum Ising Lattice Systems 411 

Proof. We have that  

(o"[e-'m~)[a 5 = e x p ( -  ½h(a', a, t, ~)) 

= exp - ~ g -  i (e h~O, a ,  e, t) + e"h°(i, a ,  t)) 

 2.2o  
This implies that  

exp - ~ K  -1 ~ e h . O , a , G t ) + ~  h~O,a,t)  
i ~ A  n = 1 

=(a']e- 'He)Ia} / (a ' ]e- 'H(°)]a}~l ,  t ~ O ,  (2.21) 

as can be seen by expanding both  numera to r  and denomina tor  in powers of  t;  
both  numera tor  and denominator  are of the form ( +  t)P/p ! + O(t p + 1), where p is the 
minimal number  of  flips required to convert  a to a'. Hence, we have, for all n _-> 1, a', 
and a, 

Z h , ( i ,a ,a , t )  + o , , ' h,O, a ,  t )~O,  t ~ O .  
i ~ A  

By the closure property,  we obtain, for all m > 0  

h~(i,a',a,t)-~O, t ~ O .  
Since 

cosh 2 t -  cf(i)a(i) 
ho(i, a', a, t) = log sinh 2t ' 

Equat ion  (2.19) follows. [ ]  

Lemma 2.3. Let k s  C({ - 1, 1} A × { - 1, 1} a) and k(i, a', a, t), k°(i, ~', t) be defined as in 
Eq. (2.6). Consider the differential equation with S(a' ,a, t)  a source term and 
k(i, a', a, t), k°(i, a', t) satisfying the initial conditions k(i, a', a, O) = 0 and k°(i, a', O) = 0 
for all a' and a, 

1~ (~  ~ , ,  ~+ ~o~, ~, ~)_ ~ i z ~exp~o~, ~', ~, ~ / ,  o', o, ~ + ~ "  ~' ~l 
2 0t LI~A 

(2.22) 

Then, i) k(i , . , - , t )  and S have the same cardinality and range, i.e. C(k)= C(S) and 
r(k) = r ( s ) ;  

ii) R(k) <= R(S). 

Proof. i) It is obvious that  C(S)<C(k)  and r(S)<r(k). Assume that  C(S)<C(k)  
= m__< IAI. Then, fl'om Eq. (2.22) 

1 0  . . . .  
=- ~, k (i, a ,  a, t) = m(coth 2t) ~ k (i, a ,  a, t). (2.23) 

2or  i i 



412 L.E. Thomas and Zhong Yin 

Equation (2.23) must hold for each term in the Fourier expansion. By the closure 
property, we get 

O 
~km(i,  #,  a, t) + 2m(coth 2t)km(i, a', a, t) = 0. (2.24) 

Multiplying sinhm2t on both sides of (2.24), we get 

-~ ((sinhm2t)k~(i, a', a, t)) = O. 

Then (sinhm2t)km(i, c/, a, t) is constant in t. But since kin(i, #, a, 0) =0  by assumption, 
kin(i, a', a, t) = O, which contradicts C(k) = m. Thus C(S) = C(k). By the same method, 
we obtain r(S)= r(k). 

ii) Suppose C(S)= m > 1. By part i) of the lemma, C(k)= m. Thus if we only 
consider tthe m-terms in Eq. (2.22), we have 

1 0  m , x - ~ k  (i,~r,~r,t)=m{~km(i,~',~,t)coth2t+S~(~r',~r,t) . (2.25) 
20t  i k~ 

By incorporating the initial conditions, Eq. (2.25) can be written in integral form, 

2m * 
~ k ~ ( i , # , a , t ) =  . _ ~ _  ~S'~(a',a,t ')sinh~2(dt '. (2.26) 
i slnll 2t o 

Expanding both sides of this equation, we have 

2 m  t 
! S (A ,  B ,  t')a'(A')a(B')dt'. ~ [cm(A, B, t)a'(A)a(B) = sinhm2 t sinhm2t ' ~ *'~ ' ' 

i BM, A A',B" 
IBr =m IB'J =~ 

(2.27) 

Equating coefficients of cr'(A)cr(B) on both sides of Eq. (2.27) and using the closure 
property, we get t 

m~m(A,B,t) = 2m S ~m(A,B,t,)sinhm2t,dt, " 
s inhm2t o 

Hence the diameter of A u B  <= R(S) and R(km(i,., . ,  t)) < R(S) for all is A. 
Let n be an integer such that 0_< n < m -  2. Suppose R(k m-"(i, . , . ,  t)) < R(S) for 

all ie A. Since, by considering ( r e - ( n +  1))-terms in Eq. (2.22), 
1 ) 
2a t  i 

t,] =(m-n-l) 2 k"-" - i ( j ,a ' ,G, t )co th2t  ~ K  tl, , , 3J 
J 

- Jv (m- -  n - -  l ) S  m - n -  1(o", o-, t ) ,  

we have that 

2 ( m - n - l )  i [  - ' ~ ~r'(j)a(j)-m-n''-~l~h-~k ~ k m - " - l ( i , a ' , a , t ) = s i n h m _ , _ 1 2  t sinh~-"-  12t V, #,  a, t) 
i 

_ (sinh m- . -  12t,)Sm-, - 1(#, ~, t')] dt' . 
| 
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Since R(k"-"(j,.,., t)) <= R(S) and a'(j)a(j)k m -"(j, a', a, t) has the same super range as 
k ~-'(j, .,., t), R(k m- "- ~(i,.,., t)) <-_ R(S). Hence R(k"(i,.,., t) < R(S) for all 1 _< n -< m. 
Therefore R(k(i,.,.,t))<=R(S). [] 

Lemma 2.4. If  C(V)=C and r(V)=R, then 

C(h~(i,t))<-_n(C -1 )+1  and R(h,(i,t))<=nR. 

Proof. Prove by induction. Since R(V)=r(V), the assertion holds for n = l  by 
Lemma 2.3. Suppose it is true for m = l , 2 , . . . , n - 1 ;  then by Lemma 2.3 and 
Eq. (2.12b), 

C(h,(i, t))= C (~ (expho(i, t))P,(h~(i, t),..., h,_ 1(i, t))) 

_-< sup sup ~ [C(h,,(i, t ) ) -  1] + t 
i ~nz=n l 

m>=l 

-_<sup ~, [(nz(C- 1)+ 1)-  13 + 1 
t t 

=n(C-  1)+ 1. 

Note that since the h,,(i,a',a,t)'s contain 

C(P,)< 5:,,=,sup ~(C(h,,)-~ 1)+ 1 .] We also have that 

a common factor a(i), 

R(~,i (expho(i,t))P,(hl(i,t),..,,h,_l(i,t)) ) <nR. 

Thus by Lemma 2.3, we have 

R(hn(i,t))NnR. [] 

Lemma 2.5. Consider Eq. (2.22). Suppose S is translation invariant and has 
cardinality m>= 1. Suppose that there exist constants q, >=0 (n=O, 1, 2,..., m) and 
p>=O such that ]lS"(t)llo < ]Alq, t p. Then, under the hypotheses of Lemma 2.3, 

[[k'(i, t) llo < t;+ 2q', (2.28) 

and 

for some constants q'n >= O, n-- 1, 2,..., m. Moreover 

llk(i't)+k°(i't)ll°<2tP+l(m; 1).=o~ qn' if p>0.  (2.30) 

Proof. Consider all the m-terms in Eq. (2.22) given by Eq. (2.26). By the translation 
invariance and the closure property [II k(i, cr', ~, t)ll o is translation invariant], we get 
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IAI IIkm(i, t)llo ---~ llkm(i, t)IIo = ~km(i, t) 
i i 0 

t tr~ 

<2m[Al!~qmt,Vdt, - 2mlAI tp+l 
m+p+ l qm 

sinh2t' t' 
where we used the fact that - -  _-_ - ,  for all 0 < t' <-t. For 0 < n < m, Eq. (2.22) 

sinh2t t 
yields 

~ k O ,  " " ' sinh'2t2n i sinh"2t . . . . .  (~i~'(i)~r(i)k"+l(i'cr"a't)-s(cr,a,t))dt.sinh2t, 

Thus, again by the translation invariance and the closure property, 

,] k'(i, t)llo < n i tZ~ ( llk'+ l(i' t ' ) H °  1Hsn(t')Ho) t' +21AI- dt', 

where we used the fact that (sinh2t)-1 <(20-a ,  for t >0. This inequality gives 
generally, for 0 < n < m, 

1 & "&n n+s 
llkn(i,t)[Io <2t p+ r~,qr~=lon+s~pp+l  - t '+lq' , .  (2.31a) 

Summing this inequality over n, we obtain 

Hk(i,t)llo =2t'+1 2 qr 1~ ~1+ 
n = l  r = n  s = O \  ~ / 

- -<2t'+I q r 2  I~ l + P  1 - 1  
r = l  = 1  s = O  

< 2 t p + l ~ q ~  ~ ( l + P + l )  .:1 m 

m 

If p > 0, special consideration of the n = 0 terms gives 

t 

1[ k°( i, t)II o < ~ (t'- 111 k 1 (i, t')11 o + 2[A[- 111S ° [I o) dt' 
0 

< 2t p+I 1 + s  
= p + l  r=iq~8=oH l + s + p + l  + %  " (2.3Ib) 

Estimating 1 + s by 2 + s in the numerator of the products, inequalities (2.31 a) and 
(2.31b) can be written as 

l ~ q r f i n (  l-t-S-t-gl 1 
Itk"(i,t)llo <=2t p+ . . . . .  ~l V - ~ n ~  ~, n>=O. 

r=n s = O \  -1- S ~ -  - l - p /  

Summing this inequality over n >0, we obtain 

Hk(i,t)+k°(i,t)llo <2t p+lm+l  ~ q,. [] 
P n=O 
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We now apply these estimates to Eqs. (2.12a) and (2.12b). Since V is inde- 
pendent of t and has cardinality C, we get, by applying Lemma 2.5 to (2.12a), for 
all l <-m<-C, 

llh'~(i,t)[[o<=q',~t, for some constant q~,>0, (2.32) 

and 

C 

]lh1(i,t)l[o ~ ~ q '~ t<2f l lg l lo[Al - l t=B~t ,  (2.33) 
n=l  

where B 1-2CII VIIolAI- 1 
For any fixed z>O, we can find a constant A > I  such that, by Eq. (2.11) 

cosh2t + 1 A 
[lexph°(i't)[l°= ~ =<--2Ct (2.34) 

for all 0 < t < z. This will be used in the proof of the following lemma. 

Lemma 2.6. Let n > 1 and 0 < t < z. Then 

Ith.(i, 01Io =<Bot n, 

where the Bn's are defined recursively by 

B =APn(B1,B2, . . . ,Bn_I)  , n > 2 ,  (2.35) 

and B 1 is defined by Eq. (2.33) while A is given by tneq. (2.34). 

Proof. Prove by induction. By Eqs. (2.32) and Eq. (2.33), the result holds for n = 1. 
Suppose that the lemma is true for 1, 2,..., n - 1 ,  and that there exist constants 
qmk>0, m ~  1, and 1 <-k<-n - 1 such that 

IlhT'(i,t)llo <qm~t k, m>__l, and t <_k<_n-1 ,  (2.36) 

and 
qmk<Bk, l < k < _ n - 1 .  (2.37) 

m>=l 

Then the source term in Eq. (2.12b) satisfies the estimate 

t)) o A 2 . . . . . .  B n_ i t  ) ]A[- 1 (expho(i, t))P,(hl(i, t), ., h n_ 1(i, N ~--~.p,(Blt , B2t , 1 

A n-- = - ~ t  IP~(B1,B2,. . . ,Bn_l),(2.38) 

by Ineq. (2.34), using the facts that P~(Blt, . . . ,  B~_ it  n- 1) is homogeneous in t with 
degree n, and that P ,  is a polynomial with positive coefficients. Letting F m be the 
m-terms in 

exp(ho(i, t ))P,(hl(i, t) . . . . .  h~_ 1(i, t)), 

we have that there exist constants q~m > 0 such that 

tAI-1ttF~ilo Nq,mt "-1 m > l  
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and that these q,,, satisfy 

2 qnm~(2C)-lAPn(B1, '" ,Bn-1) , 
m>= l 

since ~ IIFmllo = ~ Fm by the definition of the norm, By Lemmas 2.3 and 
m > l  m>__it 0 

2.4, and the definition of B,, we have 

<= 2t" C(h,) B, 
I[h,(i,t)llo n 2C 

n(C-  1)+ 1 B, 
< 2t" 

n 2C 

< B.t". [] 

Lemma 2.7. The B,'s are the coefficients for an analytic junction B(~)= ~ e"B,, 
n = l  

which is convergent in a neighborhood of the origin. 

Proqf. Define B(e) implicity by (B(0)=0) 

F(B, g) =- A exp B(e) - (A + 1)B(e)- A + S 1 e = 0. (2,39) 

The function B(e) exists and is analytic in a neighborhood of the origin since 
OF 
0B (0,0)4=0 and B(0)=0. Rearranging Eq. (2.39), we obtain 

B(e) = A(exp B(e) -  B(~))-  A + Ble . 

Expanding B(e)= ~ e'n' _,, we obtain recursively, [see Eq, (2.13)J, Bit' =B1, and 
n = i t  

B ' = A P . ( B p . . . , B . _ I ) = B . ,  n>2 .  [] 

We now complete the proof of the theorem. 
i) Since 

cosh 2 t -  a'(i)a(i) 
h0(i , or', a, t) = log sinh 2t 

= l o g c o t h 2 t -  ~ _l(_aj(i)a(i))" 
.= it n \cosh 2t] ' 

[rho(i,t)l[o <[logcoth2t[+ ~ 1 1 +0 t--*oc. 
,= it n cosh"2t 

Hence for each 6 > 0, there exists a z > 0 such that for t > z 

Itho(i, t)II o < 6/2. 

By Lemmas 2.6 and 2.7, there exists an el >0  such that for e<eit 

" " < e ~ B .<6/2 .  e Hh.(t, t)Ho = 
n = l  n = l  
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Therefore  

: 11 h.(i, t)II o < (5/2 + ~/2 = ft.  
n=O 

d(i, ~A) 
ii) It is easy to see that  if n < ~  and A C A ' ,  then hA k ( i , a ' , a , t )  and 

hA,k(i, a', a, t), k = 1, 2, . . . ,  n, satisfy the same differential equat ions and hence are 
equal. Thus 

I I h A ( i , t , e ) - h a , ( i , t , e ) l l o ~  
d(i, ~A) 

n > = - -  
R 

< 2 
d(i, OA) 

n > : - -  
R 

: II hAk(i, t ) -  ha,k(i, t)[I o 

2 :  B .t" = O( e d(i' e a)/ R) . 

iii) F r o m  the statement i) of the theorem, it is easy to see that  there is an el > 0  
such that  for 0<e__<e0< q ,  

Ii-Jl 

2 ~ II hAnO, t)II o < c~ 
n<_ tl-Jl 

- R 

and [see Eq. (2.16)] 

b(e ( e ]Z/R]Ji-jl • - -  < O e .  []  
j~" \ \ell / 
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