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Abstract. We investigate the spectrum of Schr6dinger operators H,o of the type: 
H,o = - A + S q i ( c o ) f ( x  - x i + ¢i(co))(qi(o))  and ~i(o9) independent identically 
distributed random variables, i~Ee). We establish a strong connection between 
the spectrum of Ho) and the spectra of deterministic periodic Schr6dinger 
operators. From this we derive a condition for the existence of"forbidden zones" 
in the spectrum of H,o. For random one- and three-dimensional Kronig-Penney 
potentials the spectrum is given explicitly. 

Introduction 

In this paper we study the spectra of random Schr6dinger operators H,~ of the form: 

H ~  = - A + ~ . q i ( c o ) f ( x  - x i + ~i(o9)), 

where {xi},~d is a Bravais Lattice and { q z ) i ~  and {¢z}~d are independent, 
identically distributed random variables. Physically speaking H~ corresponds to a 
random "charge"-configuration {qi(~0)}, each qi(co) being located at the random 
position x~ - ~i(e)) and producing a potential q i ( e o ) f ( x  - x i  + ¢i(co)). Thus Ho can be 
used as the Hamiltonian of a model for a "mixed" crystal with centers of strength 
qi(e))  at perturbed lattice positions x~ - el(o)) or of a model of a liquid. 

Models of this kind were considered by many authors, see for example: Halperin 
[10], Frisch and Lloyd [7], Luttinger [15], Borland [4], Lieb and Mattis [14] and 
references therein. Random operators of a more or less different kind are studied e.g. 
in Pastur [18] and [19], Kunz and Souiltard [13], Fukushima, Nagai and Nakao 
[8], Nakao [17] and references given there. 

In [11] the present authors showed that the spectrum of a wide class of random 
operators, containing the Ho, given above, is a nonrandom set 22. In the present 
paper we determine the spectrum of the above operator more precisely. 

In the first section we give conditions under which the operator Ho is well 
defined and moreover essentially self-adjoint on C~(~a), the infinitely differentiable 
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functions with compact support. This turns out to be the case if the moments of {q~} 
up to a sufficiently high order are finite and the function f is not too singular. 

In Sect. 2 we investigate the relation between the spectrum of H~ and the spectra 
of well ordered "charge" configurations, i.e. of Schr6dinger operators of the form 

H~.~ = - A + y [ 2 i f ( x  - xi  + ui), 

where 2~ as well as u~ are periodic and nonrandom. We get that the set 27, the 
spectrum of H~,, is completely determined by the spectra of operators of the form 
H;.,~. Thus 27 has a band structure, in the sense that Z = w[a~, b~] but the intervals 
[a~, bl] may overlap. 

In Sect. 3 for {~ - 0 we give a sufficient condition for the existence of forbidden 
zones ("gaps") in X (Theorem 5). Under a very mild condition (Assumption A) o n f  
and {q~ } it is shown that (~, fl) is a gap for H~, if it is a gap for all "pure" Hamiltonians 
H~. = - A + 2 2 f ( x  - x~), where Jt runs through the (connected) component of supp 
p'~o the support of the probability distribution of q0(eo). Theorem 5 can be looked 
upon as a generalisation of a famous conjecture by Saxon and Hutner [21]. 

These authors conjectured that a common gap for two pure solids is also a gap 
for an alloy of these solids, at least in a one-dimensional model with point 
interactions. In the latter case the conjecture was proved by Luttinger [15], but it 
was shown to be wrong for other potentials (see e.g.: Lieb and Mattis [14], Halperin 
[10]). 

In Sect. 4 we study three examples. First we choose f to be a square-well 
potential in one dimension without overlapping of the wells. For  this the existence of 
infinitely many gaps is shown. The second example is a random point interaction in 
one dimension, a generalisation of the model considered by Luttinger [15], the 
nonrandom version of which goes back to Kronig and Penney [ 12]. Specifically we 
give the spectrum of H~, as in the nonrandom case. This result contains Luttinger's 
result mentioned above. Our last example shows the existence of a gap for a random 
point interaction in three dimensions. 

Section 1 

Let {qi(~)}i~d be independent, identically distributed random variables on a 
probability space (~2,~,P). Let {x~}i~zd be a Bravais Lattice, i.e. i -~x~  is a 
representation of the group 77 d into ~a such that the {x~}i~d span the space R d. By 
introducing a new norm on ~d, if necessary, we can assume the lattice {x~}i~ to be 
Z d. Furthermore let f be a real Lfo~(Ra)-function, for some p >__ d /2  for d => 4, and 
p -- 2 for d =< 3, such that: 

sup if(x)[ < ~ (1) 
i~_a x ~ C o + x i  

!i1 >=ko 

for some constant Ko; where C O is the unit cube around the point x o = O. 

Then we define the potential V~,(x) by: 

Vo,(x) = ~,  q i (co) f (x  - xi). (2) 
i~;Z a 
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Clearly we have to put some restrictions on the random variables {q,}i~z~ in order 
that Vo,(x) is well defined. 

Lemma 1. I f  the first two moments of qo(co) are finite, i.e. 
Etqo(CO)[ < + oe,Elqo(CO)l 2 < + o% where E denotes the expectation with respect to 
the probability measure P, then ~ I qi((O)][ f (x - xi) I is a locally L2(Na)-function with 

i~2~ d 

probability one. 
The proof is omitted since it is standard. From the above Lemma we get that V~(x) is 
a well-defined function locally square integrable for almost all o9~g2. Hence the 
operator: H~, = - A + V~ on L2(Rd), where d denotes the Laplacian, is a densely 
defined (e.g. on C~(~d)) symmetric operator on L2(R d) and by V. Neumann's 
theorem (see e.g. Reed-Simon II [20]) has selfadjoint extensions. 

Actually with mild additional assumptions o n f  and on {qi} i~z~ we can prove the 
following result: 

Theorem 1. Let the reat function f (x) on R d be as before (i.e.f satisfies assumption (1) 
and f ~LP(~a)for some p > 2for d < 3 and p > d/2 for d > 3) and assume that Elqo[ k < 
+oo with k > p d / 2 ( p - 2 )  for d < 3  and k > d p / ( 2 p - d )  for d > 3 .  Then the 
Hamiltonian - A + ~ q~(co)f (x - xl) on L2(N ~) is essentially selfadjoint on C~(N d) 

ieTL a 

with probability one. 

Proof. For simplicity we assume the constant k o appearing in (1) equal to t. The idea 
of the proof is to show that with probability one it is possible to split V~ into: 
V~ = _~V (1) + _~v (2), in such a way that V~)(x) > - c(co)x 2 for some positive constant 
c(co) and (2) q d V~)(x)lqdx cl V,o ~Lu,,loc(E ), i.e. ~ [ < for any y e ~  d and a constant 

Co+y 
cl = c1(~o), independent of y, for some q > d/2 ifd > 3, q = 2 ifd =< 3. Then the essen- 
tial selfadjointness follows from the Faris-Lavine theorem (see e.g. Reed-Simon II 
[20]) combined with Theorem XIII 96 of Reed-Simon IV [20]. 

We will treat only the case d > 3; the other cases, i.e. d = 2 or d = 1, can be 
handled exactly in the same way. 

By definition, V~(x) can be written as: 

V,~(x) = ~ qj(co)f(x - xj) + qi(~,)f(x - xi~x) ) 
j ~ i(x) 

=-- Vo,(x) + qi(x)f (x -- Xi(x)), (3) 

where i(x) is such that x~C o + x~x). V,o(x) is the non-singular part of V,~(x) and by 
assumption (1) is finite for almost every cocO. 

We will show that: 

P ( ~ ' i  Iqj(C°)l\f7 sup I f ( x - x j ) r  > inf Ixl 2 
x ~ C o  + Xi XECo + Xi 

for infinitely many x~ = 0. (4) 
N 

/ 
From (4) we can conclude that: 

sup I Vo,(x)t > inf txl z only for finitely many x~ 
x E C o +  x i  X ~ C o + x  i 
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£ 
ie~ d 

I/[>M 

almost surely; hence, since ~'o(x) is finite almost surely we can find with probability 
one a positive constant C(co) such that 

9~,(x) > - C(o))lxl 2. (5) 

By the Borel-Cantelli Lemma in order to prove (4) it suffices to show for a 
suitable chosen M: 

Z P ( 2 i l q j  [ \ j ~ :  sup [ f ( x - x j ) [ >  inf ]x[2)< + ~ ; /  (6) 
ieTZ a xeCo + xi x~Co + xi 

l i l>M 

by the Chebyshev inequality we have: 

P(j~ilqj[ sup [ f ( x - - x j ) [>  inf Ix] 2) 
xeCo + xi xeCo +xi 

E ]q j[ sup l f ( x - x ~  
i x~Co+x~ 

inf Ixl ~ 
x~Co + xi 

where k is as in the statement of the theorem. 
The right hand side of (7) can be bounded from above by 

EIqolkDelx;l- 2k (8) 

whereO = ~ sup I f ( x -  xj)] < + oe byassumption(l),andx~Zmeans inf Ixl 2. 
j ~ 0 x~Co xeCo + x ~ 

Inserting estimate (8) in (6) we get: 

P ( ~ l q j [  sup I f ( x - x i ) ] >  inf ,x] 2) 
\ j ~ i  x~Co+xi  xeCo+xi  

<ElqolkD k ~ ]xi'l-Zk< +oO, (9) 

liI> M 

since k > dp/(2p - d) > d/2 in the case d > 3, and k > dp/2(p - 2) > d/2 in the case 
d = 3 .  

We now consider the singular part of Vojx): V,o(x) = qi(x)f(x - xi¢~)), where as 
before i(x) is such that x~C o + x~(x). Vo,(x) in turn can be decomposed as follows: 

 7o(x) = qi(x)f(x - xi(~)))~(qi(~,)f(x - xi(~) ) >= - x 2) 

- xi(~,))g(qi~)f(x - xi~) ) < - x2). (10) 

Here g(.) denotes the characteristic function on ~a. 
The proof of the theorem is now complete if we are able to prove that 

xi~))x(qitx)f(x- x~,))< - x  2) belongs to Lqun,io~(N a) almost surely, for 
some q > d/2 for d > 3, q = 2, d = 3. For this it is sufficient to show: 

lqi(cO)[qlf(x -- xi)lqx([qi][f(x - xl) [ > xZ)dx < MI(CO ) (11) 
Co+xi 

for some q > d/2 for d > 3, q = 2 for d = 3 and some constant M~(co) independent of 
i~Y_ a with probability one. Since f~Lfo~(~ d) with p > d/2 for d >  3 and p > 2 for 
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d = 3, we can choose q in such a way that max(2, d/2) < q < p for d > 3. As before it is 
enough to check that: 

/ 

P (  S Iqilqlf( x -  xi)lqz(lql[ [f(x - xl) I > xE)dx > 1 (I2) 
k Co + xl 

N 

for infinitely many ieZ e) = 0. 
/ 

In fact if(12) is true then S Iqil~lf(x - xi)lqx(lqlt If(x - xi)l > xZ)dx > I only 
Co+xi 

for finitely many i eZ  d, and sincef(x)~Lfo~(R a) for d/2 < q < p in the case d > 3, and 
fELlaoc(R d) for d = 3, it is always possible to find a constant M~(co) such that (11) is 
satisfied for any ieZ d. 

Again, by the Borel-Cantelli lemma, the problem is reduced to give an 
estimate of: 

P(coSx ]qi[q]f(x -- xi)iqz(lqii ] f ( x -  xi)l > x2)dx > 1) (13) 

such that the sum: 

~, p (  ~+ ]q i lq l f ( x - x i ) lq z ( lq i l [ f ( x - x i )>x2) ldx>l )  (14) 
i~Z Co xi 

tiI> Mo 

is finite. By the H61der inequality the integral appearing in formula (13) can be 
estimated from above by: 

[ ~q/p[- ] l - -q /p  

Iqil .f If( - kl"d J I_ o.f z(Iq, llf(x-xkl>x )d  
L Co + xi -t, x~ 

< Iqif [. I f ( x -  xi)lPdx btx; -2p(1-q/p) (15) 
LCo + xi 

for some constant b 1 > 0, where we have used the fact thatfeL~(Co)(see e.g. Reed- 
Simon II page 30, [20]). Using now the Chebyshev inequality and estimate (I 5) we 
obtain: 

P( ~ lqiiqlf(x-x,)lqx(lq, l t f ( x - x 3 l >  x2)dx> 1) 
CO + xi 

b2Elqoiktx;1- 2k(l -q/P) (16) 

for some constant b 2 > 0, where K is as in the statement of the theorem. 
Inserting (16) in (14) we get that: 

P (  S Iq~lqlf(x- xDtq)~(Iq, i l f ( x -  x,)l> x2) dx > l )  
iE~U Co + xi 

t i [ > M o  

~ b2Eiqoikix~] -2k(1-qlp) 

I i i > M o  

is finite if 2k(1 - q/p) > d, i.e. if q < p - dp/2k. Since k > dp/(2p - d) for d > 3, 
k > dp/2(p - 2) for d = 3, p - dp/2k > d/2 for d > 3 and p - dp/2k > 2 for d = 3, we 
can always find a p such that: d/2 < p < p - dp/2k for d > 3 and 2 < p < p - dp/2k 
for d = 3. The convergence of (14) is thus assured. []  
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Remark .  The results of this section, namely Lemma 1 and Theorem 1 can be 
extended to the following case: 

Vo,(x) = ~q i (co ) f ( x  - x i + ~i((D)), (17) 

where { ¢ i } ~  are new independent, identically distributed random variables 
satisfying [ ~/(¢o) 1 < No for any ~o. 

S e c t i o n  2 

In this section we investigate the spectra of Schr6dinger operators of the form H~ = 
- A + V~ with V~ as in (17) with the stronger assumption that the {qi((.O)}ieyd a r e  

independent identical distributed random variables. The following theorem was 
proved in Kirsch-Martinelli [11]: 

For almost each (osO, let Ho, be a selfadjoint operator on a separable Hilbert 
space H, such that for each z~ N the function co ~ (z - H~)-  1 is weakly measurable. 
Furthermore assume that there exist measure preserving transformations {Ti}i~ I 
(1 an arbitrary index set), which are ergodic in the sense that every A s ~  which is 
invariant under all { Ti} i~d has either probability one or probability zero. Suppose 
furthermore that there are unitary operators. {U~}~I on H such that 

H r ,~ = U f l  ~, U .*, . 
Then we have 

Theorem 2 (Theorem 1 and 2 of [11]). 
1) The  spectrum a(H~) o f  H~o is a nonrandom set. 
2) T h e  pure point part, the singular continuous part and the absolutely continuous 

part o f  a(Ho~) are nonrandom sets. 
This theorem can be applied to our situation, since the {qi}~:,~ (as well as the 

{ ~} ~ d )  as independent identically distributed random variables form a stationary, 
metrically transitive random field, i.e. there are measure preserving, ergodic 
transformations { T ~ } ~  such that 

qj(Tio:, ) = q j_ i(o). 

Hence with: U J ( x ) : = f ( x -  xi) one has immediately: 

HT,,o = -- A + VTi¢o = - -  A ~- U i V c o U i *  = Ui (  - z] + ~ /~)Ui*  = Ufl,oU~*. 

The measurability of(z - H,o )-  1 can be obtained by Corollary 3 in [11]. There it 
was proved that (z - ( - A + Vo,))- ~ is weakly measurable if V as a function oleo and 
x is measurable and - A + V,o is essentially selfadjoint on C~(R a) almost surely. By 
Theorem 1 we know that in our case H~, = - A + V~, is essentially selfadjoint on 
C~(Ra), hence Theorem 2 holds for this operators. Moreover an application of 
Corollary 1 in [11] shows that the discrete part of the spectrum of Ho is almost 
surely empty. 

Appfications of Theorem 2 to more general random operators were discussed in 
[11]. In our special case however it is possible to investigate the spectrum of H,o 
more precisely. In doing this the following definition is convenient. 

Definition. We call a real function W on Ne an admissible potential  for the operator 
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Ho" = - A + V~(V,~ as defined in (17)) if W(x) = S q f  (x - x i + ui) with nonrandom 
c~s [~, u~e R a and the following conditions are satisfied: 

1) c issupp Pq,, where Pq, is the (common) distribution of ql- 
2) u~esupp Pc,, where P~, is the (common) distribution of ~. 
3) W is locally square integrable. 
4) - A + W is essentially selfadjoint on C~(Ra). 
5) ~ c i sup I f ( x -  x i + ui)l < o0 for M large enough. 

t i l  > M x e C o  

Remark. For almost every coef2 V~, is an admissible potential; conditions 3) and 
5) follow from Lemma 1, condition 4) from Theorem 1. 

Now we prove the following theorem which allows an investigation of the 
spectrum of H~, by means of admissible potentials. 

Theorem 3. I f W  is an admissible potential for H,o the spectrum or( - A + W) of  - A 
+ W is contained in the set S ,  which is the spectrum of  H~ almost surely. Thus 

z =  U ~ ( - A + W )  
W e A  

where the union is taken over the class A of  all admissible potentials. 

Proof. Let A '  = ~coef2 ; V V 3 
( N e M  k e n  xo(N,k ,co)e)7-  d 

S J W ( x ) -  V(x  + xo (S ,k ,  co),co)12dx < 1/k I .  
) 

where B N : =  {x;[x I < N} .  
In Lemma 2 we will show that  P(A) = t. Take now 2ca(  - A + w), then by the 

Weyl criterion (see e.g. Weidmann [22] Theorem 7.22) there exists a sequence 
{(Pk}k~ in C~(~ a) such that:  [[(Pk[l--1 ([[ [! denotes the L2-norm) and i [ ( - d  
+ W ) ( p k -  "~'¢Pk II < 1/k. Choose N k large enough in such a way that supptpk c BN~ 
and take coeA c~ (2o(O 0 = {coe~J; o-(Ho)) = S}). By Theorem 2 and Lemma 2 we have 
P(A c~ ~Jo) = 1. Choose xo(Nk, k 2 ]] (Pk H 2, co), where ]1 (Pk II ~ ---- sup [(pk(X) l; by the 

x ~ d  

definition of A we have: 

1 
j I W(x)  - V~,(x + xo(Nk, k 2 It cPk It 2,co))[2dx < k 2 2 .  JI Ok B N oc 

If we define the new sequence of C~°-functions: 

12 Ok(x) : = q)k (X -- xo(Nk, K 2 I[ q~k ,t ~,CO) ), 

then: ti( - A + Vo,) 0k --20ktl 
= if( -- A + go~(x + xo(Nk ,k  2 H q~kt] 2 ,CO) ) )q )  k - -  )°q~k ]] 

_-< ll( - A + W)~ok - ~ok II + II { W(x) - VAx + Xo(Nk, k 2 TI ~ok 11 ~,  co))}~ok II 
1 1 

__<~+~=2k.  
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Hence, again by the Weyl criterion, 2~o-(- A + Vo, ) = Z  since a~ belongs by 
assumption also to £2 o. D 

It remains only to show the following lemma: 

Lemma 2. Let W be an admissible potential and define 

A---((,3~E2; V V ~xo(N,k, oJ)~Z d 
N~, k ~  

j W ( x ) -  Vo,(X + xo(N,k,@)12dx <-k . 
BN 

Then P(A) = 1. 

Let AN,k=(meO; 3xo(m)~ [W(x)-V~,(x+xo(@)12dx<l~. Since Proof. 
[ K ) B N  

AN+ 1,k c AN,k, if we define A k = (~ AN,k, then P(Ak)  = lim P(AN,k). By definition 
N=I  N~o~ 

A = ~ A k, and since A k + a ~ Ak we get P(A) = lim P(Ak). Thus in order to show 
k = l  k-~a¢ 

that P(A)-- 1 it suffices to show that P(As,k)= 1 for any N,k~N. Clearly AN, k is 
invariant under the ergodic shift { Ti}i~d on ~, so that P(A~,k) is either equal to one or 
to zero. So it is enough to show that P(AN,k) > O, or P(CN,k) > O, where CN, k c AN, k is 

theset{coeO;j ,  lW(x) -V(x ,c@2dx<l /k} .  

Let M~ be a positive constant large enough such that: 

2 d x  < f Z e l f ( x -  x~ + u~) 1/4k. 
BN li]> Ml 

This constant M~ always exists since: 

t 1 ~ ~ f ( x  - ~ + u~) dx 
BN {i[>M 

k(N) l'li) 2 

l j l = t  CO xj lil>M1 

k(m ul) 2 dx = Z ~ Z c i f ( x - x j - x , +  
t j l = l  Co [it>Mi 
k(N) ( )2 

< ~ ~ [c~[sup [ f ( x + x j - x  i+ul) [ 
] j [ = l  ] i ]>MI xeCo 

and this last term can be made arbitrarily small because of point (5) of the definition 
of admissible potential. 

Next, consider the set 

{ ( ; D =  ooef2; 3M ~ ~, [qi(co)l [f(x-xiq-~i(og)[ dx<~£ . 
BN lil>M 
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Since V,o is almost surely a locally square integrabte function P(D) = 1, if we define 
now the set D M by: 

/ '} DM= co; ~ ~. Iqi(og)l l f (x-xi+~i(o9)l  d x < ~  , 
(. B~ Iil > M 

then D i c D i + 1 and D = UDM ; hence P(D) = lim P(D~) which implies that there 
M~co 

exists an integer M 2 such that P(DM)> ½. Let now M = max {M1, M2} and take 
(neDM; we can then estimate S f W(x) - Vo,(x)12dx as follows- 

BN 

B !  I V I / ' ( x ) -  V ~ ( x )  2 d x  

<4 f I ~ c , f (x - -x  i+u 0 2dx 
Bn I l i l > M  

+ 4 ~ ~, q,(oOf(x - x, + ~i(co) 2dx 
BN lil > M 

+ 2 ~ I ~' c i ( f (x  - xi + u,) - f ( x  - x i + ¢i(c0))) 
B N t i l < M  

+ (c i - qi(fo))f(x - x i + ~(oo))lZdx 
! 

1 
< - - - + 2 C 2 M  Z c2i 5 l f ( x - x , + u , ) - f ( x - x , + g i ( o o ) 1 2 d x  = 2k 

li[ < M BN 

+2C2~ sup tqigo)-cl/2 ~ ~ t f (x_x ,+g, (co)12dx ,  (18) 
li<-_M ]il<=MRa 

where C2M is a positive constant depending only on M. 
The last term of (18) can be chosen with positive probability less than 1/4k since 

by assumption c~egupp pq and the q[s are independent, and sincefeL2(~ ~) because 
fEL2oc(R d) and fur thermoref  is such that ~ supjf(x - x i )  t < ~ .  

[ i[ > K o xECo 
For the estimate of the first term of (18) we need the following remark: 

Since the map x-+ U x ( U J ( z ) = f ( z  + x)) is strongly continuous from ~a into the 
bounded operators on L2(~a), for any ~, there exists a ,5(e,x,f) such that: 

S }f(x  +z)  - f ( z  +y)12dz < o~ 
BN 

for any y such that I x - y [  < 6(e,x,f). Thus in the first term of (18) if we make 
l uz -  {i(co)] small enough, which again is possible with positive probability since 
uiesuppp¢ and the {~ are independent (and also independent of the q3, we have: 

1 
2C2M ~, c ~  I f (x  - x, + u,) - f ( x  - x, + {,(oo))tZdx < ~-k. 

Ill <M Bzq 

Hence with positive probability we have that: 

I W(x) - Vo,(x)l~dx < 
B~r I% 

i.e. P(C~, k) > 0 hence P(ANI 0 = 1. [] 
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Remarks. 

1) It is not difficult to give an alternative proof of the fact that a ( H J  is a 
nonrandom set by using the above lemma. In particular one can show that for each 
coeA o-(H~,) = S. 

2) Each 26S can be obtained by the construction in the theorem. On the other 
hand we can ensure that xo(N,k ,  co ) goes to infinity as N goes to infinity. Thus the 
sequence {q;k} can be chosen as weakly convergent to zero and moreover 
orthogonal. Again by the Weyl criterion this means that each spectral value 2~S  
belongs to the essential spectrum of H~,. 

By the previous theorem the spectrum of H~ looks very large because the class of 
admissible potentials is very large. But the following theorem tells us that for 
knowing the spectrum 2 it is enough to know the spectra of all periodic admissible 
potentials. 

Denote by P the class of all admissible potentials which are also periodic in the 
sense that W ~ P  if there exists a basis {a~}d= ~ of ~d such that 

W(x  + a~) = W(x)  V x ~  a. 

Theorem 4. In the hypotheses of  Theorem 3 : S = ~ tr( - A + W) 
W~P 

ProoJ~ It will be enough to show the following: if Wis an admissible potential, W ~ A ,  
then there exists a sequence of periodic admissible potentials W , ~ P  such that - A 
+ W, ~ - A + W in the sense of strong resolvent convergence. From this it follows 

that U a( - A + IV,) D a( - A + W) (see e.g. Reed-Simon I, VIII  2h [20]). But since 
n ~  

the union of the spectra of all the admissible potentials contains 2 we have 

o-( - A + W) = S; but from Theorem 3 we know that ~j a( - A + W) c S so W~P W~P 
t h a t S =  U a ( - A + W ) .  

w~e 
We now prove that any operator H = - A + W, W ~ A ,  is the strong resolvent 

limit of operators H N = - A + W u, W~v~P for any NoN.  Since by definition C ~ ( ~  d) 
is a core for - A + W for any W~A, it suffices to show that there are periodic 
potentials W.~P such that - A + W. converges strongly on C ~ ( ~  d) to - A + W, 
W ~ A .  For  this it is enough to show that for any compact set K and any e > 0 there 
exists a periodic admissible potential W such that: 

I~[W(x) W(x)12dx] 1/2 - < e .  ( 1 9 )  
K 

Since any compact set K c ~a can be covered by a finite number of unit cubes, it is 
enough to check (19) with K = C 0. Let W(x)  = S c J ( x  - x~ + u~) be given and define 

ci = Ci+M~k = ci for [i I < m l  kEyd, 

fii=~i+M~k,=Ul for l i f<M~ k '~Z  d, 

where M~ is a positive constant such that 
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lc, I sup l f ( x  - xi + ui)t < ~/3. (20) 
li[ > M I  x~co 

This constant always exists since W is admissible. Without loss of generality we can 
assume M 2 greater than N O + 1, where N O is such that I¢il < No almost surely (see 
Remark after Lemma 1). Clearly the potential W = Z ? i f ( x  - x i + ui) is periodic of 
period M~. Furthermore since ILT~I is unilormly bounded by N O (see Remark after 
Lemma 1) by assumption (1) on f ,  it follows that there exists a constant M2 such 
that: 

sup Ic~l Y~ s u p l f ( x -  xi)[ < e/3. 
Ill < M1 lit > M2 xECo 

for lit < M1 k ~ Z  a, 
for lit < M 1  k ' e g  a, 

Define ci = ci+ M~k = min {c~, ci} 
Hi ~" U i + M z k '  ~ Hi 

and let ITV = S61 f ( x  - x i + ul). Then 

(C~o ] W ( x ) -  W ( x ) [ 2 d x )  1/2 

\ 
< sup ~ ( c i f ( x  - x i + ui) - g i f ( x  - x ,  + ai) j 

xECo lil > M l / 

<= ~ I c i t s u p [ f ( x -  xi + ui)l + 
[I[>MI x~Co 

+ ~ l c i l s u p t f ( x - x  i+ui ) [  
Iil > M2 X~Co 

+ Y, Jell sup I f ( x  - x ,  + ui)l 
M I < t I I < _ M 2  x~Co 

< ~ + ~ + ~ Ici] sup [ f ( x  -- x i + ~ii)] < e. 
MI<tiI<M2 X~Co 

R e m a r k  1. From the above theorem it follows that in principle the spectrum of the 
random operator Ha, has band structure, i.e. the set E is a union of closed intervals 
with possibly gaps between them. 

R e m a r k  2. The spectrum of a possible pure crystal (i.e. qi = q, ~i = { for any i ~ Z  a) is 
always contained in the spectrum of the random mixture. For example ff 0 a supp Pqo, 
then the set [0, + 0o [ c S. 

R e m a r k  3. The spectrum S depends only on the support of the distribution Pqo of 
each qv For a similar result in the discrete case (when the Hilbert space is IZ(Ye)) see 
Kunz-Souillard [13]. 

R e m a r k  4. Actually the random variables q~ and ~, need not to be independent; it is 
enough that they form a stationary metrically transitive random field such that the 
support of the conditional distribution P(qo]q~i ~ 0) of q0 given ql (i :p 0) is equal to 
the support of P(qo) and the same for the ev 

Section 3 

In this section we give a simple condition for the existence of gaps 
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in the spectrum of the random operator H,o= - A + Z q i ( e ) ) f ( x - x l )  
on L2(~a), which is useful when dealing with concrete examples. Let W(x)= 
X 2 i f ( x -  xl) be a periodic admissible potential and let {al}/d=l be a basic of the 
vector space ~a such that 

W(x + a3 = W(x) VxE~ a. 
Clearly the Hamiltonian Hw = - A  + w is invariant under the group A = {na~, 
n~za}, so that it can be decomposed as follows: 

nw = ~ Uo(k)dk =-l j 'u~ , (k)dk ,  
2 tolB 

where ~ is the dual group of A and B is the Brillouin zone (see e.g. Reed-Simon IV 
[20] and Avron-Grossmann-Rodriguez [3]. H~,(k) are called the reduced Block 
Hamiltonians; from the above integral decomposition it follows that the spectrum 
of H w is the union of the spectra H~(k). Furthermore, since W(x)eL2o¢(~a), it follows 
that for d < 3 the reduced Hamiltonians have compact resolvent and thus their 
spectrum consists only of isolated eigenvalues E.(W,k), labeled by the discrete 
parameter n ~ ,  of finite multiplicity (see Avron-Grossmann-Rodriguez, Th. 3, 1 
[3]). 

Assumption A. The eigenvalues E,(W,k) of the reduced Hamiltonians Hw(k), 
W= X2ff(x - x~), are such that for any neN and any keB there exist two numbers 
din,k), ~(n,k) 2rain ~ ~(n,k) ~ 2i ~ ~(n,k) ~ "~max" where 2rnin(2max) is the inf (sup) of the 
set supp Pqo, P~o being the distribution function of each of the random variables 
qi, or '~min = -- O0 0~m~x = + 00) if the inf (sup) of supp Pqo does not exist, such that: 

E,(~  ~, k) < E,(W, k) < E,(~; k), or 

G ( ~ ;  k) => G(W, k) > E.(~; k), 

with _W(x) = 2~"'k) X f (x - xi) , W(x) = ;-3"'k) X f (x -- x~). 

Remark. By the mini-max principle Assumption A holds if for examplef(x) has a 
definite sign. 

Theorem 5. I f  Assumption A is satisfied and the open interval (~, fl) does not belon 9 to 
the spectrum of the periodic Hamiltonian - A + 2X f (x - x ) for  any 2mi, < 2 </~max' 
then (a, f i ) ~ Z  = ~ ,  where X is the spectrum of H,o = - A + Xqi(co)f(x - x i )  almost 
surely. 

Proof. By Theorem 4 it is enough to show that (c~, fl) ~ a (  - A + W) =- D = ~ for any 
periodic admissible potential W. Assume D ~ ~ and let EosD. By the integral 
decomposition of - A + Wit follows that E o = E,o(W , ko) for some n0e N and kosB. 
By assumption A we have 

E.o( H~ ko) ~ E.o (W,, ko) =< E.o (W, ko), 

for some W(x) = 2 ("°'k°) ~ f ( x  - xl), and 
i~g a 

W(x) =/~(.o,ko) ~ f ( x  - xi), 
ie2~ d 
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with )yo,ko) <__ ~(no,ko) o r  vice versa. Since E.o (2Z f (x  - xi), ko) is a continuous function 
of 2, (see e.g. Reed-Simon IV [20]) there exists a ~(.o,ko) < ~ < j/.o, ko) (or 2(.o,ko) > 7~ 
> ~(~o,ko)) such that 

E.o(W,, ko) = E.o(VV, ko) when tiC(x) = ~ ~ f ( x  - xi). 
i~?T a 

But this means that Eo=E,o (W,  ko)E,o(fZV, ko) belongs to the spectrum of 
- d + 2 Z f ( x  - xi) in contradiction with the hypothesis. [] 

Corollary 1. I f  the supp P~o is connected and if Assumption A holds, then the open 
interval (a, t )  is a gap for the random H amiltonian H~ if and only if it is a gap for all the 
periodic Hamiltonians Hx = - A  + 2Z, f ( x  - xl) )~suppPqo. 

Proof. It is a direct consequence of the previous theorem and of Theorem 4. [] 
It follows from the above Corollary that, in some case, the study of the (possible) 

gaps in the spectrum Z of H~ is reduced to the study of the gaps of the "pure crystals" 
- A + ~ f ( x  - xi), where 2 runs in the supp Pqo. In the examples we shall consider it 

i,¢a 
will turn out to be sufficient to study the gaps of the "pure crystals" corresponding to 
the values 2--2m~, and 2 = 2m~- 

Section 4 

In this last section we give first two one-dimensional examples of random operators 
of the Kronig-Penney type for which infinitely many gaps occur, and then we show 
that also for the random version of the periodic point interaction model in three 
dimensions treated by Grossmann, HCegh-Krohn, Mebkhout [9] still a gap is 
present in the nonrandom spectrum X. While the first example is only an application 
of the general result of Sects. 1-3, the other two examples require new proofs of results 
similar to that of the previous sections, since the above theorems cannot be applied 
directly because of the strong singularities of these Hamiltonians. 

1) The Kronig-Penney model with a step potential in one dimension (see 
Kronig-Penney [12]). 

Le t f ( x )  = Zto,,l(x), 0 < a < Xl(XA(') is the characteristic function of the set A ~ E) 
and let V(x) = Z f ( x  - xi) when the lattice {xi}i~ ~ is assumed for simplicity to be Z. 
Furthermore let {qi}~x be independent, identically distributed random variables 
such that: 

0 < M 1 <- qi(o~)  <- M 2 < o~ 

and define V,~(x)= ~ q~(oJ)f(x-  xi). 
i ~ g  

V~E.Q, Vie/7. 

Propositional 1. Denote by X the almost surely constant spectrum of  Ho~= 
- d 2/dx 2 + Vco. Then,for each o f  the points E,, = (nn/(x 1 - a))2, En < M i, there exists 
a neighborhood A n such that A n ~ Z  = ~ .  

Proof. In F1/igge [6] it is shown that for any 0 < 2 < + oe the Hamiltonian 
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-- dZ/dx 2 -t'- ~ 2 f ( x  - xl) has gaps A. ~ around the points E.  < 2. If we define A. = 

A. ~ we have that A.  ~ and that A. is a common gap for all the 
M1 < ~._-< M2 

Hamiltonian - d2/dx 2 + ~ ~ f ( x  - xi) with M 1 < ,t __< M 2. Furthermore sincef(x) 
iE2~ 

has a definite sign ( f ( x )  __> 0) and f ( x )  < 1 Assumption A holds so that we get the 
statement by Theorem 5. 

Remark.  Let x -  ~ A, = (g,, ft,) be the gap around the point (n~/(xi - a)) 2 for the periodic 
Hamiltonian - d2 / dx  2 + ~, 2 f (x - xi) M 1 <- f~ <- M 2. By the general theory of one- 

i~72 

dimensional periodic Schrodinger operators (see, e.g. Reed-Simon IV [20]), we 

know that ~, and ft, are then n th eigenvatues of -d2/dx2+ , ~ 2 f ( x -  Xi) on 

L2 ([0xl ], dx) with respectively periodic and antiperiodic boundary conditions if n is 
even and vice versa fin is odd. Hence, by the mini-max principle g~, fl~ are monotone 
increasing functions of 2, so that the gap A~ for the random operator - d2/dx 2 

+ ~ , q i ( ~ ) f ( x  -- X i) is given by: M~ A. = (c~. , tiM,). 

2) We now pass to consider a random Kronig-Penney model with point in- 
teractions formally defined by: 

d z 
H~o = - d~xZ + ~ q,(co)a(x - x,), (21) 

where {qi(e))}i~e are independent identically distributed random variables satisfying 
0 < c I < qz(co) __< c 2 < + Go for any iEZ and ~o~2. The Hamiltonian Ho can be well 
defined as a sum of quadratic forms as follows: Denote by Q = Q( - d2/dx 2) the form 
domain of the operator - d2/dx 2 on Lz(N) and by Qo the function in Q with compact 
support. We define on Q0 the quadratic form: 

First we show: For any a >0 ,  there is a b e ~  such that: 

Ifi~o(~, ~)l < a ( ~ ' ,  ~ ' )  + b (~ ,  t ))  (22) 

for any 0 eQ0 and coef2. In order to prove this, take a sequence ~ ' ~.Oi~ i sy  i n  C ~ ( ~ )  such 
t hat: 

1) supp t p i c ] x i _ l , x i + l [ ,  

2) Z 0 ~ (  x ) = l ,  
ieZ 

3) sup 2 IqJ;(x)l 2 < ~"  
x ~  i ~  

A sequence satisfying 2) and 3) is called a "local partition" in Morgan [16]. 



Schr6dinger Operators with a Random Potential 343 

We have: 

I/~(~,~, ~,~)l ~ c21~(x,)l z ~ a <(~i~)', (~,~)' > + b ( ~ ,  ~ )  (23) 

(see e.g. Reed-Simon II, X. 2[20]). By repeating now word by word the proof of 
Theorem 2.2 in Morgan [16] we get from the local estimate (23) the global one (22). 

Now we show that fi,o can be defined on the whole space Q( - d2/dx2). Let O~Q, 
choose 0,eQo, 0, ~ ~O in L2(~), ~/n -+ ~' in L2(~), which is possible since Qo is dense 
in Q with respect to the norm (]j ~' ]l 2 ..]_ Jl ~/]l 2)1/2 ; moreover we can choose ~, in such 
a way that ~,,(x) = O(x) for Ixt < n. Now: 

q,(co)tO(x,)l 2= ~ q,(co)]qJ.(x,)lZ < c z  ~ ~.(x,)] 2 
Ill <n l i ]<n i~d. 

Ga]l~tnl[2+bj~n[ 2. 

The last expression is bounded independent of n, since ~', and ~O, are convergent, 
hence the norms are bounded. Thus/3,o(., ) is well defined on Q(-dZ/dxZ).  

Furthermore, by continuity inequality (22) holds for all ~keQ. Hence we can 
apply the KLMN (Kata, Lax, Milgram, Nelson)-Theorem (see e.g. Reed-Simon II, 
X. 2 [20]) to get a well defined, unique selfadjoint operator H~o on Lz(R) associated 
with the closed quadratic form ?,o(~P, ~k): = (tp', ~p')+/3~o( if, 0) on Q ( -  dZ/dx2). It 
is this operator we mean by the formal expression in (21). 

In [11] we showed that the spectrum of H is a nonrandom set. We call this set ~. 
In order to investigate 27 we have to prove analogs of Theorems 3 and 4 for the (very 
singular) Hamiltonian Ho,. Although it is possible to give proofs similar to those of 
Sect. 2, since H,o can be shown to be essentially setfadjoint on a set of functions with 
compact supports, we prefer to give a more direct proof based on the explicit 
expression of the resolvent of H,o. This method has the advantage that it can be 
extended immediately to the three-dimensional case (see the next example) and 
moreover the case of continuously distributed random variables {q~}~z causes no 
further difficulty as it does for the previous method. 

We call, as in Sect. 2, the formal expression W =  r , ~ 6 ( x -  xi) an admissible 
potential if 2~Esupp Pqo for all i~Z. In this case we also call the sequence {2~};~ 
admissible. 

Now we give explicitly the resolvent of the operator 

d 2 
H{ai} - dx a ~- ~. 216(.- xl) 2 i bounded. 

ie2~ 

d 2 
Faris [5] (in §5) computes the resolvent of the operator H a o -  dx 2 + 2o6(. ). 

The resotvent is for ECa - d x 2  " 

- + . . . .  l Ge(Y)O(y)dy aE(x), 
2 

(n~o - E) - 1 0 ( x )  = S G~(x - y)~,(y) dy 

where GE(x)= 1 _ _  e_./~lxl 
2 x / - E  

is the free Green's function in one dimension 
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and . ~ / -  E is chosen such that Re(.~f~- E) > 0. In the case of finitety many 6's we get 
a similar expression: 

( d2 2 -k i ) -- __~ 21c~(x - xl) -- E -10(x) = ~ Ge(x _ y)O(y)dy 

-- ~ (T~e ")- 1)i j SGe(y - x j )O(y)dyae(x  - xi) , 
i,j= -n 

where T~ ") is the n × n-matrix given by (T~e"))~j = fi~i/2~ + Ge(x~ - x j). This expression 
as well as its calculation is in complete analogy with those given in Grossmann, 
HCegh-Krohn and Mebkhout [9] where a three-dimensional point interaction is 
considered. 

d 
)~i~(.- xi) Using Theorem 7-10 in Faris [5] we get easily that - d ~  + ~=, 

d 2 + 
converges in the strong resolvent sense to H~,~ = - ~ + ~ 2~(. - xi) as n goes 

i = --oD 

to infinity. 
Hence the resolvent of H{~,} is given by: 

(H{z~I - E) -  ~ ( x )  = SGk(x -- y)~fi(y)dy - ~ (r ; :  1)i j 
i. j~27 

Ge(y - x~)~(y)dyGE(x - xi), (24) 

where T~. is the bounded operator on 12(7/) given by: (TE)ij = 6i /2i  + GE(xi -- x2). 
Indeed, that (24) is the correct limit for the weak resolvent convergence is easily 
obtained by computation observing that ~ = ~GE(x - xj)~(x)dx is in 12(y) that TE 
and T~ ") can be looked upon as bounded operators in 12(Z)  and T~e")-a ~ T{ ~ 

d 2 n 
weakly in t2(Z) as n--~ ~ .  But since we know that - ~ + ~=-~', 2~( - x~) converges 

in the strong resolvent sense, the operator in (24) is also the strong limit. 

Proposition 2 Let W be an admissible potential, then ~r(- A + W) c 2. 

Proof. The proof is based on the following lemma: 

Lemma 3. Let  Im E ~ 0 and let W =  {2i}i~ be an admissible potential. Then there 
exists a sequence of  co,~O~, when ~21 = {co~(2; a (H~)= Z}, such that the operator 
TE(co,) on 12(~_ ) with matrix elements 

1 
qk(o). ) g)kj + Ge(xk -- x j) 

converges in the strong resolvent sense to the operator T e given by 

1 
~'~kj + Gdx~ - x j). 

Proof. Define f2. = {oef2;  [qi(cO) - -  ")~i[ < 1/n Vlif < n}. 
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Since P(f21) = 1 and P(f2,) > 0,f2, (-] f2, ~= ~3. 
Hence we can pick a~.efJ,0(2 ~ and compute for Oel2,o(Z)= {Oel2(Z); ~)(i) 5~ 0 
only for finitely many icY} the quantity; il (Te(c%)- Te)O II,~(Z)- 
We have: 

~ } ~ F  1 6ki+GE(xt_xi )]_(~_~kat i+G~(xk_xj ) )~( j )2  

1 2 

By definition of oo, and the fact that ~//EI2,(~ ) the last expression goes to zero as 
n --+ oo. Since Te(~o,) and Tn are bounded and symmetric, it follows that TE((o,) --+ it) 
in the strong resolvent sense. 

Now we give the proof of the proposition: 

Proof of the Proposition. First we note that the p-space version of the resolvent of 
H{~,} is given by: 

1 + 1 x~ . . . .  1 t ~ ~(q) _i~,jqd 1 i~p 
(H{z~}-E)- I~(P)-p  2- E ~(p) 2£ 2., (~e)ki 9 - - ~ J ~ :  e q~--~-~e . 

1 f t~(q) e_iqXjd q Take now ~ C ~ ( R ) ,  then ~(j): = ~ ~ - - E - -  E is an element of 12(7/). By the 

previous temma: (T e 1 _ Te(m~) - 1)ff = :~, tends to zero in/2(7/)-norm. The Fourier 

transform ~o,(q)=(1/2n)Z,~,(j)ei~j q of ~, hence tends to zero as a function in 
L2(0, 2n). But 

we have proved that H~,(,)--+H,o in the strong resolvent sense. From this we get 

o-(H,~) c ~ja(H,o(,))=Z since oo(n)~f21 for all n~N. 
Call now W = 22i6(. - xl) an admissible periodic potential if 2~+M = 2i for some 

MeZ,  )~esuppPqo. As in Sect. 2 we denote by P the class of periodic admissible 
potentials. 

Proposition 3. 

Z = U a(Hw). 
W ~ P  

Proof. As before we need a preparatory lemma: 

Lemma 4. Let W= {2i}~ z be an admissible periodic potential. Then there exist 
W~ = {)~(k')}k~zSP such that TE(W,)~ T~(W) in the strone resolvent sense in 12(2), 
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where TE(W.) and TE(W ) have respectively matrix elements: 

1 )i k 2~) 6kj + GE(Xk -- X~) and 6kj + G~(Xk -- Xj). 

Proof. Choose 2(k ") = 2 k if jkj < n and "~k](n)+ 2n+ 1 = 2(k n) VnEZ. 
Then, as in Lemma 3 it can be shown immediately that: 

II [TE(W,)-- TE(W)]O IIz~(zz)--'0, as n ~ o o  V0el2,(Z). 

From the above lemma, precisely as in the previous proposition, we get that 
H w , ~ H  w in the strong resolvent sense. This implies that a ( H w ) ~  Ua(Hw,) ,  
i.e. Z c U a(H~); and by the previous proposition we get: 

w~P 

z=  U [] 
WaP 

Now we turn to the determination of the spectrum of the operator H. As it was 
shown by Kronig and Penney [12] the spectrum of the operator H A formally defined 
by 

d2 
H~ - dx 2 + 2 6(x - x i )  is given by o-(H~) = U [f~(2),(nrc)2], 

i = - o o  

where the f ,  are continuous monotone increasing functions of 2 > 0 and f~(,t) > 
((n - 1)~) 2 for 2 > 0 (see also Flfigge [6]). It is a special property of this operator that 
a ( H j  c a ( H j  whenever # < 4. 

The reduced Bloch Hamiltonians of H{z~} = -  dZ/dxa+ Z 2 i f ( x -  xi), where 
)'-;+u =2~ can be defined using the KLMN-theorem as the unique selfadjoint 
operator associated to the closed form: 

N - 1  

(HIx~}(k)0,~,> ' =  (0' ,q) '> + ~ 2itP(xi)tP(xl) 
i = 0  

on the form domain Q(( - d2/dX2)k) of the Laplacian on L 2 - 1/2, (N - 1/2) with 
boundary conditions 

O( -- ½) = eik(N) ~/( N -- ½) and 0'( - ½) = eikN O' ( W - -  1). 

These reduced Hamiltonians have discrete eigenvalues (see e.g. Avron, Grossman 
and Rodriguez [31) and satisfies Assumption A of Sect. 3, where (i) can be checked by 
the mini-max-principle and (ii) follows from the computation by Kronig and Penney 
[12]. By repeating word by word the proof of Theorem 5 we can show that Theorem 
5 holds with the Hamiltonian - A  + 2 Z f ( x -  xl) replaced by the Hamiltonian 
-dZ/dx 2 -k2~c}(x-xi). Hence we conclude that ]((n-1)TQ 2, f,(2mi,)[ where 
2mi, = inf {xesuppPqo} > 0 is a gap for the spectrum S of the random operator 

d z 
Ho, : - dx- ~ + Zqi(~)O(x - xl). 

But from Proposition 2 we know that a(Hxm,o ) c S. Hence we have shown: 
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Proposition 4. Let {qi(co) } i~z be independent distributed random variables satisfying 0 
< C 1 ~ qi(o) ~ C 2 and let H,o be formally given by H,~: = - d2/dx 2 q- Zqi(co)6(x - xi), 
the exact meaning of which is given above. 
Then the spectrum Z of almost all H~ is given by 

~, = a(Hq.~o ), 

where Hqm~° is formally - d 2 / d x Z +  q~i, Z b ( x -  xl) and qmin = inf {q;qesupp Pqo}. 

3) Random point interactions in three dimensions. As the last example we treat the 
random version of the point interactions model in three dimensions extensively 
investigated by Grossman, H~begh-Krohn and Mebkhout [9]. For other approaches 
to such operators see Albeverio and H~begh-Krohn [2] and Albeverio, Fenstad and 
H~begh-Krohn [1]. Let {q~(o~)}~ be independent identically distributed random 
variables such that ]qi(co) l < MV i~ 23 and Vco~O, for some positive constant M, and 
let H~ be the selfadjoint operator on L2(R 3) whose resolvent is given by: 

( H - E ) - I = ( p 2 - E ) - I  ~ ", i(qk(¢o) i ~ / E \  ];1 --4-~-)Jkj- GE( k --J) and 
k,j773 

e i (pk-  q j) 

Ho,(2n)- 3 ( p 2  _ E)(q2 _ E)' (25) 

where Im E4:0, GE(k--j)=(1/4n)ei'/~lk-.il/lk--jl, if kf=j and GE(0)=0 and 

[(qk(co)- i x / ~ / 4 n ) f k j -  Ge(k _j)]~;1 is the inverse as an operator o n  12(~3) .  The 
sum in (25) is absolutely convergent in the sense that if we integrate with respect to 
L2(~ 3) functions ofp and q respectively, then the sum is absolutely convergent. We 
remark that, as in the one-dimensional case, the operator o n / 2 ( 7 / 3 )  given by qk(cO)fkj 
-- de(k - j )  is a bounded operator if Im E 4: 0. 

In our previous paper [11] we proved that the spectrum of H is almost surely a 
nonrandom set S of the real line. As in the one-dimensional case, in order to study 
the set S ~ R, we need the analogs of Proposition 2 and 3 about the admissible 
potentials. We will call W = {2~}~3 an admissible potential if 2~esupp PqoVic~- 3 
( Pqo is the probability distribution of q0 (co)), and we will denote by Ho the selfadjo]nt 
operator on L2(~ 3) whose resolvent is given by (25) with qk(O~) replaced by )~k" 

Proposition 5. Let W be an admissible potential; then a(Hw) ~ Z. 
The proof is omitted since it is identical to that of Proposition 2. 

As before we will call W = {2k}k~ a periodic admissible potential if there exists 
LeZ 3 such that 2k+ L = ~@/k~Z 3, and we will denote by P the class of the periodic 
admissible potentials. By repeating the proof of Proposition 3 we get: 

Proposition 6. 

w~P 

The following two results about the periodic point interactions (see [9], Th 5.4, 5.1) 
will turn out to be useful: 
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(i) Denote  by H a the periodic Hami l ton ian  corresponding to the resolvent (25) 
with qk(O) replaced by 2Vk~Z  3. 
If 2 < 2 o for some constant  2o, then the spect rum of Haa(Hz) is given by: 

a(Ha) = lEo x, E~] w [0 oo ] ,  

with E~ < 0 and Eao, E1 ~ cont inuous  m o n o t o n e  increasing functions of )~. 
(ii) Let A = {nla 1 + nza 2 + naa3;(nl,nz, n3)Z 3} where aDa2,a3 are three inde- 

pendent  vectors in Z3; wi thout  loss of  generali ty we can assume a~,a2,a 3 to be 
o r thonormal ,  and let X be afinite subset of  Z 3. Let 2 be a rea l  function on Y = A + X 
invariant  under  A, i.e. 2~+~=2~,  x ~ X ,  asA.  Then  the Hami l ton ian  H~ whose 
resolvent is given by (31) with qk(O)) replaced by  2kk~g 3 is invariant  under  
t ranslat ion in A so that:  

1 j. Hz(k)dk, 

where B = {slb 1 + s2b 2 + sab a, - 1/2 < s i <__ 1/2}, (bi, aj) = 2n6ij, is the Brillouin 
zone. The  reduced Hami l ton ians  Ha(k ) are selfadjoint opera tors  on/2(F),  F = {n~bl 
+ n2b 2 + nab 3, (n~, n 2, n3)eZ 3 } is the o r thogona l  lattice, whose resolvent is given by: 

( H A k )  - E )  -~  = ( (y  + k) ~ - E ) -  

el(), + k)x - i(7' + k)y 
[2~ 6~y --ge(x -- Y, k)]-~((y  + k) 2 _ E ) ( ( 7 ' +  k) 2 - E) (2u) -3 ,  - 2  

x , y~X  

7,y' ~F, k6B, where 

if x - y  :p 0 and 

ei(?, + k) (x - y) 
g~(x y,k) (2) -3 

~+~ (y + k): - E 

1 4r~col ge(o, k) lim (2re) ~ 3 

I~+kl <o~ 

and [ ] -  ~ is the inverse of the n x n matr ix  

2~ 6~y - g~(x - y,k),x, y e X ,  n = IX]. 

Fur the rmore  Ha(k ) has discrete spect rum with eigenvalues E,(k,2); the negative 
eigenvalues E,(k, 2) are the poles of [2~5~ - g~(x - y, k)] - 1. F r o m  this we get easily 
the following: 

Proposition 7. Let the H amiltonian H a be as above (point (ii)) and suppose the periodic 
function 2 on Y = A + X ~ Z 3 be such that: - oo < 2 mln < 2 x < 2 max < 2 o V x ~ X  (for 
the definition of 2o, see point (i)). Then for any E e a(H a), E < O, there exists a function 
o n  2 3, f~j = ~VjffZ 3 such that." Eea(Hx). 

Proof. By the previous result (point (ii)) we know tha t /~  is a pole of [2x6xy - gE 
(x - y ,  k)], x , y ~ X ,  i.e. there is one of the eigenvalues Em(E,a ~ k) of the n x n matr ix  
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[2~6,y - g~(x - y, k)] which is zero. Let us denote it by e~, (/~, k 1 ). Since by the mini- 
max-principle ez~(/~, k) are mono tone  increasing functions of {2~}~x, in the sense 
that  if # ~ 2 pointwise in X, then e,u(~, k) > e,(/~, k), we get: 

2 ~ k and thus, by  the continuity,  there exists a ~(ml, k~,/~) such that G,:(E, a ) = 0, where 
e~m(E, k) is the m *h eigenvalue of the matrix [26xy - gE(x - y, k)]. This means that 
E~a(HZ(k2)), i.e. E~a(HZ). 

We are now in a position to prove the main result. 

Proposition 8. Let the random variables {qi(a~)}i~ be such that supp 

Pqo c [qmin,qm~] with qm~x < 20" 
Then 

(E~o,~ , o ) ~ z  = ~ ,  

when E~ ~ is the upper edge of the negative band in the spectrum of Hqmax 
Furthermore if qmi,(qma0 is the inf (sup) of supp Pqo and if 

[ E ~ . ,  E ~  ] ~ EE~.~, E'i ~ 3# ~,  

then 

Z = o ' (Hqmin ) u ~ ( H q ~  ). 

Pro@ F r o m  Proposi t ion 6 we know that Z = U a(Hw), and from Proposi t ion 7 we 
W~P 

have that  any E~a(Hw), E < O, W e P  belongs to the spectrum of some tt;~(~) ; hence 
E~m~, N/~ < E~m~, since both E~ and E~ are mono tone  increasing functions of  L 
F rom this it follows that  

(/~max ,O)c~a(Hw)= K5 VW~P,  

and thus (E] ~ ,O)c~Z = ~5. 
If now qmi,(q .... ) is the inf(sup) of suppPqo , 
then a(Hq~,~. ) ~ Z and the same for a(Hqm,~ ). 
Since a(Hq~, )u  a(Hq~ ) = [E~ m~" ,E~ ~ ] w [0, o9 [, 
by the previous discussion we get that  

a(Hw) c o-(Hqmin )~o-(Hqm~. ) VWeP,  

hence S =a(Hqm~. )wa(Hqm,x ) and by Proposi t ion 5 we get 

Y; = o'(Hq,i, ) w a(Hq~,x ). [] 
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