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Abstract. An intimate relationship between Moser's regularization [1] and the 
KS-regularization [33 of the 3-dimensional Kepler problem is established. 
Explicit formulae linking Moser's and the KS-transformation are obtained in 
the case of negative as well as in the case of positive energies. As a side result it 
is shown that the KS-transformation owes its existence to the local isomor- 
phism of SO(2,4) and SU(2,2), 

i .  Introduction 

In [1] (see also [23) Moser, starting from a stereographic projection in con- 
figuration space, constructs a diffeomorphism that carries the geodesic flow on the 
unit tangent bundle of the pointed n-sphere onto the flow of the n-dimensional 
Kepler problem on a surface of fixed negative energy. The missing point together 
with an (n -  1)-sphere of directions correspond to the collision states of the Kepler 
problem. When the Kepler flow on a surface of fixed negative energy is replaced by 
the geodesic flow on the unit tangent bundle of the n-sphere, the collision states are 
"regularized", i.e. they loose their exceptional status and are indistinguishable 
from all the other states. This "regularization" has the fringe benefit of exposing 
the hidden SO(n+ 1)-symmetry of the Kepler problem. This symmetry in turn 
makes it obvious that besides the ½n(n- 1) components of the angular momentum 
integral, the Kepler problem possesses n additional integrals which together make 
up the Lenz-Runge vector (see in particular [2]). 

A seemingly quite different procedure which achieves a regularization of the 
Kepler problem was proposed by Kustaanheimo and Stiefel (KS) in [3]. Their 
procedure has been explained in great detail in the monograph [4]. It is based on 
the KS-transformation which generalizes the Levi Civita transformation from two 
to three dimensions. The KS-transformation replaces the 3-dimensional Kepler 
Hamiltonian (with fictitious time s) by a Hamiltonian of four harmonic oscillators 
in resonance-denoted by J in the sequel - whose energy surfaces are 7-spheres 
embedded IR8(=~4). However, only points that also lie on a certain seven- 
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dimensional null-quadric I-i(0) (/=certain quadratic form) represent physical 
states. More precisely, the physical states are in one-to-one correspondence, not 
with the points of this quadric surface, but rather with the orbits induced on this 
surface by a certain action of the circular group U(1). In analogy to a similar 
situation in electrodynamics we shall refer to this group as "gauge group" 
(compare [5]). Stated differently, the phase space of the KS-regularized Kepler 
problem appears in the form of an orbit manifold of type I-i(0)/U(1). 

In the present note we shall establish an intimate relationship between Moser's 
and the KS-transformation. This relationship between the two transformations 
turns out to be of practical value when perturbation problems of the Kepler 
problem (such as the three dimensional lunar problem [8]) are studied. Instead of 
deciding from the outset for one of the two points of view inherent in the two 
regularization procedures, their close relationship allows us to switch from one 
point of view to the other, thereby enabling us to choose always the procedure that 
is best suited for the investigation of a particular aspect of our problem. 

Apart from the introduction (Sect. 1) the present paper is broken into four 
sections. In Sect. 2 we present a review of Moser's transformation/~. In order to 
avoid a switch of position and momentum variables (which seems to be an 
ingredient of Moser's original version of his map), our point of departure is a 
homogenous version of the stereographic projection in momentum - rather than 
in configuration - space. 

In Sect. 3 we review the KS-transformation which we write in terms of complex 
variables and Pauli matrices. (According to a personal communication of J. 
Waldvogel this was the way Kustaanheimo originally wrote his transformation 
(see also [5]).) After giving it a group-theoretical interpretation we link the 
KS-transformation to Penrose's twistor theory [9]. 

Whereas Sects. 2-3 of the present work contain essentially reformulations of 
old results, Sect. 4 contains our original contribution to the subject. We show that 
the "completed" phase space of the Kepler problem : I -  i(0)/U(1) is symplectically 
diffeomorphic to T+S  3 [=(co-) tangent bundle of the 3-sphere from which the 
zero-section has been removed]. This is done with the help of an "extension ~ of 
the KS-map r~" which explicitly reduces out the action of the gauge group U(1) on 
all of I -  t(0). The relation between re,/r and Moser's transformation # is capsuled in 
the following diagram (see theorem of Sect. 4). 

( I -  ~(0))' - - ,  i - l ( o )  

L l' 
OR~\{O}) ×IR 3 .-~ T + S  ~ 

Here ~ [given in (4.2)] represents the injection of the circle bundle (I- i(0))' of non- 
collision states into the circle bundle I-i(0) encompassing all states. 

The map ~ is closely tied to group theoretical concepts. It turns out that the 
group leaving the quadratic form I invariant is U(2,2) acting linearly on ~4. 
Moreover, this action is symplectic with respect to the very symplectic structure of 
~4 that in conjunction with the function J is the main ingredient in a Hamiltonian 
description of the system of four harmonic oscillators mentioned earlier. 
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Also, the map ¢r is constructed in terms of certain "generators" of this group 
action. In fact, the relationship between Moser's and the KS-transformation can 
loosely be described as follows. If in Moser's transformation the momentum 
variables are replaced by certain generators of 1-parameter subgroups of SU(2, 2) 
and the position variables by a quotient of such generators with denominator J, 
then the KS-transformation is obtained (see Corollary 1 to theorem of Sect. 4). 

Now/c  not only reduces out the action of the gauge group U(1) on I-1(0) but 
also transfers the transitive action of U(2, 2) = U(1) x SU(2, 2) on 1-1(0) to T + S 3 so 
that T+S 3 appears in the form of a symplectic homogeneous space of SU(2, 2) (see 
Corollary 2 to theorem of Sect. 4). In fact it turns out that the action of SU(2, 2) on 
T + S 3 coincides with the action of the identity component SOo(2, 4) of SO (2, 4) that 
was previously described by GuiUemin and Sternberg in [10]. [SU(2, 2) doubly 
covers SOo(2 , 4): see Appendix B.] 

The fundamental role that the Lie algebra so(4,2) plays in the 
KS-regularization was also recognized by Baumgarte [11] who adapts some ideas 
presented by Barut in his study of the quantum mechanical Kepler problem [12] 
to classical mechanics. 

Finally, in Sect. 5 we show how to attack our main problem under the 
assumption of positive (instead of negative) Kepler energies. Whereas the 
KS-transformation remains unchanged, Moser's transformation has to be mod- 
ified in the sense of Belbruno [6] (see also [7]) at least if one still wants to 
linearize the Kepler flow. Accordingly, the relation between the two maps, 
although similar in nature as in the case of negative energies, is expressed explicitly 
by a different recipe. 

The case of zero energy will not be dealt with here. In fact, our success in 
relating the two transformations in the case of non-zero energies is based on the 
fact that in our version of Moser's and the Moser-Belbruno map the transfor- 
mation of the momentum variables is like in the KS-transformation - 
homogenous of degree zero. However this property can no longer be salvaged in 
the case of zero energy. Therefore, if in this case there exists any relationship at all 
between the two regularization procedures it must be of a quite different nature 
than in the former two cases. 

2. Review of  Moser's Transformation 

Before we turn to the proper subject of this section, namely a review of Moser's 
transformation, we shall make some general remarks. 

We recall that a Hamiltonian system can be characterized as a triplet of objects 
(M, ~o, H), where M is an even-dimensional smooth manifold, co is a closed 2-form 
which is nondegenerate at each point of M, and H is a smooth real-valued function 
on M, called the Hamiltonian. Via the associated vector field X~, which is defined 
by the formula 

X ~ c ~ =  - d H ,  (2.1) 

the Hamiltonian H induces (or generates) a flow (=act ion  of the group IR) on M 
(at least if M is compact). Since H is an integral of (i. e. invariant under) this flow it 
carries each level (=energy-) surface into itself. More generally, FEC~(M) is an 
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integral of the flow if {H, F} =0, where {H, F} =X~(F)= co(Xu, XF) is the so-called 
Poisson bracket associated with co. 

The standard example is the Hamiltonian system (11t 2", dO o, H), where 0 o is the 
1-form 

0 o = y. dx. (2.2) 

[Here x = ( x  I, ...,x,), Y=(Yl . . . .  ,y,) are coordinates on IR 2" and the dot in (2.2) 
denotes the usual dot product of n-vectors.] In this example : 

0H ~ OH O 
X u =  0y 0x 0x 0y' (2.3) 

and the flow of H is obtained by integration of the Hamiltonian equations 

d_xx = OH dy = OH (2.4) 
dt Oy ' dt Ox 

with general initial conditions. 
The n-dimensional Kepler problem is the Hamiltonian system ((IR~\{0})x IR ", 

dO o, Ho), where 

H0 = ½y2_ r-  1, r = [xl = (x. x) 1/2 . (2.5) 

Notice that H o is singular at r = 0. It is well known (see e.g. [4]) that the singularity 
can be removed by fixing the energy and introducing the "fictitious time" s via the 
recipe 

ds 
dt r- 1 (2.6) 

so that XHo is multiplied by r. On the energy surface H o = -½  the resulting vector 
field rXno agrees with XKo, where K o is the following function on IR 2"" 

F 2 
K o = ~(y + 1). (2.7) 

Moreover, K o takes the value t there. Since the map that associates with each 
point (e, y) (tel = 1) the point (x= 2(y2+ 1)-1 e, y) can easily be shown to define a 
diffeomorphism from S " - i x  IR~ onto the energy surface H o = - ½ ( K o =  1), this 
surface is not compact. Notice that it does not contain any collision states. Indeed, 
these states would correspond to {0} × S"-t ,  where {0} denotes the origin in 
configuration (i.e. x-) space and S"-1 respresents the "sphere of infinite radius" in 
momentum (i.e. y-) space. As pointed out already in the introduction a "re- 
gularization" consists in "completing!' the energy surface in such a way that it 
contains the collision states on the same footing with all other states. In order to 
explain how this is achieved in Moser's regularization, we let q = (%, q), p = (P0, P) 
be vectors of IR "+ 1. Their inner product is denoted by 

(q ,P)=qoPo+q'P.  (2.8) 
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We also use the notation tlp][ =(p,p)i /2  for the norm of a (n+ 1)-vector. In the 
following the manifold 

T +S" = {(q, P) ~lRz{" + ~), IIq{I = 1, @, q> =0, p +0},  

i.e. the (co-) tangent bundle of the n-sphere from which the zero-section has been 
removed, will play a crucial role. T ÷ S" is a symplectically embedded submanifold 
of 11t 2("+ 1} i.e. if 

01 = (p, dq),  (2.9) 

then dOllr+s° (the bar means: "restriction to") is non-degenerate at every point. 
We introduce Moser's map # as the restriction to T+S" of the surjection: 
lRz(n+ 1)= {(q, p)EIRZ(n+ 1): PO + HP [l @ 0}-+JR 2n defined by the formulae 

x=(llpll + Po)q- qoP, Y=(ftPll +Po)- *P- (2.10) 

# has the following properties: 
(i) /~ is diffeomorphism of (T+S") ' -  T+.~"calR 2t"+ 1) - _ _ . onto (IR"\{0}) x IR", 

(ii) Koo#= ![PL[, 
(iii) I~*dOo = dOlt(r+s,r. 

Proof (ii) and (iii) are established by straightforward computations. In order to 
guide the reader through these computations we present the following hints: 
Viewing x via (2.10) as a function on (T + S")' we replace in the expression for x2:q2 
by 1 - q~, q.p by -qoPo and p2 by Ilpl/2_ p~. We find r = P0 + Ilpll and (ii) follows at 
once. The same replacements supplemented by the additional one : 
p.dp-~llplldIIplI-PodPo in the formula for y-dx yields the relation 
y. dx = (p, dq) - d(qo[]Pll) from which (iii) immediately follows. 

Finally, (i) is a consequence of the fact that p possesses an inverse #-1 
described by the formulae 

q = Jr(1 + y2)]- 1(_ 2x.y, (I + yZ)x-  2(x. y)y), 
(2.11) 

p = (½r(1 - y2), ry). 

In view of (iii) # -  1 can be interpreted as a symplectic injection of (IR"\{0}) x IR " into 
T+S n. 

This injection maps the energy surface H o = -  ½(K0= 1) onto the manifold 
(T1S,),= T1S, c~IR2.(,+ 1), where T1S"= {(q,p)~ T+S": Ilplt = 1} is the unit (co-) tan- 
gent bundle of the n-sphere. Points of T*S" outside the image of #-1 have 
coordinates qo = 0, p = ( -  1, 0). Obviously they correspond to the collision states of 
the Kepler problem. By adding them in, the energy surface is replaced by the 
compact manifold T~ S ". 

Summarizing we see that in Moser's regularization, the flow on a surface of 
fixed negative energy of the Kepler problem is replaced by the flow that the 
Hamiltonian system 

(T+S ", dOilr+s,, K1 = Ilpll Ir + s-) (2.12) 

induces on the surface K 1 = 1 (= T 1S"). In order to obtain a description of this flow 
we observe that quite generally, given any Hamiltonian f on IR 2~"+ ~), the vector 
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field Xf  associated with the Hamiltonian system (7 -+ S", dO 1 IT + s, ,  f = f l  r + s~) [see 
(2.1)] is the restriction to T + S  ~ of the following vector field on IR 2("+ 1). 

Here, 

F ~ 

~ f  a f  ~ f  

(2.13) 

are the covariant derivatives (along S") and F~v = q u P v -  qvPu is the "generator" of a 
rotation of the #v-plane in configuration space (see below). Specializing to the case 
f :  I[pll, i.e. j~=K1, the recipe (2.12) yields a vector field that on T1S" gives rise to 
the differential equations 

q=p , / ?=  - q .  (2.14) 

Hence we see that K 1 induces on T1S" the geodesic flow (compare [-1, 2-1). 
Observe that as a consequence of the fact that our Hamiltonian system 

(2.12) is invariant under the obvious action of SO(n + 1) on 
IRa("+1): (q,p)--,(Oq, 0p)(0~SO(n+ 1)), all functions Fur are integrals. This is in 
particular true for the n-vector: 

R = q o P -  P0q, (2.15) 

which if pulled back to the original phase space via g -  1 [see (2.11)] takes the form 

1 2 R = ~(y - 1) x -  (x.  y) y.  (2.16) 

It follows that {Ko, R} =0, where {, } is the Poisson bracket associated with the 
2-form dOo[O o defined in (2.2)]. Since K 0 = r ( H o + ½ ) + t ,  we conclude 
{H o, R} = r -  I(H o + ½) {R, r} = - (H o + ½)y so that 

R + ( H o + ½ ) x =  - ( x . y ) y + y 2 x -  r - i x  

is an integral of H o. Of course, this is the well known Runge-Lenz vector. (For 
more details see [2].) 

Another integral of H o [having its origin in the obvious SO(n)-symmetry] is 
the angular momentum. In the case n = 3  it is also a 3-vector given by the 
expression 

L = q  x p = x  x y. (2.17) 

3. Review of the KS-Transformation 

The canonical KS-transformation is a map n: (IR4\{0}) x ]e4---->(le3\{0}) x IN 3. Here 
the target space is the phase space of the 3-dimensional Kepler problem 
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[parametrized by (x, y)]. Introducing variables (u 1, u2, u3, U4) , (/)1, V2' V3' 194) in the 
domain space it is written in [-4] in the following form 

Xt__Ul__U2__U3__ Z 2 Zq_u24, yl=(2ilUl12)-l(UlVl__U202__U3V3+U4V4), 

X2=2(UlU2--UBU4) , y2=(allull2)-l(ulv2 +U2Vl-U3V4-u4v3), (3.1) 

X3 = 2(UlU3 + U2U*)' Y3 = (2 ]lu [] 2)- I(U 1 ~)3 + U2U4 + U3/)l -t- N4U2) , 

w h e r e  II u II 2 = u2 + u 2 + u~ + ul .  

Introducing complex variables in (1R4\{0}) x IR 4 by means of the formulae 

z2 \ u 2 - u  4-1tu 1-u3) / 

{wll =2 3/2 ( --(vl +v3) + i(v2 + v4) 1 w = (3.2) 
\ Jw2 \ - [ %  - v3) + i(v~ - v ~ ) ] } '  

it becomes a map x:(C2\{0})x 1122~(IR3\{0})xlR 3 which in terms of the usual 
inner product of C 2 : 

(z, w) = zl wl + g2wz (3.3) 

(bar means complex conjugation) and the vector of Pauli matrices 

~ =  ((01 10) ' (0 i ; i ) ,  (10 ? 1 ) )  (3.4) 

can be written in the following form 

x = (z, ~z ) ,  y = (z, z ) -  1 Im(w, ~z) .  (3.5) 

is a canonical extension of the Hopf-map 

rc o : x = (z, ~z) (3.6) 

in the following sense: Let C4\{0} be endowed with the symplectic structure that is 
canonically associated with the 1-form 

0 = 2 Im (w, dz),  (3.7) 

and let I-1(0) be the 7-dimensional quadric surface in G4\{0} on which the 
quadratic form 

I = Re(w, z) (3.8) 

vanishes. Then rc has the property 

rt*0o =01(i 1(o);, (3.9) 

where 0 o was defined in (2.t) and 0I(r~ ,(o))' is the restriction of 0 to the manifold 

( I -  1(0))' = I -  1(0)~ {(z, w) : z ~ 0}.  (3.10) 

In order to prove (3.9) we first note that the following formula holds for arbitrary 
elements u, w, zeG 2. 

(u, ~ z ) .  ~w = 2 (u, w) z -  (u, z )  w. (3.11) 

(The dot denotes the usual dot product of IR3.) 
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Adding to (3.11) the relation obtained from it by interchanging u and z yields 

Re (u, ~z).  ~w = (u, w) z + (z, w) u -  Re (z, u) w. (3.12) 

Multiplying both sides of (3.12) with z* = (gl, ~2) from the left and taking real parts 
we obtain 

R e ( z , ~ u ) . R e ( z , ~ w ) = ( z , z ) R e ( u , w ) - I m ( z , u ) I m ( z , w ) .  (3.13) 

Replacing in (3.13) u by dz and w by iw gives 

Re (z, ~dz). Im (w, ~z) = (z, z) Im (w, dz) - Re (z, w) Im (z, dz). 

On account of (3.5) this relation becomes for (z, w)e(I-1(0))': 

y-dx = 2 Im (w, dz). 

However, this is precisely the content of formula (3.9). 
The physical states in the KS-regularization are the orbits induced on the 

manifold (1-1(0))' by the action: eta(z, w)~(eiSz, ei~w) of the "gauge group" U(1) 
whose "infinitesimal generator" is the Hamiltonian 21. In fact, the KS-map 
establishes a diffeomorphism between the orbit space (I I ( 0 ) ) ' / U ( 1 )  and the phase 
space (IRa\{0}) x IR 3 of the Kepler problem and formula (3.9) can be interpreted as 
saying that this diffeomorphism is symplectic. In accordance with this in- 
terpretation we seek a Hamiltonian J=J(z, w) such that J=Koog on (I-1(0))', 
where K o was defined in (2.7). In order to construct this Hamiltonian we first 
express r and y2 in terms of the variables (z, w). Replacing u and w in (3.13) first by 
z, then by iw we find on I-1(0): 

]X] = r = (z, z), y2 = (z, z) - 1 (W, W), (3.14) 

so that 

J : ½[(z, z> + <w, w>]. (3.15) 

J is not only defined on (I-1(0))' but on the entire surface I-a(0) which 
encompasses the collision states. In fact, in the KS-regularization the collision 
states with energy -½  are represented by the orbits 

(z=0, e%,,)s~((w, w> = 2  since J =  1) of the gauge group U(1). 

Accordingly, the "completed" phase space of the KS-regularized Kepler problem 
appears in the form of the orbit space I -  I(0)/U(1). In Sect. 4 we shall prove that 
I-1(0)/U(1) is symplectically diffeomorphic to T+S 3. Moreover, the explicit map 
¢c:I-I(0)--~T+S 3 which accomplishes the reduction of the group U(1) can be 
viewed as an extension of the KS-map from (I-1(0))' to I-1(0) in the sense of the 
diagram of Sect. 1. 

Points of I-t(0) are called "nutl-twistors" by Penrose [9] who uses them in 
order to compactify the manifold of null-lines N of Minkowski space. Like a 
surface of fixed negative energy of the Kepler problem this manifold possesses the 
topological character S 2 x IR 3. Indeed, selecting a fixed space-like hyperplane IR 3 in 
Minkowski space a null-line is determined by the following data: 

(i) a directional vector = point of S 2, 
(ii) a point of intersection with the hyperplane IR 3. 
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Thus, the manifold N can be identified with a surface of fixed negative energy of 
the Kepler problem which in turn we have identified with the orbit manifold 

[(I- l(0))'c~J- I(1)]/U(1) (3.16) 

via the KS-transformation. Its compactification is achieved by dropping the prime 
in (3.16). This process which corresponds to filling in the collision states in the 
Kepler problem is interpreted as "attaching a null-cone at infinity" in the case of 
the manifold N. 

Before we close this section we want to express the angular momentum in the 
variables (z, w). To this end we recall the relation 

(a. ~)~ = a% + i(~ x a), (3.17) 

which is valid for all 3-vectors a. Here a o is the 2 by 2 unit matrix. We apply both 
sides of (3.t7) to vEC e and simultaneously set a =  (u, az). We obtain 

((u, ~z)" ~)~v = (u, ~z)v + i(~v x (u, ~z)). (3.18) 

Replacing w by try in (3.11) yields a relation which allows us to replace the left side 
of (3.18) by 2 (u, cry)z-  (u, z)~v. If the resulting identity is multiplied from the left 
by w* the following relation is obtained 

(w ,v ) (u ,~z )+i (w,~v)  x (u,~rz)=2(w,z)(u,  crv)--(u,z)(w,~tv). (3.19) 

Setting u = v = z  in (3.19) and simultaneously replacing w by iw yields 

(w,,~z) x (z, ,~z) = - i(w, z )  (z,  ~z )  + i(z,  z )  (w, ,~z) .  

Comparing imaginary parts on both sides of the last identity we obtain 

(z,e;z) x l m ( w , ~ z ) = R e ( w , z ) ( z ,  r s z ) - ( z , z )  Re(w,~z) .  (3.20) 

On account of (3.5) and (2.17) this relation reduces on I-1(0) to the simple form 

L =  - Re(w, ~z).  (3.21) 

Actually, a much more elegant derivation of this formula based on group theory 
can be presented: Observe that the action of SU(2) on C4\{0}: 
U:(z, w)---,'(Uz, Uw) (U~SU(2)) is exact symplectic [i.e. leaves 0 (defined in (3.7)) 

invariant] and also that U,(s)=exp - -2-e .~  ~SU(2)(leI=I) induces via ~r a 

simultaneous rotation of x and y about e through the angle s. It follows that the 
Hamiltonian inducing the flow s-,  Ue(s ), i .e . -  Re (w, ~z). e and the Hamiltonian 
L. e inducing the corresponding rotation must be rt-related. Since this is true for all 
unit vectors e relation (3.2t) follows. 

4. The Relationship between Moser's and the KS-Regularization 

In this section we carry through the program announced in the last section. Our 
point of departure is the recognition that the group U(2, 2) acts symplectically on 
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the space 1124\{0}. In order to see this we subject (z, w) to the transformation 

( ~ ) = ~ ( z )  with inverse ( ; ) = ~ ( ~ ) ,  (4.t) 

where ~ = ~-1 is the matrix 

~=2-1/2(a0 ~o ). (4.2) 
\ o .  o - t7 o 

(Remember % is the 2 by 2 unit matrix.) 
Expressing the 1-form (3.7) in the new variables it becomes cohomologous (i.e. 

equal up to an exact form ; in symbols ~-) to one of the following fo~ms 

0,,~ g Im Q/, dr/> - Ira<(, d(> 

,.1 1 ,  ~[drl t (4.3) 

Here .~ is the 4 by 4 matrix 

o _o 4 ,44, 
The right side of (4.3) is manifestly invariant under the obvious action UeU(2, 2): 

(~)--+ U (7)''._. of U(2,2). Since the expression (3.8)in the new variables becomes 

I = ½ [<t/, t/) - <~, (>] (4.5) 

the same holds true for I and the null-quadric I-1(0). The gauge group U(1) 
(generated by I) appears now as the center of the group U(2, 2) =U(1) x SU(2, 2). 

Our goal is the construction of the map ?c entering the diagram of Sect. 1 in 
terms of generators of 1-parameter subgroups of SU(2, 2) which in turn are labeled 
by members of the Lie algebra su(2, 2). The Lie algebra 

u(2, 2)= u(1)@su(2, 2), (4.6) 

as well as its dual u(2, 2)* will be identified with the Hilbert space of all complex 4 
by 4 matrices 9I for which .391 is Hermitian, equipped with the inner product 
(91, ~ u(2, 2)) 

<92, ~ )  = tr(,~92,3~3). (4.7) 

Since u(1) in (4.6) is spanned by the 4 by 4 unit matrix ~ and the members of 
su(2, 2) are characterized by zero trace, the decomposition (4.6) is orthogonal. 
The appropriate bracket for the Lie algebra u(2, 2) is (92, ~3 e u(2, 2)): 

[92, ~3] = ~-(92~3 - ~392), (4.8) 

and the 1-parameter subgroup corresponding to 91~u(2,2) is {exp(is 92)}~. Its 
action is generated by the Hamiltonian 

~,(q, ~)=(if, ~*),~92 (:] = <~p(t/, 0, 92), (4.9) 
\~/ 
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is the so called "moment-map": C4\{0}~u*(2,2) associated with our action of 
U(2, 2). (For this notion see [13-17].) 

In particular, denoting the generators associated with the following (ortho- 
gonal) basis of su(2, 2) 

o00)  (0)o 1 , N = g  __ ( 4 . 1 1 )  

oO)(°o o)) 
by the corresponding Roman letters, we find 

__1 J = ~p~ - g [-(t/, t/) + (~, ~)] ,  (4.12t 

M = t p ~ - - g ( t / ,  I/), N = ~ = ½ ( ~ , ~ ) ,  (4.13) 

Q = ~p~ - - ( -  Im (t/, ~), Re (t/, ~ ) ) ,  
(4.14) 

P = tp,~ = (Re (t/, ~), Im (t/, o~)). 

Remark. Taking the transformation (4.1) into account the expressions for J in 
(3.15) and (4.12) agree. 

Our map fr will now be defined as the restriction to I-1(0) of a map: 
C4\{0}--*IR s whose coordinate expression has the form 

q=j -1Q,  p = p .  (4.15) 

The significance of the map ¢c is summarized in the following theorem and its first 
corollary. 

Theorem. The map f~ : I -  ~(0)--,IR s obtained by restricting the map defined in (4.15) to 
I-1(0) has range T+S 3. fc induces a symplectic diffeomorphism between the 
"completed" phase space I-t(0)/U(1) and T+S 3. In fact, the relation 

~*01 = 0Ix-~<o) (4.16) 

holds. 

Remark. 0 in (4,16) denotes the last expression in (4.3) [which differs from the 
expression in (3.7) by an exact form]. 01 was defined in (2.9). 

Corollary 1. The KS-transformation zc in the form (3.5) is the composition of the map 
~°Et(I- ~(o))' and Moser's transformation #:(T+S3) ' =IRS,~T+S3---~(IR3\0) × IN 3 de- 
fined in (2.10). In other words, the diagram of Sect. 1 holds. 

More informally, this means: If in Moser's transformation (2.10) p is replaced 
by P and q by j - 1 Q  and the variables t/,~ are replaced by 2-1/2(z+w) and 
2-1/2(z-w),  respectively, then the transformation (3.5) results. 

The proof of the theorem and its first corollary is based on the 
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Lemma. The following relations exist between the 9enerators (4.5) and (4.12)-(4.14): 

M z =¼(J+I)  z, N 2 = ¼ ( J -  I) z , (4.17) 

[IQII 2= I[pl[2= j 2 -  I 2 , (4.18) 

- ½ ( J + I ) Q = P o M + M x P ,  
(4.t9) 

½ ( J + I ) P = Q o M + M x Q ,  

( P , Q ) = 0  for I + J # O ,  (4.20) 

2 ( J -  I ) M = Q o P -  PoQ + Q x P, 
(4.21) 

2(J + I) N = - ( Q o P -  PoQ) + Q x P.  

Remark. In (4.18) and (4.20) we used the notation of Sect. 2 according to which 
( P , Q > = P o Q o + P ' Q ,  ][Q[[=(Q,Q>~/2. 

Proof of the Lemma. Setting all variables in (3.13) equal to t /or  ~, respectively and 
taking (4.5), (4.12) into account, the relations (4.17) result. Replacing in (3.13) and 
(3.20) z by q and u = w  first by ~, then by i( the relations (4.18) and (4.19) are 
obtained. Forming the dot product of the first of the Eqs. (4.19) with P and of the 
second with M thereby taking (4.17) into account provides us with two equations 
from which (4.20) is deduced by elimination of the term P.IV[ Setting in (3.19) 
w = z =  ~, v=u =;7 yields the first of the relations (4.21). The second is obtained 
from the first by an interchange of t /and (. The proof of the Lemma is complete. 

Proof of Corollary 1. Substituting p = P, q = J-1(2 into the right side of (2.10) and 
taking (4.18), (4.21) into account yields on I-a(0): 

x = J - 1 [ (  [{ P If + P o )  O - Q o P ]  = O - J - I(Q op _ P o O )  = O - ( M  - N )  

= ½ [2 Re (t/, ~(> + <t/, Ct/> + ((,  ¢~(>] = <z, ~z>. 

Furthermore, since 

p 1 J +  o =~[<( ,  (> + <e,r/> + 2 Re<tt, (>] = <z,z>, 

we also have 

Y = (J + Po)- 1 p = (z, z> - 1 hn (w, ~z) .  

Comparing these expressions with (3.5) verifies the statement of Corollary 1. 

Remark. Setting I = 0 in (4.21) and adding and subtracting the two relations yields 

J (M + N) = Q x P ,  (4.22) 

J ( M -  N) = Q0 P -  PoQ- (4.23) 

A comparison of these relations with (2.15) and (2.17) yields the following 
KS-representation of the angular momentum - and the Lenz-Runge-vector 

L = M + N ,  (4.24) 

R = M - N .  (4.25) 
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Of course, (4.24) can also be obtained by subjecting the expression (3.21) to the 
transformation (4.1). 

Proof of  the Theorem. In view of (4.18) and (4.20) it is clear that the image of ¢c is 
contained in T + S 3. It remains to prove 

(i) ¢c actually maps 1-1(0) onto T+S 3. 
(ii) The inverse image of each point of T + S 3 is an orbit of the gauge group 

U(1). 
(iii) Formula (4.16) holds. 
In order to prove these statements we first write ~ as a composition of three 

maps f~=jo(id x no)oF. Here, F is the map which associates with each point 
(q, ~)eI-l(0) the point (J-~Q,q) of S3x (llTz\{0}), s o is the Hopf map defined in 
(3.6) applied to q so that (id x no) maps S 3 x (~2\{0}) onto S 3 x (IR3\0), taking the 
point (q, q) into (q, - 2 M )  [-see (4.13)] and finally the map j :  S 3 x (IR3\{0})-~ T+S 3 is 
defined by the formula:j(q,m)=(q,  (q-m, - q 0 m + q  x m)). Indeed, we have on 
I -  1(0) 

(j o(id x 7@ oF)(q, 0 =J( J -  1Q, _ 2M) 

= j - I (Q,  ( _ 2M. Q, 2QoM - 2Q x M) = (J- ~ Q, P) = it(q, O, 

where in the second to last equality the relations (4.19) and the first of the relations 
(4.17) have been used. Now F and j  are actually diffeomorphisms onto their target 
spaces. Indeed, one easily checks that the map G:IR 4 x (1122\{0})~C4\{0} defined 
by G(q,q)=(q,(q.~)q-iqoq) restricted to $3x(C2\{0}) is an inverse of F. 
Similarly, the map ~o : IR s ~IR 4 x ~3\{0}) defined by o(q, p) = (q, Poq-  qoP + P x q), if 
restricted t o  T + S  3, provides us with an inverse of j. Since F and j are 
diffeomorphisms and id x n o is a surjection statement (i) is now obvious. We turn 
to a proof of statement (ii): Given (q,p)~T+S 3 we compute ~-l(q,p) 
=[G°(idxrcol)°~](q,P)=(q, (q'~)q-iqoq), where q~CZ\{0} is the general 
solution of the equation ( q , ~ q ) = p o q - q o p + p x q .  Abbreviating the right 
side of this equation by m and setting m = lml we find for the general solution 

q = { 22-1/a(m + m3)- l/a(m + m3, ml + ima)ei~,m~neg m3-axis 
1 /2 (m-  m 3 ) -  1/;(rnl - ira2, m -  m3)e ~, m6pos m3-axis 

(~ arbitrary real number), i.e. fr-l(q,p) is an orbit of the gauge group U(1). It 
remains to prove (iii), i.e. formula (4.16): On account of (4.20) we first compute: 

~*01 = fr* (p, dq) = (e ,  d(J- 1Q)) = j -  l (p ,  dQ) . 

Replacing in (3.13) u by - i~ ,  z by q and w by d~ yields: 

lm(q,  ~ )  Re(q, ad~) = - (q, q) Im(~, d~) + Re(q, ~) Im(q, d~). 

Since P. dQ is obtained from the left side of the last relation by antisymmetrization 
in (q, 0 we find on I-I(0):  

P.  dQ = - J(Im (~, d~) - Im (q, dq)) 

+ Re (q, ~) (Im (q, d~) - Im (~, dq)), 
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or in view of (4.14) 

~,01 = j -  1 (p,  dQ) = Im (r/, d~/) - Im(( ,  d() .  

The Theorem is proved. 
It is clear that we can use the map ~ to transfer the action of SU(2, 2) on I 1(0) 

to T + S 3. Corollary 2 tells us more about the transferred action. 

Corollary 2. T+ S 3 is a symplectic homogeneous space of  the group SU(2, 2). More 
precisely, the fundamental linear action of SU(2, 2) on ~ is transferred by ¢c to 
T+ S 3, where it can be regarded as a (non-linear) transitive and symptectic action of 
the identity component SOo(2,4 ) of SO(2,4). 

Proof By Witt's theorem U(2, 2) acts transitively on I-2(0). Hence the action of 
SU(2, 2) on I -  1(0)/U(1) is transitive and the transferred action on T+S 3 must have 
the same property. Formula (4.16) also guarantees that this action is symplectic. 
Since U~SU(2,2) and - U  induce the same symplectic automorphism of T+S 3 
and since SU(2, 2)/(11,- 11) is isomorphic to SOo(2,4 ) (see Appendix B) the second 
statement of the Corollary follows and its proof is complete. 

Remark. Starting from the formula (4.10) for the moment map it is not difficult to 
see that I-1(0)/U(1) can also be realized as the orbit {92~su(2,2)*: 
392 = orthogonal projection onto a line o f ~  4} of SU(2, 2) in su(2, 2)*, equipped with 
the symplectic structure that was discovered for such orbits by Kirillov [18]. (Here 
we think o f ~  4 as being equipped with the inner product associated with the norm 
2J.) Combining this result with the insight expressed in Corollary 2 we recover the 
result of Guillemin and Sternberg [10] according to which T + S 3 can be realized as 
a certain orbit of SOo(2,4) in so(2,4)*. Actually, the constructions of the last 
named authors generalize to arbitrary dimensions n > 2, i.e. T ÷ S" can be regarded 
as a symplectic homogeneous space of SOo(2, n + 1). From the point of view of Lie 
group theory the existence of the KS-transformation in the case n = 3 is due to the 
local isomorphism of SO0(2,4 ) and SU(2,2): The action of SO0(2,4) on T+S 3 is 
implemented by the fundamental linear action of SU(2, 2) on (E 4 via the existence/r 
of the KS-map. [Similarily, the existence of the Levi Civita transformation in the 
case n = 2 can be understood as being due to the local isomorphism of the groups 
SO0(2, 3) and Sp(2,1R).] 

5. The Case of Positive Energies 

So far we have concerned ourselves with the regularization of the Kepler problem 
on a surface of fixed negative energy. (Actually, we only treated the case with 
energy -½. However, the general case can be reduced to this case by an 
appropriate scaling; see [1, 2].) In this section we address the question of the 
relationship between the two regutarization procedures in the case of positive 
energies. Again it suffices to study a special case, e.g. H 0 = ~. The Hamiltonian (2.7) 
is now replaced by 

= r (y  2 -  1) (5.1) Ko 
z 
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and the surface Ho=½, i.e. K o = l  is diffeomorphic to S" i x l ~ ,  where 
IR, = {Y: lY[ > 1} is the outside of the unit ball in momentum space. Subjecting the 
Hamiltonian (5.1) to Moser's transformation (2.10) and to the KS-transformation 
(3.5) we obtain -Po  and - P o  respectively. Applying the recipe (2.13) to f = -Po  
we find the following equations of motion 

qo = qo 2 - 1,/1 = qoq, ibo = 0, [~ =Poq - qoP. (5.2) 

On the other hand the Hamiltonian - P o  gives rise to the linear flow V(-s)  
defined in (A7) (see Appendix A). It follows that the integration of (5.2) yields the 
non-linear flow described in (A9) and (A10) (with s replaced by -s) .  Whereas the 
KS-transformation still linearizes the Kepler flow it is necessary to modify Moser's 
transformation in order to achieve this property for positive energies. How this 
should be done has been explained by Belbruno in I-6]. However, for our purposes 
we need a modification of his procedure that imitates the procedure for negative 
energies as closely as possible. All computations and proofs are left to the reader. 

Let IR "+ 1 be equipped with the Lorentz metric (q, p) = qoPo - q' P and consider 
the submanifold T+H"= {(q,p) : <q, q) = - 1, <q,p) =0, P0 > IP]} of IR 2("+ i). Notice 
that for (q,p)eT+H" p is "time-like" so that the definitions tlpil=(p,p> 1/2, 
IR2(,+ l)= {(q, p): <p, p ) > 0  P0 :t= ]IPll } make sense. Now define the Moser-Belbruno 
map ~:(rIl") '  =IR2. ("+ i)c~ T+H"~(IR"\{O}) x IR, by means of the formulae 

x=(po-I[pl l )q-q0p,  Y=(Po-I[pll)- lp . (5.3) 

This map has the properties: 
(i) fi is a diffeomorphism of (T+H") ' onto (lRn\{0})xlR. whose inverse is 

described by the formulae: 

q = r(y e -  1)- 1 (_  2x-y, (y2 _ 1 )x -  2(x-y)y), 
(5.4) 

r 2 

(ii) K0o//= IlPt] [K 0 given in (5.1)], 
(iii) fi*dO o = dOi[(r+ m, , 

where 

0o =y-dx,  01 = - <p, dq) .  (5.5) 

Moreover, setting 

(I-  i(0)). = I -  l(0)c~ {(z, w): <w, w) > <z, z)} 

= I -  l(0)c~ {(t/, ~):P0 <0, P0 defined in (4.14)} 

and (I-  l(0)), = ( I -  i(0)).c~{(z, w):z#0} the diagram of Sect. 1 is replaced by the 
following diagram 

- 1  , (i  (0)),  , ( i - ' ( 0 ) ) ,  

(IR3\0)xIR~, -~_, ' T+H 3. 
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The extension ft of the KS-map is now described explicitly by the following 
formulae 

q = - Po ~(Qo, R), p = (J, P), (5.6) 

where Qo, Po, P were defined in (4.14) and the t/-~-expressions of J and R are 
found in (4.12) and (4.25), respectively. The map ~ has the property 

ic*O~ = 01(,- ~(o)),, 

[with 0, 01 defined in (4.3) and (5.5), respectively] and therefore it induces a 
symplectic diffeomorphism between (I-1(0))./U(1) and T + H  3. Finally, the re- 
lation between the MB-map/~ and the KS-map rc can be described as follows : If in 
(5.3) the substitutions (5.6) are made (keeping in mind that Po<0)  then the 
KS-transformation (3.5) is obtained. 

Appendix A 

tn this appendix we explore the action of SU(2, 2) on T + S  3 in greater detail. First 
we show that the subgroup SU(2)x SU(2) of SU(2, 2) acting on t/, ~ separately 

/~t= U1/~ ' ~ ,  U2~; U1 ' U2~SU(2) 

induces on T + S  3 the fundamental action of SO(4) that was described in Sect. 2. 
[See the subsection following formula: (2.14).] To that end observe that a pair of 
elements UI, U2~SU(2) induces a linear norm-preserving correspondence 
a' = aO (a = (a 0, a) is thought of as a row with 4 entries) of ]R ~ onto itself by means 
of the formula 

U~ ( a o % -  ia-(r) U 2 = a'o~ o - ia' .~ . (A1) 

Since SU(2) is connected O must belong to the identity component SO(4) of 0(4) 
(compare [-19]). Now sandwiching both sides of (A1) between t /and ~ yields 

ao(q' ,  ~')  - ia.  ( r f  , ~ ' )  = a'o(tl, ~)  - ia' . (11, ~s~) . 

Equating real and imaginary parts of this relation we find in view of the definition 
(4.15) of ¢c (in obvious notation) 

(a ,  q ' )  = (a ' ,  q )  = (aO,  q )  = (a ,  O q )  

(q is thought of as a column) and on analogous identity with q replaced by p. Since 
the two identities are valid for all rows aeIR 4 we conclude qr= Oq, p ' =  Op, where 
O = O ( U  1, U2)eSO(4 ). Hence, SU(2)x SU(2) acts on T + S  3 via the fundamental 
action of SO (4) that was described in Sect. 2. In order to study this action on an 
infinitesimal level we first observe that quite generally (see [ 13-18]) the association 
96~ su(2, 2)~pgaE C~(1124\{0}) defined in (4.9) is a homomorphism of Lie algebras 
in the sense that 

{~p~, ~ }  = - i~p[~,~ 1 . (A2) 

Here [9.1, ~3] was defined in (4.8) and { , } is the Poission bracket with respect to 
the 2-form id0, i.e. for f 9eC~(C4\{0}) we have: 

{f ,  g} = ( V f ) t , ~ V g -  (Vg)~.3Vf = tr {~[Vg(Vf )*  - (Vf) (Vg)*]} ,  (13) 
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where 

is viewed as a column and 

" " " /  (vf)+ = ' ~ '  o ~ '  ~~ 
is viewed as a row. 

Returning to our SU(2)xSU(2)-action we observe that it is obviously 
generated by M and N as defined in (4.13). In view of (3.17) an application of the 
recipe (A2) provides us with the following Poission brackets between these 
generators 

{M K, Ml} = ieujM j, {N k, Nz} = iekljNj, {M k, Nl} = 0. (A4) 

Here and in the following k, l vary freely over 1, 2, 3 whereas over j a sum is 

extended from 1 to 3. (Also, ~uj=0 unless klj is a permutation of 123, in which 
t 

case 
\ 

~even~ ) 
ek~j= + 1 depending on whether klj is an [oddJ  permutation of 123. Another 

distinguished subgroup of SU(2,2) is the group SU(1, 1) consisting of matrices 

U = ( b  ba), where la[2-lbl2=l. (Here we use slightly abusive notation: all four 

entries should actually be multiplied by a o so that U is indeed a 4 by 4 matrix.) A 
basis of the corresponding Lie algebra su(1, 1) is ½,~, ~0, !~o- Its members obey the 
bracket relations 

le-~* 
[ ~ ,  % ]  = - ~ o ,  [ ~ o ,  % ]  = ~ "~ ~ ~ - g;3, [~LS, g o ]  = ~3o. (AS) 

Applying the recipe (A2) to these relations we find the corresponding Poisson 
brackets 

{J, Po} = iQo, {Qo, Po} = i J, {Qo, J} = iPo- (A6) 

The 1-parameter subgroups of SU(1, t) generated by J, Po, Qo are 

g(s)= e l~ 0 

exp t -  

S . S 
cosh ~ ismh 

V(s) 
I S S 
\ - i  sinh ~ cosh 

/ cosh-S - s inh-\  

W(s)= I 2 2 s " 2, 
- sin cosh ~ / 

(A7) 
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Using the definitions (4.14), (4.15) we find that U(s) induces on T+S3(via ~) the flow 

t , - s i n s  coss/(~)" (A8) 

If restricted to T1S 3 this is the geodesic flow which in turn-via Moser's 
transformation-corresponds to the Kepler flow (compare Sect. 2). Similarily, we 
find that the flow V(s) after transferring it to T + S  3 via fc becomes 

q~ = [coshs + q0 sinhs] - 1 (sinhs + qo coshs); q' = [coshs + qo sinhs] - l q, (A9) 

P~ = Po, P' = (qoP- Poq) sinh s + p cosh s. (A10) 

One checks by direct computation that (Ag) represents a conformal map of S 3 
onto itself whereas (A10) makes the combined transformation a symplectic 
automorphism of T ÷ S a. In fact, we easily recognize that the transformation (A9) 
together with SO(4) generate a conformal action of SOo(1, 4) on S a (compare [,10, 
p. 177]). ~ ,  91, ~ form a basis of the corresponding Lie algebra so(l,4). The 
associated generators M, N, P obey the Poisson brackets (A4) supplemented by the 
following bracket relations [-see also (4.24) and (4.25)]. 

{Po, L} =0, {R, Po}=iP, {P, Po} =iR,  
(All) 

{Rk, Pl} = O, {Lk, Pt} = ieu~P~, {Pk, Pz} = -- iektjLj- 

The transformation W(s) [-see (AT)] together with SU(2) x SU(2) give (via/c) rise to 
another action of SOo(1, 4) on T ÷ S 3, a "complete set of generators" of this group 
action being M, N, Q. These generators obey bracket relations that are obtained 
from (A4) and (A11) by a systematic replacement of P's by Q's. Finally, for the sake 
of completeness we write down the remaining 27 of the total 105 Poisson brackets 
involving the generators (4.12)-(4.14) associated with our basis (4.11) of 
su(2, 2) (= so(2, 4)): 

{J,M} =0, {J,N} =0, {Q,J} =iP, {J,P} =iQ 

{Po, Q} = {Q0, P} =0, {Qk, Pt} = iJ3k~. 

Appendix B 

In this appendix we study the relationship between SU(2, 2) and SOo(2, 4). For this 
purpose we first define an action of SU(2, 2) on the space of complex anti- 
symmetric 4 x 4 matrices so(4, ~) by means of the formula 

(av(9~) = U~2IU t, U e  SU(2, 2), 9.1e so(4, ¢;). (B1) 

Now each matrix 9Ieso(4,C) has a representation 
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(0 t) 
where A t  gl(2, 02); a, d~02, e = 1 0 "On so(4, 02) we define a conjugation * and a 

complex-valued function 2 by setting 

and 2(9.I)= det A -  ad for ~I given in (B2). 96 in (B2) is real, i.e..92 = 91 if and only if 

( e  ~) (~, fiO12). The function 2 on such an element d = 8 and A has the form A = _ fl 

takes the value 2(9.I)=-]aI2+leiz+tfll  2. Breaking down a,c¢fi into real and 
imaginary parts we recognize that the space of real elements 
so(4, 02)a= {~le so(4, 02): ,91 = ~1} can be identified with 11t 2'4. Our goal is to show 
that the action ~b of SU(2, 2) defined in (B1) induces transformations of SO(2, 4) in 
so(4,02)a. For this purpose it is sufficient to prove that the following two 
statements hold for all matrices Neso(4,  02) 

(i) ,~(~bv(~)) = ,~(~a), 

(ii) *~bv(9.1) = qSv(,~21 ) . 

(i) is an immediate consequence of the formula det~/I =().(N))2, the proof of which 
we leave to the reader: Since obviously ~b preserves det~I we have 
2(qSv0I))= _+2(9.1). However for U---11 01=unit matrix) the plus sign holds. Since 
SU(2, 2) is connected, the plus sign must hold for any Ue SU(2, 2). We prove (ii) for 
invertible 9.1eso(4, 02) for which the formula 

is valid. Indeed, in view of (B3) and statement (i) we compute 

• ~ ( ~ )  =,~(92)3(u*)- ~91- ~ ~?- ~3 =,~(~) u39i- ~3u'= ~ ~(,gx). 

Now statement (ii) follows for any 9I~so(4,02) by continuity. Formula (B3) is an 
immediate consequence of the following two formulae whose proof is left to the 
reader: 

• 9.I = ;5A~5, ~ - ~  9/-~ = 2(9.1)- ~9~. (B4) 

Here, 

de eA~: I 
~ = - eAte ae / 

if ~l has the representation (B2). Whereas the first of the formulae (B4) holds for 
any 9.1e so (4, 02) the second requires that 92[ be invertible. 

The relation between SU(2, 2) and SO(2, 4) is most succinctly expressed in the 

Proposition. SU(2, 2)/(~[, - ~l)~ SO0(2 , 4). 

Here ~ means (analytically) isomorphic. As a consequence SU(2,2) doubly 
covers SOo(2,4 ). Sketch of a proof: Let q5 be the induced-action of SU(2,2) on 
lR2'4(so(4,02)a) that was constructed above, h: U ~ v  is a homomorphism of 
SU(2,2) into SO(2,4) with kernel containing ~1,-11. By a straightforward corn- 
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p u t a t i o n  o n e  shows  tha t  the  ke rne l  c o n t a i n s  n o  o t h e r  e lements ,  i.e. h ( U ) =  ~ impl ies  
U =  _+/I. In  pa r t i cu la r ,  h is a loca l  i s o m o r p h i s m  so tha t  h(SU(2,  2)) is an  o p e n  

s u b g r o u p  of  SO(2,  4). Since it is the  c o m p l e m e n t  o f  the  u n i o n  of  its cosets  it is a lso 
closed.  H e n c e  h(SU(2,  2 ) )=  SO0(2, 4) a n d  the  s t a t e m e n t  o f  o u r  P r o p o s i t i o n  fol lows.  

Addendum. After  this m a n u s c r i p t  was c o m p l e t e d  the  p a p e r  [20]  a p p e a r e d  in print .  

U s i n g  di f ferent  m e t h o d s  f r o m  ours  this p a p e r  an t i c ipa te s  s o m e  m i n o r  resul ts  o f  the  

p resen t  paper .  H o w e v e r ,  i t  ne i the r  t o u c h e s  u p o n  the  ro te  wh ich  the  gxoup  SU(2 ,  2) 

p lays  in the  K S - r e g u l a r i z a t i o n  n o r  on  the  m a i n  t op i c  o f  t he  p re sen t  work ,  n a m e l y  

the  (explicit)  r e l a t i onsh ip  b e t w e e n  M o s e r ' s  a n d  the  K S - t r a n s f o r m a t i o n .  
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