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Abstract. We prove the existence of a spontaneous magnetization at low 
temperature for the one-dimensional Ising Model with 1/r 2 interaction energy. 

1. Introduction, Basic Ideas and Main Results 

It has been known for some time that the one-dimensional Ising model exhibits 
a phase transition when the forces are sufficiently long range. If the interaction 
energy is given by 

then there is a spontaneous magnetization at low temperature. This result is due 
to Dyson [2, 4] and was obtained by comparison to a hierarchical model. On the 
other hand if 

N 
lira [ln(N)] -1/2 ~ J(r)r-+O, 

N--*~ n= l  

Rogers and Thompson [7] showed that the spontaneous magnetization vanishes 
for all temperatures. The same result is expected if the exponent 1/2 is replaced 
by 1. See [3, 8] for other related results. 

In this paper we establish a phase transition when J(r) = 1/r 2. This is a borderline 
case which has been discussed by Anderson and Yuval [1] in connection with the 
Kondo problem. Thouless has also studied this model and predicted a discontinuity 
in the spontaneous magnetization as a function of temperature-- the  Thouless 
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effect [10]. Simon and Sokal [9] have rigorously established this discontinuity 
assuming 

i) there is a spontaneous magnetization, for fl = T-1  large, and 
ii) the spin-spin correlation (axay ) ( f i )  - { a x )  (fl)z has a uniform power fall-off 

for fi > flc. 
Some time ago Dyson established the Thouless effect in a hierarchical model [4]. 

We shall apply an energy-entropy argument similar to the one we developed 
for the two-dimensional Coulomb gas [5] to establish the existence of a spontaneous 
magnetization for the t / r  2 model at low temperature, T = fi- 1 ~ 1, thus establishing 
i) above. The simplest form of this argument is due to Landau and Lifshitz [6]. 
In order to explain their idea we first set up our notation. Let 

HL(a ) = ~ I i - - j l - 2 ( t -  aiaj) (1.1) 
i< j  

denote the energy of a configuration, a = {al}~z, of Ising spins o-~ = + 1. We impose 
the boundary condition 

o 5 =  +1,  for li I > L ,  

where 2L is the length of a finite subsystem, and we shall let L tend to oe. It is 
convenient to introduce the lattice Z* of nearest neighbor bonds, b = (i,i + 1), 
i eZ .  (Note that 7/* ~ Z + 1/2 if we identify b by its midpoint.) 

Each configuration o- of spins completely specifies a subset F - F(o-) ~ Z*, where 
7/~ = 7/*c~ [ -  L ,L] ,  which is the set of spin flips, i.e. 

b e F  iff "Cb=--ai¢Ti+ l = -- 1. 

Note that our choice of boundary conditions implies that the cardinality of F(a) (i.e. 
the number of spin flips in F(a)) is even. Conversely, each even subset F _~ 7/* of spin 
flips determines a unique configuration tr = a(F) of spins. Subsets of a configuration F 
of spin flips are denoted by y, 7', 71, 72 . . . . .  Given some 7 c F, let b_(7) be the smallest 
and b+ (7) the largest bond belonging to 7, and let d(7) be the diameter of 7, i.e. the 
total number of bonds of 7/* lying between the left endpoint of b_ (7) and the right 
endpoint of b+(7). (It is assumed that Z* is equipped with its natural order.) 

The basic energy-entropy argument may now be described as follows: Consider 
the elementary configurations, F = {b_,b+ } c 7Z*, whose energy is given by 

H(F)  = 4 ~ I i -JL - 2 > C11n d(F), 
i < b -  

b- <j<b+ 

for some positive constant C 1. Here, i <  b means that i is smaller than or equal 
to the left endpoint of b,i > b means that i is larger than or equal to the right 
endpoint of b. [For the reader familiar with [5] we note that H(F)  is proportional 
to the electrostatic energy, with respect to the two-dimensional  Coulomb potential, 
of a dipole of length d(F) in the plane.] The entropy of the class of elementary 
configurations F with diameter d ( F ) =  I is l -  1, because there are l -  I such 
configurations for which ¢o = - 1. In the approximation in which only elementary 



P h a s e  T r a n s i t i o n  in O n e - D i m e n s i o n a l  I s ing  M o d e l  89 

configurations are included one concludes that for Clfl > 3 
L 

½(1 - a o ) [ ( f l ) <  = ~ e-C'aI'(l- 1)<½, 
/ = 2  

uniformly in L, hence 

(%)+(/?) - lim ( a o ) [ ( f i )  > O. 
L--* oo 

[Here (-)[(f l )  denotes the expectation in the equilibrium state of the model at 
inverse temperature fi with boundary conditions a~ = + 1, for Iil > L. The limit 
L-* oo exists, by correlation inequalities [11].] 

The above argument is similar to the Peierls argument for the two-dimensional 
Ising model. To make it rigorous, we must consider general configurations of spin 
flips. This makes our rigorous energy-entropy arguments somewhat involved. 

We now establish some further notation and definitions. Each configuration 
F of spin flips is partitioned into disjoint subsets 7t, 72 . . . . .  called "primitive" (or 
"connected") contours in such a way that the following Condition D (D for "distance") 
holds: 

a) The cardinality of each G is even, ~) G = F, and 
~>1  

b) dist (G,G') > M[min(d(G),d(G'))] 3/2, for e ~ ~'. (1.2) 

c) If 7 is a subset of some G (called a "constituent" of G) satisfying the inequality 

dist (7, G ~ 7) > 2Md(7) 3/2 (1.3) 

then card (7) is odd, [we say that ? is charged], for all c~. 
In b) and c) of Condition D, M is a constant independent of F and ~, to be chosen 
later. 

In order to establish the existence of a partition of each configuration F into 
primitive contours {~.1,72 . . . .  } satisfying Condition D, we choose the finest partition 
{G}~ = 1,2 .... of F satisfying a) and b). Then c) is automatically fulfilled (see also Sect. 
2 of [5]). The uniqueness of {G} will not concern us---we arbitrarily assign to 
each F an arbitrary, but fixed partition satisfying Condition D. We briefly comment 
on the construction of {G} in the appendix [For readers familiar with [5] we note 
that the 7~ correspond to the neutral multipoles, or molecules, p, introduced in 
Sect. 2 of [5]. Charges in the Ising model studied here are defined modulo 2-even, 
odd. Thus, each G can be interpreted as a neutral molecule of spin flips.] 

Condition b) ensures that neutral molecules, ~,  are far separated, and hence 
their total energy is nearly additive, i.e. 

H(GwG,)'~ H(G)+ H(G,), , ,~a'. 

[Recall that in the nearest neighbor Ising model the energies of disjoint contours 
are exactly additive.] In Sect. 4 we show 

Theorem A. Let F c Z~ be an arbitrary configuration of spin flips, and let 7 be 
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a primitive contour o f  F. Then 

~SH(F; r ~ 7) = H(F) - H(F ~ 7) 

> H(?)(1 - const M -  l(ln M)3), (1.4) 

for M sufficiently large. 
Proper ty  c) in Condi t ion D is our primitivity (or connectivity) condit ion and 

will be crucial in the energy estimates, (i.e. in the proofs of Theo rem B, below, and 
T he o rem 2.2). 

N o w  we est imate the probabi l i ty  that  a 0 = -  1 in terms of our primitive 
contours:  

e-~nL(r)zo(r) 

½ ( 1 - a o )  ~ -  r , (1.5) 
e -- fl HL(F) 

F 

where F ranges over all al lowed configurations, and Zo(F) = 0 if ao(F ) = 1, Zo(F) = 1 
if ao(F ) = - 1. Here  ao(F ) is the value of the spin a o in the configurat ion F. Note  
that  if {G} are the primitive contours  of F then Zo(F)= 0 unless there is some 
con tour  G separating 0 from _+ L. Given a set ? of spin flips, let I ( 7 ) c  ~ denote 
the interval spanned by the endpoints  of ~. Thus Zo(F) = 0, unless 0eI(G),  for some 
a. Let a = 1 label the primitive contour  of minimal  diameter  enclosing 0. Then by 
T he o rem A 

e_( f l /2 ) i_ l (~ ,De_f lH(F_7 D 

F 

e -  ~H(F) 

F 

5 2 e-(/~/2)H(yl) (1.6) 
Yl 

Oel(TD 

if M is chosen sufficiently large; see (1.4). 
The last inequali ty follows because, given any F , F  ~ ~ also appears  in the 

denominator .  To  estimate the sum over Yl we need rather involved energy-en t ropy  
arguments  similar to those in [5]. 

In order  to est imate the energy and en t ropy  of primitive contours  ?, we introduce 
a sequence of length scales, 2 ~, n = 0, 1, 2 . . . . .  Let 

n o = [ln2d(7)] + 1, (ln2(') ---= 1Ogbase 2 ( ' ) ) ,  

where [x]  is the integer par t  of a non-negat ive  number  x. Fo r  every n __< n o, let 
N.(7) be the min imum number  of open intervals of length 2" needed to cover ?. 
For  n > n o we set N,(7) = 0. We define 

N(y) _-- ~ N,(7). (1.7) 
n=0 

The quant i ty  N(7) measures  bo th  the energy of a primitive con tour  7 and the 
ent ropy of the family of all primitive contours,  y, such that  0e1(7 ) and N(~) takes 
some given value. 
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Our principal estimates on the energy and entropy of primitive contours may 
now be stated as follows. 

Theorem B. Let {~,}~= 1,2,3 .... be a partitioning of a configuration r of spin flips 
into primitive contours satisfying Condition D. There exists a constant e > 0 
independent of F such that for M sufficiently large 

H ( F )  - H ( F  ~ 7~) > 1H(~,) > ~N(~), (1.8) 

for every ~. 

Theorem C. Let ~L(R) be the collection of subsets ~ ~_ Z* such that N(y)~ R, 
R = 1,2, 3 . . . . .  and 0~I(7 ). There exists a constant C 2 independent of R and L such 
that 

card cgr(R ) __< e c~g. (1.9) 

Theorems B and C permit us to estimate the sum on the right side of (1.6) 
uniformly in L: 

Oel(?l) 
Z e-fleReCz(R+l) 

R>I  

41 ,  for fl~>l, 

uniformly in L. Thus we have proved 

( a o )  +(fl) --- m ~ lim (Oo)[(fl) > 0, (1.10) 
L~o~ 

for /~>1.  
Next, we show that m = 0, for small ft. This actually follows from the results 

in [12]. Here, we sketch a proof based on Simon's inequality [13] in a form given 
in [14]: Let 10 denote the interval [ - Io ,  lo], lo=0,1,2,3 . . . . .  Let j ~ I  o. Then in 
the thermodynamic limit (L= ~ ,  the existence of which follows from [11]) 

( aOtTj) +(fl) <= fl Z ( ffOtTi) O(fl)[ i -- k1-2 (17kOj) +(fl)' (1.11) 
i~Io k¢Io 

where (.)°(fl) is the equilibrium state at inverse temperature fl with boundary 
conditions o n = 0  when [n]>l o. Since (tToai)°(fl)< 1, (1.11) implies that for 
sufficiently small fl 

(~oOj)+(fi)-~0, as lj[-~oo; (1.12) ( )1 
< Z 2 see [13]. (Choose e.g. I o = {0}. Then (1.12) holds if fl I i[  . For more 

i:~0 
details we refer to [13] and Sect. 3 of [14]). By the Griffiths inequality [11] 

< aoa i > + (fl) > tanh (fllJI - 2) ~ fllJl - z (1.13) 
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Next, let tic be the supremum over all those fl for which 

(O-o0"j) +(fl) ~ const ]Jl-~, (1.14) 

for some e > 0 .  Let f l< f l c - In  (1,11)we may choose Io=lo(])=_[ lJl lJl-] It 
L 2 ' 2  _1" 

then follows from (1.11) and (1.14) by iteration that 

( aoa~> +(fl) < C(fl)lj l-2, (1.15) 

for some finite constant C(fl). Thus, for fl < tic 

<O-oO-2>+(fl),,~lj[ -2, as I J l - ~ .  

From Newman's Gaussian inequality (e.g. [14], and refs. given there) it then follows 
that all connected correlations fall off at least like 1/[distance] 2 if fl < tic. 

If fi ~> 1 one cannot use these arguments, because the correlations in (1.11) are 
not connected. It is conceivable, however, that our definition of primitive contours 
and Theorems A through C would permit one to prove convergence of a low 
temperature expansion for connected correlations if fl ~> 1 and M = M(fl) is chosen 
conveniently. We pose this as an open problem. 

The remainder of our paper is organized as follows. In Sect. 2 we prove 
Theorem C. The proof is quite easy in comparison to its higher dimensional 
analogue [5]. This is because we can exploit the natural order of 2*. In Sect. 2 
we also introduce a new measure of V, N'(?), which counts the number of far 
separated, odd (i.e. "charged") constituents of 7, and we show that if 7 satisfies 
Condition D, c), see (1.3), then 

H(?) > ½N'(7). 

The following section is devoted to proving that N and N' are equivalent, 
i.e. that there exists a constant C such that 

>= >= 

These two inequalities and Theorem A yield Theorem B. 
In the final section, we show that the interaction energy between a primitive 

contour and the remaining contours of an arbitrary configuration of spin flips is 
relatively small. Thereby, we establish Theorem A. As shown above, see (1.6) and 
(1.8)-(1.10), this will complete our proof of the existence of a phase transition and 
spontaneous magnetization at low temperature. 

2. Entropy Estimate and a Lower Bound on H(~,) 

An arbitrary collection of spin flips 7-~ Z* may be specified by an increasing 
sequence of integers {ik}k : 1,2 ..... i k < ik+ j. We define the logarithmic length, L(7), 
of ? by 

L(7)= ~ {[ln2(ik+~--ik)]+l}. (2.1) 
k = 1,2,... 
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L e m m a  2.1. For any collection of spin .flips ~' ~_ ~* 

N(7) _-> L(7), (2.2) 

where N(7) is defined by (I.D. 

Proof. We define 

lk = [ln2(ik+ 1 -- ik)], k = 1, 2 . . . . .  (2.3) 

Let ~¢z(7) be a minimal  collection of open intervals of length 2 ~ needed to cover ~. 
By minimal ,  we mean  that  J!(7) contains the smallest possible number  of intervals, 
i .e.  

card  Jl( ' / )  = Nt(Y), 

see (1.7). For  every l =  0 . . . . .  Ik, J1(7) necessarily contains  an interval covering i k 
which does not cover  ik+ r L e m m a  2.1 follows by summat ion  over  k. [ ]  

Proof of Theorem C. Clearly every 7 is determined by fixing i I and specifying 
ln2(ik+ 1 - ik) .  By (2.1)-(2.3) and the assumpt ion  N(7 ) < R, we have 

X1 k + 1 < L(7 ) < R. (2.4) 

There  are less than 2 R + 1 ways of specifying (in order) integers I k + 1 > 1 which 
satisfy (2.4). [ In  fact it is easy to see that  there are precisely 2 L- 1 way of choosing 
a sequence of integers n k > 1 such that  £ n  k = L ]  Fur thermore ,  there are less than  
2 ~+1 integers z > 1 such that  [ In :z ]  = Ik, since 

2 l~ < z _< 2 ~ + 1. 

Thus we conclude that  there are less than  

2 R + 1 . 2  z ~z~ + i ~ e (2R + 1)In2 

collections of  spin flips y with L(7) < N(7) < R and with i 1 fixed. If  we require that  
0eI (7  ) then there are fewer than d(7) possible choices for il and thus T h e o r e m  B 
follows after noting that  

d(7) =< 2 L(~) < e TM. [] 

Now,  we turn to the definition of N'(7). Let J~("l) be the subcollection of 
intervals, I ' ,  of  length 2" contained in j,(~;) (defined in the p roof  of  L e m m a  2.1) 
which are isolated in the sense that  

dist (I ' ,  I) > 2M2 3"/2 = 2 b+ 3n/2 (2.5) 

for all I ~ J , ( 7 )  , 1 4= 1'. If  3;,(7) consists of a single interval  we set J ' ,(?0 = 0- We define 

N'(°;) --t71 + ~ ]J'() ')l- (2.6) 
n~ l  

Here  ]S[ denotes the cardinali ty of the set S, Let F be an arbi t rary  configurat ion 
of spin flips, and let 7 c F be an arbi t rary  primitive con tour  in a part i t ion of F 
into primitive contours  satisfying Condit ion D, Sect. 1. Then by (1.3) I ' &  y is charged 



94 J. Fr6hlich and T. Spencer 

for any I '  ~ J',(?). More precisely, l I '  c~ ? I is odd. Thus 1~;,(?) [ is a lower bound for the 
number of charged blocks of spin flips (i.e. ones containing an odd number of spin 
flips) on a scale 2". The following theorem shows that N'0, ) is a natural measure of 
the energy, H(~), of ~. 

Theorem 2.2. I f  F satisfies (1.3) (Condition D, c)) then 

H(7) > ½N'(7). (2.7) 

Proof Note that for any configuration F of spin flips, cri(r j = - 1 if and only if 

I[i,j] c~rl is odd. (2.8) 

Let )/r(i,j) = 1 if (2.8) holds and Zr(i,j) = 0 otherwise. Then 

H(F) = 2 ~ [i-j[-2)~r(i,j). (2.9) 
i < j  

Now, let F be given by 7. If in (2.9) we consider the subsum for which ] i-Jl  = 1 
we have 

li-J1-2z~(i,J) = I% (2.10) 

Next, let I', be an interval in f , (7)  and 1~+ 1 an interval in J,+1(7) covering I',. 
We may then choose I,+~ such that I', and I,+~ are centered at the same point 
which we may for convenience suppose to be the origin. Let 

D, =- D,(I;) - {i,jli < 0 <j, i,j~I,+ 1 ~ I'~}. 

If i and j belong to D, then, by the definition of J '(?),  [[i,j] c~7[ is odd. Thus 
)~,~(i,j) = 1. It is then easy to show that 

2 ~ [ i - j t - zxr ( i , j )=2  ~ l i - j t - 2 > ½ ,  (2.11) 

i < j  i < j  

for each D,. It follows from the definition of ~¢~(,/) and D, that the sets 

O,(I'),I' ~J',(y), n= 1,2,3,... 

are disjoint. By (2.10) and (2.11) 

H(y)>2171 + 2  Z Z Z I i - j t - 2  
n> 11'M',(y) i,j~Dn(I') 

i < j  

>=)N'(v). [] 

3. The Equivalence of N and N' 

Theorem 3.1. There is a constant C independent of M such that 

N'(y) ~ N(y) __< C(lnM)2N'(y), 

for any finite subset ? a ~*. 

(3.1) 
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Proof. Define J ~  ~ J ,  ~ f , ,  and set 

f (n)  = [2(n - b - 2)], (3.2) 

where 2M _= 2 b. We claim that  if n is such that  2 y(") < d(7)--so  that Jy(,)(7) contains 
at least two in te rva l s - - then  

N,(~) 1 , ,  ~lJf(n)(y)l + Nf(m(7) 
(3.3) 

____ ½Ns(.)(~) + N}(.)(~), 

where N, (7)=  IJ,(?)], N',(7)= If,(?)l .  We note  that  if n is such that  2 s(") > d(7) 
then, by the definition of J , (y) ,  N,(y) = 0, so (3.3) holds trivially. We shall iterate 
(3.3) to obtain (3.1). To  establish our  claim, let 11 be an interval in J}(,)(~). By 

tt I I  j the definition of Jy( , )  there exists an interval 12 in ~ f ( n ) ( ) )  such that  

dist (I1,12) < 2M2 (3/2)y(") 

_< 262 . - b - 2  = 2 . -2 .  

Hence 11 and I 2 can  be covered by a single interval of length 2". Also if I~, 12 and 
13 belong to ~¢)(,)(y) and are such that  dist(I~, I z ) <  2M2 (3/~)y("), i =  1, 3 then 
11 U I 2 U 13 can be covered by a single interval of length 2", provided M is large 

l tt enough. Thus  at most  5{~¢y(,)(Y)l intervals of size 2" suffice to  cover all the inter- 
vals in J}(,)(7), and (3.3) follows. 

Let 6 - b - 2. Clearly, (3.3) can be applied only if 

f (n)  = [~(n - 6)] > 0, i.e. n > & (3.4) 

For  each n we now iterate (3,3) l(n) times, where l - l ( n )  is the maximal number  
for which 

fl(")(n) > O. 

Here fm denotes the m-fold composi t ion of f with itself. This yields 

l 

N,(T) < ~ 2-"+lN)m(,)(y) + 2 lN! , ( , ) (7)  
m = l  

(3.5) 
l 

~ 2-m + 1N).m(,)(Y) + 2-ZlYl. 
m = l  

Here we have used the fact that lTI > N,(7), for all n. Now, we make two elementary 
assertions which are easily checked (see Sect. 3 of [5] for details): 

0, 0 < n < n o, (3.6) 
1) l(n) > ~ [(ln2(3/2) )_ 1.1n2(n/no)] ' otherwise, 

where 
n o - 2(-} + 6) < const in M. 

2) Let  

S,,,j - {nlfm(n) =j} .  
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Then 

By (3.5) 

where 

IS.,d[ < 6(3) m. (3.7) 

N(7) = ~ N,(7) 
n = 0  

- m + l  i < 2-t(')171 + 2 Nf,~(,,)(7 ) 
tl= m = l  

< 8171 + f ~ Nj(7) ~ (g + F)N'(7), 
j = l  

E = 2 -~(') < n o + =< const (lnM) 2, 
n = 0  

where 1 < p_= (ln23)-1 < 2. Here, we have used (3.6). The bound on F follows 
by summing over n with fro(n) = j  fixed and using (3.7), i.e. 

2 2-m+* . . . . .  +~lSmjI N~.(y) 2~¢ fm(n)[Y) 
n = 0  m= 1 j 

__<36 ~ X'(7). [] 
j=O 

Remark.  Theorem 3.1, (3.1) and Theorem 2.2, (2.7) clearly imply the lower bound 
on H(7~) stated in Theorem B, (1.8), with e = const (ln M)-2 

4. Interaction Energy : The Proof  of  Theorem A 

Let F be an arbitrary even configuration of spin flips, and let {7, 72, "Y3 . . . .  } 
be a partition of F into primitive contours satisfying Condition D, Sect. 1. We set 

F ' =  ~ 7 ~  
a > 2  

and specify 7 by the positions {ik} k = 1,2 .... of all spin flips contained in ),, where the 
sites i k belong to 2", and ik< ik+~, k = 1,2,3 . . . . .  

We define W(7, F') to be ( -  1) x interaction energy between 7 and F'  which is 
given by 

- w(7, I ' )  = H(F) - H(iC') - H(7). (4.1) 

Using (2.9) and (4.1) we see that 

W(> F') = 2 ~ li - J l -  2{Xr. (i,j) + z,(i,j) - Zr(i,j)} 
i < j  

(4.2) 
= 4 ~ [i - j l -2z~( i , j ) z r , ( i , j ) .  

i < j  

Theorem 4.1. If F = ;:u 72u73 w , . .  satisfies Condition D, Sect. I, then there is a 
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constant C 3 independent of  M such that 

0 < W(]:, F') ~ C 3 M -  t lnM'L(7), (4.3) 

where L(T ) is the logarithmic length of 7 defined in (2.1), and M is the constant 
appearing in Condition D, (1.2)and (1.3). 

Remark. By (2.2) and Theorem 3.1, 

L(7) < N(7) < C(lnM)2 N'(7). 

Thus by Theorem 2.2 

C 3 M -  1 In M-L(7) < 2C 3 C M -  l(ln M) 3 H(7). 

Using (4.1) and (4.3) we conclude that 

H(F') + n(7) - H(F) < const M -  l(lnM)3 n(~), 
i.e. 

6H(7 w F' ; F') -= H(F) - H(F') 

> H(7)(1 - const M -  l(lnm)3). 

Hence Theorem A is proven, and this yields the upper bound on (½)H(71) in 
Theorem B, (1.8), provided M is large enough. 

Proof of Theorem 4.1. Let I ,  denote the interval [ik, ik+l], where {i,}k= 1,2,a .... 
defines 7. Note that by (1.2) if 7~C~Ik~O, for some ~ > 2  then 1(7~)~ Ik; [see 
Condition D, b). We recall that 1(7~) ~ ~ is the interval spanned by the endpoints 
of 7~3- In order to bound W we define for each k three sets of pairs (i,j) of sites, 
A k, B k and Ck, where 

A k - { (i,j)[ i ~I(7~), for some ~,~ such that t(7~) ~ I k, andj  ¢~lk}, 

B k - { (i,j)[ i~I k andjd(7~),  for some 7~ such that I(~) ~ I~,}, 

C k =_ {(i , j ) l ieI  k and jeI(7~), with 
dist (j, Ik)> Md(7) a/2, for some 7~ such that I(7~ ) = lk}. (4.4) 

[The sets C k deal with the events where 1(7~) ~ Ik. Hence by (1.2) d(?,~) > Md(7) 3/z 
and dist (7,, 7) > Md(7) 3/2.] 

We define 

k 

where )~x is the characteristic function of the corresponding set defined above, 

X = Ak, Bk, C k. 
Now, we claim that 

= * " "  * ' "  ( 4 . 5 )  z~(i,j)zr, (i,j) < Z.~,r,(z,3) + Z~,,r'(], O. 

Clearly the left side of (4.5) vanishes if both i and j belong to Ik, for some k, since 
then [ i , j ]~  7 = 0  which is an even set. Similarly if both i and j are contained in 
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the complement  of I(7) the left side of (4.5) vanishes. Thus  we m a y  suppose that  
ieIk,  for some k, a n d j ¢ I  k. Now,  suppose that  the right side of (4.5) vanishes. Then the 
condit ions 

and 

c~ = 2, 3 . . . . .  and 

i~I(7~), for all y~ ~ Ik ,  

jq~I(7~) , for all 7~ = I~, 

dist (j, Ik) < Md(7) a/2 (4.6) 

must  all be fulfilled simultaneously.  We now observe tha t  if 7~ ~ [i,j] ~ 0 then 
(4.6) and (1.2) imply 7~ c [i,j]. Thus  we conclude that  iF '  ~ [i,j] I is even, hence the 
left side of  (4.5) vanishes, and our  claim is established. 

In  order to prove  (4.3) it suffices therefore to show that  

] i - j [ -ZZx~( i , j )<_cons tM l lnM.{[ln2(ik+l --ik)] 4" 1}, (4.7) 
i<j 

for X k = Ak, Bk, C k and all k. For  convenience suppose i k = O, ik+ I = I. First, we 
consider the case where X k = C k. We bound  the sum over  i on the left side of (4.7) 
by d(y) t imes the m a x i m u m  over i e I  k which is less than  

d ( , ) (  ~ [j,-2 ) < c°nst  - -  (4.8) 
\ J:H_->Md<'~) 3~2 = m 

For  the case X k = A k we define U r to be the union of all intervals I(7~) such that  

7~ = Ik and 2 r < d(7~) __< 2 r + 1. 

By (1.2) (Condi t ion D, b)) such intervals are sparse: 

dist [{0, /},I(7~)] > M23~/2, 

dist [I(7,), I(7~,)] > M23~/2, (4.9) 

for e ¢ c~'. Using these inequalities, we can bound  the left side of (4.7) by 

2 Z  Z [ i - j l - Z z ( { i f i E U ~ } ) < = c ° n s t Z  Z l i l - lz({i l i~U~} ) 
r j < O < i < l  r 0 < i < l  

=< const M -  1 i n / ~  2 ~+ 12-  3r/2 
r 

__< const  M -  1 lnl. (4.10) 

The  factor  of 2 in the first line of (4.10) takes care of  a similar sum ranging over  
O < i < t < j .  

Finally,  we consider the case where X k = B k. The left side of (4.7) is then bounded  
by a sum of two terms, denoted  by Z ,  and 2;2, where 2;1 is the sum over  alljeI(?,=), 
for all 7~ fo r  which dist(I(7~), [ 0 , I ] ) =  M1, and X2 is the sum over  all jeI(7~), for 
all 2~ for which dist (I(7~), [0, l-I) < Ml. Thus  

Z 1 < 2  ~ [ i - j l - 2 < = c o n s t M  -1. (4.11) 
0 < i < l  

j<= - M I  
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Next, we bound Z 2. Let U¢ be the union of all intervals I(7~) such that 

I(7~) ~ [ - Ml, - M2 3,/a] and 2' < d(7~) < 2 ~+ 1, 

where r < [~ln 2 l]. Then I; 2 is bounded by 

2 ~  Z ] i-Jl-Zz({JlJ~U'~})<-c°nstM-11n(MDZ 2~+~2-3~/2 
r - M l < j < O < i < l  r 

<=constM-11nM(lnt+ 1). (4.12) 

The argument leading to this bound is very similar to the one used in (4.10). 
Inequality (4.7) follows from (4.8), (4.10), (4.11) and (4.12). With (4.5) this 

completes the proof of Theorem 4.1. [] 

Appendix 

In this appendix, we sketch the construction of a partition of an arbitrary, even 
configuration F ~_ Z[ of spin flips into primitive contours {~,},= 1,2,3 .... in such a 
way that Condition D, Sect. 1, is satisfied. The construction proceeds inductively 
over a sequence of length scales 2", n = 0, 1, 2, . . . .  

On scale 2 o we first group adjacent spin flips (i.e., ones separated by a distance 
of 2 °) in pairs, in an arbitrary way. This yields a partition of F into subsets 
{q)O}u= 1,2,3 ..... where each ~o ° consists of a single spin flip or a nearest neighbor 
pair of spin flips. Next, we regroup adjacent subsets, q~u,° q)u,,o (i.e., dist(go°,q~°.) = 
2 °) in pairs, in an arbitrary way. For finite L, finitely many sweeps of pairing 
operations suffice to provide us with a partition of F into subsets o 
with the property that " o o o dlst (7~, 7¢) > 2 , for c~ • ~'. For every 7 ° we define 

7~° _- {jldist (j,7o) < Md(7~)o 3/2}. 

We define 

~oo = {7o[17o1 is even, and 7°c~7 °, = 0, for c~ 4: ~'}, 

and inductively, 

~ o . =  7ollTOl is even, yOe F ~  ~@ol ,~, c~7~,~ o = 0 ,  
/ = 0  

forT°,~ F ~  ~oN°~ ,~:/ :a '  . 

Finally, we set 

~o = ~0 = ~ ~o~. (A.1) 
n = 0  

It is easy to check that Condition D is satisfied for ~o and that dist (7, 7') >= Md(7) 3/2, 
for all 7 s ~  °, 7'EF ~ ~o. 

We now suppose that on scale 2 k, after k induction steps, we have arrived at 
a partition of F with the following properties: 

r = . . . . .  
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where ~k  = {7.}~=1,2.3 .... satisfies Condi t ion D, and 

dist (~,  7 k) > Md(y~) 3/2, 

for all 7 ~ k ,  7kuEF ~ ~k. Moreover  

• k k dlst (7u, 7~) > 2k, 

for 7 k, 7k~ in F ~ ~k, # =P v. 
In order  to do the induction step, i.e., increase the distance scale from 2 k to 

2 k + 1, we regroup the subsets {7k}.=1.2,3 .... into pairs q)~k = 7.k UT~,k in an arbi t rary 
way, but  subject to the rule that  

dist (7~, 7 k) < 2 k+ 1, 

for two subsets forming a pair. Fo r  finite L, finitely many sweeps of such pairing 
operat ions suffice to part i t ion F ~ Nk into new, larger subsets {Tk+t}.=l,2, 3 ..... 
with the proper ty  that 

• / + 1  k + l  > 2k+1, dlst(7. ,7~ ) f o r # ¢  v. (A.2) 

Md( k+I a/2 "k+l={j ldis t ( j ,  vk.+l) < 7u ) } . W e d e f i n e  Let 7. 

_ . k + l  . k + l  k + ~ - . k + l  ~k+l ' °={Yu  117. l iseven,  Tu ~,7~ = 0 ,  f o r # s a y } ,  

and inductively 

k + l  I ~ , k + l  k + i ~  ~k+l,n~ ?g I/. I iseven,  7# F -  ~k+l. t  
= 

y. = qS' for Nk w ~k + 1,1 
/ = 0  

Then we define 

J. Fr6hlich and T. Spencer 

~ k + l  -- (~/ d~ k+ 1,n 

n = O  

(this union is finite for L < oc), and 

~k+ l -- ~k  U~k+ I 

By (A.2), F ~ ~k + t = I) if k is such that 2 k + 1 > L, i.e., the induction terminates 
after finitely many  steps when L < oo. It is straightforward to check that  ~ ® ( =  ~k, 
for k >__ [ ln2L ] + 1) is a part i t ion of F satisfying Condit ion D. For  more  details 
concerning a closely related, but  more difficult problem see Sect. 2 of [5]• 
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