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Abstract. Starting from the principle of locality of observables we derive 
localization properties of massive particle states which hold in all models of 
relativistic quantum theory, including gauge theories. It turns out that particles 
may always be regarded as well localized distributions of matter, although their 
mathematical description might require the introduction of non-local (un- 
observable) fields, which are assigned to infinite string-like regions. In spite 
of the non-locality of these fields one can show that such particles obey Bose- or 
Fermi (para) statistics, that to each particle there exists an antiparticle and 
that collision states of particles exist. A selfcontained exposition of the under- 
lying physical ideas is given in the Introduction, and some perspectives for 
the structure of field-theoretic models arising from our analysis are discussed 
in the Conclusions. 

1. Introduction 

Many qualitative features of particle physics, such as the existence of antiparticles, 
the phenomenon of particle statistics and the formation of asymptotic particle 
configurations in collision processes have found a theoretical explanation based 
on the assumption that particle states are well localized excitations of some vacuum 
state. In the Wightman-framework of quantum field theory one converts this 
physical picture into the hypothesis that particle states can be constructed by 
applying local field operators to the vector representing the vacuum [2]. A physi- 
cally more transparent formulation has been given by Doplicher, Haag and Roberts 
[3, 4]. Using only the concept of local observables, these authors expressed in an 
algebraic setting the assumption that particle states cannot be distinguished from 
the vacuum by measurements in the spacelike complement of sufficiently large, 
but bounded regions of Minkowski space. 

These descriptions of localization properties are perfectly adequate for charged 
particles in theories with a global gauge symmetry. But it is well known that they 
cannot be applied to particles carrying an electric charge: since it is possible to 
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determine the electric charge by measuring the total electric flux through an 
arbitrarily large sphere surrounding a particle, states with an electric charge can 
be discriminated from the vacuum in the causal complement of any bounded 
region [3, 5]. Such charges which can be measured at spacelike infinity appear 
typically in gauge field theories, and to fix terminology we will call them gauge- 
charges. 

The example of the electric charge might suggest that gauge-charges are always 
connected with long-range forces and the appearance of massless particles. Indeed, 
this is generally true in Abelian gauge theories [1, 6]. But in non-Abelian gauge 
theories, such as quantum chromodynamics, the argument fails, and the work on 
lattice gauge theories indicates that states carrying a gauge-charge may well exist 
in the absence ofmassless particles ~. We shall also see fi'om our general structural 
analysis that massive particle states might have weaker localization properties 
than normally assumed. This would admit gauge-charges even in purely massive 
theories. 

In the traditional, perturbative treatment of gauge theories one uses local but 
unobservable fields revealing the local gauge symmetry and acting on a Hilbert 
space of indefinite metric. This approach has been axiomatized by various authors 
(see e.g. [5]), but unfortunately it has not provided much insight into the structural 
properties of charged physical states beyond the range of perturbation theory. The 
reason is that the basic fields generate a set of unphysical states by which the 
charged physical states must be approximated. But this approximation requires 
a topology in the indefinite metric space, and since the choice of this topology is so 
far highly ambiguous, one has no effective control on the structure of the limiting 
states one is interested in. 

This unsatisfactory situation has stimulated us to reconsider the localization 
properties of particles in the Haag-Kastler  framework of local quantum theory [7]. 
In this setting one regards the algebraic properties of the local observables as the 
fundamental structure which embodies the relevant information about the physical 
states. Therefore, if an algebra of local observables is given, it must in principle be 
possible to derive the properties of the corresponding physical states without intro- 
ducing unobservable fields ab initio. 

This general program resembles the procedure which one applies in constructive 
gauge field theory. There, the existing algorithms, such as the lattice approach or 
the methods using functional integrals are designed to define the local, gauge 
invariant observables of the theory in the representation which is induced by the 
vacuum state; unobservable fields merely appear as integration variables. Since 
the vacuum representation of the observables covers only the coherent subspace 
of states carrying the charge quantum numbers of the vacuum, one must extract 
in a second step from properties of suitable observables (such as the Wilson loops 

1 The gluons which appear in a perturbative treatment of quantum chromodynamics are usually 
treated as massless objects. But they are not invariant under local gauge transformations, so they are 
not real particles contributing to the physical energy-momentum spectrum. We use here the term 
particle only for physical states appearing asymptotically in collision processes 
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[8-]) the information of whether there exist also charged states in the theory and 
what their properties are. This procedure is analogous to the general ideas of Haag 
and Kastler, and one may in fact regard the gauge theories as prototypes of theories 
of local observables. 

The construction of the physical Hilber t space is accomplished in this setting 
in a manner which is perhaps not so familiar, therefore we recall here the basic 
ideas. Any physical state corresponds to some positive linear functional co over 
an algebra of observables 9.1. So in a first step one has to select all functionals 
exhibiting properties which are distinctive of particle states. This step is perhaps 
the most subtle one in the whole analysis because there the physical idea of a 
particle has to be converted into appropriate mathematical constraints. But once 
such a set of particle states co has been chosen there exist standard methods for the 
construction of the physical Hilbert space. One uses the basic fact (GNS-construc- 
tion [9] ) that to each state co there exists a representation rc of the algebra 9.1 on 
some Hilbert space Jr ,  in which co is represented by a unit vector ~u and the 
observables A ~ I  by operators re(A) such that 

co(A) = (~u, ~(A)~U). (1.1) 

The vectors in ~f  are to be interpreted as those physical states which arise from 
the ensemble described by 7 ~ due to the action of local observables. So in particular 
they carry the same charge quantum numbers as 7L 

Of course equivalent representations of ~ describe identical sets of states. 
Therefore one combines the irreducible representations into equivalence classes, 
called sectors. If there are superselection rules in a model there exist several such 
sectors, and one may regard the labels distinguishing them as charge quantum 
numbers. This fundamental concept of charge applies also to superselection rules 
which are related to the Casimir operators of non~Abelian gauge groups or to 
topological charges which cannot be derived from an observable current, and 
it is therefore perfectly adequate for a structural analysis of gauge theories. Having 
determined the sectors of a theory, one can then construct a representation of the 
algebra of observables on a global physical Hitbert space by picking representa- 
tions from each sector and taking their direct sum. 

The above considerations show that even if charge carrying fields are not at one's 
disposal it is possible to determine the physical Hilbert space and its superselection 
structure, provided one has selected by some reasonable criterion all states of 
physical interest. There are two such selection criteria which have been used in the 
literature. One criterion which we have already mentioned is due to Doplicher, 
Haag and Roberts [3]. These authors select the states co of interest in particle 
physics by the assumption that they become indistinguishable from the vacuum 
for observations at spacelike infinity. This excludes from the outset states carrying 
a gauge-charge as defined above. 

Such states are, however, covered by a selection criterion of Botchers [10], who 
uses momentum space properties of states in order to distinguish the physically 
relevant representations. Following Borchers, we select the representations of 
interest in particle physics by the condition that the space-time translations are 
generated by energy-momentum operators satisfying the spectrum condition. 
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One might argue that in representations describing particle states the generators 
of the Lorentz-transformations should also exist as well-defined operators. 
However, this is in general too restrictive an assumption because it requires 
localization properties of states which are not always present. For example, the 
charged sectors in quantum electrodynamics are not Lorentz-covariant [11], so 
one must dispense with this assumption in a general selection criterion. 

As was already indicated, we will restrict in the present paper our attention to 
models describing only massive particles. (For an analysis of the physical state 
space of quantum electrodynamics see [12].) Moreover, we assume that the models 
under consideration have an asymptotic particle interpretation in the sense of 
scattering theory (see for example [13]). This assertion is not used in a technical 
sense, but its obvious physical content provides a heuristic background for various 
steps in our analysis. 

Since in a particle theory all states of interest should be composed of asymptotic 
configurations of single particle states, it is natural to begin these investigations 
with a detailed analysis of representations ~z of 9.1 in which states of just one particle 
appear. We distinguish these representations by the fact that the corresponding 
representation space . ~  contains a subspace y¢~(1), on which the relation 
Po = (p2 + m2)1/2 relating the energy and momentum of a particle of mass m 
holds. Restricting our attention to charged particles we assume furthermore that 
the vectors in yf(l) are the states of lowest mass in YF, and taking into account that 
there are no massless particles in the model, we require that the energy-momentum 
spectrum of the vectors in yfc1) is isolated from the rest of the spectrum by a mass 
gap; this means that Po > ( p a +  M2)1/2 for some M >  m on the orthogonal 
complement of the single particle space 2/f (1). 

The existence of such representations of ~1 is clearly a necessary condition for a 
model to have a conventional particle interpretation. However, since we did not 
require Lorentz covariance it might appear artificial to characterize the vectors in 
Y~(~) by Lorentz-invariant subsets of the energy-momentum spectrum. But it 
follows already from locality of the observables that the lower boundary of the 
energy-momentum spectrum is a Lorentz-invariant set in all representations 
satisfying the selection criterion of Borchers [15]. In Sect. 2 we will sketch the 
argument leading to this result; moreover we will prove that the spectrum of the 
spatial momentum operators P is continuous with respect to kebesgue-measure, 
which is a well known fact in the presence of Lorentz transformations [14]. So 
also under the present general conditions one may identify the vectors in yf~l) 
with square integrable wavefunctions ~0(p) (if one disregards internal degrees of 
freedom). 

Newton and Wigner have discussed the concept of localization of a single 
particle state in terms of such wavefunctions [16]. It is, however, not clear how the 
Newton-Wigner position operator is related to the local observables in 9A. There- 
fore we will exploit here the local structure of observables directly for the identi- 
fication of well localized single particle states in y~(1). This will be done in Sect. 3. 

Thinking in terms of measurements, it is quite plausible how these states are 
constructed. First one chooses a vector ~q~f~(~) with a momentum space wave- 
function which has support in a small neighbourhood of some point q. So q~ q 
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describes an ensemble of particles with relatively sharp momentum, but no 
specific localization properties. Then one picks an observable A eg.1 which is 
localized in some bounded space-time region (9 and applies it to q~q. The resulting 
vector r~(A)~q should describe the effects of an operation in the region (9 on an 
ensemble of single particle states with momentum q, which are expected to be of 
the following nature: some of the particles in the ensemble will come close to the 
region (9 and interact with the observable A, and this will cause a change of their 
momentum. On the other hand, the presence of A can have no effect on particles 
which keep a sufficient distance from (fi, so their momentum remains unchanged. 
It will also happen with a certain probability that additional particles are created 
by the action of A, resulting in a change of the total mass; so all these typical events 
can be distinguished by their characteristic energy-momentum content. 

One can choose now a function g(P) of the energy and momentum operator 
which vanishes on single-particle states with momentum about q and on all 
multi-particle states. According to the above remarks one then expects that the 
vector g(P)" rc(A)~q describes an ensemble of particles coming close to the region (9. 
Of course, the action of g(P) will destroy again some of the information on the 
localization properties because of the uncertainty-principle. But in view of the 
mass gap between the single- and multi-particle states, there exist smooth functions 
g(P) with the above mentioned properties, for which this effect is small. So the 
vector ~ = g(P)" 7r(A)~q should describe a well localized single particle state. 

A mathematical expression of this fact is that any translation U(x) of ~ can be 
represented by the action of some suitable almost local operator B x on 7', i.e. 

U(x)W = Bx~ and U ( -  x)W = B*7'. (1.2) 

This means that the translations U(x) essentially become effective only in a 
bounded region, which one may interpret as the localization region of ~ if x is 
small. (Actually we will prove a slightly weaker form of this relatiorf, but with the 
same physical content.) So for the characterization of the localization properties 
of ~v no reference to a vacuum representation is necessary. 

The existence of vectors in a representation rc with the property (1.2) has several 
significant consequences. First, it follows that the expectation values 
(U(x) ~, 7r(A) U(x) ~') of local observables A ~ ~I converge rapidly to some positive, 
linear functional co o over ~I i fx  tends to spacelike infinity, 

lim (U(x)7', ~(A)U(x)~) = C0o(A), (1.3) 
X 

and co o exhibits all properties of a vacuum state. So the space-like asymptotic 
structure of }P can be described in terms of a single vacuum, and ~ may be regarded 
as an excitation of it. 

Second, it follows from relation (1.2) that it is impossible to determine the 
sector (the total charge) of ~v by measurements in the causal complement of certain 
string-like regions. More precisely, one can show that the representation z of 
(which is induced by ~P) and the vacuum representation rc 0 are equivalent on the 
subalgebras 9,1(~') of observables which are localized in the causal complement 
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5 p' of any given spacelike cone ~2, i.e. 

[ ~I(5") -~ ~z 01 ~2l(5~'). (1.4) 

In the proof of this result one uses the fact that any translation of ku can be de- 
composed into small shifts along an arbitrary path connecting the localization 
regions of 7 ~ and of its translate. Now if one decomposes a translation z into 
z = x + y one gets from relation (1.2) 

U(z)~ = U(y)B~U(y)- l'ByTJ, (1.5) 

and iterating this procedure it follows that any translation of ~ is induced by a 
product of almost local observables which are, roughly speaking, localized in a 
tube about the chosen path. But this implies that the effect of this translation cannot 
be observed in the causal complement of this tube because of locality. Therefore it 
is impossible to dinstinguish the states in the representations r~ and rc o by measure- 
ments in any region 5 p', because in the region 5 P one can always bring in particles 
from spacelike infinity or remove them without changing the results of measure- 
ments in S .  

It is interesting to confront our results with the selection criterion of Doplicher, 
Haag and Roberts [3]. These authors conjectured that their criterion applies to 
all particle states in completely massive theories (hadronic physics). This would 
mean [3] that particle states induce representations which are equivalent to the 
vacuum representation on the larger subalgebras 91((9') of observables in the causal 
complement of bounded regions (9, 

19i(U) ~- ~01 ~((9'). (1.6) 

The picture of a particle which is implied by this stronger condition is the following 
one: a particle is a well localized system which is completely uncorrelated to the 
rest of the world in the sense that one may take it out of the world or add it without 
effecting measurements in the causal complement of its localization region. Now 
in physics charged particles can only be created in pairs, and it is known from 
gauge theories that this can happen with a high degree of coherence which becomes 
manifest in the form of a string (flux lines) connecting the particles. It is evident 
that particles sitting at the endpoints of such a string cannot be treated as isolated 
systems, and therefore the selection criterion of Doplicher, Haag and Roberts does 
not apply to them. In contrast, our general result (1.4) does not exclude the possi- 
bility of such particles in massive theories. 

At present, there are no definite examples of massive theories in which the 
selection criterion of Doplicher, Haag and Roberts fails, although there are some 
candidates (see the Conclusions). It might therefore be worthwhile to outline the 
expected qualitative features of such models. We will use in this discussion the 
simple picture that single particle states carrying a gauge-charge are tied to an 
infinite string. In concrete examples this string can have a complicated structure, 
it may split or roughen, but this is not relevant here. 

2 Y may be thought of as a string which fattens 
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There are two possibilities to be discussed. The first one is that the location of 
the string can be determined. Then its asymptotic direction is a classical observable 
(i.e. a superselection rule) because it cannot change under the influence of any 
local measurements due to locality. In this case there exists a continuum of inequi- 
valent representations describing particles with different asymptotic string- 
directions, so these representations are not equivalent to the vacuum represent- 
ation on the algebras 9.I(Y) for arbitrary spacelike cones 50. But according to our 
general result this is not possible in massive particle theories, and, as a matter of 
fact, the above scenario describes exactly the situation which one finds in quantum 
electrodynamics [12]. 

The second possibility is that the asymptotic direction of the string cannot 
be observed, but its presence can be established nevertheless. In order to illustrate 
this we give an example: let us assume that one can determine whether strings cross 
a given surface an even or odd number of times. If one performs such a measure- 
ment on a sufficiently large sphere surrounding all particles in a given state, one 
should find the values 1 or - 1, depending on whether the sphere encloses an even 
or odd number of particles. So these states are separated by a (multiplicative) gauge- 
charge. But if one removes a part from the sphere and performs the measurement 
on the remaining surface one should find with equal probability the values I or - 1 
in any ensemble of particles (including the vacuum) if it is impossible to determine 
the direction of strings. This picture is only consistent if the vacuum is subject to 
large string-like fluctuations which close to loops, and which spread out in such a 
way that they cut large surfaces with boundary an even or odd number of times 
with equal probability. Moreover, string-like fluctuations which do not close to 
loops must be suppressed, because otherwise it would be impossible to discrimi- 
nate states with an even or odd number of particles. So the characteristic features 
of models belonging to this second category are, that their vacuum states undergo 
fluctuations which make it impossible to determine the location of the string; 
but their exist global observables measuring the gauge-charge which are built up 
from local observables in a multiplicative way. In such models the selection crite- 
rion (1.6) of Doplicher, Haag and Roberts would be too restrictive, but the weaker 
condition (1.4) could still be used to select all particle states. We remark that the 
above picture seems to be realized in the (massive) Higgs-phase of certain lattice 
gauge theories (see the Conclusions). 

Although the problem of the existence of such models is still open, we consider 
it interesting to study the consequences of the weaker localization properties (1.4) 
of a particle for the physical interpretation of a theory. Surprisingly enough 
practically all relevant empirical properties of a particle can be established starting 
from relation (1.4): each such particle has an antiparticle, it obeys (para-) Bose- or 
Fermistatistics, and scattering states of such particles exist. This is in our opinion 
a strong indication that there should be models of this type. 

For the proof of these facts we have generalized the methods which were 
developed by Doplicher, Haag and Roberts for the analysis of representations 
satisfying their selection criterion. Whenever possible we wilt refer to their results, 
and the reader interested in technical details should have available a copy of the 
articles [3] and [4-1. 
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This part of our paper is organized as follows: in Sect. 4 we will show that there 
is a composition law of sectors which is an expression of the fact that charges can 
be added. Section 5 contains the construction of a field bundle which is a con- 
venient substitute for the algebra of field operators in conventional field theory. 
However, in contrast to conventional field theory the "fields" to be found here are 
localized in spacelike cones ~ .  Commutation relations in the field bundle lead to 
the notion of statistics in this setting, and in Sect. 6 we briefly review the classifi- 
cation of possible particle statistics given in [3], which also applies here. This 
analysis requires the construction of charge conjugate sectors which can be per- 
formed as in [3] for sectors having normal (finite) satistics. 

The pathological possibility of infinite statistics can be ruled out for massive 
particles, using the fact that single particle states are energy-momentum concen- 
trated in the sense of relation (1.2). This has been proved in [17] for pure particle 
states, and we give here an extension of that argument to arbitrary single particle 
states. As a consequence each (factorial) representation in which single particle 
states appear is a multiple of an irreducible representation describing single 
particle states. This result is quite satisfactory from the point of view of physics, 
because it means that it is always possible to prepare by suitable measurements 
pure particle states, so all particles are elementary systems. 

In Sect. 7 we will analyse the energy-momentum operators in the composed 
sectors and prove that there exists a unique choice for these operators having all 
properties expected on physical grounds. Moreover, we will introduce translations 
on the field bundle in a covariant manner, which is essential for the construction 
of scattering states in Sect. 8. A brief discussion of possible perspectives of our 
analysis for field theoretic models completes the paper. 

We conclude this introduction with a list of assumptions and notations. We 
base our analysis on the properties of a net of algebras (9 --+ ~[((O), which is indexed 
by the open, bounded regions (9 c R 4 of space and time. Each 91((_0) is a C*-algebra 
with unit which may be regarded as the algebra generated by the observables which 
can be measured in (q. The algebra of all local observables is denoted by 91 and 
defined as the C*-inductive limit of the local algebras, 

C* 

91 = U N((9). (1.7) 
(9 

Similarly we set for unbounded regions N c R 4 

C* 

91(*) = U 91(¢). (1.s) 
(oc~ 

We assume that observables in spacelike separated regions (9 1 and (9 2 commute, 
i.e. locality holds, 

91((91) c 91ff(gj if (91 c (9' 2. (1.9) 

Here 91~((9) stands for the subalgebra of operators in 9/which commute with all 
operators in 91((9). Moreover, we require that the group of space-time translations 



Particle States 9 

x is implemented by automorphisms c~ of ~1 which respect the geometric structure 
of the net, 

c~x(9.I((9)) c ~I(C + x). (i.10) 

In Sect. 4 we will add to these basic postulates the assumption that the vacuum 
representation constructed in Sect. 3 fulfils the following weak duality condition: 

rCo(N~(5~))- = r%(9~(Sf))' (1.11) 

for any spacelike cone 5 P. Here ~3- denotes the weak closure of a subalgebra 
~3 c 2 ( ~ o )  and ~Y the commutant of ~3 in 2 ( ~ 0 ) '  Such duality assumptions are 
familiar from the work of Doplicher, Haag and Roberts [3]. Roughly speaking, 
they say that the vacuum cannot carry a non-Abelian charge. Although this sounds 
plausible, it would be desirable to understand the physical origin of this fact better. 
For algebras of observables which can be constructed from a set of local Wightman- 
fields, Bisognano and Wichmann [18] have established a somewhat different form 
of duality which would also be sufficient for our analysis. 

2. Energy and Momentum 

In this section we wilt discuss properties of the energy-momentum operators in 
representations (Tr, ~f~) of the algebra of observables 9.1 which fulfil the selection 
criterion of Borchers. These representations are distinguished by the fact that the 
space-time translations x = (t, x) are represented by strongly continuous, unitary 
operators U(x) on Yt' which implement the automorphisms c~ x, 

7c(~x(A)) = U(x)~(A)U(x)- 1 for Ae~l. (2.1) 

Moreover, the joint spectrum sp ~ of the generators P = (P0, P) of U(x) satisfies 
the relativistic spectrum condition 3 

spd# c I7+ = {peN4:p 2 ~0 ,  p o =>0}. (2.2) 

As has been shown by Borchers [19], it is always possible under these conditions 
to choose the operators U(x) in the weak closure of ~(9.1), 

U(x)e ~c(~I)-, (2.3) 

and this choice is also the natural one, since then the generators P can be interpreted 
as global observables, measuring the energy and momentum of the states in • .  
Moreover, relation (2.3) implies that any subrepresentation of rc also has the 
properties listed above. So performing the central decomposition of ~z we may 
concentrate in the following on factorial representations, 

~z(~[)- ca ~(91)' = C" 1, (2.4) 

which means in physical terms, that we consider only states with definite charge 
quantum numbers. In principle one could decompose ~z even into irreducible 

3 We use the notation p2 = p~_ ipt2 and Ipl 2 =p0 z + Ipl 2 
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representations, but such a decomposition has only a simple physical meaning if 
there exist vectors in Jef inducing pure states on ~l. (We postpone a discussion of 
this point to Sect. 6.) 

In a factorial representation of 92[ the generators P are fixed by condition (2.3) 
up to an arbitrary additive constant. It is convenient to adjust this constant such 
that the following more restrictive version of relation (2.2) holds: 

{qE F-+ :sp@' c P'+ + q} = {0}, (2.5) 

i.e. no lightcone inside V+ contains all of sp ~/. In the following we call represent- 
ations (re, Tf) of N which satisfy the conditions (2.1) up to (2.5) positive energy 
representations. 

We will study now the consequences of locality for the structure of the energy- 
momentum spectrum. This part of our analysis applies also to models describing 
massless particles, such as quantum electrodynamics. The first result, which we 
adapt from [15], restricts the admissible shape of the set sp ~//in positive energy 
representations of ~I. 

Proposition 2.1. i) The lower boundary of sp ql is a Lorentz-invariant set. ii) I f  one 
removes from sp q/ i ts  lower boundary and takes the closure, one obtains again a set 
with Lorentz-invariant lower boundary. 

(The lower boundary of a closed set K ~ V+ consists of all points in K which 
can be connected with 0 by some curve in the complement of K.) 

Proof (We sketch here the essential steps of the argument in [15].) One starts from 
the observation that the shape of sp og can be determined from properties of the 
vector-valued functions x--* =(%(A))~b, where ~e~ / f  and Aeg.l. Clearly the sup- 
ports of the Fourier transforms of these functions (which are defined in the sense 
of distributions) are contained in 4 sp ~# - supp ~b, where supp • is the spectral 
support of • relative to P. 

On the other hand, for any open region N intersecting with sp °k ' -  supp ~b 
there is a local observable A and a testfunction f with s u p p f c  N such that 
~dgxf(x)=(~x(A))~ ~ O. This can be seen as follows: for a fixed testfunction f the 
integral B ~ ~d*xf(x)U(x)BU(x)- 1, BEN(~) ,  defines an ultraweakly continuous 
mapping on ~(~¢g). Hence if ~d4xf(x)rc(c~(A))~ = 0 for all local observables A, it 
follows that also ~d4xf(x)E(A1)n(e(A))E(A2)~b = 0, where E(Ai)en(9,1 )- are the 
spectral projections of P attached to Borel sets A i c ~4, i = 1, 2. Now given an open 
set N intersecting with sp ~ / / -  supp 4~ we can find open sets A ~, A= intersecting with 
sp q / and  supp ~, respectively, such that the closure of A t - A 2 is contained in N. 
Then the integral ~d4xf(x)E(A a)rc(e (A))E(A 2)q ~ cannot vanish for all testfunctions 
f with s u p p f c  N, since otherwise E(A1)n(A)E(A2)Cb = 0 for all Aeg.l. But this 
would imply E(A1)F = 0 where F~=(9.I)' is the projection onto [rc(9.1)E(A2)~b ] in 
contradiction to the assumption that n is factorial. 

4 If C, C' ~ ~4 and 2eN we set C ___ C' = {c _+ c':ceC, c'eC'} and 2-C = {2c:c~C}. 



Particle States 11 

In the second step one exploits locality by considering the commutator  func- 
tion x -~ K(x) = ((b, ~([ex(A1), A2])¢), where A1, A 2 are arbitrary local observ- 
ables. So K(x) vanishes in the causal complement of some bounded region (9 c R*. 
If in addition the Fourier transform K(p) vanishes on some open set M ~ R 4, it 
follows from standard arguments [20] that/<(p) is the discontinuity on the reals 
of some function which is analytic in T+ w T_ w M, where T i = {k ~ C4: Im k ~ V_+ }. 
So /£(p) must also vanish at all real points of the envelope of holomorphy of 
T+ u T u M. Now for the case at hand, one deduces from the spectrum condition 
that/<(p) vanishes in some region M = N n - N, where N is connected and contains 
the complement of (17+ - supp 4)) if supp ~b is compact. For regions of this type the 
above envelope of holomorphy has been computed [20], and one finds that the 
boundary of M is composed of hyperboloids {p:(p - p0)  2 = / /02} ,  where Po e(IT+ - 
supp (b)c~- (17+-  supp 4)) and P0 > 0  are such that the hyperboloids do not 
intersect with the interior of M. 

In the final step of the argument, which is of a purely geometric nature, one 
deduces from the above information the shape of the lower boundary of sp ~//by 
different choices of supp 4). QED. 

In view of this result it seems plausible that also the full spectrum sp ~g is a 
Lorentz-invariant set, but the above methods are not yet powerful enough to 
verify this conjecture. 

Next, we want to exhibit continuity properties of the spectral projections 
A -~ E(A) of P following from locality. To this end we study the subgroup of 
translations on a spacelike hyperplane of Minkowski space, i.e. x-~ U(x) with 
x e  = 0 for a fixed timelike vector ee  V+. It will turn out that the joint spectrum 
of the corresponding generators is absolutely continuous, apart from a discrete 
point appearing in vacuum representations. Again, this result is known if the 
Lorentz transformations are implemented on • [14]. 

In the argument given below we shall deal with almost local operators trans- 
ferring energy and momentum in a certain definite manner. Such operators were 
already used in [6] in a different context. In the present mathematical setting an 
operator B e N ( J r )  is said to be almost local if for some neighbourhood (9 of the 
origin in Minkowski space and any )~ > 0 one can find operators B~n(gio,(9))- 
such that 

lim  *IIB-B ll = 0  for all ieN.  (2.6) 

A concrete example of such an operator is 

B = 5d4xf(x) • ~(ex(A) ), (2.7) 

where f is a testfunction on N 4, A a local observable and the integral is defined as a 
weak integral. If the Fourier transform o f f  in (2.7) has support F c [R 4 we say that 
B transfers energy momentum F. 

Proposition 2.2. Let (n, 2/g) be a positive energy representation ofgi and let x -~ U(x) 
be the subgroup of spacelike translations x with x 'e  = O, ee V+ fixed. Then the 
joint spectrum of the corresponding generators Pe has the following structure: 
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i) The non-atomic part of the spectrum of Pe is absolutely continuous with respect 
to Lebesgue measure. (ii) I f  there exists an atomic part in the spectrum of Pc, it con- 
sists of the single point O, and the corresponding spectral subspace of  Y f  is spanned 
by vectors which are invariant under arbitrary translations U(x). So rc is a vacuum 
representation. 

Proof Let ~ be the linear span of all vectors of the form B" T, where TeE(A 1 )~  
and B are almost local operators with energy-momentum transfer F c A 2. It is 
obvious that ~ c E(A)~ ,  where A = (AlnSP ~g ) + A 2. Moreover, if A I and A 2 
are open sets and A I c~sp~//¢0 then ~ is also dense in E(A)~ .  Otherwise, the 
Fourier transforms of x ~ E ( A  1 c~spd//)'zc(~x(A))¢ would vanish on - A  s for 
some non-zero vector ¢ ~ E ( A ) ~  and arbitrary local observables A; but this is 
only possible (cf. the proof of Proposition 2.1) if supp ~ ( ( A ~  c~sp~#)+ A2)= 0, 
which is clearly a contradiction. 

Now given a pesp  ~#, p ~ 0 one picks a q~sp ~# such that q - (1) - q) is a space- 
like vector. (That such a q exists can easily be seen if one exploits the fact that the 
lower boundary ofsp ~//is a Lorentz-invariant set.) Since the set of spacelike vectors 
is open there exist also neighborhoods A v of p and Aq of q such that [he set Aq - 
(A v - Aq) contains only spacelike vectors; it is therefore disjoint from sp ~//. Then 
one considers the space 9 ,  defined above, setting A 1 = Aq and A z = ( A p -  Aq). 
As was discussed, @ is dense in E(A))f  ~, where A = (Aq c~ sp ~)  + (Av - Aq) is again 
some neighborhood ofp. The special choice of Aq makes it possible to show that for 
all ~ 1 , ~ 2 e ~  the functions x--,((b 1, U(x)~2) are rapidly converging to 0 as 
Ix[ ~ o% x 'e  = 0. In particular, they are absolutely integrable on the hyperplane 
x 'e  = 0, proving that the spectrum of the generators P is absolutely continuous 
on E(A)~f. The proposition follows then, because pesp  q/ was arbitrary, apart 
from the condition p ¢ 0. 

It remains to establish the stated convergence properties of the above functions. 
Now for vectors of the form B ' T e D ,  where B transfers energy-momentum 
I" ~ (Ap - Aq) and T ~ E(Aq)~ one gets the estimate 5 

I(B~ ~ ,  U(x)B 2 T2)I = [(T1, [B*, B2(x ) ] V(x)Tz)  I 

< ll[B*,Bz(x)]ll't]T~ ll'll T211" 

because ( A q - ( A p - A q ) ) ~ s p ' ~ = O  and therefore B*.E(Aq)=O. Using the fact 
that the operators B~, B 2 are almost local as well as the spacelike commutation 
properties of local observables, it is then easy to obtain the desired result 

l(B, T~, U(x)B2Tz) I < c~.(l + txl)-' for x 'e  = O, 

which can be extended to arbitrary vectors ~1,4~ 2 s N  by taking finite sums. This 
bound holds for any i e N and the coefficients c~ depend continuously on the 
direction of e. QED. 

It follows from this proposition that E(A)= 0 for any set A ~ 17+ whose 
projection onto some spacelike hyperplane is a set of Lebesgue measure 0 (relative 

5 We set B(x) = U(x)BU(x)- 1 for BE~(.Ct ~) 
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to that plane). The fact that the estimates given in the proof hold uniformly for any 
compact set of vectors ee  V+ can be used to exhibit an even wider class of Lebesgue 
null-sets A for which E(A) = 0. However, for the present investigations we will only 
need the result that the joint spectrum of the momentum operators P is absolutely 
continuous in non-vacuum representations. 

We will restrict our attention now to massive theories. There the most ele- 
mentary systems are vacuum and single particle states which are separated from 
the multi-particle states in their sector by a mass gap. For  later reference we give a 
formal characterization of the corresponding representations. 

Definition. Let (~, ~'¢~) be a positive energy representation of some algebra of 
observable 9.1. (i) (re, ~ )  is called a (massive) vacuum representation if 0esp  ~//and 
sp ~/t c {0} w {p :p2 :> 122, P0 > 0} for some 12 > 0. ii) (n, W) is called a (massive) 
single particle representation, if the set H m = {p :pZ = m 2, P0 > 0} is contained in the 
singular spectrum of P, and if s p ~ g c H , , u { p : p Z > M 2 , p o > O }  for some 
M > m > 0 .  

According to Proposition 2.1 any positive energy representation where a part 
of the lower boundary of sp ~//is isolated from the rest of the spectrum is either a 
vacuum or a single particle representation. 

3. Localization of Single Particle States 

We turn now to the analysis of the localization properties of states in massive 
single particle representations of 9.I. As was explained in the introduction, we shall 
find that these states can be interpreted as excitations of a specific vacuum state. 
Similar results were already obtained in [6] in a different mathematical setting. 
Our improvements on that analysis are twofold: first, Lorentz-covariance is no 
longer needed in the proofs, and second, we could verify that single particle 
representations and the corresponding vacuum representations are equivalent on 
the algebras 9.Ic(Af). The latter result provides the basis for our analysis of multi- 
particle states. 

For  the subsequent discussion it is convenient to introduce the following 
notation: all points of the energy-momentum spectrum lying on the lower 
boundary H m = {p: p2 = m 2, P0 > 0} of sp ~ are marked by a tilde, p~= ((p2 + 
mz) ~/2, p). The symbol A - stands for open, bounded subsets of ~4 having only 
points p-in common with sp ~ ,  i.e. A ~c~ sp ~' c H m . Such regions exist because of 
the mass gap in sp ~ in massive single particle representations. 

We write g(P) for the operators Sg(p)dE(p), where p - ,  g(p) are smooth functions 
on ~4 (i.e. the derivatives ofg exist up to any order). If the function g is not bounded, 
it is understood that g(P) acts on its natural domain of definition. With this nota- 
tion we can now state the basic theorem which expresses the fact that well localized 
states exist in massive single particle representations. 

Theorem 3.1. Let At,  A 2 be arbitrary neighbourhoods of a given pair of points P-1 
and P2" Then there exist regions A- 1 c A1, A" z c A 2 and a family of  almost local 
operators B g which are assigned to the smooth functions g on ~4, such that the follow- 
ing relations hold: 
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i) B.E(A-~) ¢ O, 

ii) (g(P)'B - Bo).E(AI) = O, 

iii) E(A 2).(g(P).B - Bo) = O, 

iv) B- E(A ~) = E(A ~) B. E(~ 1). 

Here B denotes the operator attached to the constant function e(p)= 1. 
Let us comment first on the physical significance of this statement. The rele- 

vant information is contained in relation (ii), which says that the effect of the 
Operation g(P).B on any ensemble of particles with energy-momentum in A i is 
well localized in configuration space. This holds, in spite of the fact that g(P) is 
completely dislocalized, because B filters out of these ensembles with overwhelm- 
ing probability particles which enter some finite space-time region (cf. the heuristic 
remarks in the Introduction). So the energy-momentum content (the matter) of 
the resulting ensembles is essentially concentrated in that region and the action of 
g(P) becomes effective only there. Relations (iii) and (iv) subsume some information 
on the energy-momentum transfer of B and are a consequence of (ii). 

Since the proof of this theorem is very technical we give it in the Appendix and 
sketch here the basic idea. We will make use of the fact that because of the mass gap 
in sp 5h' there exist almost local operators B, which map all single particle states 
with energy and momentum about p; say, into single particle states, and which 
annihilate all states with energy and momentum about some q~5~ p~. In particular, 
there are almost local operators B o and B 1 such that the ranges of BoE(A~) and 
B1U(x)BoE(A~),xeR 4 are contained in the single particle space 54 ~(1) and 
B~E(A1) = 0. Now formally one has for fixed q the relation 

~d3xe-iqxBl(X).e-iteo ~)f~(1) = e-it(IP+ql2+m2)'A .Sd3xe iqxBi(x ) ~ ~(1) (3.1) 

because ~ d3 xe iq~B 1 (x) transfers the momentum q and Po = (p2 + m2)1/2 on ~(1). 
So taking into account that B1"E(A i) = 0 one gets 

~d3xe-i"X[Bl(t, x), Bo].E(A~) = exp {it((P 2 + m2) t/2 - ( [P + q]2 + m2)l/a)}. 

• ~ d3x e - ~qx [Bx (x), Bo]. E(A i). (3.2) 

But ~d3x e-iqX[B l(t, x), Bo] is for any t an almost local operator because of locality, 
and therefore relation (3.2) is a special case of the crucial relation (ii) of the theorem 
with a definite function g. It is shown in the Appendix, how this result extends to 
arbitrary functions if one replaces in the above reasoning the commutators by 
suitable multiple commutators. 

The following two corollaries are simple consequences of the theorem. 

Corollary 3.2. Let (9 be a fixed neighbourhood of the origin in ~4. Then for any 
CE~r(9.I()~C))' and • > 0 

II E(AI)B*[g(P), C]BE(AI)II <-- h(2). II c II, 



Particle States 15 

where B, g(P) and E(A-~) are the same as in the preceding theorem. The function h 
does not depend on C and is rapidly decreasing 6 

Proof According to relation (iv) of the above theorem, one has E(A-1)B*= 
E(A ~)B* E(A'z), and using also (ii) and (iii) one gets 

E(A'I)B* [Bg, C]E(A-1) = E(A-~)B* [ g(P)B, C]E(A ;) 

= E(A -OB* [g(P), C] BE(A -1) + E(A -1)B* g(P) [B, C]E(A-1). 

This implies 

[IE(A-1)B*[g(P), C]BE(A-1) H < tlUH.[l[Uo, C][ I + suptg(p)l'[tS[l'[[[B, C][[ 

and bearing in mind that B and B 0 are almost local operators one arrives at the 
conclusion. QED. 

The algebras ~(N((9))' in the corollary contain the observables in the causal 
complement of (9 because of locality, rc(gX((9))' = zc(9.1((9'))-. Only if n describes a 
particle with ordinary Bose or Fermi statistics bothalgebras coincide, i.e. duality 
holds [3]. It is essential for the direct construction of the charge conjugate sectors 
in the parastatistics case that the corollary holds for the in general larger algebras 
•(9.1((9) )' [17]. 

Corollary 3.3. There exists a vector in ~ inducing a state ~o such that 

l~o%(A) ) l  <h( lx  I - I x o l ) ' l A l  for A~VX((9) 

where (9 is any fixed bounded region, 0 u, # = O, 1, 2, 3 are the derivatives with respect 
to the coordinates of x and h is a function which does not depend on A and is rapidly 
decreasing. 

Proof If ( I x [ -  Ix01)is sufficiently large, the region (9 + x is contained in the 
causal complement of a double cone with diameter (t x [ - f Xo t), which is centered 
at the origin of ~4. Setting g(p)= p~, in the preceding corollary, where Pu,/~ = 
0, 1, 2, 3 are the coordinates of p, it follows that 

l[ E(A'~)B*[Pu, rc(c~(A))]BE(A-~)[I ~ h(Ix[ - [  xot)" tl A [I. 

Thus any normalized vector in the range of BE(A1) induces a state co with the 
desired property. QED. 

We can state now the result which relates any massive single particle representa- 
tion (re, W) to a particular vacuum representation (%, 34fo) of ~I. In this state- 
ment we deal with sequences of vectors x tending to spacelike infinity, which 
means that(Ix t - [ x 0 [ ) ~  oo. 

Theorem 3.4. There exists an irreducible, massive vacuum representation (~o, ~ o )  

6 A function h is said to be rapidly decreasing if lira 2~h(2)= 0 for all i~ N. We shall reserve the 
symbol h for such functions ~ ~ 
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of 92 such that for any AE92 and any sequence of vectors x tending to spacelike 
infinity 

w - lira ~(a~(A)) = coo(A)- 1, 
x 

where coo is the state induced by the (up to a phase unique) vector in ~ o  representing 
the vacuum. 

Proof Let A~92((9) be any local observable. Then, for x tending to spacelike 
infinity, all weak limit points of z~(a~ (A)) are multiples of the identity due to locality 
and the fact that ~z is a factorial representation. In particular one has for any 
normal state co 

w - lim [~(~(A)) - co(~x(A))" 1] = 0. 
x 

So in order to prove the convergence of ~(e (A)) it suffices to establish the con- 
vergence of co(ax(A)) for some vectorstate co of the type exhibited in the preceding 
corollary. Now 

co(a~(A)) - co(~y(A) ) = ~ dz" 8uco(a (A) ), 

where cg is any smooth curve connecting x and y, and using the bounds on 
8co(a(A)) given in the preceding corollary one arrives at 

[co(~x(A)) - to(~zy(A))] < ~ dl h(lz] -[Zo[ ). 11 A 11, 
~g 

where dl denotes the infinitesimal line element. Taking into account that h(2) con- 
verges rapidly to 0 for 2 ~ 0o and that the region {z:]z I -1%1 > R} is connected, 
it is easy to exhibit curves cg giving the bound 

]co(~x(A)- co(~Y(A))] < (  ~l d2 h(2) ~ol ,.v,-,yo, ~ d2h(2)) "IIAII" 

Hence ifx tends to spacelike infinity, co~(.) converges to some state co o on 92 which 
is invariant under translations. 

It remains to show that coo is a vectorstate in an irreducible'massive vacuum 
representation. Let 0Zo, Jfo)  be the representation of 92 obtained from coo by the 
GNS-construction, and let (2 be the corresponding cyclic vector. Since coo~(-) = 
coo('), there exists a unitary representation of the translations on J fo  defined by 

Uo(x ) " rCo(A)• = ~o(ax(A))(2, A e 92. 

Moreover, if A t, A 2 are local, the above estimate implies that the continuous 
functions x~coay(Alax(A2) ) converge uniformly on compact regions to x ~  
coo(Algx(A2)) as y tends to spacelike infinity, and therefore this function is also 
continuous. This shows that x ~ Uo(x ) is continuous. By the same token one finds 
that 

w - lim ~dgxf(x)n(~y(Al~x(A2))) = ~d4xf(x)coo(Al~x(A2)) • 1 
y 
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for any testfunction f, and from this one gets by standard arguments [10] that 
sp ~go + sp 4` ~ spa& Hence 

sp ag o c {0} u {p: p2 > #2, Po > 0 }, 

where ~t = M - m  is the upper mass gap in sp 4`. Also, 0esp  4' o because f2 is 
invariant under Uo(x ). 

For the proof that (zc 0, 2¢~o) is irreducible it suffices to show that 0 is a simple 
eigenvalue of the generators of Uo(x ). From Corollary 3.2 it follows that for A e ~1((9) 

II /I =< d2h(2), flAIl, 
[Yl- ]Yol 

so this expression converges to 0 if y tends to spacelike infinity. On the other hand 
one gets for any qJ e Jr" with supp ( / /c  A~ and B T  :/: 0 

lira ~ d4x f (x ) (B~,  rc(%(A fl% +~,(A2))B~F ) 

= lim {~d~xf(x)(B~,  n(%(A~))BE(A'~)zc(%+y(A2))T) 

" + [d~xf(x)(BT, ~z(%(A~))B[1 - E(A;)]~z(%+,,(Ae))70}, 

and the last term vanishes if in momentum space f has its support in some suffi- 
ciently small neighbourhood of the origin. To the remaining term one can apply 
the above estimate giving 

.(d4x f (x)(oo(Al~(A2) ) - -  ¢Oo(A1)ooo(A2) ) = 0 

for all Aa, A2~9.1 and the restricted testfunctions f Hence 0 is a non-degenerate 
eigenvalue of the generators of Uo(x), and this completes the proof of the theorem. 

QED. 

It follows also from the above argument that the vacuum representation ~z 0 is 
normal relative to zc on any local algebra 9.1((9). tn our next theorem we will strength- 
en this statement. For  this purpose we need some notation: let (9 be any open 
double cone whose closure (~ lies in the spacelike complement of the origin in N4, 
and let a be any point. Then the region 50 = a + (~) 4. (5' is called a spaeetike cone 

3->0 
t with apex a. Clearly, 50 - a is an open, convex cone, and (2a - 50) 5 p . Moreover, 

9.I((9) c 9.I~(50) for any (9 ~ 50' because of locality. 

Theorem 3.5. Let (n, ovf) be a massive single particle representation of 9.I with a 
cyclic vector, and let (no, 2/~o) be the associated vacuum representation. Then the 
restrictions of ~ and ~o to the algebras 9A~(5 p) are unitarily equivalent, i.e. for any 
spacelike cone 5 p there exists an isometry V of J f  onto J f  o such that 

Vzc(A) = 7Co(A)V for A~I~(50). 

Proof. Since the translations % are unitarily implemented in the representations 
and zc 0, it suffices to consider spacelike cones 5f containing some neighbourhood 
(9 of the origin in Minkowski space. Then, if a is the apex of 5 °, one has [2 + 1] (9 c 
50 + ha for 2 > 0 and consequently 

 (w(50 + ha)) c + 1](9))'. 
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It follows therefore from Corollary 3.2 (using the same notation) that for any 
A ~Ic(5  P ) 

ff~2E(A;)B*rc(%a(A))BE(A1) <h(2 + 1)'t[ [l, A 

and h(£ + i) converges rapidly to 0 for 2 ~ oo. Now 2a tends to spacetike infinity 
for 2 ~ oo because (with our choice of 5 ~) a is a spacelike vector, and therefore 

oo 

II E(A~)B*Tc(c%,(A) - Oo(A )" 1)BE(A~) I1 < ~ d2'h()Y + 1). H A I1" 
2, 

This shows that the restriction of co o to 9.I%~) can be uniformly approximated 
by vectorstates in the representation re, hence coo(A)= C5o(7~(A) ) for AegF(Sf), 
where (5 o is some normal state on rc(9i~(Sf)) . 

If (50 is induced by a vector ~ e 2(( which is cyclic for zc(9.I~(5 p))- one can define 
an isometry V by 

V.rc(A)f2 = ZCo(A)f2 for AeNC(5#). 

Clearly, V maps ~f~ onto 54f 0 because the vacuum vector (2 is cyclic for Uo(9.1c(Sf)) 
according to the Reeh-Schlieder theorem 7 [21]. Also, Vu(A)= rco(A)V for A~ 
~F(SP), so the proof of the theorem is complete if one can establish the existence 
of ~. Now let ( b s ~  be any vector which is analytic for the energy [20]. It follows 
then by a slight generalization of the Reeh-Schlieder theorem that 

[~ (~ (S  0 ) ' ~ ]  ~ [~(~) '~ (~(~) ) -  ~]  = [~(gX)'~(~)- ~]  = ~ ,  

where the last equality sign holds because 7c is a factorial representation. Hence 
is separating for rc(~V(~))-, and therefore any normal state on x(9.ic(50) - 

is induced by some vector in Yt~[9; Thin. 2.7.9] ; in particular there exists a vector 
~ H  such that o50(C ) = (~, C~) for CErc(~ff(SP)) -. Moreover, ~ is also separat- 
ing for zr(~I~(SP)) - which may be seen as follows: if C~ = 0 for Cerc(~V(Se)) - ,  
one has also 

li cv( ) 3 i1 = = COo( ( C * C ) (  - ) =  o(C*C) = II c b  II = = o 

for x e ~ -  a, and using the spectrum condition for U(x) one concludes that 
CU(x)(2 = 0 for all x. So if one integrates x ~ U(x)(2 with a suitable testfunction, 
one can construct a vector which is analytic for the energy and which is annihilated 
by C. As was shown, this is only possible if C = 0. Thus ~ is separating for 
N9.1~(5~)) - ,  and according to the theorem quoted above there exists then a vector 
~ e  ~ inducing c50, and 

= m]  = m], 

where the second equality sign follows again from the Reeh-Schlieder theorem. 
Finally, if there exists any cyclic vector 7~EYg for rc(~I), then there exists also 

7 Weak additivity is not needed here since 9.1(x - 5 f) c 9Xc(5 p) for x~3a - 5 ¢ and U 9.1(y - 5 p) is 

norm-dense in 9/ 
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a vector ~ b ~  which is cyclic and analytic for the energy, because U(x)e~(9.I)-. 
(A simple example is ~b = e x p ( -  Po)TL) So one may set in the above relation 
[n(9.I)- <b] = Ng, and this completes the proof of the theorem. QED. 

If in this theorem one drops the assumption that H contains a cyclic vector, 
then it still follows from the above argument that the restrictions o-f n and s o 
to 9Ac(5 P) are quasi-equivalent. This result cannot be improved without further 
information, because the representations 7z and ~z o may live on Hilbert spaces 
whose dimensions are of different cardinality. However, if -~. is separable then 
there always exists a cyclic vector in J4g. For  the proof of this assertion we remark 
that n0(9.Ic(6e)) , and consequently n0Ic(5~)) - is a v o n  Neumann algebra of 
type III according to an argument of Driessler [22]. But on a separable Hilbert 
space any von Neumann algebra of type III containing the identity has a cyclic 
vector [9], and any vector which is cyclic for n(9.1c(Se)) is a fortiori cyclic for 
~zOt) 

In conclusion we remark that the analysis of this section can be carried out in 
any number of space-time dimensions. Only in the model-world of two dimensions 
Theorems 3.4 and 3.5 have to be modified, because there it is possible that the 
states (~c~x(-) converge to different vacua if x tends to spacelike infinity in the right 
or left wedge, respectively. (As is well known, this does happen in the so-called 
soliton sectors of some two dimensional models; see e.g. [23].) Since it is obvious 
how to modify the statements in this case we omit the details. 

4. Composition of Sectors 

If n 1 and n 2 are representations of ~ describing single particle states there should 
also exist a representation describing states where both particles are present. 
At this point the localization properties of particles are important, because they 
lead to a natural definition of such composed representations. 

For  representations satisfying the D H R  8-selection criterion (1.6), a composition 
can be defined because the equivalence of n and s o on the algebras 91((9') implies 
that there are localized morphisms p of ~ such that n o °p ~- n. Hence if n o °pl ~ n~ 
and n o o P2 -~ n2 there exists also the composed representation n o o p~ P2, and this 
definition of a composition is natural because the equivalence class (the sector) 
of the composed representation depends only on n~ and n2, but not on the parti- 
cular choice of the morphisms Pl and P2 [DHR I]. 

We shall see that a similar result holds also for representations which are localiz- 
able in spacelike cones 5 ~. 

Definition. A representation (n, J/f) of ~[ is said to be localizable in cones relative 
to a vacuum representation (n o, :¢fo), if for any spacelike cone ~ there exists an 
isometry V from J f  onto Jr0 such that 

Vn(A) = no(A)V for A~gA~(Sa). (4.1) 

We denote the class of representations which are localizable in cones relative to 

8 In the following we will refer to the articles [3] and [4] as [DHR I] and [DHR II], respectively 
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a fixed vacuum representation rc o by (S). If 92 has more than one vacuum representa- 
tion there exist several such classes, but it is not necessary to distinguish them here. 
As we have shown in Theorem 3.5, all massive single particle representations are 
elements of some (S). 

Using the freedom to choose the location of the cone 50 in relation (4.1) it follows 
that [I ~(A)/I = II ~o(A) It for all A~92. So any ~ ( S )  can be regarded as a representa- 
tion of rco(92), and identifying the algebras rco(~l ) and 92 we may drop in the follow- 
ing th e symbol Uo- It will also be convenient to fix ~f~o as representation space 
for the representations in (S). In particular, if u~(S) we may choose any spacelike 
cone Yo and use the corresponding isometry V from relation (4.1) for the defini- 
tion of a representation p on ~ o  which is equivalent to 7c, 

p(A) = Vu(A)V-1, A~92. (4.2) 

This representation acts trivially on 92c(5~0) 

p(A)= A, As92c(50o), (4.3) 

and we refer to this important fact by saying that p is localized in 50o- 
If one performs this construction for any other spacelike cone 5P 1 , one obtains 

a representation Pt on ~g~0 which is equivalent to p, so there exists a unitary opera- 
tor V~ N(Ho)  such that 

Vp(A) = pI(A)V, Aeg.l. (4.4) 

The localization properties of p and p t imply that 

VA = A V (4.5) 

for A~92c(50o)c~ 92c(501), hence if Y2 is a spacelike cone containing 50o and 5 ~ ,  
it follows from the duality assumption that 

Ve N(5~2) - . (4.6) 

So the intertwiners V are related to the algebra ~)1, but in contrast to the case con- 
sidered by DHR they need not be elements of 9.I. Also, p(92) may not be contained 
in 9.1, so a composition of the representations p is a priori not defined. 

This problem is solved by extending p to some larger algebra on which it acts 
as a morphism. Here one makes use of the fact that the representations p are weakly 
continuous on the algebras 9X(50), so they can be extended to the weak closures 
92~(50)- by continuity. Since the set of regions 5 ° is not directed, it is not clear 
whether there exists an extension of p to the C*-algebra which is generated by all 
the algebras 9.ic(50) - ,  where .90 are arbitrary spacelike cones. But given some 
auxiliary spacelike cone 50a, the family of algebras 92~(50a + x)- ,  x e ~  4 is an in- 
creasing net with respect to the partial ordering 

x <y¢~50, + x ~ S P  +y, (4.7) 

and using relation (4.4) one can define an extension of p to the algebra 9 

c* 
~3s~" = U 91c(50, + x)- .  (4.8) 

X 

9 Because of duality the algebras 2F(5 0 and ~2[(Y)' coincide. But we distinguish them in order to 
display at which points of our argument duality is used 
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Clearly ~3 ~a depends only on the class { 5 ,  + x, x6 ~4}, so ~3 s% = ~3 s%+x for any x. 

Lemma 4.1. Let  p6(S)  be a representation of  9.1 on :ggo which is localized in 5~o . 
Then there exists a unique morphism pSpa from ~s~a into ~3(2/f o) which is weakly 
continuous on 9.1c(5, . + x ) -  for any x and coincides with p on 9.1. I f  5" o is spacelike 
separated from 5". + x for some x, ~s% is mapped into itself by pS%. 

Proof. Let A69.Ic(5". + x) and let Pl be equivalent to p and localized in 5"4 + x. 
Then, if Vis a unitary intertwiner from Pl to p, we get from (4.4) 

p(A) = V A V -  1. 

Thus p is weakly continuous on ~Ic(5"a + x), and setting 

pS%(B) = V B V -  1 

for Be~21c(5". + x)-, we get the unique weakly continuous extension of p to 
9.1c(5". + x)-. Since ~3 s~° is the C*-inductive limit of the net of algebras 
(~F(5". + x)-)x~, this relation determines p~° on all of ~3 s%. 

If 5"o is spacelike separated from 5". + x for some x, then the algebras 
9.F(5". + y ) .  where y is such that 5"~ + y ~ 5"o, already generate ~3 s~". Now 

p~o(~(5". + y)-) = p ( ~ ( 5 "  + y))- 

because of the weak continuity of pS% on 9.F(5". + y)- .  Moreover, because of 
locality and the fact that p is a morphism, we have 

p(9~c(5". + y)) -  ~ p(gX(5"o + y))'. 

But p is localized in 5"0 = (5"4 + Y)', so it acts trivially on 9.1(5" 4 + y). Therefore 
we get from the above relations and duality 

p"%(gXc(5". + y)-) = ~(5". + y)' = 9X~(5". + y)-,  

which gives the desired result p~°03 :'~) ~ ~3 s%. QED. 

We mention that p~° = pS%+~ for any x, and we will use this fact occasionally. 
The set of representations pc(S)  on ~ 0  which are localized in a fixed spacelike 
cone 5"o will be denoted byA~o. Using the extensions p'e" constructed in the previ- 
ous lemma it is possible to define a product in A S~o. 

Definition. P l P 2 :  = Pf~°P2 for Pl, P2eAs%, 2~ c 5"0" 
This definition is reasonable in view of the following theorem. 

Theorem 4.2. i) pap2e21S.o, ii) PIP2 does not depend on the choice of  the auxiliary 
cone 5"4 = 5"o" iii) I f  Pi ~- Pi, i = 1, 2 and Pl,/~2EAog;o for some spacelike cone 
5~ o, then PaP2 ~- P1[~2 • 

Proof. i) Clearly PlP2 is localized in 5"0" It follows then from (iii) that Pl P2e(S), 
hence P l P 2 e A s% • 

ii) If 5~. is an auxiliary cone with 5~ c c£. < 5"o then p~° is an extension o f p f  °. 
But according to the previous lemma one has p2(.~I) ~ ~ J~  and therefore p~" o p~ = 
pfo o P2 on ~ .  For arbitrary 5~ one chooses an interpolating sequence of spacelike 
cones 5"~0 c 5"o, i =  1 ..... n such that 5"~1) =_ 5"a' 5"(n). = ,~ and either 5"(0 c 5"~ + 1) 
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(i + i) or ~ j )  ~ J a  , i = 1,... n - 1. The result follows then after repeated application 
of the previous argument. 

iii) First one considers the case where Yo ~ 500" Let V~ be unitary intertwiners 
from p / t o  Pi, i = 1, 2. Then V~e2[(6eo)-, i = 1, 2 according to relation (4.6), and 
since 9.1(5fo)- ~ ~3 s%, one gets for any A ~ 9.1 

Pl /~2  (A) = ~.~o P2 (A) = V I p'~" ( ~  P2 (A) I' 2 ~) V~ -~ 

= Vlp{~(V2) p lp2(A)p~a(V21)V[  -1 

Hence in this case Pl P2 -~/~a fi2" The result for a general 5?00 follows again by 
choosing a sequence of interpolating cones and applying this argument repeatedly. 

QED. 

IfY~, .-. oY, are spacelike cones in the spacelike complement of 5e a and p ~  Ase~, 
i =  1, "-" n, one may also consider the representation pS~ . . . . .  p~2~ °p,. But this 
representation is equivalent to some p~Aseo, so the set of sectors is not enlarged 
by this representation. We may therefore restrict our attention to products of 
morphisms with a common localization cone. 

To conclude this section we note commutation properties of the morphisms p 
which are analogous to results in [DHR I]. 

Proposition 4.3. Let 5P~ and 5P be spacelike separated cones in the spacelike 
~seao ~sea Seao Sea complement of some 6¢~, and let pi~Ase~, i = 1, 2. Then I)1 P2 = P2 P~ on 

~ sen. 

~se~ o ~se~ --se~ o ~se~ Proof Since p~ P2 and Pz Pl are weakly continuous on 9A ~(-y" + x)-  for 
each x, it suffices to verify the statement for local observables. Now for Aeg2[(~0) 

/(oop o(A) = pro opt(A)= , Opz(A), 

pfoop o(A) = pfoop,  (A ) = pS p, (A ), 

hence if V~ is a unitary intertwiner from Pi to f ~ A g , ,  5~ i ~ 5~iw (9', i = 1, 2 then 
Vi~21(6fi)-, i = 1, 2 and 

= V l '  V; AV: = V2 V? AV  V: = QED. 

It follows from this proposition that the equivalence class of p~ P2, P J, Pz ease° 
does not depend on the order of factors. 

5. Construction of Fields 

We have seen in the previous section that the morphisms p can be composed, 
provided one extends them in a suitable manner. In order to simplify the calcula- 
tions with these morphisms we introduce the concept of a field bundle which is 
intrinsically defined in our setting and has many structural properties in common 
with an algebra of field operators. This formalism has been invented by Doplicher, 
Haag and Roberts [DHR II], and we adopt here their notation and conventions 
with minor modifications. 

The vector states in a representation p~Ase ° are described in this formalism 
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by pairs ~ = {p, Lu} ~A~0 x ~ 0 ,  which one interprets as elements of some vector 
bundle .,~ with fibers labeled by p. Within each fiber ~ p  of ~ one has a scalar 
product 

({p, ~}, {p, ~b}) = (k~, ~), (5.1) 

where (~, ~) is the scalar product in -_¢t~o. Generalized field operators are pairs 
B = {p, B}~A~o x ~3 s~= where 50 a ~ ;To, and they act on H according to 

{p, B}.{p,, ~'} = {p,p, p~o(S)~'} (5.2) 

so they interpolate between different fibers. A norm of the generalized fields is 
given by 

li { P, B} tl = I[ B ll" (5.3) 

We call ~s~o = As % x ~3 s~o a field bundle 1°. Clearly one has ~s~+x = ~s~o since 

~3 s~+x = ~3 s~° and pS%+x = ps~o for all psAs%. The observables are embedded into 
the  field bundles as pairs A = {l, A}, where A e 96 and z is the identity automorphism 
of 9& so in particular 

({p, Lp}, A{p, ~}) = (~, p(A)e). (5.4) 

It is also convenient to introduce intertwiners i t=  (p~[ Tip ) on W as mappings 
between fibers corresponding to non-disjoint representations p and Pa" If 
p~(A)T = Tp(A), A~9.1 then 

(p, IT[p). {p, ~} = {p,, TgJ}. (5.5) 

One checks easily that intertwiners and observables commute. In Sect. 6 we will 
introduce the notion of an adjoint of a generalized field and in Sect. 7 we will define 
translations on ~s%. 

Using the localization properties of the morphisms p one can introduce a local 
structure on the field bundles ~se,. It is natural to assign the generalized field 
operator {p, B} to the cone 500 if P~As% and BegJ(se0) . For  the identification 
of fields in a bundle ~.z~ with different localization properties, one makes use of 
the fact that the above formalism leads to a redundant description of physical 
states: it follows from relation (5.4) that the vectors {p, 7 j} and { p~, V T} (which 
may belong to different vector bundles) induce the same physical state on N if p 
and p~ are equivalent with V as a unitary intertwiner. Similarly, the generalized 
fields { p, B} and { p~, VB} (which may act on different vector bundles) induce the 
same action on physical states. Taking this into account one is led to the following 

Definition. Let 5 P c 5a; be any spacelike cone. The generalized field {p, B} ~ ~ s°° 
is said to be localized in 5 e, if for each pa eAs~ which is unitarily equivalent to p 
with V as intertwiner one has VB~9,1(Se)-. The set of generalized fields which are 
localized in 5 a is denoted by ~(Se). 

10 Note that in contrast to the situation in [DHR II] there exist many vector bundles 3¢g in the present 
case which are distinguished by localization cones 5a0, and on a fixed vector bundle .~ act several 
field bundles ~s~o corresponding to different auxiliary cones 5e 
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We remark that the generalized fields in ~(5 p) commute with all observables 
{t, A} if Aeg.lc(5~). Because of duality the converse is also true: any generalized 
field in ~ : °  which commutes with all these observables is an element of ~(5~). 
But one has to mind that for fixed Y ,  there exist only generalized fields in the field 
bundle ~s~o which are localized in cones ~ c 5: '  + x. This apparent difficulty is 
resolved in the subsequent proposition where we will show that the set ~(5 P) of 
generalized fields which are localized in some 5 r does not depend on 5:, .  Phrased 
differently, ~(,9 ~) can be regarded as a subset of any field bundle ~ :~  with 50 c 5 P' 

PropositionS.1. ~(5 P) is independent of the choice of the auxiliary cone 
~ o ~ Seo C~ Se'. 

Proof. Let ~a  c 5Po c~,~ ' be any spacelike cone. If { p , B } ~ ( 5  P) there exists a 
unitary intertwiner V from pSA:o to some / ) ~ A :  such that VBe9.1(~)-c 
N%~a)-, and (using relation (4.6)) VsN~(5~,) -.  So B ~  :° and consequently 
{/), B} e ~ : ° .  It remains to show that the action of {/), B} on ~ is independent 
of the choice of the auxiliary cone, i.e. ~:~(B) = tos~°(B) for every ~ E A :o" If 5 :  c 5~, 
or 5~a ~ 5~ t h i s  is trivial. But in four space-time dimensions any two spacelike 
cones 5P~, 5P~ c 5: o c~ 5 p' can be connected by an alternating sequence of space- 
like cones 5P~ ~) c 5:' 0 c~ S ,  i = 1 .... n (cf. the proof of Theorem 4.2), so the statement 
follows. QED. 

We shall determine now the commutation relations between generalized fields 
which are localized in spacelike separated cones. These relations will be the basis 
for our discussion of statistics in the following section. Let B~ = {/)i, B~}~(5~),  

! : t ! i = t, 2, where 5: a , ~C~ 2 are such that 5:1 c 5~2 and 5~o c~ 5~ ~ c~Se' z contains some 
spacelike cone 5~. Then there exist unitary intertwiners V~ from/)~ ~ A :0 to t3~ e A :~ 
for which V~Bi = cieg. l(5~y and 

B~B~ = {'02/)~, ,0f°(B~)B2} = {,0z,0~, ,0f"(V; ~)V-~C~2 C2}, 

B2B1 = {/)1,02,/)5~18(V21) Wl 1 C2 C1}. (5.6) 

From locality of the observables it follows that C~C 2 = C2C ~. Furthermore, 
V~ p f°(V2) is an intertwiner from p~ P2 to P:°°I P2 and similarly p f°(V~ ~)V[ ~ 
from /)2 ~o/) a to /)2/)~' But according to Proposition 4.3 we have /92 °/)1 "= 

8(/)1' /)2 ) =/)25:~(V11) V2 1 Vl '0~a(V2 ) (5.7) 

is an intertwiner from/)z ,02 t o  ,02/)1" Denoting the action of T = (/)~] T[/)) on a 
field bundle by 

(/)~ [T]/))o {/), B} = {/)1, TB}, (5.8) 

(provided the right hand side is defined) we arrive at the commutation relations 

BtBz = g ( P l , / ) ~ )  ° B z B 1 ,  (5.9) 

with s(/) ~,/)2) = (/)2/) a ] e(/) ~,/)2) [ ,0 ~/)e). Relation (5.9) implies that e(/) ~,/)2) does 
not depend on the choice of the unitary intertwiners V~ and V2, and therefore 
e(/)~, ,0e) does not change if one replaces 5~ i by 5~ = 5g~, i = 1, 2. This fact together 
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with Proposition 5.1 shows that e(p~, P2) is independent of the choice of the cones 
t ! ! 5 ~ ,  5P 2 and 5P~, as long as '~1 = ~2  and J ~  c 5~o c~ 5~ 1 m 5P 2. 

The generalization of (5.9) to n-fold products is straightforward. Let B~ = 

{p, ,  B~) ~ ~ ( ~ , 1 ,  ~ '  ' ' ~ '  5 P l c Y i ,  i , j = l , . . . n , i @ j ,  and let 5P CSPoC~SPic~.. .c~J ~. 
Then by repeated use of(5.9) one obtains the following relation for any permutation 
p o f  {1 . . . .  n): 

Bp l ( n ) . . .  B p  1 ( 1 ) = / l p ( P l  . . . .  pn)°Bn.. .  B~, ( 5 . 1 0 )  

where %(Pl . . . .  P,)=(Pp ,(1)'"Pp ~(,)lep(Pl, ' "  P,)IPl ,..P,). The unitary inter- 
twiner ep(p~ . . . .  p,) is uniquely fixed by (5.10) and does not depend on the choice 
of the cones ~1 . . . .  ~ ,  and 5e a within the above restrictions. The properties of 
the permutation operators ep(Pl . . . .  p,) follow easily from (5.10) (compare [DHR 
I, Thm. 4.2 and 4.3]). In the special case p~ . . . . .  p~ = p we adopt the notation 

e p ( p , ~ )  = e~")(p). (5.11) 

n-times 

Then the analogue of [DHR I, Prop. 4.4] is 

Theorem 5 2 Let p ~ A ,~ Then i) p -~ e(")(p) is a unitary representation of the per- " * ~0" P 
mutation group P("). ii) e~)(p) commutes with p"(N), iii) The equivalence class of the 
representation e~ ") of P(") depends, for every heN,  only on the equivalence class 
ofp.  

Proof (i) and (ii) are immediate consequences of (5.10). To prove (iii) let fi~A~0 be 
unitarily equivalent to p. Then by explicit computation one can verify that e~ "> is 

P 
unitarily equivalent to e ("). Again this result extends to morphisms fi ~-p with 

P 
arbitrary localization cones by geometrical arguments. QED. 

6. Charge Conjugation and Statistics 

We use now the information on the intertwiners e~")(p) for an analysis of the possible 
statistics of the sectors p and for the construction of charge conjugate sectors. A 
most familiar situation from field theory is present if p2 is an irreducible represen- 
tation. Then it follows from Theorem 5.2 that e(p, p) = : % is a multiple of 1, and since 
e z = 1 because of relation (5.9) this multiple can only be 1 or - 1. This means that 

P 
the generalized fields {p, B~} and {p, B2} commute, respectively anticommute, if 
they are localized in spacelike separated cones. We refer to this fact by saying that 
the sector p has Bose, respectively Fermi, statistics. In both cases a conjugate 
sector can easily be constructed in view of 

Proposition 6.1. Let p~A~o be an irreducible representation. Then the following 
statements are equivalent. 
i) p2 iS irreducible, ii) ep = _+ 1, iii) p~" is an automorphism of ~ °  if Y a c 5z o. 

Proof (iii)-~ (i) is obvious, and ( i )~  (ii) follows from Theorem 5.2 as explained 
above. It remains to establish ( i i )~  (iii). Let B~9.V(Sza)-. Then we fix a cone 
5~ c , ~  which is sufficiently sinai1 such that there exist cones 501 ~ 5P c~ 5 ~'. 
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Picking a Pl ~ A~I which is unitarily equivalent to p with Vs~3 ~ as intertwiner we 
get 

B = p~°(B) = Vp~°(B)V -1 = p ~ ° ( V B V -  1), 

where we used that V = p~°(V)ep according to relation (5.7) and ep = + 1 by 
assumption. Now the operator V B V -  ~ is independent of the choice of 5~1 within 
the above restrictions since p~° is isometric. So if (9 c o9~ is any bounded region 
we can choose Yz = (9' and since V~(9.Ic(SPo)c~gA'(SPl))' c 9A((9)', we conclude 
that VB V-~e N((9)' for any (9 c Y~. This means that V B V - I ~  "~[(~a/ : ~[c(~a )-  
c ~3 wo, hence 

~c(se.)-  >o 9g~ eo 9.1~ - ~ p  ( ( ~ ° ) - ) = p  ( ( 9 ~ ) ) .  

Taking into account that p ~ = p ~ ° + : ~  it follows also that 9 A c ( 5 # + x ) - c  
p~°(9.1~(St= + x)-) if 5P + x = 50 and consequently ~3 ~° c p~o(fl3~o). QED 

So in this situation a representation which is conjugate to p can be obtained by 
restricting the inverse ofp ~° to 9/. It can easily be seen that the resulting represent- 
ation fi is again an element of A~o and that tip is the vacuum representation. Also, 
the sector of fi depends only on the sector of p. 

We turn now to the more tedious analysis of the cases where the sector of p 
has para-statistics. Then p~° does not have an inverse, but there always exist 
left-inverses ofp ~° ifSP a c 5Po, as we shall see below. A left-inverse ofp ~°, 5~ c 5e o 
is a positive linear mapping q) from ~B ~° into N(W0) such that for B~ ~ ~3 'e°, i = 1, 2, 3 

~(p~(B1)B2p~°(B3)  ) = B 1 ~b(B2)B 3 , 

q~(1) = 1. (6.1) 

It follows from these conditions that ~ b ( ( S P , ) )  91(5~ ) ' hence ~b03 ¢°) = ~3 ¢-, 
so left-inverses can be composed. 

Now according to Theorem 5.2, ~ commutes with p2(91), so q~(e,) commutes 
with p(9/). Hence if p is an irreducible representation, 4~(e) is a multiple of the 
identity, 

q~(e) = 2 . 1 .  (6.2) 

The number 20 is called the statistics parameter of p. For the determination of the 
possible values of 2p we can rely on the results of [DHR I]. In that analysis it is 
only used tl~at for each n~N 4, "-~ induces a state on p"(9.I)' = ~(5~o) ' (which 
follows from the definition of ~b) and that this state is faithful if 2 4 0 (this will be 
shown below). Using the same arguments as in [DHR I], one find~s that the admis- 

1 
sible values of ,~p are ___ ~, de N and 0, and since the set of left-inverses of pS,. is 

convex it follows also that 2 does not depend on the choice of ~. 
The value of 2 determines uniquely the equivalence class of the representations 

1 
(") of P(") for every n~ N. If 2 0 = ~ then the Young tableaux associated with the 8 0 

'(") are all tableaux with at most d rows, so p has para-Bose statistics representation eo 
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of order d. If 2 = - 1 then all Young tableaux with at most d columns appear, 
P d 

and p has para-Fermi statistics of order d. If,;op = 0 there are no restrictions on the 
Young tableaux; this is the so-called infinite statistics case• For a derivation of 
these results see [DHR I]. 

So far we have considered in our analysis of statistics only representations 
p ~ A s% for which 4)(ep) is a multiple of the identity. This is always the case if p is an 
irreducible representation. However, since the set of irreducible representations in 
As% is (in the para-statistics case) not stable under composition we extend now 
our analysis to arbitary representations. Again, we generalize methods developed 
in [DHR I] to the present situation. To this end we need the following positivity 
property of left-inverses 4) of pS%: 

4)(B'B) ~ 4)(B*)O(B) for B e $  s%. (6.3) 

This property follows from the fact that the representation n¢ o pS% of ~3 s~°, where 
n¢ is the representation of ~3 s% induced by the state co o o 4), contains a subrepresent- 
ation which is equivalent to the vacuum representation of ~3 s% (compare [DHR I, 
Lemma 3.5]). Using relation (6.3) one can derive the estimate 

[[ ¢(B*B)II ~ 1[ 4)(ep)B*B4)@o)[1 for B ~ $  ~', (6,4) 

c 5 a' which is sufficiently large where 50 a is any spacelike cone with 5 °  57 = ^ 0 
such that there exists some spacelike cone 5" 1 ~ 5Pac~5~'. To verify this let Be 
~F(5~ + x)- and let pleAsq+~ be equivalent to p with V e $  sea as intertwiner, 
Then 

V -  iB = V -  ~pf°(B) = pS~a(B)V-~ = ps~(B)eppS'a(V- ~), (6.5) 

where we used relation (5.7). So by the defining properties of a left-inverse 

4 ( Y  ~Y) = B¢(ep)Y-  1. (6.6) 

Now because of relation (6.3) we have 

4)(B'B) > 4)(8* Y )O(Y-  1B) = Y4)(gp)B*B4)(go)Y-1, (6.7) 

and taking the norm on both sides of this inequality the assertion follows. 
As a first consequence of relation (6 4) we see that if 4)(e ) = 2 1 and 2 ¢ 0, 

• . ^ "  p P - p 
$ :-'~a 2 t c ~ Saa then4)(B B ) = O l m p l l e s B = O f o r B e ~  .Sincep (9.1[) ~gd(sPo) ~ 3  itfollows 

then that q5 induces a faithful state on p2(9.I)' if p is an irreducible representation 
with 2p =# 0; similarly 4)"- t induces a faithful representation of p"0I)', as was claim- 
ed above. 

Next let p be reducible, and let Eo be the spectral projections of the selfadjoint 
operator (b(eo) corresponding to spectral values 2 with I =1 >-- 6 > 0 Since Eoep(9.1 )' c 
~3 sL' we get from relation (6.4) 

I14)(E~B*BE~) II >= (~2 " IIE~B* BE~ [1 (6.8) 

for every B e ~  s~°. If in particular E~ep(9.i)', i = 1, ... n is a set of mutually ortho- 
gonal projections with EIE ~ = E~, then 4)(Ei) is a multiple of the identity, so 
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4)(E~) > 62.1. Therefore we can estimate 

1 >= E, ¢(E,) >= n" 6 2. 1 (6.9) 
i 

and consequently n < 5- 2. This shows that the spectrum of ~b(ep) is discrete with the 
only possible accumulation point 0. Moreover, E~p(N)'E o is a finite, discrete yon 
Neumann algebra, so if ~b(ep) :/: 0 the representation p has irreducible subrepresent- 
ations. We shall show that these subrepresentations are localizable in cones and 
that they have finite statistics. 

Let Eep(~I)'  c 9,1(5zo)- be a projection with E¢(eo ) = 2 .E  and 2 5/=- 0. Then, 
applying an argument of Borchers [24], one can find in any algebra 2[(5Po)-, 
where 5~o is a slightly larger cone containing 570 in its interior, an isometry W 
with W ' W =  1 and W W *  = E. Setting 

,oL.(A) = W * p ( A ) W  for AsgX, (6.10) 

one obtains a representation pEsA¢o which is unitarily equivalent to the sub- 
representation of p acting on E ~  0 . The statistics operator of Pe can be computed 
and turns out to be 

ep~ = W*pS~°(W*)sopS'"(W)W, (6.11) 

and a left-inverse of pe is given by 

$E(B) = 4 ( W B W * ) "  ¢(E) -  1. (6.12) 

(Note that ~b(E) is a nonvanishing multiple of the identity.) Thus the statistics 
parameter )'pE of p~ is obtained by the following calculation: 

$e(~ pE ) = c~(WW,  p . ~ ( W , ) e p p ~ ( W ) W W , ) ¢ ( E ) -  1 

= W*dp(EepE)Wdp(E)- 1 

= W,O(ps ,  o(E)%p~o(e))W~(e) 1 

= W*E4)(ep)EWdp(E)- 1 

= 2.¢(E) -1 5a 0, (6.13) 

where in the third equality we used the relation epE = p~"(E)ep which is a con- 
sequence of relation (6.5). 

Hence we arrive at the conclusion that p contains irreducible subrepresenta- 
tions with finite statistics, whenever q)(ep) :~ 0 for some left-inverse ~b. In particular, 
ifp is a factorial representation, it is either a multiple of an irreducible representa- 
tion with finite statistics or ~b(ep) = 0 for any left-inverse ¢. So it is no loss of general- 
ity to restrict the analysis of statistics to representations fulfilling relation (6.2). 

We turn now to the question of the existence and uniqueness of left-inverses. 
in order to establish the existence of a left-inverse for each pS% we choose a se- 
quence of cones 5e~, i t  ~J such that for any x s  N4 and for sufficiently large ks  
0of k c ~ + x. Then we pick morphisms p ~ s A z  ' which are unitarily equivalent to 
p with V~ as intertwiners. Using the localization properties of the morphisms p~ 
it is obvious that 

n - lim vj)sf°(B)V~ - ~ = B (6.14) 
i-+oo 
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for Be~3 s%. So the sequence V~ transfers the charge carried by pSq to spacelike 
infinity. As in [DHR I] we obtain now a left-inverse q~o of pS~ which is defined on 
~3 sq by setting 

6i(B) = giBgi -1, BrYn3 ~ (6.15) 

and choosing a weak limit point 4)0 of the sequence % (This means that for any 
~, g ' f ~ o  and B f ~  '~" the matrix element (~, ~bo(B)~' ) is some limit point of the 
sequence (~P, a~(B)~g'). Such limit points q5 o exist due to compactness arguments 
[25].) Obviously, 4) 0 is a positive linear mapping from ~s% into N(Jfo), and in view 
of relation (6.14) it satisfies also the defining condition (6.1) for left-inverses of pY°. 

If p is a reducible representation of gt then the left-inverses of pS% are not 
unique. But if p is irreducible and )~o =fi 0, then there exists exactly one left-inverse 
4) o of ps~o which is normal on ~lc(~a + x)- for any x. Such a ~b o is obtained as in 
the preceding discussion, but in order to gain control on the properties of ~b o we 
must choose the cones ~ in such a way that the intertwiners V~, which are used 
in the construction of ~b o , are in the domain of q5 o . To this end we choose a sequence 

.~(0 and each region _c~(0 i f ~  which is such that ~ ( ~ + ~ ) c ~ a ,  of auxiliary cones ~ ,  
y(0  c~ o ~  + ~)' contains some spacelike cone. Then we pick a sequence of localization 
cones ~ c ~0c~  ~ +  1), with the property that for each x there exists some suffi- 
ciently large k f  N for which O~g c 2~ ~ + x. With these preparations we achieve 
two things:first the intertwiners V~ in relation (6.5) are contained in ~s-o(,+,), and 
second the left-inverses q50 of pS~o obtained this way can be extended to left- 
inverses ofp sq") for any i f  N. As a matter of fact, if 

c# 

g: = U ~3s%(", (6.16) 
i 

then any weak limit point q~0 of the sequence of isomorphisms cz :¢z(C) = VgCVi- ~, 
C f g  has the following properties: it is a positive linear mapping of g into ~(~¢'o), 
and the restriction of ~o to any algebra ~3 °¢(~;~ defines a left-inverse of pW~,~. We 
shall call the left-inverses 0 of p'~° which have an extension q~ with these properties 
g-extendable. 

In the next step we prove that there exists only one g-extendable left-inverse 
q5 o of pS~a if 20 4: 0. Let ~b be any g-extendable left-inverse of pw~ and let 
B f ; B ~ ( ~  + x)-. Then it follows from relation (6.7) that 

c~(B* B) = ~)(B* B) >_ 22 V~B*B V~ - 1  (6.17) 

for sufficiently large i f  N. (Here one needs that the intertwiners V i are in the domain 
of ~.) So going to the limit of large i one finds that 

O(B*B) >=?.~o(B*B) for B f ~  s%. (6.18) 

If 22 = 1 this leads immediately to the conclusion that ~b and q5 o coincide on 
~s~  because (q5 - &o)(B*B) > 0 implies 

I1 (~b - ~b0) I~3 s~ II = II (~b - ~bo)(1 ) [l = 0. (6.19) 

If ,~2 < 1, then (1 - 22) - ~'(4~ - ~-24~o) is again a g-extendable left-inverse of p'~". 
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So applying the estimate (6.18) we get for B ~ B  s~ 

O(B*B) >= 2o2"(1 + (1 - 2oz))~b0(B*B ) (6.20) 

and after n steps 

4)(B'B) > 22. ~, (1 - 2~)"~bo(B*B ). (6.21) p 
i = 0  

Hence if 2 o @ 0 we obtain in the limit n ~ Go the desired result (~b - qio) I ~'~° = 0. 
Now since all weak limit points of the sequence 6i I ~s~° defined above are 

e-extendable left-inverses of p'Y~ (by construction), it follows that ~b o is the only 
weak limit point of this sequence. Therefore, since the algebras 9~c(5~ a + x)-  c ~3 s% 
are weakly closed, ~b o is normal on 9.It(SPa + x)-  for any x [9]. 

Next one sees, using the above uniqueness result, that the restrictions of all 
left-inverses of pS~o to the algebra 91 coincide. This is so because if one restricts 
any left-inverse q~ of pS% to an algebra ~s~o, where 5~ a ~ 6 0  is sufficiently large, 
then this restriction is e-extendable (for some suitable algebra ~ ~ ~3s%), and it 
therefore coincides with the restriction of ~b 0 to ~ .  Since 9X ~ ~3 s~'~ one gets the 
desired result (q~ - q~0) 19i = 0. 

If in particular q~ is normal on 9.F(5~ + x)-  for all x, then (q5 - qb0) I ~3s~° = 0. 
So q5 o is the only left-inverse of pS~o which is normal on the algebras ~F(Y~ + x)-.  
Finally, choosing alternating sequences of interpolating cones (cf. the proof of 
Theorem 4.2) it follows that the restriction of q~o to N does not depend on the 
choice of the auxiliary cone 5P.  We collect these results in 

Proposition 6.2. Let P6A s% be irreducible with finite statistics, 2p @ O. Then for 
each spacelike cone 5P~ ~ 5P o there exists a unique left-inverse (a s°~ of p s~ ° which is 
normal on 9.F(SP + x)-  for all x, and 0 s% I g.I does not depend on the choice of SP . 

Using this result we can establish now the existence of representations ~ which 
are conjugate to p. 

Theorem 6.3. Let PEAs% be irreducible with finite statistics. Then there exists an 
irreducible representation ~6As% such that ~p contains exactly once a subrepre- 
sentation which is equivalent to the vacuum representation. ~ is unique to within 
equivalence. 

Proof Let 4s~ be the left-inverse of pS~ distinguished by the preceding propo- 
sition. Then the state ~o~ = (~o ° 0 s~° 19.1does not depend on 5P c 5~ o and extends to 
a normal state on 2F(SP + x)-  for any x. This implies in particular that o o ° 0 s% x 
(V-1A V), A ~ 91 is for each unitary operator V6 ~Y~ a vectorstate in the represent- 
ation 7c+ of 9.I induced by co4. Now let 5P 1 be any spacelike cone and let pa eAsq be 
unitarily equivalent to p with V as an intertwiner. Then, choosing a cone 5~ 
5e 0 m c ~ ,  one gets 

O~oo~S'~(V-1AV) = OOo(A ) if A~9.F(5'~). 

If roe is a positive energy representation, one can use this relation as in the proof 
of Theorem 3.5 to show that ~ is localizable in spacelike cones. The remaining 
statements follow then fl'om our uniqueness result on left-inverses. If 7~e is not 



Particle States 31 

known to be a positive energy representation, then one must apply the methods 
of [DHR II] for the construction of a fieAso ° with ¢5 ~_ n 0. We remark that the 
latter construction makes the role of the finiteness of statistics for the result more 
transparent. QED. 

It follows also from the analysis of [DHR II] that the statistics parameter of 
fi coincides with the statistics parameter of p. For the sake of convenience we 
give here a direct calculation. 

Proposition 6.4. Let p E A Jo be irreducible with finite statistics, and let p be a conju- 
gate representation. Then 2~ = 2¢ 

Proof. Let R be an isometric intertwiner from the identical (vacuum) representation 
1 to ~p where ~As~  ° is irreducible and conjugate to p. Then, if S~ ~ ~ o ,  the 
unique left-inverse ~bf ° of pS% is given by the formula 

~p ~(B) = R* fiY~(B)R, B E ~  J°. 

Now if V is a unitary intertwiner from p to some PleAsq,  ~1  '~o c ~ ,  then 

~0 = V -  lpS~°(V), 

and the statistics parameter 2 0 of p can be expressed according to 

2ol = q$~(e ) = R* fis~"(V -~ lpS%(V) )R = R*~s~°(V - 1)(fi p)S~°(V)R 

= R*~S%(v - X)R V = R*~sP°(V*)VpY~(R) 

= R*~(p, fi)pSe°(R), 

where we used that R~C(&°o)' ~ g[(~l)'- Since e(fi, p)R is an isometric intertwiner 
from ~ to pp, we obtain by the same calculation the following expression for the 
statistics parameter ).~ of fi: 

).-1 = R* fi~(~(fi, p)R). 
P 

Hence 2¢1 = (,~1)* = R*(2~I)*R = R*fis~°(R*~(p, f i))RR 

= R,~S~(R,e(p,  fi))(fip)se, (R)R = R*fi~'(R*e,(p, fi)pS%(R))R = 2 1. 
P QED. 

We remark that the machinery developed so far is sufficient to prove as in 
[DHR I] that the set of sectors with finite statistics is closed under the operations 
of composition of sectors, performing finite direct sums and taking subrepresenta- 
tions and conjugates. 

In the case of infinite statistics a reasonable conjugate sector cannot be con- 
structed. It is therefore gratifying that for single particle representations finiteness 
of statistics can be proved. For irreducible single particle representations this has 
been done in [17], and we sketch here the straightforward generalization of this 
argument to factorial single particle representations. 

The idea is to construct the conjugate sector directly by combining the infor- 
mation on the localization properties of single particle states (Theorem 3.1.) 
with the fact that single particle representations are localizable in cones (Theorem 
3.4). So let p~As% be a single particle representation. Then we consider the follow- 
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ing states in the vacuum sector: 

q~x(A) = (U o(x)BE(A ~)q~, A U p(X)BE(A ~)¢), A ~ ~2t. (6.22) 

Here Up(x) are the translations in the representation p, B and E(A~) are chosen 
according to Theorem 3.1 with respect to the representation p and 4 ~ e ~  o with 
It BE(A~)¢ I = 1. Since p acts trivially on 9Jc(Yo), % looks for observables in 
9Ac(Sf0) like a single particle state which is localized in some region about x. On 
the other hand, ~p~ has total charge zero, so the charge of this particle is compensa- 
ted in the state ~0 x within the cone 5e o. 

Now let x tend to infinity in the spacelike complement of Y0 such that for some 
neighbourhood (9 of the origin x + 2(x)(9 c 5~o, where 2(x) is a positive function 
which tends (not too slowly) to infinity as I x[ becomes large. Then the effect of the 
original particle in the states q) is shifted to infinity, and only the compensating 
charge remains. To verify this we apply Corollary 3.2, giving 

10u opt(B) I < h(2) [[ B II, B ~ p(~(2C + x))' (6.23) 

with a rapidly decreasing function h. But for any bounded region (_91 there exists 
a constant g > 0 such that (91 ~ (x + (2(x) - #)(9)' if 2(x) is sufficiently large, hence 
N((91) c 9A(x + (2(x) - #)(9)' = p(9.I(x + (2(x) - #)(9))'. Thus for any Aeg.I((91) 
J0,~9~(A)] is rapidly decreasing, so ~ = lira q~ exists and is a locally normal state on 
gg[. x 

By the GNS-construction applied to the state q~ one obtains a Hilbert space 
Jr<o, a cyclic vector Q~ and a representation ~e such that 

( f2,  ~z (A)f2) = ~o(A), A c 9.1. (6.24) 

As in [17] one can establish now the following facts: 
i) ~ is localizable in spacelike cones, so there exists a fleas% with ~5 _~ r%. ii) ¢5p con- 
tains a subrepresentation which is equivalent to the vacuum representation, iii) 
There exists an isometric intertwiner R from ~ to tip such that (RfL ~(A)RQ)= 
~0(A), and 

O(B) = R* fis~(B)R, Be ~B s~° (6.25) 

defines a left-inverse 0 of pS%. iv) ¢5 is translation covariant, the translations q/o 
being defined by 

U~(x)'~(A)R(2 = fi(cc (A))~S%(Uo(x ) Up ( _ x))R(~, A ~ 91. (6.26) 

(Uo(x) are the translations in the vacuum representation and Uo(x)Uo( - x)s~3 s% 
for any x.) v) q/¢ fulfils the spectrum condition, sp ql¢ c P+. 

So fi is a reasonable conjugate representation. It remains to show that 4~(ep) 4; 0. 
This is achieved by an analysis of the two-point function of generalized fields con- 
necting the vacuum and the particle sector. 

Consider two mutually spacelike cones 5~1,5P 2 c 5°o c~ 5P~, and let {p~,B~}~ 
~(5~), i = 1, 2. Then, by a straightforward computation one finds that 

B1B* = ps~(B~)epp~=(B1) (6.27) 
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and consequently 

4)(B~B*) = B*c~(ep)B 1. (6.28) 

Hence if q~(~p) = 0 it tollows from (iii) that 

(tse°(B~)Rf2, fiS%(B*)RO) = 0. (6.29) 

Now if x is such that x + 5P 2 c 5P2, then {p, Up(X)B2Uo( - x ) ) ~ ( S P  2 + x) c 
~(5~2), and using (iv) one gets 

(fiS%(S~)RO, U~(x)tS~"(B*)R(2) = 0 (6.30) 

for the restricted set of x. But since according to (v) sp ~ c V+ this result holds 
for all x by the edge-of-the-wedge theorem. Now if V i are intertwiners from p to 
pieAs~, and if A~91 is any local observable, then {p, V i- ~A}e~(SP~ + y) for some 
y, so from the above result 

(pse°(V1)Rg2, fi(A)fiS%(V2)R(2) = 0 for Ae~I. (6.31) 

Yet this is contradicting the facts that Rg2 is cyclic for t(N) and t s~" normal on 
~I~(5P~ + x)- for any x. Therefore ~b(ep)5~ 0 for the left-inverse defined in (iii). 

Taking into account the previous discussion of reducible representations we get 

Theorem 6.5. Let  n be a (factorial) single particle representation. Then n is equiva- 
lent to a multiple of  an irreducible single particle representation with finite statistics. 
(Note that in the derivation of this result the assumption of duality in the vacuum 
representation was used.) 

In view of this result it is natural to define the class ( P ) c  (S) of particle re- 
presentations which are generated from the irreducible single particle representa- 
tions by composition, performing direct sums, taking subrepresentations and 
conjugates. We shall restrict our attention in the remainder of this article to (P) 
and show that it describes all states of interest in particle physics. 

In conclusion we remark that the results of this section can be used to equip 
the field bundles ~s% with the notion of an adjoint. If p is irreducible with finite 
statistics, then according to Theorem 6.3 there exists a conjugate representation 
t such that tip contains a subrepresentation which is equivalent to the vacuum 
representation. Now let B = {p, B} ~ ~s% and let R be an isometric intertwiner 
from 1 to tip. Then an adjoint B t of B can be defined by 

B t = {• fi'~°(B*)R}. (6.32) 

Clearly, the adjoint of B is not unique, and it requires some lengthy calculations 
in order to verify that B* has all desired properties. Fortunately, the results are 
the same as in [DHR II], so we can omit the details, If ~1 = {Pl, ~1} and ~z  = 
{PIP, ~2}, a useful relation is 

(B~I, ~2) = (T. ~1, B*~2), 

where 

(6.33) 

T = (P,PPl T1P,) (6.34) 
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and T is explicitly given by 

T = 22~.p~°(e(fi, p)R). (6.35) 

(A direct proof of this statement can be given, using the calculations in the proof 
of Proposition 6.4.) The remaining statements are more easily verified. Since ¢5 is 
isometric one has 

II B* II =< HBI{ - (6.36) 

Finally, it follows from the duality of observables that the adjoints B* have the 
same localization properties as B, 

Be  ~(5 P) e,.B* ~ ~(Sg). (6.37) 

7. Energy and Momentum in Composite Sectors 

The starting point of our investigations were spectral properties of the energy- 
momentum operators in massive single particle representations, and we want 
to study now the energy-momentum spectrum in arbitrary representations of 
the class (P). Again the arguments are analogous to the corresponding ones in 
[DHR II], but there is one little difference: in [ D H R  II] the absence of non- 
trivial finite dimensional unitary representations of the Poincar6-group was 
used in the analysis of the translation operators in the composite sectors. Since 
we did not require Lorentz-covariance of single particle representations we cannot 
exploit this fact here. Instead we will use the information on the spectrum in 
single particle representations for the proof that the energy-momentum spectrum 
has the physically expected structure in all particle representations in (P). 

We proceed as follows: starting from single particle representations we define 
for any pc(P)  a representation x ~ Up(x) of the translations. If p is reducible, 
there are several possible candidates for ~#o' and we will take our choice in such 
a way that the operators Up(x) can be used later for the definition of translations 
on the field bundle. We will see that with this choice the spectrum condition holds, 
sp ~//p c I7+, that the lower boundary of sp ~p is Lorentz-invariant and that 
g o(x)~ p(gX)-. 

Now let P~As% be an irreducible single particle representation. We denote 
by x ~ Up(x) the strongly continuous unitary representation of the translations, 
implementing the automorphisms ex in the representation p. sp ~0 contains an 
isolated hyperboloid Hm, 

H m ~ sp ~#o c H m u {p:p2 __> M 2, P0 > 0}, (7.1) 

where M > m > 0 (cf. Sect. 2). 
It has been shown in [17] that any conjugate representation fi of p is again 

an irreducible single particle representation. We sketch here a slightly modified 
proof of this fact in order to display, where the specific form of sp ~'p is used: since 
p has finite statistics, there exists an irreducible conjugate representation fi such 
that tip contains a subrepresentation which is equivalent to z, i.e. 

fip(A)R = RA, A~9.I (7.2) 
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for some isometry R. The unique left-inverse of p s°~, cJ u c 5:0, which is weakly 
continuous on 9.F(5: u + x)- for all x is therefore given by ~bs'°(.) = R*fis%(.)R. 
Using the localization properties of p we find that 

Uo(x)Up( - x)E~[(~'°a -~ x) ' =  ~[c(~.,QD a "J- X) - ,  (7.3) 

so the translations Uo(x ) induce automorphisms fix of ~3 s~°. Consequently, c~x° 
~bS~°oflx is also a left-inverse of pS% with the same continuity properties as q5 s:", 
hence it is equal to q5 s%. So the state COo4~ s°° is invariant under fi~, and we can define 
translation operators U:,p(x) in the representation tip by 

U~o(x)fis:~(B)Rf2 = fis°°(fl~(B))RO, Be~S:  % (7.4) 

We remark for later reference that d//0, is equivalent to ~//o on the range of R, 

U¢p(x)R = RUo(x ). (7.5) 

Translations in the conjugate representation fi can now be defined by 

U :,(x) = fis:U(Uo(x)U p( - x) )U :o(x), (7.6) 

and they are continuous because ps% is normal on 9/c(5:u + x)- for all x. One 
can show then as in [DHR II] (see also Lemma 7.6) that sp ~': + sp ~o c sp °g o 
and therefore sp q/¢ ~ l?+. Since fi is irreducible the arguments of Sect. 2 can be 
applied proving that the set (sp :g~ + p) has a Lorentz-invariant lower boundary 
for some p~ R4. However, we will need that p = 0. 

This additional piece of information is obtained by applying the methods of the 
Jost Lehmann-Dyson representation to the two-point function of generalized 
fields. If 5:~, 5:2 c 5:' 0 c~ 5°' u are two mutually spacelike cones and if there is a 
cone 5:3 ~ (5:~ - 5:2), then it follows from the general relation (6.28) that 

(fiS%(B*)R(2, Ui,(x)fist~(B*)Rf2) = 20(B2(2,  Up(  - x)BIY2) (7.7) 

if {p, Bi} e ~(5:~), i = 1, 2 and x 6 5°'3. Normally one exploits in the Jos t -Lehmann-  
Dyson representation the fact that a relation of the type (7.7) holds for x in the 
causal complement of some bounded region. However, the region 5°'3 is still big 
enough (it contains in particular a wedge-region) to draw as in [26] and [DHR II] 

2 and p2_ coincide. If we the conclusion that the spectra of the mass operators Po o 
would only know that sp q*'o ~ V+ this would merely restrict p to a lightlike 
vector, p2 = 0. But from the more specific information (7.1) it follows that p = 0. 
So the particular structure of the energy-momentum spectrum in particle represent- 
ations is used at the very end of this analysis. It is then clear that relation (7.1) holds 
also for sp ~Z with the same mass-values m and M. We summarize the results of 
this discussion in the following theorem [17]. 

Theorem 7.1. The conjugate representation p e As: ° of an irreducible single particle 
representation P~As: ° is an irreducible single particle representation with trans- 
lations °ll: given by relation (7.6). Moreover, 

{p2 :pesp 0-#}- = {p2 :pesp ~ : } - ,  

i.e. the mass-spectra in the representations p and fi coincide. 
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Recalling, that the statistics parameters of p and # are equal, this theorem 
reproduces in our general setting the familiar fact that each particle has an anti- 
particle with the same mass and statistics. 

Since one can use the elementary conjugates of single particle representations 
to build up conjugates of arbitrary representations in (P) by composition, taking 
direct sums and subrepresentations it is sufficient to study the structure of the 
translations in representations arising from single particle representations by 
these operations. 

Now let p l , p z e A ~ o  be two representations in which continuous unitary 
representations q/o~ and ~k'o2 of the translations are defined. Then PiP2 is also a 
covariant representation with translation operators given by 

U mo2(x ) = p f  °(U p=(x)Uo( - x) )U p,(x). (7.8) 

(Note that if Pl = # and P2 = P this definition is consistent with relation (7.6).) 
It can easily be checked that the composition law (7.8) for representations of the 
translation group is associative. We will see that with this definition the translations 
in the composed representations in (P) have all the desired properties. 

Given irreducible single particle representations p~eAs~ o, i = 1 .. . .  n with 
translations q/p, we can construct with the help of (7.8) translations ~/p,...p, in the 
representation Pl""P," For the analysis of the spectral properties of q/p~...p, the 
following lemma is needed, 

Lemma 7.2. Let PeAs% be an irreducible representation with finite statistics in 
which translations U o(x ) are defined, and let fix be the automorphism of  ~ se ~, y ~ ~ 5p ° 
induced by Up(X). I f  x is a sequence of translations Which tends to spacelike infinity 
in some suitable subcone of - 50,, then 

w - lim fix(B) = coo °~s~°(B)" 1, B ~  s~, 
X 

where 4s% is the left-inverse of p s% distinguished by Proposition 6.2. 

Pro@ For suitable sequences x e - Y ,  the norm of the commutator [fix(B), p(A)] 
tends to zero for all Ae~I and Be~3 s% because of locality. So taking into account 
that p is irreducible, it follows that each weak limit point of fi~ is of the form co(.)" 1, 
where co is some state on ~3 s~o. Moreover, since 

w - lim ~(B) = co0(B)" 1, Be~3 s~° 
X 

and since pS% is weakly continuous on N~(5~ + y)- for all y one finds that 

co(p~e~(B)) = co0(B), Be~3 s~o, 

So if rco~ denotes the representation of ~3 ~e° which is induced by co it is clear that 
re,, o pS% contains a subrepresentation which is equivalent to the vacuum represent- 
ation, hence co = coo o~b for some left-inverse qS. The uniqueness result on left- 
inverses in Sect.6 then implies that all weak limit points o f / ~  coincide, proving 
the statement. QED. 

Using this result we can analyse now the energy-momentum spectrum in 
translational covariant subrepresentations of Pl ""P, .  (Actually any subrepresent- 
ation of pl ' -"  P, is covariant as we shall see later.) If E e p i . . -  p,0i) '  is a projection 
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which commutes with Um...p,(x ) we define translations q/e on E ) f '  o by 

UE(x) = Up,...p,, ( x )E  (7.9) 

and find as in [DHR II, Thm. 5.2]" 

L e m m a  7.3. sp q/r ~ sp q/m + "'" + sp q / p .  

Proof.  We sketch the argument for n = 2. Let B 1 , B 2 ~ 3  s~, then from relation (7.8) 

= e p [ ° ( a   2(x)82 a o (  - 

Thus if we set 

B i = 5d4xf i (x)Up,(x)AiUo(  - x), i = 1, 2, 

where A i ~ 9.1 and f~ are testfunctions, it follows that the energy-momentum support 
(with respect to q/~) of the vectors 

~r~r2 = EP~(Upz(Y2)B2  Uo( - Y2) ) U m ( y l ) B 1 0  

is contained in suppf l  + supp f2" Hence if we can prove that this vector is different 
from zero for some Yl, Y2 whenever I IB~I I ' I IB~I I  + 0, the assertion follows. 

We have seen in the previous lemma that the automorphisms fl~' i = 1, 2 con- 
Sea verge weakly to co o ° ~bp, (')" 1 if y tends to spacelike infinity in the way described. 

Thus we can proceed as in [DHR II, Thin. 5.2] and send first Yl to spacelike infinity 
and then Y2" The result is 

lim lima II %, 11 = IlBl  l[ 2" IlB  [12  Seo Se°¢E Q  "~p2 "rpl \ ] i ,  y2 

and it remains to show that the vacuum expectation value of qS~m~°(E) is different 
from zero. But this is obvious since dgSe"d)Se~(E~ is a multiple of the identity which 

- - P 2  - - e l  t 

cannot be zero because the left-inverses 40~ ° act faithfully on ~3 Seo. QED. 

This result shows in particular that sp q/e contains the sum of the single particle 
mass shells Hm, of the single particle representations p~, 

I } s p q / e ~  p : p 2 ~  m i , P 0 > 0  . (7.10) 

Therefore, any light cone containing sp q/e contains also V+. In the next step we 
will show that sp q/o~ "'" p~ (and therefore also sp q/e) is contained in V+. 

L e m m a  7.4. sp q/o~ "'" p. ~ V+" 

P r o @  Again we give the argument only for n = 2. Let R = ~ f ° ( R 1 ) R  z,  where 
R~, i = 1, 2 are isometric intertwiners from t to PiPr Then R is an isometric inter- 
twiner from t to fiEPlP~P2. Defining the translations q/~ ,p lp~  in the representation 
P2P~PaP2 by the composition law (7.8), one arrives by repeated use of the relations 
(7.5), (7.6) and (7.8) as well as of the fact that R 1 is an intertwiner from z to PIPa at 

U g2¢lolp2(x)R = R U o(x), 

which is the analogue of relation (7.5). So the projection F = R R *  commutes with 
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Ui, z¢~mp:(x) and we can define translations on Fo~ 0 by 

Uv(x ) = U~Imo~(x)F. 

We want to show that sp ~ + sp 0g~ + sp ~'o~,~ c sp ~#e ; the statement then 
follows since sp °k' r c sp °g o by the above relation. As in the proof of Lemma 7.2 
it is sufficient to verify that the vector 

~Py,y2y3 = F'(pzP l) '~(U pap2(Y3)B3 Uo( - Y3) )f i f  "(U ~l(Yz)BzUo( - Yz) )U~2(Y l)B1Q 

is different from zero for some Yl, Yz, Y3 whenever I[B~?II.ttB~all .ttB~It ¢ 0. 
Now since p l ,  Pz are irreducible representations we can let y~ and Y2 go to space- 
like infinity, giving 

lim liym II T,~r~,3 tt 2 = (fL B*gmp ~ ( - Y3)q52°4}~°(F) Up~p~(y3)B3a)" tlB etl2IIBzelI 

At this point we cannot perform the limit with respect to Y3 by applying Lemma 8.2, 
because PIPz need not be an irreducible representation. But for the particular F 
which is of interest here we find that 

s~° seo s% R* s~o * 2 q~p, ~b~(F)= q~z~ (R 1 ~)4p2 (R2R2) = '1 =/= 0 

because each 4~- (RiR*) is a non-zero multiple of the identity. So 

lirm lira II Tr~,~ya I[ 2 = 2I[B~?II 2 I[ B2~I[~ IIB~ll ~ 

and the assertion follows. QED. 

Next we will prove that the translations Upl...p.(x ) defined by the composition 
law (7.8) are elements of Pl --- P,,(~)-- We will establish this fact by showing that 
each projection Eepl . . .p , (9.1 )' commutes with Um...p.(x ). As in the correspond- 
ing argument in [ D H R  II] it is crucial that Pl""Pn is a finite direct sum of irreduc- 
ible representations because the particle representations Pi have finite statistics 
(cf. the discussion in Sect.6 and [ D H R  I]). 

Lemma 7.5. U ol,,.o,~(x)@pl ... pn(~[)- 

Proof. Since sp ~g 1 c ~+ each central projection E in Pl p,(gl)' commutes 
with Um...p.(x) [19~ ~/o~. So let E be a minimal central projection and let ~E be the 
subrepresentation of the translations 6go,..o. on E ~  0. According to the result 
[19] of Borchers quoted in Sect.2 one can find translations fJ~(x)spz. . ,  p , (N) -E  
inducing the same automorphism on P l - ' - p , 0 I ) - . E  as UE(x ). Moreover, since 
Pl'-2P,(9"I)- 'E is a factor one can choose ~#~ such that the lower boundary of 
sp q/e is Lorentz-invariant (Proposition 2.1). Setting (JE(x) = U~(x)fJ~( - x) it is 
clear that !5~(x)ePl ... p,(9.i)'E, and since p~ ... p,(9.I)'E is a finite, discrete yon 
Neumann algebra it follows by spectral decomposition that 

~ ( x )  = ~ ei '~.Ek,  
k=1 

where Ea, ... E,, are mutually orthogonal projections in Pl "" p,(9.1)'. E. Now the 

spectrum of ~#~ is the same on all subspaces Ek~f0,k = 1,...m, because 
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P 1 "'" Pn (~[ ) -"  E is a fac tor .  Moreover, 

U pl...Dn ( x ) E  k = E k O fll...prl (X),  k = 1 . . . .  m ,  

so applying Lemma 7.3 and 7.4 to UEk(X)= Um...p,(x)E k one arrives at 

Hml + ... + Hm, ~ ~ sp ~'~ + Pk ~ [ z + ,  k = 1, . . .  m ,  

which is only compatible with the Lorentz-invariant boundary of sp £//E 
if p~ = 0, k = 1 .... m. So 4~  is the trivial representation, and the assertion follows. 

QED. 

By repeated application of the relations (7.6), (7.8) and (7.9) one can construct 
now for each p c (P) a representation q/p of the translations such that sp q/p 
V+, Up(x)cp(91)- and the lower boundary of sp ~//p is Lorentz-invariant in each 
subrepresentation of p; these properties characterize q/p uniquely. 

Finally, we will show that sp q/p has a lower mass gap. This is needed in the 
calculations of scalar products of scattering states in the next section. 

L e m m a  7.6. Let pc(P). Then 

s p q / o c { 0 } w  p : p 2 > ~ , P o > O  , 

where # is the mass-gap in the vacuum representation. Oe sp q/p if and only if p con- 
tains a subrepresentation which is equivalent to the vacuum representation. 

Proof. If p is irreducible it follows fi'om the argument given in Lemma 7.3 that 
sp q/~ + sp qlp c sp q/o- On the other hand relation (7.7) holds for the expectation 
values of Up(x) and U¢(x), and applying the methods of the Jos t -Lehmann-Dyson 
representation one finds that the mass spectra of q/o and q/¢ coincide. These two 
facts establish the first part of the statement for irreducible p. But then it holds for 
arbitrary pc(P) because any such p can be decomposed into a finite direct sum of 
irreducible representations and U o(x )e 0(9.1)-. 

Now if p is reducible and if there is a vector 49 which is invariant under Up(x), 
then for all x E ~4 

(49, p(A)49) = (49, p(o~ (A) )49) = Ogo(A)" ll 49 tl 2, A e 91, (7.1 1) 

where the second equality is obtained in the limit of large spacelike xeSe, .  So p 
contains a subrepresentation which is equivalent to the vacuum representation. 
Conversely, if p(A)R = RA, A ~ 91 for some isometric intertwiner R, then U p(x)R = 
RUo(x ) because of the uniqueness of ~p,  hence Rf2 is invariant under the action 
of Up(x). QED. 

We summarize the information obtained in this section in 

Theorem 7.7. Let p be a particle representation, pc(P). Then there exists a unique 
continuous, unitary representation ~g o of the translations such that 

i) Up(x)p(A)Up(x) -1 = p(e~(A)) for A~91. 

ii) sp q/0 c {0} u p :p2 > --4' Po > 0 
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and 06 sp ~lt o iff p contains a subreI~n'esentation which is equivalent to the vacuum 
representation. 

iii) sp ago has a Lorentz-invariant lower boundary in each subrepresentation of  p. 

iv) Up(x)ep(9.1)-for all x. 

We are now in a position to define translations on the vector bundle ~ and on 
the field bundles ~S~a. To this end we restrict the definition of these bundles to 
the subset of particle representations in As%. Then translations U(x) on ~ can 
be defined by 

U(x) {p, ~}  = {p, Up(x)~P}. (7.t2) 

U(x) commutes with the action of intertwiners, and it induces automorphisms 
~ on the field bundles, 

~x{P, B} = U(x){p, B} U( - x) = {p, U o(x)BUo( - x)} (7.13) 

which respect the local structure, 

C~x(~(SP)) ~ ~(5 P + x). (7.14) 

Moreover, there exists an adjoint of c~(B) such that 

o~x(B)? = ~;,(B ? ) (7.15) 

(see [DHR II, Prop. 4.5]). These results are used in the construction of scattering 
states in the subsequent section. 

8. Scattering Theory 

Let pl .. . .  P, ~ As~o be irreducible single particle representations. We will show now 
that there are states in the composed representation p~...  p, which look like con- 
figurations of n freely moving particles at asymptotic times. This, finally, justifies 
the interpretation of the representations pE(P) as particle representations. 

We construct these states applying the basic ideas of the Haag-RueUe scatter- 
ing theory [13]. The procedure is well known in local field theory, and it has been 
shown in [DHR II] how to extend the construction to representations which are 
localizable in bounded regions. Now in the present general case the fields which 
connect the vacuum and single particle states need not be localized in bounded 
regions, the best we can say is that they are localized in spacelike cones. In order 
to exploit these weaker localization properties wemust  base our construction of 
scattering states on asymptotic particle configurations, where the momenta of 
all particles point into different directions. But this is sufficient since these states 
are dense in the set of all scattering states. 

As usual, the construction of scattering states is performed in a fixed Lorentz- 
system which can be characterized by a positive timelike vector e (the time-direct- 
ion), e 2 = 1 and e o > 0. Given e, a spacelike cone 5 p and the sector of a single 
particle representation peAs% we define subspaces of the testfunction space 
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Definition. f~ZPo(~,  e) c ~(N4) if 
i) s u p p f  is compact and s u p p f  r~ sp ~o  c H m- 

ii) There is a neighbourhood CO of the origin in N¢ such that for each pe  s u p p f  

p - (pe)e 
t- C c (5: - a), (8.1) e~(p) 

where %(p) = (rn 2 + (pc) 2 - p2)1/2 and a is the apex of 5:. 
These testfunction spaces can be used to construct single particle states of 

mass m which enter at asymptotic times t with certainty the region 5: + re. 
Let B = {p, B} ~ ~(5:) and let fE 5¢p(5:, e), then we set for t > 0 

C(te) = (2r 0-2  ~ d4x [. d4p e-ip~ + i<p~-~,tp))t f(p)e (B). (8.2) 

It is easy to verify that C(te)~ is a single particle state vector (in the fiber s/g 0 of 
o~) which does not depend on t and e. Moreover, making use of the asymptotic 
behaviour of smooth solutions of the Kle in -Gordon  equation [13] one finds 
that the operator C(te) is essentially localized in the region 5 ~ + t(e + s) ~ 5: + te, 
where s~5:  - a is a fixed vector and a is the apex of 5 ~. More precisely, there 
exists a sequence of generalized fields Cte ~(5: + t(e + s)) such that 

[ I C ( t e )  - C,[ I < h(t), (8.3) 

h being a rapidly decreasing function. So the single particle states can be construct- 
ed with the help of creation operators which are ahnost localized in spacelike 
cones. 

The construction of multi-particle states is now accomplished as in [D H R II]. 
Let p~,.. .  P~As% be irreducible single particle representations. Then one picks 

• ! (-~ t mutually spacelike separated cones ~ ,  . . 5 0  such that ~ 0 c ~ m . . .  ~n  
still contains some auxiliary cone ~a  (this is necessary for the application of the 
field bundle formalism). One constructs then, as explained, single particle creation 
operators Ci(te ), i = 1,... n which are essentially localized in the cones ~ + t(e + s~) 
and applies the commutation relations (5.10), giving 

11 Cp_ ,c,)(te) - e p(p,, ... p,)o 11 Ci(te) < h(t) (8.4) 
i = i  i = 1  

for any permutation p~P("), Since Ci(te)~ is independent of t it follows that (in 
the fiber J4:p,...m ) 

d " 
-dtY I=1C(te)Fl < h(t), (8.5) 

so the limit 

s - lim Cl(te)... C( t e )~  (8.6) 
t -* ¢89 

exists. We remark that one can replace everywhere in these expressions 
the operators Ci(te ) by C~(te~), provided the vectors e i are sufficiently close to e. 
So as in [DHR II, Prop. 7.1] we arrive at 
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Lemma 8.1. Let Ci(te), i = 1 . . . .  n be single particle creation operators with local- 
ization properties specified above. Then the strong limit 

s -  lim Cl(te ) ... C (te)~2 = ~oot t~oo 

exists. I f  the localization cones J ,  . . . .  57' n and the single particle states Ci(te)f2 = 
~i ,  i = 1 . . . .  n are kept fixed, ~o~t does not depend on the choice of  the operators 
Ci(te ) and of  the time-direction e. 

In view of this result we can write 
Ollt Ollt 

~o~t= ~ x ... x ~ ,  (8.7) 

and it follows immediately from the above discussion that ~out has the familiar 
behaviour under translations and permutations: 

o u t  out 
U(x) ~ o u , =  (U(x)'~,) × ...  × ( U ( x ) ~ . )  (8.8)  

otlt OUt 
gp(P .. . . .  p l ) ' ~  uut---- ~p_~(,)X ... × ~p_l(n ). (8.9) 

But at this point of our analysis we have to take into account that ~out might not 
only depend on the single particle states ~ i ,  "" ~ ,  but also on the choice of the 
cones 5 °, .... 5P.  This apparent possibility is ruled out after the calculation of 
scalar products. 

Let p , , . . ,  p, e As% and/31 .... ~,~A5 % be two sets of irreducible single particle 
representations such that either fit = P~, i = 1 .... n or fij is inequivalent to pj for 
somej. Then, as in relation (8.2), we can construct single particle creation operators 
Cl( t e ) , . . .C( t e  ) and C,(te) , . . .C,( te)  which are essentially localized in cones 
Y l  + t(e + s~),...5¢ + t(e + s )  and ~ ,  + t(e + ~,) , . . . f¢ ,  + t(e + s~,), respectively. 
According to the previous lemma there exist the limits 

~o , t=  s - lira C,(te) . . .  C ( t e ) ~ ,  
t-+00 

qjout = s - lim ~71(te ) ... C ( t e ) ~ ,  (8.10) 
t~o0 

provided the cones 5P~,...Sa, (respectively 5~1 .... 5~,,) are spacelike separated. 
Now if T is any intertwiner from ~ . . . ~  to P, , ' "PI ,  then the scalar product 

(~o~, T~O,t) can be expressed in terms of scalar products of the single particle states 
~i = Ci(te)g? and ~i = ~(te)gZ To verify this let us first consider a situation where 
the cones 5P~ .... 5~  and 5P~ ,... ~ ,  are arranged in a special way. 

Lemma 8.2. Let 5" i c 5 f ) for  i ¢ j and i,j = 1 .... n. The~ 

( ~ o u t  TiC/out) = (D0o ~ a  . . .  ~)pna(Z).5° f i  (~1i, ~i) 
i = ,  

if  p i = ~ j o r  i = 1,. . .  n. I f  pj ~ ~j for  some j the expression vanishes. 

Proof. Applying the rules for computations with generalized fields it is easy to 
verify that 

(C, (te)... C (te)f2, T. ~'1 (re)... ~;,(te)O) 

= (~,  T"Cn(te) t . , .  C,(te)*C,(te). . .  C,(te)~2), 
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where T' is some intertwiner from f t . .  " P l f l "  "fin to 1. Because of the localization 
properties of the single particle creation operators at asymptotic times, one can 
rearrange the order of factors in the above expression, such that operators with 
asymptotically overlapping localization cones are placed next to each other. The 
result is, up to terms which vanish as t ~ oe, 

(~, r"" C (te)tC,(te)... Cl(te)tCl(te)Fd), 

where T" is an intertwiner from P1 f l  -'- fi,P,, to 1. It is crucial now that the spacelike 
distance between the (essential) localization regions of the operator Cl(te)tCl(te) 
and the remaining operators C~(te)tCi(te), i = 2 ... .  n increases linearly with t. So 
taking into account that sp ~# has a lower mass-gap on Yt°~,~, and that the norms 
of the operators C(te) are bounded by a multiple of]tl 3/a one can apply the cluster- 
theorem as in [DHR II, Lemma 7.2] and insert to the left of Cl(te)t(71 (re) the 
projection E o onto the translation invariant subspace of ~"~1~," Neglecting terms 
which tend to zero as t ~ oo, this gives 

(~, T'C~(te) t ~(te)...C2(te)t C2(te)EoCl(te)* ~l(te)~). 

Since E 0 = 0 if Pl and fi~ are inequivalent, this proves one half of the statement. 
I fPl  = Pl,  then E 0 projects onto the ray of {Pl fi~, R1 £2}, where R 1 is an isometric 
intertwiner from z to Plf i r  So as in [DHR II] one finds after a straight forward 
calculation that the above expression is identical to 

( f2 ,  " t ^  T C,(te) Cn(te)... C2(te)tC2(te)~)(Cl(te)~, Cl(te)~), 

where T" is an intertwiner from P~f2 -" P~f~ to L Repeating this procedure and 
bearing in mind that the vectors C(te)~ are t-independent single particle states one 
obtains in the limit t -~ 

(l~/out r 9 °ut) = q)(T) 15I (~i, 9~), 
i=1  

where q~(T) is a number (an intertwiner from 1 to 1). The specific form of q~(T) can 
be computed as in [DHR II]. We leave the details to the reader and remark that 
the result is obvious if all single particle representations are of pure Bose-or Fermi- 
type, since Tis then a multiple of the identity. QED.  

Now let ~ 1 ) ( ~ ,  e) be the closed linear span of single particle states C(te)~, ,) 

where in the defining relation (8.2) for C(te) the testfunction f varies within £¢p(~, e) 
and B = {p, B} within ~(~).  Using the fact that ~(~)t~ is dense in the fibers of 

it is obvious that (1) Y~p (~,  e) is the subspace of single particle states ~ s ~ f ( y  
whose energy-momentum support is restricted by the condition 

{p - (pe)e: p~supp 7'} c 5 ~ - a, (8.11) 

a being the apex of Y'. So (1~ ~f~o (~ '  e) describes particles whose spatial momenta 
( p -  (pe)e) are contained in (5 p -a)c~e  ±, where e x denotes the spacelike plane 
orthogonal to e. Hence if 5 "(k~, k = 1 ..... m is any set of cones with common apex a 
and if 

e" n ~ (~(k) _ a) ~ e± m(6 P - a) (8.12) 
k = l  
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we get 

~o(a)(5o (k), e) ~ ~(ol)(5o, e), (8.13) 
k = l  

which means that in the construction of single particle states we can pass to smaller 
cones 5O without problems. 

Coming back to the problem of calculating scalar products we are now almost 
out (5oa . . . .  50 ;e) denotes the closed linear span of vectors finished: if ~p...,p~ 

constructed in Lemma 8.1 we see from Lemma 8.2 that this space is isomorphic 
to the tensor product ~'~(~)~5oo,, ~, e )® ... ®;gf~l)(5o ,e), the isomorphism being 
given by 

OUt out 
~ i ® ' " ®  ~ . ~  ~ i  x ... x ~ .  (8.14) 

Hence -(1) j ~ )  if 5"~ ,... is any set of spaeelike cones satisfying relation (8.12) with 5 ° 
replaced by 5O~, and if each 5o]k) is spacelike separated from 5O2,'" 5O,, then 

~ o u t  ( s o l  k)' 5 O 2 ' " ' 5 O n ;  e )  ~ ~ o u t  i ' ( f  . . . .  5 o n ;  e ) .  ( 8 . 1 5 )  
Pn.. .p l pn . . .p  l ~ ' ~ 1  

k = l  

We now have the tools to compute the scalar products for arbitrary vectors which 
are constructed according to Lemma 8.1. 

o u t  o u t  ~ ~ ~out (5Ol .... 5O. ; e) and @out = TheoremS.3. Let  ~out = Ill  1 X . . .  X n pn . . .p ,  

out out 
~1 x ... x ~P e~gf °~t0....o, (5)i , . . . . . .  ,9 ~, ;e) where the representations Pi, P j  i , j  = 1, n 
are either equal or inequivatent. Then Jor any T~  p . . . p l (~) '  

(~,ou,, r ~o~,)= 2 %  o ¢~o... ~ ° ( T % % ,  ... p , ) ) ( I  (~',, ~,,,~), 
i=1 

where the sum extends over all permutations p~pln) for which Pi = Pp( i ) ,  i = 1,...n. 

Remark.  T is left arbitrary, because this result can then be used to calculate scalar 
products in any subrepresentation of p . . . p ~ .  

Proof. Using relation (8.15) we can decompose ~out and ~o,t into ~out = ~, ~u t  
k = l  

and ~o,t = ~ ~ t ,  where 
k ' = l  

~ t l t  ~/~k) °)~ t out 
" '"  n p n . , . p l \ ~ l  ' . . . .  n 

and 
~o l l t  ^ out = ~L~C(lk~) X out ^ , X ~ / ( k ) c , ~ o u t  ( ( ~ ( k ' )  ~ ( k ' )  o'~ 

(#k) 9 ~(k) and ~a(k') o~(k') can The point is now, that for all k and k' the cones --1 . . . . .  , 1 .... , 
be made so small such that they can be ordered into n pairs, which are mutually 
spacelike separated. So for each k, k' there exists a permutation p~P(") for which 

~(k ' )  w .~(k) C ,,~(k') W 5O~)),, i ~ j i , j  = 1, n. p(i) ~ i  [Orp ( j )  " '"  
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But according to relation (8.9) we have 
^ out out ~(k') 

^ o u t  __  . . .  D ' l ' { ~  - l (k ' )  X X ~ ,  -- ep(P,, r iJ  ~ ~(1) "'" p(,),, 
SO we are in a position to apply Lemma 8.2. The result is 

n 

( ~ o . t  ^out 0 ° d ~ -  , k , r ~ k ,  ) = 0 .~,,, . . .  ¢ ~ ° ( T ~ , ,  (,o, ... pl)) ~ ,--~(k), ~'~,,(,), 
i = 1  

ifPl = Pp(i) for i = 1 . . . .  n; otherwise the expression vanishes. The statement follows 
then on summing over k and k'. QED. 

Clearly, one can compute now also the scalar products for any linear combina- 
tion of vectors which are constructed according to Lemma 8.1 (with arbitrary 
localization cones 5e 1 ...Y,). The closed linear span ~4~ °ut of all these vectors 

Pn...Pl 

is the space of outgoing n-particle scattering states which are composed of single 
particle states from the representations Pi ,'-" P,," 

The only remaining question is whether our construction does depend on the 
choice of e (of the Lorentz-system). That this is not the case can be seen as follows: 
the scattering states have been obtained as images of a linear mapping f2 °"t (e) from 
J~'~ll) ® . . .  ® 24a~* ) into ~OUtpn..,pi ' which is bounded according to Theorem 8.3. Now 
let e i be another positive timelike direction and let e({)= c({)((1- {)e + {el), 
0 < { < 1, be a path from e to e, ,  where c(~) is a normalizing factor. Then we 

(i) (1) consider the space @ c ~ o l  ® "'" ® ~fo, of vectors, whose wavefunctions 
O,(Pi,-"P,) have compact support and vanish whenever the spatial parts 
p - (pe(~))e(~) of any two momenta pl, pj become (almost) parallel for some 4. 
Since the path ~ ~ e(~) lies on a 2-dimensional plane it is obvious that ~ is dense 
in ~{o 1] ® . . .  ® Yg'(vl ). On the other hand it follows from the second half of Lemma 
8.1 that ~'2°Ut(e(~))= ~°Ut(e) on 9 ,  so taking into account that the mappings are 
bounded we find that Q°"=(e,)= Q°~t(e). This proves that our construction is 
independent of the Lorentz-system. 

The space of incoming scattering states ~ m  0,...p, can be constructed in a similar 
way. But it is noteworthy that in the construction of creation operators C(te), 
which generate from 12 single particle states in ~( ' ) t -w e), one now has to use in p \ ~  

the defining relation (8.2) operators B from ~( - 50). So in contrast to local field 
theory there does not necessarily exist an interpolating field, which connects (the 
still existing) incoming and outgoing fields in the sense of the LSZ-asymptotic 
condition [28]. As a consequence, one cannot apply the reduction formulas, and 
the analytic structure of the S-matrix may differ from the familiar one. 

Summing up, we have seen in the present section, that also for fields which are 
localized in cones a reasonable scattering theory exists. We emphasize, that the 
scattering states are uniquely characterized by the set of single particle states which 
they describe at asymptotic times. This means that the familiar interpretation of 
scattering experiments in terms of asymptotic observables does not require locality 
of interpolating fields. The same is true for the statistics of particles: a scattering 
state of particles belonging to a sector with pure Fermi-statistics, say, has a com- 
pletely antisymmetric wave-function (relation 8.9), although the underlying fields 
might satisfy only the restricted spacelike commutation relations (5.9). So from this 
general point of view it seems worthwhile to devote further studies to these fields. 

Another problem, which has not been discussed in our analysis but for which 
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our results might be of some interest is the problem of asymptotic completeness. 
This problem consists actually of two parts: given a model, one has first to deter- 
mine a (minimal) representation space for the observables containing all scattering 
states of the basic particles. In the second step one has then to verify that each vector 
in the representation space can be interpreted as a scattering state. The first part 
of this problem has been solved in this paper for massive theories with a conven- 
tional particle interpretation. There the set (P) of particle representations describes 
all scattering states, and it is minimal in the sense that (P) coincides (up to equi- 
valence) with the set of representations which are induced by the scattering states. 
This result shows that a general solution of the difficult second part of the problem 
is impossible within the conventional framework of local field theory, if the 
existence of particles which require the introduction of string-like fields cannot 
be excluded. 

9. Conclusions 

Starting from the principle of locality of observables we have derived most of the 
qualitative features of massive particles which are observed in physics. Among 
the empirical facts not discussed is the relation between the spin and statistics of 
particles. Since we did not assume Lorentz-covariance, an answer to this problem 
lies outside the scope of this paper. But there might still be a multiplicity-statistics 
theorem in the present setting: in a sector with (para)-Fermi-statistics any particle 
multiplet should consist of an even number of states [ In this context it is of interest, 
that in the decomposition 

~,f(1) = ~ d3p j40(1)(p) (9.1) 

of a single particle space with respect to the spatial momentum, (almost) all spaces 
jgm(p) have the same dimension, as a consequence of locality. So the notion of a 
particle multiplet does not require the presence of Lorentz-transformations. We 
are presently investigating these internal degrees of freedom of particles more 
closely. 

For applications perhaps the most interesting result of our analysis is the insight 
that an explanation of the structural properties of particles does not require local 
charge carrying fields. Yet the localization properties of these fields are not 
completely arbitrary: as we have seen, it is always possible in a massive theory to 
find fields that are localized in a spacelike cone and connect the vacuum and the 
single particle states. Moreover, the location of this cone can be chosen at will. 

The physical picture implied by this result is that a massive particle might be 
tied to an infinite string the directic;n of which is not visible. The presence of the 
string becomes manifest only in certain experiments such as the measurement of 
the total "electric" flux through the surface of a sufficiently large sphere surround- 
ing the particle, or in the analytic structure of the S-matrix. As was discussed in the 
Introduction, this picture is only consistent if the vacuum state undergoes large 
loop-like fluctuations and if on the other hand large string-like fluctuations are 
suppressed. 

In order to illustrate this heuristic picture we present a kinematic model which 
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exhibits the described behaviour. Let A(x) be a vector-valued field on N3 which 
may be interpreted as a magnetic vector potential and let E(x) be the canonically 
conjugate electric field. We assume canonical commutation relations in the inte- 
grated and exponentiated Weyl-form 

e iE(f) e iA(g) : e ~(f' g)e iA(g) e IE(f), (9.2) 

where E(f), A(g) are the fields smoothed out with testfunctions f, g with compact 
support, and 

(f, g) = ~d3xf(x)'g(x). (9.3) 

The algebra ~ generated by the unitary operators d E(f) e iA(g) has a natural local 
structure which is induced by the local structure in the testfunction space: if 

~ R 3 we define g[(~) as the algebra which is generated by the above unitaries 
with supp f, supp g ~ ~ .  Similarly we can define translations % on ~,  setting 

0~ x (e iE(f) e iA~g) ) = e iE(fx) e iA(gx), (9.4) 

where f ,  gx are the translated testfunctions. 
Now let us consider the state co o on ~ which is determined by the conditions 

coo(eiE(f).eiX(g)) = { 10 if otherwise.CUrl f = 0, div g = 0 (9.5) 

One can show that coo is a pure state which is invariant under translations, and we 
will take coo as the vacuum in our kinematic model. Next we introduce states % on 

by 
COb ( e~f)" eiA(g)) = ei~'n'r)'coo ( ei~(f)" eiA("))' (9.6) 

where h is an infinitely differentiable vector-valued function such that div h has 
compact support. The following facts can then easily be established: 

i) coa and co h, induce equivalent representations ~ and r~, of !4 if and only if 

S d3x div h(x) = [.d3x div if(x). (9.7) 

Therefore, states (q~ belonging to different sectors can be distinguished by their 
"electric" charge. 

ii) For all admissible functions h and arbitrary spatial cones S~ ~ ~3 one has 

~ h  ~ ~[c(°t't~) "~ ~ 0  I .~[c(,~).  (9 .8 )  

If in particular 5e ~ supp (div h) then 

coh(A) = coo(A) for A ~ 9.F(5¢). (9.9) 

Hence the direction of the electric flux lines cannot be observed. 
iii) If ~d3x div h(x)5~ 0, then the representations rc h and r% restricted to the 

algebra of the complement t9 ~ of any bounded region d) ~ ~3 are disjoint, 

~Zh 19-I(d)0~rCo r 9A(~°~) • (9.10) 

This is a consequence of Gauss' law and expresses the fact that an electric charge 
cannot be localized in a bounded region. 
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Thus this primitive model displays the desired features. The enhancement of 
loops and suppression of strings is very drastic in this example and there exist 
refinements with a somewhat more realistic behaviour. We do not expect, how- 
ever, that such a situation is dynamically possible in theories with a continuous 
Abelian gauge group, even in the presence of massless particles [29]. 

A more realistic model could be the ;Z2-1attice gauge theory coupled to a 22- 
valued Higgs field. The pure gauge theory is self-dual in four dimensions [30], 
so the weak coupling region is accessible from the strong coupling region by the 
duality transformation. In the pure gauge theory with external charges stringlike 
localized sectors seem to exist in the weak coupling region, and it is an interesting 
question whether this situation remains unchanged if one adds weakly coupled 
Higgs fields. 

Even more interesting is the question of whether stringlike localizable particles 
exist in non-Abelian gauge theories, such as quantum chromodynamics. There are 
heuristic arguments that quarks, if they exist as isolated particles, cannot be locali- 
zable in finitely extended regions. Recently West [31] showed under the assump- 
tion that dispersion relations can be applied as in local field theory that quarks 
are confined in quantum chromodynamics. But in view of the present results one 
should take the possibility of string-like localizable quarks more seriously into 
account in a thorough investigation of the confinement problem. 

To get a convenient description of theories with such particles one could try 
to develop a Wightman-type formalism for fields living on strings. At present 
not much is known about the properties of such theories, and one can only speculate 
that they might exhibit new and interesting features. For example, the no-go 
theorems ruling out interacting theories without particle production in four 
dimensions [32] use locality of the interpolating fields as an essential ingredient. 
So it seems to be worthwhile to reinvestigate the possibilities of theories without 
particle production, with factorizing S-matrices, with an infinite number of 
conservation laws or even completely integrable theories under this new aspect. 
In this context it is encouraging that string-like fields in three dimensions (which 
have not been discussed in this paper) exhibit similar topological properties as 
the soliton fields in two dimensions. 

Speculating even further, there may exist models where the fundamental 
particles (the quarks) are string-like localizable and cannot be produced in 
collisions, whereas their finitely localizable bound states can be freely produced 
and annihilated. For the quarks there would then be no experimental sources, and 
in this sense they would appear to be confined. But nevertheless, such quarks 
could be present in the physical world and be observed! This picture does not 
even seem to be in obvious conflict with the qualitative features of present-day 
physics [33]. 

Appendix 

We give here the proof of Theorem 3.1. In order to display how the dimension of 
space enters into the construction we work in arbitrary (s > 1) spatial dimensions. 
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1. Given p~, P2 one chooses points k o, k 1 , . . .  k s ~  ~s +1 for which the following 
conditions hold: 

1 
p-l+ ~ k f i H m = { p : p 2 = m 2 ,  po>O} ,  j = 0 , 1 , . . . s - 1  

i=0  

i=O 

P'l + kj~{p: p2 < 0}, j = 1 .... s. 

(That such a set of points exists can easily be seen if one goes to the centre of mass 
system of p~ and p~ .). Since the hyperboloid H,, c sp ~g is isolated from the rest of 
sp q / a n d  since the set {p: p2 < 0} is open and {p: p2 < 0} c~sp q / =  O there exist 
also neighbourhoods F, of k~, i = 0, 1... s and a neighbourhood A 'o f  p~ such that 

(A '+ F;) c~ sp q / =  0, j = 1,...s. 

For  the next step in the argument it is convenient to adjust also the sizes of A'and 
F~ according to 

J 
A-+ ~ F i ~ s P q l - F 3 +  1, j = 0 , 1  . . . .  s - 1 .  

i=0  

2. Then one chooses almost local operators B~ with momentum transfer F~, 
i = 0, 1 .... s such that 

BsB~_ 1 ... BoE(A" ) ~ O. 

This is possible because if B j+ 1 Bj. . .  B o E ( A ' ) =  0 for all almost local operators 
B j + 1 with momentum transfer F~+ 1, then also E(sp q / -  F i + 1)B1 ... B o E( A " ) = 0 
(cf. the proof of Proposition 2.2). Taking into account that the regions F i have been 
adjusted such that the range of the operator Bj. . .BoE(A')  is contained in 
E(sp q~ - Fj+ 1)9ff, one concludes that B~... BoE(A')  = 0, and repeating the argu- 
ment one is led to a contradiction. 

3. Next one considers the operator-valued function 

x 1 .... x S -o B~(x )... BI(xl )Bo'E(A' ) .  

Since the operators Bi have bounded energy-momentum transfer, all functions 
x ~ B,(x) and therefore also the above function are continuous in the uniform 
topology on ~(YY). Moreover, since (A" + F~) c~ sp q / =  0 for i = 1 . . . .  s one has 
BiE(A- ) = O, hence 

B (x) . . .  B I (xl)Bo E(A ") 

= [Bs(Xs), [ . . . , [Bl(Xl) ,  Bo] . . . ]  ] E(A'). 
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Bearing in mind that the operators Bj,j = O, 1... s are almost local, one obtains the 

bound 

II[Bs(X)' ['"'[Bl(Xl)'B°]'"]]ll < h(  ~llxi[ ) 

and consequently 

II Bs(X=).--Bl(Xl)BoE(A')II < h x i , 
i 

where h is rapidly decreasing. So the Fourier transform 

kl .... ks-~ I ~ d=xj e-~(kJXJ)Bs(X=)."BI(Xl)BoE(A ") 
j = l  

is a uniformly continuous function in ~ ( R ) ,  which is not identical to 0 since 
B=... B1BoE(A ~) ~ O. In particular, there exist s linearly independent vectors 
ql .... qs for which this function does not vanish, and these vectors are kept fixed 
in the following. Then one defines the operator 

B~= [. [I d=x2 e-i(q'w)[Bs(Xs), [.-. ,  [Bl(xl), B0~ ...] 3, 
j ~ l  

which is again almost local and satisfies BaE(A ") ~ 0 according to the above re- 
marks. B ~ is essentially the operator B of the theorem, which will be shown in the 
remainder of this proof. 

4. If gl,...g= are smooth functions on N~ then the norm of the operator-valued 
function 

Xl,...X s ~ S=(x)g=(P)S=_ l(x=_ 1)"" BI(xl)gl(P)BoE(A-) 

converges also rapidly to 0 if ~ Ixil tends to infinity. To verify this the following 
i=1 

two remarks may suffice: first one can replace everywhere in the above expression 
the functions gj by testfunctions with compact support because of the restricted 
energy-momentum transfer of the operators Bj. And second the norm of 

X l , ' " X s ,  Y l , ' " Y s  

f~(Y)""" fl(Yl)B=(x)U(Ys)B=_ ~ (x=_ ~)... B 1 (xl) U(y 1)B0 E(A-), 

where f l  .. . .  f~ are arbitrary testfunctions, converges rapidly to zero if ~ ([x~[ + lYi [) 
i=1 

tends to infinity, because of B~(x) U(y) = U(y)Bi(x - y) and the bounds given in the 
previous step. Hence if one integrates this expression with respect to yz .... y= the 
statement follows. By the same argument and a change of variables one can also 
show that 

[. [I d=xj e-i(qJ"Jl B=(x=)g=(P)B=- I (x=_ 1) '"BI(xl)gl(P)BoE(A-) 
j = l  

=gs(P +q'l)g=_l(P +(q~,+q,_l).l)...gl q,-1 B~E(A'), 
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where B ~ is the operator defined in step 3. 
5. It is convenient to introduce the notation e (p )= ( Ip l 2 +  m2) 1/2 and to 

distinguish the following functions of the momentum operator: 

Vq (t) = S ei'a" + q) dE(p). 

Clearly, Vo(t ) acts on •(1) like the time-translations U(t), 

U(t) I W(1) = Vo(t) I W°) .  

Taking into account that E A - +  F i J f  c W(1) fo r j  = 0, 1 ... s as well as the 

result of step 4 one obtains 

I ( I  d~x)e-i(qJ"~)B~(x~)'"Bl(Xl)BoE(A-) 
j = l  

= Vo(t~)Vq~(t~-I - 0 " "  V ~ q, (t 1 - tz) V ~ qi ( - t l )B"E(A') '  
t -2  i=1 

where x i = (t~, x~). Hence if one puts 

a -- i (q jx j )  B f =  ~ 1~I dS+lxj e f( ts  .... t l ) [B~(xs ) , [ ' " , [B l (x l ) ,Bo] ' " ] ]  
j = l  

for any tes t funct ionfon W, one arrives at 

B~. E(A')  = f(Q~,. . .  Qa)B" E(A-) 

H e r e f i s  the Fourier transform o f f  and 

Q~=e P +  ~ % . 1  - e  P +  ~ %.1 , i = l , . . . s  
j=i j = i + l  

with the convention q~+a = 0. Since f converges rapidly to 0 for large arguments 
B~ is again an almost local operator. 

6. In order to find out which functions of the momentum operator P can be 
obtained by varying f in f (Q~,  ... Q1) one has to study the mapping a of N~ into ~ 
which is defined in terms of the coordinates pl ofp by 

p~e[p+~i qj ~ p+ ~ qj , i = l  ..... s. 
j = i + l  

Since the function k ~ e(k) is analytic in a complex neighbourhood of ~ a is 
smooth. Moreover the determinant of the Jaeobian of a is also analytic in a neigh- 
bourhood of ~ ,  and its value at p = 0 can easily be seen to be different from 0 
because the vectors q~, i = 1,... s'are linearly independent (step 3). So the Jacobian 
of o- can only be singular on a closed set A 0 ~ ~ of Lebesgue measure 0. 

Now E(R × Ao)= 0 because the spectrum of P is absolutely continuous (cf. 
Proposition 2.2), hence in view of B"E(A-) ~4 0 there exists a point r in the comple- 
ment ofA 0 such that E(~ × A)B"E(A-) -~ 0 for each neighbourhood A of t .  On the 
other hand a is regular at r, and according to the inverse function theorem there 
exists a neighbourhood A of r such that a is an invertibte map of A onto a(A) with 
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a smooth inverse o-- ~. So given any testfunctionf with support in A one can define 
a testfunction J~ with support in a(A) by setting f~ = fo  a -~ on a(A) and j~ = 0 on 
the complement of a(A). With this definition one gets 

B~f E(A -) = f(P)" B"E(A') 

for the restricted class of testfunctions j~ and since E(R x A)B"E(A'):/: 0 there 
exists in particular a testfunction f ,  with support in A such that f,(P). B ~. E(A-) # O. 

7. In order to extend this result to arbitrary functions one proceeds as follows: 
given a smooth function g on R s+~ one restricts it to the hyperboloid Hm= 
{P:P0 = (p2+ m2)1/2} which is parameterized by the momentum p; this gives a 
smooth function ~ on ~ .  Then one multiplies ~ with the function~ introduced in 
step 6; the product gfa is a testfunction with support in A, so (~f,)~ is defined. 
Finally, one takes the inverse Fourier transform Y -  1 of the latter function. The 
result is a testfunction L(g) on W, formally given by 

L(g) = ~ - 1 o  (Of~)~, (t = g t H,,. 

From the previous calculations it follows then that 

BL(o)E(A') = 5(P) f,(P)B"E(A') = O(P)BL(~)E(A'), 

where e is the constant function e(p) = 1. Since the range of BL(~)E(A') is contain- 
ed in 5 f  (~) one can replace in this equation ~(P) by g(P), so 

B~(g) E( A -) = g( P ) B~(~) E( A "). 

Also 
a ~ p a BL(e)E(A ) = f , (  )B E(A') # O, 

and therefore the family of almost local operators B~(0) satisfies the first two rela- 
tions of the theorem. 

8. The remaining relations can be fulfilled if one adjusts the region A-and the 
momentum transfer of the operators B~(g) as follows: first one chooses some region 
A ~, such that the closure of A ~ is contained in A'and B"L~ E(A"I) # O. (This is possi- ()  
ble because B"L~E(A'I)# 0.) So the Fourier transform of x~B~(~)(x)E(A'I)is ()  
different from 0 and there exists a testfunction f r  whose Fourier transform has 
support in a region F such that A~ + F - F ~ A 'and  

S d s+ l x f  r(x)B"L(e)(X ) E(a'i) # O. 

Then one defines 

B o = ~dS+lx f r(x),BL(o)(x) 

and B~ = B. Clearly B 0 is an almost local operator for any smooth function g. 
Also, B. E(A'~) # 0 and 

B o" E(A') = S ds +1 x f  r (x) U(x)B~(o) E(A') U(x)- 1 

= g(P)" BE(A-). 

Since A~ c A, this relation holds afortiori if one replaces A'by A~. Furthermore, 
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se t t ing  A~ = A~ + F,  the r a n g e  of  Bo.E(A'I) is c o n t a i n e d  in  E(A'2)Yf, a n d  t a k i n g  
in to  a c c o u n t  t ha t  A 2 - F = A~ + F - F c A ' o n e  gets 

E(A'2)B g = E(A 2)BoE(A') = E(A 2)g(P)B, 

which  is r e l a t ion  (iii) of  the  theorem.  F ina l l y ,  b e a r i n g  in  m i n d  tha t  in  the  process  of  
c o n s t r u c t i n g  Bg one  has  on ly  res t r ic ted  the  m o m e n t u m  t ransfer  o f  ope ra to r s  a n d  
the  s u p p o r t  o f  p ro jec t ions ,  it is a lso c lear  tha t  A~ ~ A 1 a n d  A 2 ~ A 2 . So the  fami ly  
of  o p e r a t o r s  Bg has  all  the  des i red  proper t ies ,  a n d  this comple t e s  the  proof .  

F r o m  the  above  a r g u m e n t  it fol lows also tha t  g ~ Bg is a l inear  m a p p i n g  wh ich  
d e p e n d s  c o n t i n u o u s l y  (in the  t o p o l o g y  of  ~f~) o n  g. H e n c e  if B'  is an  a r b i t r a r y  
local  o r  a l m o s t  local  o p e r a t o r  in  ~ ( W )  o n e  can  def ine  

(B" B) f = S d ~+1 x f (x) B'(x)" B , 

w h e r e f i s  a n y  t e s t func t ion  o n  R ~+ t, Be ~ is the  o p e r a t o r  which  is a t t a ched  to the 

f u n c t i o n  e~ (p) = exp (ipx), a n d  the  in teg ra l  is def ined  as a weak  integral .  I t  is easy  
to verify tha t  (B"B)f  is a n  a l m o s t  local  o p e r a t o r  a n d  tha t  

f(P). B' BE(A-l) = (B' B)~E(A"I). 

There fo re  o n e  m a y  re lax in  T h e o r e m  3.1 the  c o n d i t i o n  tha t  the  r ange  of  B-E(A-1) 
is c o n t a i n e d  in  Yg(~). As a m a t t e r  of  fact, one  can  reach  a n y  spect ra l  subspace  
E(A)Nf by a su i t ab le  choice  of B. 
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