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Abstract. Given a continuous representation of the Euclidean group in n + 1 
dimensions, together with a covariant system of subspaces, which satisfies 
Osterwalder-Schrader positivity, we construct a continuous unitary repre- 
sentation of the orthochronous Poincar6 group in n + 1 dimensions satisfying 
the spectral condition. A similar result holds for the covering groups of the 
Euclidean and Poincar6 group. 

Osterwalder-Schrader positivity allows the analytic continuation of a theory in 
imaginary time to a quantum theory in real time (Osterwalder and Schrader [6], 
Klein and Landau I-3], Glimm and Jaffe [1]). 

When this analytic continuation transforms a field theory covariant with respect 
to the Euclidean group into one covariant with respect to the Poincarb group, the 
procedure has been to analytically continue the Schwinger functions of the 
Euclidean theory, which are distributions invariant under the action of the 
Euclidean group, into other distributions called Wightman functions, which are 
then shown to be invariant under the action of the Poincar6 group by analytic 
continuation of the partial differential equations that express the Euclidean 
invariance of the Schwinger functions (Nelson [5], Osterwalder and Schrader [6]). 

In this article we show how Osterwalder-Schrader positivity allows the 
construction of a unitary representation of the Poincarb group directly from a 
representation of the Euclidean group with a covariant system of subspaces. The 
new tool that makes that possible is our theory of symmetric local semigroups (Klein 
and Landau ['4]; see also Fr6hlich [10]), 

We start by considering the analytic continuation of unitary representations of 
the Euclidean group. Next we prove similar results for the covering groups of the 
Euclidean and Poincar6 groups. Finally, we describe the extension to repre- 
sentations of the Euclidean group (or its covering group) on topological vector 

,~Partially supported by the N.S.F. under grant MCS 8202045 

0010-3616/83/0087/0469/$04.00 



470 A. Klein and L. J. Landau 

spaces; this extension is needed in the application of these results to the 
Osterwalder-Schrader axioms. 

Similar results have been independently obtained by Fr6hlich, Osterwalder and 
Seiler [11]. 

I. Analytic Continuation of Unitary Representations of the Euclidean Group 

Definition. An Osterwatder-Schrader positive unitary representation of the n + 1 
dimensional Euclidean group IO(n + 1) with a covariant system of orthogonal 
projections consists of: 

(i) a Hilbert space JU; 
(ii) a map E from open sets in R "+ 1 to orthogonal projections in ~ff, such that 

A c B implies E(A)<E(B) and A.~A implies E(A,)~E(A)strongly; 
(iii) a continuous unitary representation U of IO(n+l)  such that 

U(g)E(A)U(g)-1 = E(gA) for all open sets A c R "+1 and gelO(n + 1); 
(iv) Osterwalder-Schrader positivity: let O~IO(n + t) be time reversal, i.e., 

O(s, x)= ( - s ,  x), let R = U(O) and E+ = E((0, oo) x R"), then E+ RE+ > 0. [] 
Given such a OS-positive representation oflO(n + 1), we will construct a unitary 

representation V of the orthochronous Poincar6 group I0  ~ (1, n) on a Hilbert space 
9ft. This will be done in four steps: 

1. The Hilbert space ~ f  will be constructed from ~ by OS-positivity. 
2, A unitary representation of the group of translations of (relativistic) gO" ÷ 1 will 

be constructed on ~¢f from the unitary representation of the group of translations of 
(Euclidean) ~"+ 1 by analytic continuation from imaginary time to real time. 

3. A unitary representation of the orthochronous Lorentz group O ~(1, n) will be 
constructed on J~f from the unitary representation of the rotation group O(n + 1) on 
~l  by analytic continuation from the trigonometric angle of a rotation towards the 
imaginary time axis to the hyperbolic angle of a Lorentz boost in real time. 

4. The representations constructed in steps 2 and 3 will be combined to give a 
unitary representation of the orthochronous Poincarb group IOT(1, n) satisfying 
the spectral condition. 

Steps 1 and 2 are standard (Osterwalder and Schrader [6], Klein [2], Glimm and 
Jaffe [1]). Step 3 is new; we use symmetric local semigroups to construct the 
infinitesimal generators of Lorentz boosts. Steps 2 and 3 are totally independent. 

Remark t. We start with a representation of the full rotation group O(n + 1) because 
we need time reversal to define OS-positivity, and O(n + 1) has only two connected 
components. Thus space reflections are necessarily included and we obtain a 
representation of the orthrochronous Lorentz group. 

Remark 2. If the Hilbert space Y is the complexification of a real Hilbert space 
which is left invariant by the representation U and by the covariant projections E(A), 
we will obtain a representation of the full Poincar6 group I0(1, n) in which time 
reversal is represented by an anti-unitary operator. 
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We now proceed with the construction. 

471 

1. Construction of the Hilbert Space ) f  

Let ~ ~ E + R E  + and )fro = ~V'S = ~//'X +, where X + = E + X .  On ) f0  we define a 
sesquitinear form ( I )  by 

( V F p / F G )  = ( F ,  R G ) ~  for F, G e J I + .  

Osterwalder-Schrader positivity makes ( I ) a positive definite inner product. We let 
) f  be the Hilbert space completion of ) f o  with the inner product ( I ) -  

By construction U :s¢'+--, ) f  is a contraction with dense range. 

2. Construction of the Representation of the Group of Translations on ) f .  

Let z (s, x) denote translation by (s, x) in (Euclidean) R "+ 1, then z (s, x )~ lO(n  + 1) so 
we let U(s, x ) =  U(z(s, x)) be the corresponding unitary operator on g(. 

Notice that U(s, x)v~f + c dug + if s > 0 and U(0, x) commutes with both R and E +. 
Define V(0, x) on ) f0  by 

V ( O , x ) ~  = V U ( 0 , x )  on Yg+. 

It follows that V(0, x) is a well defined isometry o f ) f  o onto itself and thus extends to 
a unitary operator on ) f ,  the group property in x being obvious. Here V(0, x) is 
clearly strongly continuous on ) fo  and hence on ) f .  We denote by P the self-adjoint 
generators of space translation: 

V(0, x) = e ix 'r  

Consider now V(s, 0). For  s > 0 we define P(s) on ) fo  by 

p(s)qf  = ~f~U(s,O) on 2//+. 

It is easy to see that P(s) is well defined on ) f0  and that (P(s), @s = ) f0 ,  oe) form a 
symmetric local semigroup (Klein and Landau [4]). Hence there exists a unique self- 
adjoint operator H on ) f  such that P(s) is the restriction of e -sH to ) fo-  Since 

N e-SmK'F Ilae = II P(s )VFII je  = II "f'U(s, O)F II~ <= II F liar 

for all s > 0 and FsX((+, it follows that H ~ O. 
Notice that V(O, x) and P(s) commute, since 

v(o, x)P(s)~ = ~ u ( 0 ,  x)O'(s, o) = ~ U ( s ,  x) = 

= °Y'V(s, O) U(O, x) = P(s)V(O, x)¢/'. 

Thus H and P commute, in particular 

e i x ' P e  i tH : ~ t H  e i x ' P  ~ e itH + ix .P 

for all tE~, x ~ " .  

Let z(t, x) denote translation by (t, x) in (relativistic) N" + 1. Then 

V(z(t, x)) = V(t, x) = e i'" + ix.r 
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gives a cont inuous uni tary representat ion of the group of translations of R" + 1 on ~ .  

3. Construction of the Representation of the Orthochronous Lorentz Group on YF 

A. T h e  Analy t i c  Cont inuat ion  f r o m  O(n + 1) to O~(t,n) 

Let  g = (1,0)eN "+1, we identify the subgroup of  O(n + 1), leaving g invariant with 
O(n) in the usual way. 

Given a unit vector t ieR" ~ {0} x R" and 0eR,  we denote  by r(t~, 0) the rotat ion 
by the angle 0 from fi to s, i.e., 

r(fi, 0)g = c o s 0 g -  sin 0t~, 

r(t~, 0)fi = cos 0t~ + sin 0g, 

r(~, O)x = x if x is perpendicular  to g and t~. 

The (n + 1) x (n + 1) matrix corresponding to r(t~, 0) is 

r(~, O)ij = 6~,j + (6i,o6oj + u~ui)(cos 0 - 1) + 

+ (61,oU j - 6o,jUi)sin O, (1) 

where i , j  = O, 1 . . . . .  n, the index 0 corresponding to the g axis, and fi = ~ u ~ ,  £~ 
i=1 

denoting the unit vector in the x i direction. 
Notice that if 9 e O ( n  + 1), then 

9 g = cos Og - sin 0t~ = r(t~, 0) g 

for some 0 and t~, which implies 

g = r(a, O)G (2) 

for some 0eR,  fi unit  vector in R", GeO(n) .  
If k(fi)eO(n) is a rota t ion taking a into ~1, 

r(a, O) -- k(a) - 1 r()~l, O)k(a). (3) 

If ~ ~ -- x l ,  we may take k(a) as the rota t ion that  takes fi into xl  and leaves 
invariant vectors perpendicular  to a and ~1. In this case k(~) has the matr ix 

k(a)~,j ----- 6i, j - (1 + u l ) -~ (u j  + 61 j ) (u  i + 6~,~) + 2ujfi ,  1, (4) 

i , j  = 0 , . . .  ,n. Notice that  (k(a)-~)~j = k(a)j,~. 
The group proper ty  is expressed by  

r(a~, 01)r(a~, 02) = r(a, O)G(01, 02), (5) 

where 

and 

COS 0 = COS 01 COS 0 2 --  s in  01 s i n  0 2 c o s  (~, (6) 

tl = (sin 0) -1 [(cos 02 sin 01 - sin 02(1 - -  COS 01)COS ~b)tt I q- sin 02fi2] 
(7) 
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if sin 0 # 0. We have set cos q5 = ul "$/2" Thus G(01, 02) is in O(n) and is given by 

G(01, 02) = r(~, - O)r(a 1, 0a)r(t~2, 02). (8) 

A similar discussion applies to the o r thochronous  Lorentz  group &(1 ,n) .  If 
f = (1, 0), we again identify the subgroup of O~(1, n) leaving f invariant with O(n) in 
the usual way. 

Given a unit  vector  f i e f "  - {0} x R" and ~eR,  we let b(tl, ~) denote the Lorentz  
boos t  with hyperbolic  angle a in the tl, f plane, i.e., 

b(~, a)f = cosh a t  + sinh a~, 

b(a, a)~ = cosh aft + sinh 7 f, 

b(a, ~)x = x if x is perpendicular  to ~ and f. 

The corresponding (n + 1) × (n + 1) matrix is 

b(fi, a)i,j = 6i. j + (3i, o6oa + t~i~j(cosh a - 1) + 

+ (6i,o~ ~ + 6o.fi3sinh a, (9) 

i , j=O,  1 , . . . ,n .  
Notice that  given the matr ix b(a, ~), cosh a and sinh a ~ are uniquely determined, 

so that  if a # 0, ~ and ~ are determined up to a sign: b(fi, c 0 = b( - h, - a). 
Every heO ~ (1, n) may  be written 

h = b(a, a)H (10) 

for some unit  vector  ~e[~", a e ~ ,  and HeO(n). 
Again, 

b(a, a) = k(~)-~b(~,  a)k(a), 

as in (3). 
The group proper ty  is now expressed by 

where 

b(~l, al)b(t~2, 0~2) = b(/3, a)H(cq, a2), (11) 

where 

i 

cosh a = cosh a x cosh ~2 3ff sinh a 1 sinh a2 COS (~, (12) 

and 

13 = (sinh ~)- 1 [(cosh ~2 sinh ~1 + sinh ~2 (cosh ~1 -- I)COS (~)/~1 "+ sinh a2 u2], 
(13) 

if ~ (= 0, where cos q5 = ul" uz as before. 
Not ice  that  the matr ix r(~, z), given by (1) with the complex variable z replacing 0, 

is an entire function of z, and if we take z = - ia purely imaginary, 

Tr(d, - ia)T-1 = b(d, cO, (14) 
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I being the n x n identity matrix.  
The analytic cont inuat ion  f rom the ro ta t ion  group O(n + 1) to the or thoch-  

ronous  Lorentz  group  &(1 ,n )  is based on Eq. (14). We will show that  Eq. (5) 
analytically continues to Eq. (11) as the complex  variable z goes f rom z = 0 to z = 
- ia (inserting the matr ix  T as in Eq. (14); the insertion of the mat r ix  T accounts  for 
taking imaginary  time to real time, i.e., s goes to - i t ) .  

Let  ~b be a fixed angle (as in (6) or  (12)) and define the entire function W(z~,  z2) of 
two complex variables by 

W ( z  1, z2) = cos z 1 cos z 2 - sin z 1 sin z 2 cos ~b 

= a cos(z 1 + z2) + bcos (z  1 - z2), (16) 

where a = cos 2 q~/2, b = sin 2 q~/2. 
Let al ,  °~2 ~ ~ be given such that  not  both  are zero, and let 0 < 00 < re/4. We now 

choose 01, 02 ~ ~ so that  0 < 101 i, 1021 < 00 and 01 - 02 is non-zero with the same sign 
as ~1 - -  (X2 and 01 + 02 is non-zero with the same sign as al  + a2. 

Define the pa th  7 : [0 ,1]  ~ C x C by 7(z)= (zl(z), z2(z)), where z j (z)= ( 1 -  z)Oj 
- i za j , j  = 1, 2. It  is easily checked that  a long 7 W ( z l ,  z2) :p _+ 1 and Re W ( z  1, zz)  > O. 

We m a y  then analytically continue the function 

a long ? as 

to 

0 = arc cos W(O 1, 02), - ~t/2 < 0 < 1r/2, 

z = O - i o t = a r c c o s W ( z a , z 2 )  , - n / 2  < R e z  < ~ / 2 ,  

- ic~ = arc cos W (  - icq, - -  i~2). 

But (18) says tha t  

c~ = arc cosh(a cosh (~1 + ~ 2 )  "t- b cosh (~1 - a2)), 

Where  a is real since - ~z/2 < Re( - i~) < 7z/2. 
We have thus analytically cont inued f rom Eq. (6) to Eq. (12). 

(17) 

(18) 

Remark .  More  generally, it follows f rom (16) and the convexity of  the image under  
the cosine of the region tRe zl < e, that  if 101 + 021 < e, then IRe zl < e a long the pa th  7, 
z given by  (17). This holds for any  e < re/2. 

We  now show that  Eq. (7) also analytically continues to Eq. (13) a long the pa th  ?. 
Let 

u(z l, z2) = (sin z)-  1 [(cos z 2 sin z 1 - sin z2(1 - cos zl)cos ~b)fi 1 + sin Z2b~2] , 

(19) 

where z is given by (17). Since sin z 4= 0 a long the pa th  7(W(z  1, z2) @ _ 1 along 7), (19) 
gives an analytic cont inuat ion  f rom ~ = u(01, 02) (Eq. (7)) to ~ = u( - ial,  - i~2) (Eq. 
(13)) a long 7. 

We can now analytically continue Eq. (5) along the path  ? as r(fi 1, zl)r(~2, z2)= 
r (u , z )G(z l , z2 )  , where z is given by (17), u by (19), and G(Zl,Z2) by analytic 
cont inuat ion of (8). 
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It this way we have analytically continued Eq. (5) to Eq. (11) (inserting the matrix 
T as in Eq. (14)). Since the matrix b(b, ct) is uniquely determined by b(t~a,cq) and 
b(t~2, a2), it follows that the resulting a and ~ are unique up to sign. 

B. The Analytic Continuation of the Unitary Representation of O(n + I) on ~ to a 
Unitary Representation of 0~(1, n) on 

IfgeO(n), then U(g) commutes with both R and E+. Thus if we define V(g) on ~gfo by 

V(g)~lr -- ~/rU(g) on JC+, 

it follows that V(g) is a well defined isometry of~Ufo onto itself and V(g) extends to a 
continuous unitary representation of O(n) on dr. 

We now construct the unitary operators corresponding to Lorentz boosts b(fi, a). 
For  0 = O < n/2, let C o denote the open cone in ~"+ 1 having its axis in the ~direction 
and with half-angle n/2 - O: 

Co= {XeR"+l; x '~>lxls inO}.  

Note that C o c (0, oo) x R" and r(~,O')C o ~ Co_lo, I if I0'I < 0 for all ft. 
Define 9f~0 = E(Co)~ = E(Co)S+ c JC+ and let 9 0 = V ~  0 c dgo. Now define 

the linear operator P(~, O) on dt°o having domain 9 o by 

P(a,O)~ =#U(r(a ,O))  on JT" 0. 

Here P(~, 0) is well defined by the same argument as in the proof of Lemma 8.2 in 
Klein and Landau [3]. Furthermore, P(t~, 0) is symmetric on 90: let F, Ge~ffo, then 

( ~/rF IP(a, O)¢rG ) = (F, R U(r(a, O))G) = (F, U(r(fi, - O))RG) 

= (U(r(~, O))F, RG) = (P(Ct, O)¢fF [~tFG). 

Since U(r(fi, 0')) is strongly continuous in 0' for fixed t~, it follows that P(~, 0') is 
strongly continuous in 90 for 0 -< 0' < 0. Notice also that 

O<O<n/2 0 < r~12 

and hence is dense in .~.  
We can thus conclude that, for fixed fi, (P(~, 0), 9o, n/2) form a symmetric local 

semigroup, so there is a unique self-adjoint operator L(a) on xC such that 9 o is 
contained in the domain ofe -°L(a~ and P(fi, 0) is the restriction ofe -°L~ to 90 (Klein 
and Landau [4]). 

In addition, on J~r 0 we have that 

P( - a, O/2)P(~, 0/2)W = "U U(r( - fi, O /2)r(~, 0/2)) = ~/F, 

since r( - ~, 0/2) = r(~, - 0/2). It follows that 

L( - a) = - L(a). (20) 

Now let heO~(1,n), then we can write h=b(~,a)H (see (10)). Recall that the 
matrices of the Lorentz boost b(~, ct) and of HeO(n) are uniquely determined, fi and 
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being determined up to sign: b ( -  a, ~)= b(fi,- e). Thus 

V(h) = e ~L(a~V(I-1) 

gives a well defined map from OT(1, n) to unitary operators on • by (20). 
It follows from the construction of L(fi) and Eq. (3) that 

e ~L(*) = V(k(~)- i)exp(ic~LO)i))V(k(a)). (21) 

We must still show that V gives a representation of O~(1, n); to do so it suffices to 
prove that (compare with Eq. 11)) 

exp (iaiL(fil))exp (i~2L(~2)) = e ~L(e) V(H), (22) 

where a, ~,H are given by Eq. (12), (13), and (11), respectively. 
So let 0<e<rc /2 ,  and choose 01 and 02 so that 10~t+ 

1021 < e. From Eq. (5) and the construction of L(~), we have that the equality 

exp ( - 01L(~i)) exp ( - 02L(~2) ) = e-  or(a)V(G) (23) 

holds in @~, where 0, a, and G are given by Eqs. (6), (7) and (8), respectively, and 
0~,02 are chosen so that 101 <e.  

We now rewrite (23) using (21): 

exp ( - OxL(a~)) exp ( - 0 2 L ( / ~ 2 )  ) = V(k(t~)- t )  exp ( - OL(~O) V(k(a)) V(G), (24) 

again holding in N,. 
So let us analytically continue in the complex variables zj = 0j - iaj,j = 1,2, from 

zj = Oj to zj = - iej, j = 1, 2, as in subsection A, and obtain (22) from (24). To do so, 
having fixed c~l, az, we choose 0 l, 02 satisfying the above conditions and the 
conditions after Eq. (15), and do the analytic continuation along the path y defined 
below Eq. (15). 

To do this notice that the closed subspace oF, is invariant under U(9) for 9eO(n). 
Since O(n) is a compact group, ,Xr~ can be decomposed into finite-dimensional 
representations of O(n). Let Fj , j  = 1,. . . ,  N', and F~, f = 1,. . . ,  N", be basis vectors of 
two such finite-dimensional sub-representations, and letfj. = U/Fj , f l  = ~ F ] .  Then 
Eq. (24) implies that 

( e x p ( -  O1L(~l) ) f  jlexp( - OzL(aa))f ~> = 

N' N "  

Z F'(k(~)-1)j.~F"(k(~lG)e,e, ( f j ,  pexp( - OL(~ 1 ) ) f~) ,  
j ' = l d ' = l  

(25) 

where F'(9)j,,i, F"(g)e,~" are polynomials in the matrix element of g~O(n). 
We may now analytically continue Eq. (25) along the path ?. This analytic 

continuation is based on three facts: 
(i) sin z 4; 0 along "i. 
(ii) IRe zll + IRez21 < 8 and IRezl < e along 3' by the construction of the path 

and the remark following Eq. (18). 
(iii) Using (21) it suffices to prove (22) with rl 1 = )~i- In this case, iffi 2 @ + xl (in 



From Euclidean Group to Poincar6 Group 477 

which case (22) is obvious), it follows that :~-u 4; - l(u is given by (19)) along the 
path 7 and so k(u) is analytic along 7. 

Since the above construction can be done for every 0 < e < n/2,  we conclude that 
(22) holds on Yfo and hence on our. 

Thus 

V(h) = e iaLO) V(H) = V(k(f i )-  1 ) exp (io:L(~ x )) V(k(fi)H) (26) 

for h = b(fi, a)H defines a unitary representation of Or(l, n) on Yr. 
The continuity of the representation follows. For let h = b(~, a)H~OT(1, n) with 

a 4; 0, ~ 4; - ~ .  Then we can find a neighborhood of h in Or(l, n) such that these 
conditions hold and a, fi, H are continuous functions of h. The strong continuity of V 
in this neighborhood then follows from (26). The continuity of V around an arbitrary 
heOT(1,  n) now follows from the group property. 

4. Combining the Lorentz Group with Translations 

A. T h e  Spectra l  Condi t ion 

Since U is a representation of the inhomogeneous IO(n + 1), 

u (r(~, 0)) u(~(x)  ) U(r(a, - o)) = v(~(a, o)~) ), 

where as before -fix) denotes translation by xE~ "+1. 
Taking x = (s/cos 0, 0) in (27) gives 

V(r(~, O))V(~(s/cos 0, 0 ) )  V ( r ( ~ ,  - 0 ) )  = 

= U(z(s, - s(tan 0)fi)). 
L e t  0 < ~ < n / 2 , f e ~  and [01 < e. Then (28) leads to 

( e -  Orf  l e-(S/¢osomooL f } = ( e -  (S/2 )B f [ e  - is(tanO)P e -  (S/2 )H f ) ' 

(27) 

(28) 

(29) 

where L =  L(~), P = P-~. 
Since f ~  ~ ~ ( e - ~ L ) c ~ ( e ' L ) , e  (°-i')L is an analytic vector-valued function of 

0 -  ia for t01 < e. Moreover, e -~n is operator-norm analytic for Rez > 0, because 
H > 0 .  Since Re [cos (0 - ic0] -1 > 0  for 10] < n / 2 ,  it follows that e-~t~°~(°-i')J-1H 

is operator-norm analytic for 101 < ~z/2. Therefore the left-hand side of (29) has an 
analytic continuation G(O - i~) for 101 < e, 

G(O - icQ = ( e -  (o + ~)Lfl e -,[¢os (o - a)l i u e(O- i,)Lf ) .  

In particular, 

G( - ia) = ( e-i~Lj'Je -s(¢osh ~)- ,n e - ,~Lf ) .  (30) 

Since tan(0 -- i~) is a one-to-one conformal mapping of the strip [0[ < e onto an 
open neighborhood of {z = iy, - 1 < y < 1 }, it follows from (29) and the lemma in the 
Appendix that e - ( S / 2 m f e ~ ( e  -i(s/2)ttan(°- i~))e) for 10[ < e, and 

G(O - ia) = ( e-(S/2)n fle-i~(ta"(°-i~))P e-(~tz)Hf ) .  
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In particular, 

G( - i~) = <e -(s/2)nfle-sOanh")ee-(s/2)nf>, (31) 

and e-(S/2)nf  e~(e-(S/2)(tanh~)e). 

Combining (30) and (31) we conclude that 

H e-(S/2)(tanh~)Pe-tS/2)ltfll ~ It f i t  

for a l l f ~ ,  0 < e < n/2, and ~eE. 

Since U ~ is dense in ~t °, it follows that (recall L=L(a),  P = P . a )  
0 < e < n / 2  

H + (tanh c0P'~ > 0 (32) 

for all c~EE. 
Since (32) holds for all unit vectors ~e E", we can conclude the spectral condition: 

H >__ IPt. 

B. The Orthochronous Poincark Group. 

Using the spectral condition (32), we may now analytically continue (30) and (31) in s 
to - it(cosh ~), getting 

< flei~r eitn e -  hL f  } = <flei,I(~o~h ,)u + (sinh~)/'lf>, 

for all f e ~ .  It follows that 

eic~L eftH e - i~L = eit[ ( cosh a)H + (sinha)e] (33) 

for all t, ~ .  
Replacing t with r(sinh a)-1 in (33), and rearranging (33), we get 

ei~Leirt"e -iaL = e/r[(e°sh~)/' +Csinh~)n] . (34) 

Combining (33) and (34) we conclude that 

V(b(•, a))V(z(t, ra))V(b(ff, - ~)) = V(z(b(fi, - a)(t, rff))). (35) 

Equation (35) together with the immediate equation 

v(g)v(~(t, x))V(o)- 1 = v(~(s, ox)) 

for 9eO(n) shows that the representation of the orthochronous Lorentz group 
&(1, n) combines with the representation of the group of translations on R" + 1 to 
give a representation of the orthochronous Poincar6-group 10~(1, n). 

This finishes the construction of the continuous unitary representation V of 
I & ( l ,  n) on ~ .  

Remark. If )V is the complexificafion of a real Hilbert space J r ' ,  and both the 
representation U of IO(n + 1) and the covariant orthogonal projections E(A) leave 



From Euclidean Group to Poincar+ Group 479 

. :f '  invariant, we may define an anti-unitary operator T on J(f corresponding to time 
reversal. For  if we let ,~ '  be the closure of U:( (+ ,  then Yf' is a real Hilbert space of 
which o~f is the complexification. By construction e -t~, V(z(0, x)), e-OL~a) and V(q) for 
g s O ( n )  leave 3¢" invariant. Thus if T is conjugation with respect to the decom- 
position H = o~' + i~g¢", it follows that T is time reversal. 

II. The Covering Groups 

A similar construction can be carried out in the case of the spinorial two-fold 
covering groups of the Euclidean and Poincar6 groups. This case is appropriate 
when dealing with fermions. 

We begin with a discussion of the covering groups and their relation via analytic 
continuation. These groups are most easily considered as subgroups of a complex 
Clifford algebra (e.g., Atiyah, Bott and Shapiro [8]). 

Defini t ion.  For n = 1, 2, 3 , " -  the complex Clifford algebra C, + 1 is generated (over C) 
by Co,el,. . . ,  e, which satisfy the relations 

elej + eje i = - 2bi~, i , j  = O, 1, 2 . . . .  , n. 

Thus an independent basis for C,+ ~ is 

{ e h . . . e i , [  O <  il < i 2  < . . .  < i r < n ;  r =  l , Z , . . . , n } w { 1 } .  
[]  

For any element z = (z °, x) = (z °, z 1 . . . . .  z ,)eC,+ x, we write 

e(z) = ~ zJej. 
j=O 

We now define two n + 1 dimensional real-linear subsets of C, + 1 which will 
correspond to Euclidean or relativistic space-time: 

E "+1 = {e(s ,x) ;  (s,x)e•"+l}, 

E 1'" = { e ( -  it, x); (t ,x)eE"+l}. 

We also define subsets S "+~ c E "+~, S ~," ~ E ~," by 

S ' + l = { e ( s , x ) ;  s2 + x 2 -  1}, 

S 1'" = { e ( -  it, x); - t 2 + x 2 = l}. 

Note that the elements of S"+~(S ~'") are invertible in S"+1($1"):  

e(s, x)  - 1 = e( - s, - x) ,  e( - it, x ) -  1 = e( - it, - x). 

Def ini t ion.  Pin(n + 1) is the group consisting of finite products of elements from 
S,+ 1 and Spin(n + 1) is the subgroup consisting of products of an even number of 
elements from S "+ ~. Similarly Pin(l, n) is the group generated by S 1 '" and Spin(l, n) is 
the subgroup with an even number of elements from S ~'". [] 
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Now each element e(z)eS "+1 defines a linear mapping of E n+ ~ by 

e(z)e(w)e(z) = e( dp~(z) W). 

Then ~b ~ extends to a homomorphism of Pin(n + 1) into linear mappings ofE ~+ 1. 
Indeed ~b ~ is a 2 - 1 homomorphism of Pin(n + 1) onto O(n + 1). This follows from 
the fact that only _ 1 are mapped to the identity, and that be(z) is reflection through 
the hyperplane perpendicular to z, while O(n + 1) is generated by reflections. Thus 
~b E is also a 2 - 1 homomorphism of Spin(n + 1) onto SO(n + 1). It also follows that 
Pin(n + 1) and Spin(n + 1) are compact groups since they are 2 - 1 coverings of 
compact groups. 

Similarly, each element e(z)~S 1'' defines a linear mapping of E ~'' by 

e(z)e(w)e(z) = e( gbR(z)w), 

and q5 R extends to a 2 - 1  homomorphism of Pin(1,n) onto O~(1,n) and of 
Spin(l, n) onto SO(I, n). This follows from the fact that every element of Or(l, n) can 
be written as a product (I0) and the Lorentz boosts will be obtained explicitly in the 
following, and that each element of S 1'" preserves the sign of the f component of a 
time-like w. 

We now construct explicit dements of Spin(n + 1) and Spin(l, n) which cover 
r(a, 0) and b(a, a) defined in Sect. 3. 

Definition. R(~, O) = - e~sin cos ) e~  - sin cos~U 
/ 

0 ^ 

= cosh~ + sinh~ e (u ) [ - i eo] .  [] 

Then for fixed ~, R(~, O) and B(~, c~) are one-parameter groups and 

R (  - t~, - 0) = R ( ~ ,  0),  

B (  - 2 ,  - ~ )  = B ( ~ ,  a), 

R(~, 0 + 2rr) = - R(~, 0), 

R(a, 0 + 4~r) = R(a, 0), 
q~(R(a, 0)) = r(a, 0), 

~R(B(a, ~) ) = b(a, ~). 

Since every element of O(n + l) has the form (2), it follows that every element of 
Pin(n + t) has the form 

R(a, 0)f~ (36) 

for some 0 ~ ,  a a unit vector in •', f~Pin(n). We also have (as in (3)) 

R(t~, 0) = K(a)- 1R(~ 1 , 0)K(~), (37) 
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where K(~)eSpin(n) covers k(~)eSO(n). We may take 

K(~) = [2(1 + t i ' x i ) ] - l / a  [1 - e(a)ei], 

K(~)- i = [2(1 + a. ~ ) ]  - 1/2 [1 - el e(a)]. (38) 

In a similar way every element of Pin(l, n) has the form 

B(~, ~)3/f (39) 

for some aER, fi a unit vector in R", 3/fCPin(n), and 

B(~, c 0 = K(a)-  1B(~I, a)K(a). (40) 

With these results, the analytic continuation from Pin(n + 1) to Pin(1,n) is 
carried out along the path ? in the parameter space (zi, z2) from zj = 0j to zj = - ic~j 
as in Sect. 3A in Part I. 

We now consider the analytic continuation of a unitary representation of 
Pin(n + 1) on 5¢" to a unitary representation of Pin(l,  n) on i f .  

Let U be the unitary representation of Pin(n + 1) on JT'. The covariance of the 
orthogonal system of propections in expresed by 

U(g)E(A)U(g) -1 = E(dS(g)A ) 

for all g~Pin(n + 1) and open sets A c R "+i. 
We note that U( - 1) belongs to the center of the representation and commutes 

with E(A) for all A ~ ~,+1. 
Osterwalder-Schrader positivity holds with respect to the reflection operator 

R : E + R E +  >=0. 
The operator R cannot be U(e0), since if 

E+ U(eo)E + > O, 

it must be self-adjoint and hence taking adjoints yields 

E + U(eo)E + = e + U( - eo)E + = U( - 1)E + U(eo)E +. 

From this it follows that V( - 1) = I on ~ff. In other words the two-fold covering 
of O(n + 1) is extraneous and is lost in the construction of the representation of 
Pin(l, n) on J r ,  which is then actually a representation of O r(1, n). To avoid this we 
suppose R = CU(eo), where C is a unitary operator commuting with U(g) for all 
gePin(n + l) and with E(A) for all A = R "+1, so R will act by conjugation as time- 
reversal. Also, C 2 = U( - 1), which implies that R is a unitary involution: R 2 = 1. 

C can be interpreted as charge conjugation (Osterwalder and Schrader [7]). 
We now proceed as in Sect. 3B, defining P(a, 0) by P(a, 0)Of = "F(U(R(a, 0))) 

on J(0. Then there is a unique self-adjoint operator L(a) on ~vf such that P(~, (9) is the 
restriction of e -°L¢° to ~0- As in (20), L ( - t ~ ) =  -L(a ) .  The remainder of the 
argument follows as before. 

The inhomogeneous spinorial covering group IPin(n + 1) of the Euclidean 
group is the semidirect product of Pin(n + 1) with the translation group, satisfying 

U(R(a, O))U('c(x))U(R(a,- 0))= U(~(r(a, 0)x)) 
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(compare (27)). As a result, the representation of IPin(1, n) and the spectral condition 
follow as in Sect. 4. 

As a final remark, we note that the above construction goes through unchanged 
if we assume only a unitary representation of ISpin(n + 1) together with E(A) for 
A ~ N,+I and the reflection R with the appropriate properties. We obtain a 
representation of ISpin(1, n) satisfying the spectral condition. 

IlL Analytic Continuation of Representations on Topological Vector Spaces 

Let g denote either IO(n + 1), ISO(n + 1), IPin(n + 1) or ISpin(n + 1), and ~ denote 
IO t(1, n), ISO(1, n), IPin(1, n) or ISpin(1, n), respectively. By 4) we denote either the 
covering map of IPin(n + 1) onto IO(n + 1) or the identity map on IO(n + 1) or their 
restrictions to ISpin(n + 1) or ISO(n + 1) according to the case. We letO be either in 
Pin(n + 1) or O(n + 1) so that q~(O ) = 0 (time reversal). Notice thatO g O -  * = g for 
any of the above choices of ~ and the corresponding choice o fO .  

Definition. An Osterwalder-Schrader positive representation of ~ with a covariant 
system of subspaces consists of: 

(i) a topological vector space 5((; 
(ii) a map A ~ 5U(A) from open sets in ~"+ 1 to subspaces of :,~(, such that A c B 

implies al l (A)c Y(B) and A, TA implies that U ~((A,) is dense in S~(A); 
n 

(iii) a strongly continuous representation U of # on ~ such that U(g)~(A)= 
~((4)(9)A) for all g~g and open A c ~"+1; 

(iv) Osterwalder-Schrader positivity: there is a continuous positive semi- 
definite inner product ( l>  on J l +  = X((0,  oo) x ~") such that 

(a) i f g ~ g  and F,G,U(g)F and U(Oo-lO-1)G are in ~('+, then 

(GIU(g)F) = ( U(Oo -1 O- 1)GtF ), 

(b) for each F ~ ' +  and ¢ > Oe-CS(FI U(~(s,O))F) is bounded for s > 0. [] 

Given such an Osterwalder-Schrader positive representation of # we construct 
as before a unitary representation of the corresponding ~ satisfying the spectral 
condition. The Hilbert space ~4f is constructed as in Osterwalder and Schrader [6]. 
If Y = {F~;~f'+ ; (FIF) =0},  then X is a closed subspace of ~ +  and ~ 0  = 
~f'+/JV is a pre-Hilbert space with inner product (1).  We denote by U the 
canonical map ~ ~_ ~ ~r  +/Ay and take ~ to be the Hilbert space completion of ~ o  
(when ~¢" is a Hilbert space this construction is equivalent to the one given in Sect. 1 
of Part  I). The rest of the construction goes as before with minor modifications. 
Condition (iv) (b) together with the spectral theorem insures that H > 0. Also in Sect. 
3B Part  I we used the fact that a continuous unitary representation of a compact 
group on a Hilbert space is a direct sum of finite-dimensional representations. Since 
Jl~ is now only a topological vector space, we must modify our argument (notice 
that the decomposition of a strongly continuous representation of a compact group 
as a direct sum of finite dimensional representations still holds for representations 
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on quasi-complete barrelled topological vector spaces, see Dieudonne [9]; if we 
assumed ~ to be a barrelled topological vector space we could still use the 
decomposition of the completion of JY', and carry the argument through). Instead of 
decomposing Jcg~ we will decompose an enlargement ~ of ~ .  To do this, recall that 
@~ is a linear sub-space of the Hilbert space .Yg that is left invariant by the unitary 
representation V of the compact group G = O(n) (or SO(n), or Pin(n), or Spin(n)). Let 
V(qO = ~dg q~(g)V(g) for q~e C(G). Then V(q0 does not necessarily leave ~ ,  invariant, 
so let ~ be the linear span of ~ ,  w { V(q~)fi q~e C(G), f e  ~ } .  Then ~ is left invariant 
by both V(g), ge  G, and V(q~), ¢p e C(G), and ~ ,  is dense in ~ ~. It follows by the usual 
proof for unitary representations of compact groups that the unitary representation 
V of G on the pre-Hilbert space ~ ,  can be decomposed as a direct sum of finite- 
dimensional representations. Now recall that ~ c ~(e-°U~')) for 101 < ~ and any unit 
vector ~eE", and that 

e -  oua) V(g)$/- F = ~/, U(r(~, O) )U(g)F 

is a continuous function of g e G  for FeJY~,, since the representation U is strongly 
continuous. Thus, if f eN, ,  q~ e C(G), V(~0)f= ~dg ¢#(g)V (g)f and ~dg q~(g)e-ou~)V(g)f 
can be constructed as Riemann integrals. Since e-°Ua) is a closed operator, it follows 
that V(q~)feN(e- ou~)) and e -  ou~) V(qO f = S dg q~(g)e- ou~) V(g)f.  Hence 
~ ~ @(e-OLO)). Thus if we now take f j , j  = 1 . . . . .  N', andf~,  l = 1,. . . ,  N", to be basis 
vectors for two finite-dimensional sub-representations of V on ~, ,  Eq. (25) still holds 
and the rest of the argument goes through as before. Thus the analytic continuation 
argument of Sect. 3B is still valid. 

Remark. The Osterwalder-Schrader axioms give an Osterwalder-Schrader posi- 
tive representation of the Euclidean group with a covariant system of subspaces 
(see Osterwalder and Schrader [6]). The above construction can then be applied to 
give directly the unitary representation of the Poincar6 group on the physical 
Hilbert space. 

Appendix. A Technical L e m m a  

Lemma.  Let G(x) = ( f[e ixef)Jbr  x e  ~, where P is a self-adjoint operator on a Hilbert 
space ~g and f e J t  ~, f ~O. Suppose there exists a function G(z), analytic in a 
neighborhood o f I  = {z = iy, - Yl < Y < Y2 }, where Yl,  Y2 > O, such that g(x) = G(x)for 
[xi < e, some e > O. Thenfe~(eit=/2)e)for z e I '  = {z; - Yl < Im z < Yz } and ( J l d z e f )  is 
an analytic continuation of  G(z) to I'. [] 

Proof. 1) f e~ (P ) :  

II - i x - l ( e  i~'P - 1)fl[ = = x -z ( f [ (2  - e ixv - e-~"v)f> 

= x-2(2G(0)- G ( x ) -  G ( -  x ) ) - + -  G"(O) 

as x - - ,  O. 
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In particular, II - i x - l (  e~xe - I ) f l l  is bounded as x--,0. It follows that fe@(P) 
and 

g'(x) = i <fleiXPPf>, g"(x) = - < Pflei~ePf>. 

2) The hypothesis of the lemma now apply to 9"(x) and G"(z). If follows from 1) 
that f e N ( P  2) and 9~a)(x) = - i < Pfl e~xPP2f> and 914)(x) = < p2f[ e~xPp2f>. 

Repeating the argument we get feC~(P)  and 9t")(x)= i"(fleiXeP"f>. 
3) Since G(z) is analytic in a neighborhood of I, there is a disk of radius r about 

the origin which is contained in the region of analyticity. It follows that t G"(0) t < 
Cn !/r" for some constant C and hence 

11P"ftt = I G~2")(0)I 1/2 < (C(2n)!/r2n) 1/2 <= C1/Z2"n !/r". 

It follows that fE.~(e itz/2)e) for Izh < r and thus f~:~(e i~z/2~p) for IImz[ < r. 
4) We now repeat the considerations of 1) to 3) with 9(x) replaced by 

gy(x) = ( e-~y/2)efleiXee-~r/2)ef), lY[ < r. 

The disk centered at the origin is replaced by a disk centered at iy. 
5) Given any y', - y~ < y' < Y2, say y' > 0, we can find r' > 0 such that G(z) is 

analytic in 
{z=x+iy;-r'<y<y'+r', Ixl < r '} 

by compactness. In particular G(z) is analytic in the disk with radius r' centered at iy 
for 0 < y < y'. Thus repeating 4) a finite number of times we get t h a t f ~ ( e  ~(~/2)P) for 
- r ' < I m  z < y' + r'. 

Since y ' , - Y l  <Y '<Y2  was arbitrary, we conclude that f ~ ( e  i(~/z)e) for 
- Yl < Im z < Yz and the lemma follows. [] 
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