Arch. Math., Vol. 61, 489—496 (1993) 0003-889X/93/6105-0489 §$ 3.10/0
© 1993 Birkhduser Verlag, Basel

A rigidity theorem for submanifolds with parallel mean
curvature in a sphere

By
Hong-WEi Xu*)

1. Introduction. It scems interesting to generalize the famous Chern-do Carmo-
Kobayashi Rigidity Theorem {1] for minimal submanifolds to general cases. Let M" be
an n-dimensional compact submanifold with parallel mean curvature in a unit sphere
S"*?(1), and h its second fundamental form. It follows from the Gauss equations that the
square norm of % is given by

S=n(n—1)—R+n*H?,

where R and H are the scalar curvature and the mean curvature of M respectively. It
was proved by Okumura [3,4] that if the normal bundle of M is flat, n = 3, and
2

S<2 +~n—1—H 2, then M is totally umbilical. Yau [6] proved that if p > 1, and

S< i , then M lies in a totally geodesic $™*!(1). In 5], the author

T
3+n2—(p—-171
improved Yau's result above. More precisely we proved that if p>1, and

n

SR
shall prove a rigidity theorem for submanifolds with parallel mean curvature in $" 7 (1)
by using a different method, which generalizes the main theorems in [1, 2], and also
improves the results in [3, 4, 5]. Our pinching constant in Theorem 3 is sharp. Finally, I

would like to thank Professor An-Min Li for his valuable suggestions.

S < min { }, then M is a totally umbilical sphere. In this paper, we

2. Preliminaries. Let M" be an n-dimensional compact manifold immersed in an
(n + p)-dimensional unit sphere S"*7(1). We shall make use of the following convention
on the range of indices:

12A4,BC...2n+p 120k .2, n+ls0 By, ..Sn+p.
Choose a local orthonormal frame field {e, } in S”*7 (1) such that, restricted to M, the e;’s

are tangent to M. Let {w, } and {w 5} be the dual frame field and the connection 1-forms
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of N respectively. Restricting these forms to M, we have

2.1 Wy = Z h e, hEG =0,
J
(2.2) h= 3 ho,Qw;®e¢, (= —Zh” €y
aij
(2.3) Ry = 040y — 00y + % (h5 hS — hih%),
(24) Ropu = ; (h hfy — b3, ),

where h, , R;;; and R,y are the second fundamental form, the mean curvature vector,
the curvature tensor and the normal curvature tensor of M respectively. We set

2.5) S=1nrl? H=|&l, H,=")mxn

Definition 1. M is called a submanifold with parallel mean curvature if ¢ is
parallel in the normal bundle of M. In particular, M is called minimal if H vanishes
identically.

Now we assume that M is a submanifold with parallel mean curvature (H = 0). We
choose e, such that e, //{,trH,,, =nH and trH, =0, n + 2 = f < n -+ p. Set
(2.6) Sy = Z(h"“) S;= X (.

B+ ;l]+ 1
We have the following proposition immediately from the definition.

Proposition 1. M is a submanifold with parallel mean curvature in S"7? (1} if and only
if either H =0, or H is constant and H,, \H,=H,H,, ,, for all .

We denote the covariant derivatives of hf; by hfy and hy,, etc. The Laplacian 4hf; of
h is defined by 4hf; Z hi - Following [6] we have

(27) Ahn+1 2 hn+1 lejk + Z h?n:LIRmkjkz
k,m
(2.8) Ahﬁ Z W, R+ kZ RS R + Ek: By Roygjn, BF+Fn+ 1.
a¥ntl

By using Lagrange multiplier method, we have the following

Lemma 1. Let a,, ..., a, be real numbers satisfying " a, = 0 and 3" a} = a. Then

1 3

29) |Zafl st —2)Intn — 1)} 7,

and the equality holds if-and only if at least n — 1 numbers of the a/s are same with each
other.
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For a matrix A =(a;),«,, we denote by N(A4) the square norm of A4, ie,
N(A) =tr(A' A) = X a};. Then N(A) = N(TA' T), for each orthogonal (n x n)-matrix T.
ij

Lemma 2 (See [1,2]). Let A,.y,...,A,,, be symmetric {(nxn)-matrices. Set
Sy =tr(AyAp), S, =S, =N(4,), S = 2 S,. Then

(2.10) > N(A,A4; — A, A )+ZSmﬁ_(1+—sgn(p—1))S
a, B
where sgn () is the standard sign function. Moreover, the equality holds if and only if at

most two matrices A, and Ay are not zero and these two mairices can be transformed
simultaneously by an orthogonal matrix into scalar multiples of A and Ali respectively,

where
0 1 i 0
~ 0 ~ 0
A,=[1 0 , Ap={0 -1 .
-0 0 0 0

3. Main results. First of all, we define our pinching constants as follows

3

n nn—2)
31 ,H)= H? — 2H* +4(n— 1)H?,
(3.1) a(n, H) TR 2(n—1)ﬁ +4(n—1)
(3.2) C(n, p, H)
_ yaln, H), for p=1, 0r p=2 and H *+0,
| min {a(n, H),i2n+5nH?}, for p23,or p=2and H=0.

Theorem 1. Let M" be a compact submanifold with parailel mean curvature (H =+ 0) in
S"™*r(1). If S £ a(n, H), then either M is pseudo-umbilical, or § = Sy = a(n, H) and M is

1 Alm, H
the isoparametric hypersurface "~ ! ( ) x 8! < (. H) > in a totally
S+ 22(m, H) 1+ 22 (n, H)
a(n, HY—nH?*

geodesic S"** (1), where A(n, H) =
nn—1)

Proof. By (2.7) and Gauss equations, we have

%ASH= Z (h:zjzl) +Zh"+1ﬁhn+1

i, j,k
= TP+ 3 (800 — S by o+ X U — Ko
l,], iy J,K,m
OB (OO SO+ X (U i — )]
i, j.k.m

Z(h:xj;:l) +n2(hn+12 (Z(hn+1 nZHZ

ik

(3.3) +nH Y h"“h"“h"+1 Y (Tt — Hoy)hh)?.

ik BEn+1 ij
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Let {e;} be a frame diagonalizing the matrix H, , ; such that k}" * = 4771 5,

(34) f= T 0

i for all i, /. Set

(3.5) wrr=H-2" i=1,2...,n
(3.6) Z(H”“)

Then

(3.7 B, =0, B,=Sg—nH?

(3.8) By=3HSy—2nH>—f;.

From (3.3), (3.7), (3.8) and Lemma 1, we get

148y = Z (hi 1)? +nsH—S§—n2H2+an3—ﬂ zﬂ(w“hﬁ- 2
Ent i

, ﬂ
= Y (Y +nS,,—S,§—n‘H2+nH[3HSHm~2nH3 J B,S,
Tk «/ﬂ(n I
nin —2) i
= Y (W2 +B [n+2nH2—S-—-—H(S nHZ)Z}
i, 5.k ik & «/'n(n—l} o
> z(hg;:” Bz[\/S~nH2+——ﬁm—_—3):H
i)k 2./nn-—1)
1)\ﬁ13(n—1)H2+4n(n—1)2J
(39) x[\/S—nquh n=2) o1 \/n3(n~1)H2+4n(n—1)2]
2. /nn—1) 2n-1) -

On the other hand, the assumption
S<anH)
is equivalent to
3 n{n—2) 1 3 3 z
(3.10) VS—nH? + H- — /P~ 1)H* +4n(n— 17 20,
2. /n{n—1) 2 —1)

which together with (3.9) shows that Sy is subharmonic on M. By the Hopf maximum
principle, we see that S must be a constant. This together with (3.9) and (3.10) force that

(3.41) B, (Sy — nH?? = By(S — nH??,

(3.12) B,|/S—nH?+ nn—2) H -~ nPn—1H?*+4n(n—1)*
2 2(n—1)

nin—1)

0.

f

If Sy = nH?, then M is a pseudo-umbilical submanifold.
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If § =S, and

1

nn—2) _
N/S~-nHz+2 n(n_i)H—z(n_l)\/n3(n~1)H2+4n(n~1)2—0,

then S =S, =a(n H), and S; = 0. Consequently M is a hypersurface in a totally
geodesic $”*1(1). From (3.9) we have

n—2 2
(3.13) By=—+—8B].

Jnn — 1)

It follows from Lemma 1 that at least n — 1 numbers of {uf*'} are same with each
other. Without loss of generality, we assume that "' =y k=1,2,...,n—1, and
ittt = i Then

(3.14) (n—1u+ia=0,

(3.15) m—Dp2+ @ =uam H)y—nH?.

Substituting the solution of equations (3.14) and (3.15) with condition (n — 1) 4% + 3°
> 0 into (3.5), we get

H) - nH?
ATt =H+ “—("’«—)—f’—, =1,2,...,n—1,
nn—1)
(3.16) ;L"H=H”\/(”“1)(OC(H,H)-nH2)
n n )

Hence M is the isoparametric hypersurface

s"-1< ! >><sl( A H) )inS"“(l)
1+ A%(n, H) J1+ 22(n, H) ’

,H)— nH?
where A(n, Hy=H + g(nt()—%. This proves Theorem 1.
n(n—

Remark 1. It is clear that the pinching constant «(n, H) is best possible.

Corollary 1. Let M" be a compact hypersurface with constant mean curvature (H + 0)

1
in 8" (1). If S < a(n, H), then either M is the totally umbilical sphere S™ (_——*) or

J1 4+ H?

1 A(m, H
the isoparametric hypersurface §"~* <-—————> xSt (L)
1+ A*(n, H) 1+ A%(n, H)

If M is a pseudo-umbilical submanifold with nonzero parallel mean curvature
and p = 2, it is to see from a theorem of [6] that M is a minimal submanifold in
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1
srpl (\/T_lj) with second fundamental form H,, . = n + 2,..., n + p. Hence, we
1+H

have the following

Theorem 2. Let M" be a compact submanifold with parallel mean curvature (H + 0) in
S"P(). If S < w(n, H), then either M is a totally umbilical sphere, a isoparametric hyper-
surface in a totally geodesic S"**(1), or a minimal submanifold in a totaily umbilical

Sn+p~l( ! )
J1+H?

Theorem 3. Let M" be a compact submanifold with parallel mean curvature in §* 2 (1).

: )

J1+H?*
1 A, Hy

parametric hypersurface S"_l(———————)xS1<~———(i——)—~ ina totally

J1+ 22(n, H) J1 +;b2(n,H))

k In—k
geodesic S 1 (1), one of the Clifford minimal hypersurfaces §* < \[) X S”"‘( / & ),
k=1,2,...,n—1,in §""*(1), the Clifford minimal surface " Nom

1 1 1
S —— xS ———— | in S ———— |,
<«/2(1 + H2)>>< (Jz(i + HZ)) " (./1 + HZ)

1
or the Veronese surface in S4<v~—~).

V1+H?

Proof. (i) If H = 0, M is minimal. The assertion follows from the main theorems in
(1,2].
(i) If H+0and p=1, we know from Corollary 1 that either M is the hypersphere

i
N H))

If § £C(n, p, H), then either M is the totally umbilical sphere S"’( , the iso-

1 /
s" <—-————\ or the isoparametric hypersurface S§"7! \
J1+H?/

g ( A(n, H) )
1+ 2*(n, H)
(i) If H=+0 and p =2, it is straightforward to see from (2.8), Proposition I and
Lemma 2 that

348, = X (h‘nf}jk)+ﬁ#z+ltr(Hn+lHﬂ)2— X tr(Hyey Hpll?

Lk f+a+1

f*n+1

+nH Y u(H,. H})— X wHZL Hj)+nS

BEn+1 pEn+1
(3.17) - X tr(HaHﬁ—HﬂHa)Z— > [’[r(HmHI;)]2

a,fFn+1 a,fEnt1

> T WP 4nH T G H)— T [(H, . Hy)l
Lk prn+1 BEn+l

BHnrn+1

+nS;— (1 + sgn(p — 2)S7.
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We know from Theorem 1 that either M is pseudo-umbilical or the isoparametric

1 Aln, H . .
hypersurface S"'1<——-~—)x5’ 1(~—~L)-:> in a totally geodesic

ST (1), 1+ 22(n, H) 1+ i2(n, H)

If M is pseudo-umbilical, then (3.17) becomes
1AS, 2 Xk (Wl +(n+nHY)S; — (1 + Ssgn(p— 2) 57
L1

(3.18) Frutl X , L ,
> _Zk (hea)* + S In+nH?* — (1 + 1sgn(p—2)(S—nH?} = 0.
i, ],

BFntl
This shows that S; is a constant, and the inequalities above become equalities. It is not

hard to see that
(3.19 Siim+nH?* — (1 +1sgn(p— 2)(S —nHY] =0.
If S, = 0, then M lies in a totally geodesic sphere S™** (1) and M is the totally umbilical

1
sphere §” (-——-———>
J1+H?

fn+nH?—(1+isgn(p—2)(S—nH? =0, namely
(3.20) S=(n-—§sgn(p—2))(1+H2)+nH2,

Y wHH,—~HHY + Y [tr(HH)?={+2%sgn(p—2)S}.

g, f¥n+1 a,BEntl

By Lemma 2 and the same argument as in {1], we conclude that n = 2, and the second
fundamental form k& can be written as follows

i 0 1 0
(3) nzzandp=2,H3‘—=H<0 1), H4z /1+H2(0 1)} or
10 N+H*/1 0O 1+H*{0 1
(b) n___zandpg37H3:H<0 1)9H4:\/~%~(0 ]>:H5= —i—gwn<1 0)2
Hy,=0,826. —1 \

1
By Theorem 2, we know that M is a minimal submanifold in §*7 <—--—~—£> with
1+ H

second fundamental form H,, ..., H,, ,. Therefore, M is the Clifford minimal surface
1 1 1
s( )s( >s(__~)
, V2 + H? 21+ H? J1+H?
1
S"(———-——M«...) This completes the proof of Theorem 3.
AV 1 + HZ

Remark 2. The pinching constant C(n, p, H) is sharp, which is larger than ones in
[3,4,5,6].

, or the Veronese surface in
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