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A rigidity theorem for submanifolds with parallel mean 
curvature in a sphere 

By 

HONG-WEI XU *) 

1. Introduction. It  seems interesting to generalize the famous Chern-do Carmo-  
Kobayashi  Rigidity Theorem [1] for minimal submanifolds to general cases. Let M" be 
an n-dimensional compact  submanifold with parallel mean curvature in a unit sphere 
S" + p (1), and h its second fundamental  form. It follows from the Gauss equations that the 
square norm of h is given by 

S = n(n - ] ) - R + n 2 H  2, 

where R and H are the scalar curvature and the mean curvature of M respectively. It  
was proved by O k u m u r a  [3, 4] that if the normal  bundle of M is fiat, n -> 3, and 

S < 2 + n z - H 2 ,  then M is totally umbilical. Yau [6] proved that if p > 1, and 
n - i  

n 
S < 1 , then M lies in a totally geodesic S"+I( i ) .  In [5], the author  

3 + n ~ -  ( p -  1)-1 
improved Yau's result above. More  precisely we proved that if p > 1, and 

S < m i n {  2n n } 
1 '  1 + n ~ 2 - (p - 1)- ~ then M is a totally umbilical sphere. In this paper, we 

shall prove a rigidity theorem for submanifolds with parallel mean Curvature in S "+p (1) 
by using a different method,  which generalizes the main theorems in [1, 2], and also 
improves the results in [3, 4, 5]. Our  pinching constant in Theorem 3 is sharp. Finally, I 
would like to thank Professor An-Min Li for his valuable suggestions. 

2. Preliminaries. Let M" be an n-dimensional compact  manifold immersed in an 
(n + p)-dimensional unit sphere S"§ We shall make  use of the following convention 
on the range of indices: 

I < A , B , C . . . < = n + p ,  l <=i, j ,k , . . .<=n, n +  l <=o:,fl, 7 , . . .  < n + p .  

Choose a local or thonormal  frame field {eA} in S "+p (1) such that, restricted to M, the e~'s 
are tangent to M. Let {coA} and {o)a~ } be the dual frame field and the connection l-forms 
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of N respectively. Restricting these forms to M, we have 

h~..= (2.1) co~i = ~ hijogj ,  ,j h j l ,  
J 

1 
(2.2) h = Z h,~ co~ | coj | e, ,  ~ = - Z hi~, " e=, 

a, LJ n a,i 

(2.3) th ~ ~ , Rijkl  = (~ik'~jl - 5il(~jk 4- Z_. ~. ik,~jl - -  h i t h i k ) ,  

(2.4) R ~ u  = Z (h,~k h~ -- h~ h~k), 
i 

where h, ~, R~j u and R,~k~ are the second fundamental  form, the mean curvature vector, 
the curvature tensor and the normal  curvature tensor of M respectively. We set 

(2.5) S =  Ilhll2, H =  1i~11, H~=(h~5),• , .  

D e f i  n i t i o n 1. M is called a submanifold with parallel mean curvature if ~ is 
parallel in the normal  bundle of M. In particular, M is called minimal if H vanishes 
identically. 

Now we assume that  M is a submanifold with paratlel mean curvature (H #: 0). We 
choose e,+ 1 such that  e ,+l / /~,  t r H . +  1 = n H  and t rHp = 0, n + 2 < fl < n  + p. Set 

(2.6) SH = .~. (h~j + ~)2, S~ = "~  (h~d) 2 . 
'~,3 i , j  

/ /~n+l  

We have the following proposit ion immediately from the definition. 

Proposition 1. M is a submanifold with parallel mean curvature in S" ~ P (1) ~ and only 

if  either H = O, or H is constant and H,+ x H ,  = H~H,+ l ,  for  all c~. 

We denote the covariant  derivatives of h~ by hi) k and hi~kl , e t c .  The Laplacian Ah~j of 
h is defined by Ah~j = ~ hi)kk. Following [6], we have 

k 

(2.7) Ah,+ l ,+ t,,+ l o ij = ~ hm k 1 Rml j  k _]_ ~ "ira ~',nkjk, 
k,m k,m 

(2.8) Ahf; = ~ hflmkgmijk 4- ~ .  hfllmRmkjk 4- ~ h~iR~Mk,  fi fi= n + ! .  
k,m k.m k 

a , n + 1  

By using Lagrange multiplier method, we have the following 

Lemma 1. Let  a, . . . . .  a n be real numbers satisfying 5~ a i = 0 and Y~ a~ = a. Then 
i i 

- !  3 
(2.9) I~]a~l < ( n -  2)[n(n - 1)1 2a2, 

i 

and the equality holds i f  and only if  at least n - 1 numbers o f  the ai's are same with each 
other. 
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Fo r  a matr ix A = (au) . . . .  we denote  by N(A) the square n o r m  of A, i,e., 
N (A) = tr (A ~ A) = ~. a~. Then  N (A) = N (TA t T), for each o r thogona l  (n x n)-matrix T. 

l , J  

L e m m a 2 ( S e e  [1,2]). Let A,+ 1 . . . . .  A,+p be symmetric (nxn)-matrices, Set 
S~p = tr (At~Ap), S~ = S~ = N(A~), S = S'. S~. Then 

at 

(2.10) Z N ( A ~ A p - A c A ~ ) +  Z S ~ < ( I  + � 8 9  2, 
~,~ ~,/~ 

where sgn (.) is the standard sign function. Moreover, the equality holds ~ and only if at 
most two matrices A~ and A~ are not zero and these two matrices can be transformed 
simultaneously by an orthogonal matrix into scalar multiples of A ,  and A~ respectively, 
where 

~ =  , ~ :  o - a  

3. Main results. First  of all, we define our  pinching constants  as follows 

(n n3 n(n - 2) x/nZH4 + 4(n - l l H  2 (3.1) , (n ,  H)  = n + ~ ] ~  2(n - 1) 

(3.2) c (n, p, H) 

J'c~(n, H), for p = 1, or  p = 2 and H :I: 0 ,  

(min{c~(n ,H) , �89  for p > 3 ,  or  p = 2  and H = 0 .  

Theorem 1. Let M n be a compact submanifold with parallel mean curvature (H -+- O) in 
S"+P(1). I f  S < e(n, H), then either M is pseudo-umbilical, or S = Sn = c~(n, H) and M is 

1 (  1 ~ _ ' ] x S 1  ( 2 ( n , H )  ) ina to ta l l y  the isoparametric hypersurface S ~- x /1  + 2 2 (n, H).] \ x / 1  + 2 2 (n, H) 

geodesic S "+ t (1), where 2 (n, H) = H + ~ n (n - 1) " 

P r o o f. By (2.7) and Gauss  equations,  we have 

�89 = E (h,)+l) z + Eh7 +lAb"+1 
�9 . - - " i j  

i , j , k  t , J  

= }2 (hi"j~ 1)2 + ~. h,]i+1 h.~s [6.q 61k - (}ink (}U + y~ (h~,j hi~ - h~k hi~)] 
i ,  l , k  i , j , k , m  at 

~" h" - h;,k hj~)] + Z h~j +1 hi"2 1 [rmj 6kk -- 6ink 6jk + Z.. V'~j kk 
i , j , k , m  a 

= ~2 (hTj~) 2 + n~,  (h"+~12 - -  ( ~  (h~j+l)2) 2 - n 2 H 2  
�9 . v - i j  I . . 

i , j , k  t , J  t , 3  

(3.3) + n H  57 ~.+1~+1~+1 p 2 '~ij 'gk "ki -- 2 ( 2 ( h n / 1  - H~ij)hlj) �9 
i , j , k  f l : # n + l  i , j  



492 H.-W~ XU ARCH. MATi-[. 

Let {e~ } be a frame diagonalizing the matrix H,  + ~ such that h"~j + ~ -- 27. -~ z 6~j, for all i i j. Set 

(3.4) 

(3.5) 

(3.6) 

Then 

(3.7) 

(3.8) 

i 

#~+1 = H - -  27 +1, 

~ = Z (~7 + ~)~- 
i 

i = t, 2 , . . . ,  n, 

B 1 = O, B 2 = Sn - nHZ, 

B 3 = 3 H S u -  2 n i l  3 - f 3 .  

From (3,3), (3.7), (3.8) and Lemma 1, we get 

�89 H = 

> 

> 

I ~  - -  n (n - 2) 
(3.9) x S nH a + 2w/-n( n 

1) 

On the other hand, the assumption 

2 (h,n'jkl) 2 q- nSt t  - St] - n 2 H 2  --k n i l  f3 - 2 (3 :~Ft~+t  h ~ )  2 
i , j , k  f l *n  ~ l i 

n+l 2 2 _ n 2 H  z [ - - 2  !-] - B~ I -- B z S ,  i,j,k(hijk ) + n S x t - S H  + n i l  3 H S n - - 2 n H 3 - x / n ( n . l )  _i 

~, th"+"z [ n ( n -  2) ~ ~ - n H 2 ) ~ ]  
~,j, kt'~ijk I + B2 n + 2 n i l  z - S ~ i - 1 6 5  n 

ix/rS n (n - 2) IAn+t'~2 - -  B 2 - -  n H  z + = - - H  
E v~ ~ 2~ /n (n - -  1) i , j , k  

+ 2(n - 1 - - - )  x / ~  - 1 )n2  + 4n(n - 1) 2 

H - 2 ( n _ l ) X / ~ ( n  1)H = + 4 n ( n - t )  , 

S < c~ (n, H)  

is equivalent to 

n (n - 2) 
(3.1o) , f s -  nH ~ ~ - - ~ /  

2 , / ~ ,  - 1) 
1 , fn3 (n - I )H ~ + 4 n ( n -  ~)2 < 0, 

2 (n  - 1)  = 

which together with (3.9) shows that Sn is subharmonic on M. By the Hopf  maximum 
principle, we see that S~ must be a constant. This together with (3.9) and (3.t0) force that 

L 1 

(3.11) B2(S ~ -- n i l 2 )  ~ =  B2(S  - nHZ) ~, 

Ix /~  n ( n - 2 )  1 t 
(3.12) Bz -nH2 +2.fn(_~_l)H 2(n-_l)x~n-l)Ha+4n(n--1)Z = 0 .  

If Srx = n H  2, then M is a pseudo-umbilical submanifold. 
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If S = Sn and 

n (n  - 2 )  
S - , , / / ~  + _ _ H  

1 
~ ( n  - t ) H  2 + 4n(n - 1) 2 = 0, 

2(n I) 

then S = Sn = c~(n, H), and $I = 0. Consequently M is a hypersurface in a totally 
geodesic S "+ 1 (1). From (3.9) we have 

n - 2  ! 
(3.13) B3 = ,~n(n - 1) B2" 

It follows from Lemma 1 that at least n - 1 numbers of {/~7 +1} are same with each 
other. Without loss of generality, we assume that #~+1 =/L, k = 1, 2, . . . ,  n - 1, and 
/~ + 1 _-_/i. Then 

(3.14) (n - 1)# +/~ = 0, 

(3.15) (n - 1)I a2 + Ft 2 = ~ (n, H) - n H  2 . 

Substituting the solution of equations (3.14) and (3.15) with condition (n - 1) #3 +/~3 
> 0 into (3.5), we get 

~/~(n, H) -nH 2 
2~+1 = H +  n ~ - - ~  , i =  1 , 2 , . . . , n -  I ,  

H - / ( n  - 1)(~(n, H) - nil2)) 
(3.16) 2..+1 

n 

Hence M is the isoparametric hypersurface 

x S 1 in (1), 
1 + 2 2 (n, H)  1 + ~2 (n, 

where 2(n, H) = H + ~ / n ( n  - 1) . This proves Theorem 1. 

R e m a r k 1. It is clear that the pinching constant c~(n, H) is best possible. 

Corollary 1. Let M" be a compact hypersurface with constant mean curvature (H 4= O) 

in S "+ ~ (1). I f  S < c~(n, H), then either M is the totally umbilical sphere S" - - ~  ot. 
\ , / I  + H2/ 

theisoparametr ichypersurfaceS,_l (x /  1 ) x S l ( , , / 2 ( n , H )  ) )  
I + 2  2 (n ,H)  i + 2  2 (n ,H  " 

If M is a pseudo-umbilical submanifold with nonzero parallel mean curvature 
and p->_ 2, it is to see from a theorem of [6] that M is a minimal submanifold in 
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S,+p-1 with second fundamental form H a, ~ = n + 2, n ' ..., 1- p. Hence, we + 
have the following 

Theorem 2. Let M n be a compact submanifold with parallel mean curvature (H 4= O) in 
S" + v (1). I f  S <= ct (n, H), then either M is a totally umbilical sphere, a isoparametric hyper- 
surface in a totally geodesic S"+1(1), or a minimal submanifold in a totally umbilical 

Theorem 3. Let M"  be a compact submanifold with parallel mean curvature in S"+P(I). 

I f  S < C (n, p, H), then either M is the totally umbilical sphere S ~ ( -  - 2 ' the iso. 

parametric hypersurface S " - !  T~z_(~,i:~ ) in a totally 

n+ l t~ geodesic S (1), one of  ~ne Clifford minimal hypersutfaces S k x Sn-~ 
k = i, 2 . . . . .  n - 1, in S "+ 1 (1), the Clifford minimal surface k'x/n} 

1 l 

or theVeronese sur face inS4  ( 1 

P r o o f. (i) If H = 0, M is minimal. The assertion follows from the main theorems in 

[1, 2]. 
(ii) If H ~ 0 and p = 1, we know from Corollary 1 that either M is the hypersphere 

S" or the isoparametric hypersurface S~-11  - 
\ , / i  + ;r H 

) 
i 

(iii) If  H + 0 and p > 2, it is straightforward to see from (2.8), Proposition I and 
Lemma 2 that 

} A S , =  Y~ (hfjk)+ E t r (H ,+ lHp)  2 -  E [tr(H,+~Hp)] 2 
i , j , k  f l g : n + l  f l ~ n + l  

f l+-n+l  

+ n i l  ~ t r ( H , + ~ H ~ ) -  ~] tr(H~+ ~ H~) + nS I 
,6'4=n + i f l : ~ n + l  

(3.17) - ~ tr(H~Hp - HpH~) 2 - E [tr(H,Hr 2 
~,/~4:n+ i ~,fl4:n+ 1 

> Z (h{ik)2+ nH ~ t r ( H . + l H ~ ) -  Z [tr(H~+~Ha)] 2 
i , j , k  fl~-n+ 1 f l # n +  1 

f l # n + i  

+ nS1 - (I + � 8 9  2))S/z. 



Vol. 61, 1993 A rigidity theorem for submanifolds 495 

We know from Theorem I that either M is pseudo-umbilical or the isoparametric 

hypersurface S " - I ( ~ )  $ 1 ( - /  2(n 'H)~l-~)  x in a totally geodesic 
S "+~ (1), x/1 + 1 + ,~2(n, 

If M is pseudo-umbilical, then (3.17) becomes 

(3.18) 

}ASs >_- ~2 p 2 ~ s g n ( p -  2))S~ (hi3k) + (n + nH2)SI  - (t + 
i , j ,k  

f l * n + l  

1 E (h/~k) 2 -[- SI [n + n H  2 - (I + 7 sgn (p - 2)) (S - nil2)] >_- 0. 
i , j ,k 

fl*n+ l 

/ 1  
(a) n = 2  and p = 2 ,  H 3 = H t 0  

\ 

,b ,  . 

Hp =0 ,  f l > 6 .  

(; O)o, 
0"~ H 

/ 1 \  
By Theorem 2, we know that M is a minimal submanifold in S I + P t x ~ ) _ , . , . = _  with 

second fundamental form H4, . . . ,  H2+ p. Therefore, M is the Clifford minimal surface 

Si 1 : ~ x S i (  1 _  ~ i n  or the Veronese surface in 
x//2~ + H2),] \x//2(1 + H2)/ \ ~ i  #' 

I - - \  

$ 4 ( ~ ~ ) .  This completes the proof of Theorem 3. 

R e m a r k 2. The pinching constant C(n, p, H) is sharp, which is larger than ones in 

[3, 4, 5, 61. 

This shows that Ss is a constant, and the inequalities above become equalities. It is not 
hard to see that 

(3.i9) Ss In + nH 2 - (i + �89 sgn (p - 2))(S - nil2)] = 0. 

If S t = 0, then M lies in a totally geodesic sphere S "+ 1 (1) and M is the totally umbilical 

1 
sp or  

I If n + n H  2 -- (1 + ~ sgn (p - 2)) (S - nH 2) = 0, namely 

(3.20) S =  - ~ s g n ( p - 2  ( I + H  2 ) + n i l  2, 

then hi~l, = 0 and 

2 tr(H~Ha - HaHn) 2 + 2 [tr(H~H~)] 2 = (1 + �89 sgn (p -- 2))Ss 2. 
a,.#~n+ 1 ~ , B t n +  1 

By Lemma 2 and the same argument as in [1], we conclude that n = 2, and the second 
fundamental form h can be written as follows 
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