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Abstract. Poincar6-invariant generalizations of the Galilei-invariant 
Calogero-Moser N-particle systems are studied. A quantization of the classical 
integrals $1 ..... SN is presented such that the operators Sa ..... ~N mutually 
commute. As a corollary it follows that S~, ..., SN Poisson commute. These 
results hinge on functional equations satisfied by the Weierstrass o-- and N- 
functions. A generalized Cauchy identity involving the o--function leads to an 
N x N matrix L whose symmetric functions are proportional to $1,..., SN. 

1. Introduction 

Recently, new integrable classical N-particle systems have been discovered [1] 
that may be viewed as relativistic generalizations ofthe well-known nonrelativistic 
Calogero-Moser systems [2]. The time translation, space translation, and boost 
generators of these systems are given by 

N 

H=mc2 Z ch0i U f ( q i - q j ) ,  (1.1) 
i=1 j , i  
N 

P = m c  ~ sh011-[ f (q i -q~) ,  (1.2) 
i=1 j ~ i  

N 
B = - - 1  Z qi. (1.3) 

C i= l  

Here, m denotes the particle mass, c the speed of light, 0 the particle rapidity, and q 
the canonically conjugate generalized position. Moreover, the potential energy 
function f(q) reads 

f(q) = (a + b N(q))2/2 , (1.4) 

where a and b are arbitrary constants and where N is the Weierstrass N-function. 
This choice o f f  not only guarantees Poincar6 invariance, but also the existence of 
N independent integrals for the H flow, given by 

Sk = 2 exp ( 2 0i) I] f (qi--  q j), k = 1,..., U .  (1.5) 
IC{l . . . . .  N} \ i ~ I  ] i s l  

Ill =k j¢I 
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The special case f2 = 1 + sh- z turns out to be intimately related to several soliton 
equations, the sine-Gordon equation being a prime example. 

These results from [1] form the starting-point for the present paper, whose 
principal result is a solution to the problem of quantizing the classical systems in 
such a fashion that they remain completely integrable. The term "quantum 
integrability" is used here in the customary loose sense of there existing N 
independent mutually commuting jormal operators gl ..... ~ .  We regard our 
demonstration that this state of affairs obtains as a first step towards the goal of 
making rigorous sense of these operators as pull-backs of real-valued multiplica- 
tion operators under a unitary eigenfunction transform (a point of view described 
in more detail in [3]). Elsewhere [4] we shall return to this problem, and present 
arguments to the effect that the equivalence of the N-particle systems with the N- 
soliton/antisoliton sectors of the sine-Gordon theory persists for the quantization 
described in this paper (the soliton-antisoliton interaction being described by the 
"crossed channel" potential f z  = 1 - ch - 2). 

We shall now sketch the plan of the paper and describe its results in more 
detail. We begin by showing how the integrals $1,..., Su can be quantized in such a 
fashion that they mutually commute. The vanishing of the quantum commutators 
hinges on functional equations satisfied by the Weierstrass o--function. These 
identities [cf. (2.4), (2.10) below] are new, as far as we know. As a corollary it follows 
that the N-function satisfies functional equations (2.5), (2.8) entailing that the 
Poisson brackets {Sk, Sl} vanish. Thus, classical integrability follows from 
quantum integrability. In Sect. 2 these results are detailed in a discursive fashion; 
the technicalities are relegated to Appendix A. 

In Sect. 3 we generalize the Lax matrix found in [1] for the hyperbolic case to 
the elliptic case, cf. (3.13)(3.14). The fact that the above Sk are proportional to the 
symmetric functions £k of L [cf. (3.16)] follows from an explicit formula for the 
determinant of an N x N matrix whose elements are expressed in terms of 
a-functions. This formula, (3.18) below, may be viewed as a generalization of 
Cauchy's identity. We prove it in Appendix B, where we also consider special 
cases of interest. 

Our conventions concerning elliptic functions are those of Erd61yi [5]. In the 
appendices we assume some familiarity with the results and arguments to be found 
there and (in more detail) in Whittaker and Watson [6, Chap. XX]. However, to 
render the main text more self-contained, it may be in order to add some remarks 
and formulas, most of which we have occasion to use. 

First, we should mention that the term "elliptic function" is often reserved for 
doubly periodic meromorphic functions, like the N-function. Here, the term 
includes the ~- and a-function, which are meromorphic and entire, respectively, but 
not doubly periodic. They are, however, quasi-periodic, in the sense that 

((q + 2COk) = ~(q) + 2r/k, (1.6) 

a(q + 2COk) = -- a(q) exp [2r/k(q + C0k) ] . (1.7) 

Here, k takes the values 1, 2, 3, and one has 

co1=~, co~=-c0-c0 ' ,  co3=co', ~/k=((~ok). (1.8) 

Moreover, 2e) and 2co' denote a pair of primitive periods of the N-function. 
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The o--function is odd and has simple zeros at the points of the period lattice 
2mco+2nco', n, m eZ.  Furthermore, it satisfies the scaling relation 

a(2q; co, co') = 2a(q; (9/2, co'/2). (1.9) 

Corresponding properties of ~ and N can be read off from the relations 

((q) = a'(q)/o-(q), ~(q) = - ('(q). (1.10) 

In particular, N is even and has second-order poles at the lattice points. 
As a rule, we shall choose co, - ico' e (0, o0]. With this convention N(q) decreases 

monotonically from oo to el >0,  e2, ea <0,  - oo as q varies along the rectangle 0, 
col, -co2, o)3, 0. Also, o- is real on the real axis and purely imaginary on the 
imaginary axis. Most  of what follows does not depend on this choice of periods. 
The main reason for our convention is the ensuing positivity of N(q) on the real 
axis. By choosing appropriate coupling constants a and b in (1.4), we can then 
ensure that the Sk are real-valued at the classical and formally hermitian at the 
quantum level. 

Let us finish this introduction by specifying N(q) and a(q) for the degenerate 
cases co=oo or co'=ioo. 

A. Hyperbolic case (co = 0% co' = in/2v), 

v2 va o - ( q ) = S h ? e x p [  ~ I (1.11) ~(q) = -J- + _ _  _ q2 . 
sh 2 v q '  

B. Trigonometric case (co=n/2v, co'=ioo), 

V 2 V 2 

~(q) = - 3- + sin 2 v ~ '  

C. Rational case (o)= Go, co'= i~), 

I 
~(q) q2, 

o-(q) = s inVqexp[~  q21 (1.12) 

a(q)=q. (1.13) 

2. Quantum and Classical lntegrability 

We begin by discussing the quantization of $1, ..., SN (denoted $1 .. . .  , ~N) in the free 
case f ( q ) = l .  From (1.1) and (1.2) one sees that the rapidity variable 0 is 
dimensionless. The canonically conjugate variable q is related to the customary 
position x by q=mcxchO, and hence has the dimension of action. Thus, the 
obvious quantization procedure reads 

Oj~Oj = - ~ , ,  j =  1 . . . .  , N .  (2.1) 

We shall put h--1 henceforth. 
Clearly, this prescription yields commuting operators ;~1, ..., ;~N which are all 

diagonalized by Fourier transformation. Their action can be exemplified by the 
formula 

(eOlp)(ql, ..., qN) = tl'(ql - i . . . .  , qN) . (2.2) 



194 S.N.M. Ruijsenaars 

Here, ~p(z), z E 113 N, denotes a function that is supposed to be "sufficiently analytic" 
for (2.2) to make sense. Specifically, ~p should at least be analytic in the strip 
- 1  < Imql < 0  and have reasonable boundary values. 

When f =  1 there is no problem in being more precise than this. However, the 
situation is drastically different when f(q) is not constant. Elsewhere we will return 
to the difficulties associated with a rigorous definition [4]. Our present purpose is 
to show that there exists a formal quantization of $1 ..... SN such that the resulting 
operators are (formally) hermitian and commute. It should be emphasized that 
there exist (to date) no general principles guaranteeing that such a quantization is 
possible, even within the "formal algebra" framework adopted here. 

The solution we have found is most likely unique. A description of its relevant 
features is facilitated by first considering a seemingly different question. Let us start 
with a meromorphic function h(q) and set 

gk = 2 [I h(qj--qi)l/2exp(fi 20i'~ I1 h(qi-qY/2 , 
Ic{t ..... N} i ~ l  \ i s I  ] i ~ I  

Ixl =k j ~ i  j ¢ I  

k = 1 .. . .  , N ,  (2.3) 

where fl is an arbitrary positive number. Now we ask: What condition on h ensures 
that all Sk commute pairwise for any N? As proved in Appendix A, the answer is: If 
and only if h satisfies the functional equations 

([!h(qj-qi )h(qi-qj - i f l ) -F[h(qi-qj )h(qj-qi - i f l ) )  
Ic{1 ..... N} i e I  

Itl =k j¢i 
= 0 ,  V N > I ,  Vk~{l  . . . .  ,N}.  (2.4) 

Next, assume that h satisfies (2.4). Dividing by fl and sending fl to 0 yields 

~. (i~1Oq,)iOF(qi--q,)=O, V N > I ,  VkE{1 ..... N},  (2.5) 
Ic{1 ..,N} 

Iit=k j ¢ i  

where 

F(q)-h(q)h(-q). (2.6) 

For N = 3 and k = 1 (2.5) reduces to the functional equation 

F(dl) F'(d,) 

F(d2) F'(d2) 

F(dl +d2) -F'(dl +d9 

which is known to be satisfied if and only if 

F(q) = a + b~(q), 

Ill = 0 ,  (2.7) 

(2.8) 

where a and b are arbitrary constants. Thus we are led back to our potential (1.4): A 
necessary condition for commutativity of ~1 .. . .  , gN with arbitrary fl is that h be 
related to the N-function by 

h(q)h(- q) = a + bN(q). (2.9) 
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In [-1] it is proved that the identities (2.5) are equivalent to involutivity of the 
classical functions $1 .. . . .  SN with f2  =F .  Moreover, it is shown there that the 
function a + b~(q) satisfies (2.5) for k = i. However, the proof could not be adapted 
to cover the case k > 1, so that complete integrability for N > 4 was left open. From 
the above it transpires that involutivity of S 1 . . . .  , S N will follow, once one finds a 
factorization a + b~(q) = h(q)h( -  q) such that h satisfies (2.4), or, equivalently, such 
that $1 .. . . .  SN commute. 

It remains to prove that a function h with these properties exists. Let us first 
note that (2.9) does not determine h uniquely: If a meromorphic function h satisfies 
(2.9), then this is also true for the function h" = he ~, where E is an arbitrary entire odd 
function. However, if h satisfies (2.4), then there is no reason why ~" would also 
satisfy (2.4), except in the trivial case where E is proportional to q. At any rate, we 
consider it plausible that the solution we have found, viz., 

h(q) = a(q + #)/a(q), # ~ 112, (2.10) 

is unique up to multiplication by cle c2q, with c~,c2 arbitrary constants. [-As 
concerns replacing q by c3q, recall the scaling relation (1.9).] 

The proof that h satisfies (2.4) can be found in Appendix A. As explained above, 
it follows from this that h satisfies (2.9). Of course, (2.9) is also obvious from the 
well-known relation 

a(q + #)a(q - #) 
a2(q)a2(#) = ~(#) -- ~(q) ,  (2.11) 

which suggested (2.10) as a candidate. 
To finish this section, we tie up some loose ends and add various remarks. 
(i) (Hermit ic i ty)  Ensuring hermiticity amounts to ensuring that h ( -q )  equal 

if(q) for q ~ R,  and this can be attained by picking # on the imaginary axis (cf. our 
remarks at the end of Sect. 1). Note, however, that this leads to a restriction on the 
coupling constants in the classical potential (a + b~(q))~/2: One must have 

b/a ~ [-0, -- 1/e3] (2.12) 

for a hermitian quantization of the form (2.3), (2.10) to exist. Indeed, from (2.11) one 
has 

h ( -  q)h(q) = o-2(#)N(#) [-1 - ~(q)/~(#)] (2.13) 

and 1/N(#) takes values in [1/e3, 0] as # varies over the imaginary axis. Note also 
that one may as well restrict # to vary between -co '  and co', since multiplicative 
constants are irrelevant. 

(ii) (Degenerate cases) From (1.11) we see that we may take 

shy(q+#) # e i [ T z  ~ , ]  h(q)= (2.14) 
sh vq ' 2v ' ~,v 

in the hyperbolic case. The exponential factor has been omitted, since the exponent 
is linear in q, and hence only gives rise to multiplicative constants in the operators 
gl, ..-, gN. The "critical points" # = _ i¢~/2v correspond to the sine-Gordon theory 
I-4]. Similarly, in the trigonometric case one gets 

sin v( q + #) 
h(q) - , # ~ i R  (2.15) 

sinvq 
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from (1.12), and in the rational case 

h(q) = 1 + - ,  # # e iN (2.16) 
from (I.13). q 

(iii) (Relativistic invariance) Let us take fl = 1 in (2.3) [with h given by (2.10)] 
and set 

m c  2 ^ ^ m c  ^ 1 N 

- Q - ~ - ( S I  +,~_I), P - ~ - ( S I - g _ O ,  8 = - -  y' qi, (2.17) 
e i = 1  

where ~_l=~ff l~N_t  [cf. also (All)].  Then it is clear from the above that 
H, P, B are hermitian when # is purely imaginary, and that 

[/~,/3]=0, [/~,B]=i/3, [/3,~]=iH/c z . (2.18) 

Thus, n,/3, and/~ represent the Lie algebra of the Poincar6 group. We also point 
out that for imaginary #/~ has the physically desirable property of being positive. 

(iv) (Nonrelativistic limit) So far, we have treated 0 as a dimensionless variable 
and q as having the dimension of action. This is in agreement with the relations 
p = me sh0, x = q/me ch0, the first of which is the standard one defining the rapidity 
variable. If one takes this point of view, one can only hope to get a sensible 
nonrelativistic limit by transforming/~,/3,/~ to x-space and then sending c to oe. 
However, this is an awkward enterprise at the quantum level. Even at the classical 
level, where no ordering problems occur, one must work harder to obtain the 
nonrelativistic Calogero-Moser systems in this way than when one takes a suitable 
limit directly on the (q,O) phase space, cf. [1, Chap. 4]. The latter limit (which 
amounts to exploiting the parameter fi) can be readily taken at the quantum level 
as well. However, though this limit is mathematically unimpeachable, it is 
physically unsatisfactory: It does not respect the dimensions of the quantities 
involved and cannot be viewed as a nonrelativistic limit in the usual sense. 

These problems can be cured in a simple way: One needs only replace q, 0 by 
mcq, O/me. Then the dimensions of q and 0 change to position and momentum, 
respectively. Let us write out the Poincar6 group generators (2.17) with these new 
conventions: 

m c  2 

[-~(q) exp( Oi/me) Wi( q) 

+ W/(q) e x p ( -  ~/mc) Vv~i(q)] , (2.19) 

N 

/3__ m@ ~ [~V~(q)exp(@mc)Wi(q) 
i = t  

- W~(q)exp(- Oi/mc)~(q)], (2.20) 

N 

8 = - m  2 q,, (2.21) 
i = 1  

where 

(2.22) 



Calogero-Moser Systems and Elliptic Function Identities 197 

We have used (1.9) to scale out the factor inc. However, we continue denoting the 
scaled periods by c9, co', since they have to be kept fixed when c ~  oo for the Galilei- 
invariant Calogero-Moser systems to result. Indeed, using (1.10) one gets 

/ ~ =  lim (.O- Nmc 2) 
c--* oo 

= ~=~ ~m + Z ~(q~--q j), (2.23) 
m I < i < j N N  

N 

iO~,~= lim t3= Z Oi, (2.24) 
c ~ o o  i = l  

N 

/3n~= lim B = - m  ~ qi" (2.25) 
C ' ~  °°  i = 1 

Note the change g 2 ~ g ( g - l )  as compared to the nonrelativistic limit at the 
classical level [cf. (3.25) below]. 

Probably, a more general result holds true: We expect that, just as at the 
classical level, suitable linear combinations of ~1 ..... ~N converge to the usual 
$1 .... ..., ~N, ~r as c ~ oo. Note that one would recover the quantum integrability of 
the nonrelativistic Calogero-Moser systems (2.23) (cf. [7 9]) from such a 
convergence result. We shall briefly return to this question at the end of Sect. 3. 

(v) (Classical limit) It is of interest to note that the parameter fl in (2.3) may be 
interpreted as Planck's constant, cf. (2.1). Thus, the implication "quantum 
integrability =~ classical integrability" established above agrees with the physicist's 
expectation that quantum mechanics reduces to classical mechanics in the limit 
h~0. 

3. The Elliptic Lax Matrix 

The customary approach [2] to the classical nonrelativistic Calogero-Moser 
systems is based on the existence of a pair ofN x N matrices Lnr, Mnr depending on 
the canonical variables of the N-particle system, which are such that {Lnr, H~r} 
= [-L~, M j .  Here, H~ = 1TrL~ denotes the nonrelativistic energy function. This 
leads to the existence of N independent integrals Sk, ~ for the Hn~ flow, defined by 

N 

Jgn~+e~l= Z eeSN-e,,r" (3.1) 
~ = 0  

Subsequently, one shows that the eigenvalues of L~r and hence the Sk .... tOO, are in 
involution. There is no simple "closed form" formula for the Sk, n r  ; in particular, it is 
not obvious that they can be expressed solely in terms of the momenta and the 
potentials. 

Let us now compare this state of affairs to the relativistic case. There, one has 
the explicit formulas (1.4)-(1.5), expressing the N independent Poisson commuting 
Hamiltonians S~ ..... SN in terms of e°l, ..., e °~" and the potentials. Neither the proof 
of [1, Theorem A4] to the effect that the Sk are integrals for H, nor the more 
general proof that the Sk are in involution (cf. Sect. 2) involves matrices. Therefore, 
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it might appear irrelevant to look for an N x N matrix L such that 
N 

I L + c ~ i =  Z c~SN-~ . (3.2) 
f = 0  

In a way, this is indeed the case: If this were the only objective, one could take 
e.g. 

$1 - $ 2  . . . . . .  ( - - ) N + I S N \  

) 1 0 . . . . . . . . . .  0 

L =  0 1 " ' . .  : (3.3) 

i " . .  -..".. i 
6 . . . . .  ;:0 1 0 

Indeed, (3.2) is then readily verified. [We mention in passing that a matrix of the 
form (3.3) can be used to show that it is not generally true that isospectrality 
implies involutivity of the eigenvalues: If one picks 

N 

$1= • p~, Sk=Xk_lpk--XkPk_ 1, k = 2  ..... N ,  (3.4) 
i = 1  

then L is isospectral under the $1 flow, yet its symmetric functions do not 
commute.] 

However, in the nonrelativistic case it has turned out that the known Lax 
matrices Lnr play a much more fundamental role than just yielding the commuting 
Hamiltonians: They can be used to construct explicit solutions and the action- 
angle map [21. The Lax matrix found in [1] for the relativistic hyperbolic case also 
has these properties [1, 10]. 

We are not aware of any general arguments entailing that such a matrix should 
exist in the relativistic elliptic case. However, it is natural to believe that this case 
(which contains all other cases) is not going to be an exception. As explained in [1, 
Chap. 4], the structure of the Sk [cf. (1.5)] suggests the Ansatz 

L~j = e °~ I-I f(q~ - q~)Cdq). (3.5) 

For (3.2) to follow, the 2 x 2 principal minor C(i, j) should equal l / f 2 ( q i -  q j), while 
the general principal minor should be the product of all 2 x 2 principal minors 
contained in it. For the hyperbolic case f 2 _  1--~sh-z this can be attained by 
substituting 

x~ = p(q,), Yi=)~(q~) (3.6) 

(with q), Z exponential functions) in Cauchy's identity [1]. Thus, an obvious guess is 
that the elliptic case can be handled by making a more general substitution. 

To study this, let us recall that Cauchy's identity is equivalent to 

ICI = lq C(i,j). (3.7) 
Here, C is defined by i< 

cij-(x~-y01/2(xi-yj)-~(xj-y)l/2, (3.8) 
so that 

(xi-- xj)(Yi-- YJ) (3.9) 
C(i, j) = (xi - Yj)(Yi- Y j)" 
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Let us, therefore, ask the general question: Can one characterize pairs of functions 
~o,z such that the principal minor C(i,j) is a function of qi--qj after the 
substitution (3.6)? Acting with ~o,+~qj on C(i,j), one gets as the necessary and 
sufficient condition the functional equation 

(p,(q~) q~2(q~) (p(qa) I = 0 .  
~o'(q2) (p2(q2) (P(q2) 1 

z'(qO zZ(ql) x(qO 1 

z'(q2) x2(q2) z(q2) 1 

Equivalently, there should be a, b, c, d such that 

(3.10) 

a~p'(qi)+b~p2(qi)+ctp(qi)+d=O, ~p = qg, Z , i=1 ,2 .  (3.11) 

If one assumes that the coefficients are constant, then one is led back to the 
hyperbolic Lax matrix of [10], in essence. This follows from a straightforward 
analysis we shall skip. We do not know whether (3.11) also admits elliptic solutions 
with non-constant a, b, c, and/or d, leading to the elliptic Sk. 

However, even if such solutions would exist, they cannot yield the matrix that is 
undoubtedly the "right" elliptic Lax matrix and to whose description we now turn. 
The point is that this matrix L is of the form (3.5), but with a matrix C that is not a 
Cauchy matrix, i.e., C does not arise from (3.8) by appropriate substitution. 
Specifically, its principal minor C(I) is not equal to the product of all principal 
minors C(i, j) with i, j ~ 1, but only proportional to this product. Thus one gets 

N 
IL+~111-- Y~ ~eZN-e, Sk=CkS k (3.12) 

instead of (3.2). e=o 
Explicitly, this matrix reads 

Lij =- e °' l~ f ( q , -  qe)Cij(q), f2(q)_  N(#) [~(#) - ~(q)],  (3.13) 

o-(q i -  qj + 2) a(#) i, j = 1, ..., N .  (3.14) 
CiJ =- 6(4) 6(q i -  qj +/2)' 

Here, N(/2) is a normalization constant, whose choice is to a large extent arbitrary. 
We shall set 

N(/2)- °2(/2), (3.15) 

since this is the simplest choice of potential in the quantum case [cf. (2.13)-1, and 
since it yields the simplest formulas for the symmetric functions of L: with (3.15) in 
force they are given by 

Nk = a(4-- #)k- 10"(4 + (k - 1)/2) • exp(  E 0i ~ 
o-(4) k ) Ic{1 ..... N} 

Ixl =k 

× l~ (aZ(#)[~(#)--~(qi--qj)-1) 1/2" (3.16) 

These formulas readily follow from (3.13)-(3.15) by using the identity 

o-(4 - # )N-  10"(2 + ( N  --  1)#) 1 
I CI = (7(4)N(T(#)N(N - 1) 1 < i~<j < N ~ ( /2 )  - -  ~ ( q i  - -  q j) 

(3.17) 
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Lu=eO, F[ (1 sh2 v// ~l /2shv(qi -q j+ 2) 
e , i \  s h 2 ~ q e ) J  shv2 

Its symmetric functions are given by 

(from which the above-announced "principal minor property" of C can also be 
read off). This identity is a consequence of the more general identity 

tT(q  i - -  r j )  ,] s × N "= 

N 1 
x [I ~(qi-q~)~(rj--rl) F[ . (3.18) 

i<=i< j<--N i, j= 1 a(qi-- rj) 

Indeed, (3.17) follows by setting r = q-/~,  v = 2 - #  in (3.18) and then using (2.11). 
The proof of the latter identity is relegated to Appendix B, where we also consider 
various other specializations of interest. 

Let us now complete the picture by considering classical analogs of the issues 
(i)-(iv) in Sect. 2 and, last but not least, by discussing the "correctness" of the above 
elliptic Lax matrix. 

(i) (Reality) Due to our standing assumption that ~o and - ic9' are positive (cf. 
Sect. 1), we can ensure real-valuedness of the functions Z 1 . . . .  , E N for q, 0 ~IR N by 
choosing 2 and p on the imaginary axis. This choice also entails that C is self- 
adjoint, cf. (3.14). Thus, one can get a self-adjoint Lax matrix by taking Da/2CD ~/2 
instead of DC, cf. (3.13). Recall that the choice amounts to the restriction (2.12) on 
the parameters a and b. Of course, the restriction can be considerably relaxed if one 
only demands reality of the functions St, . . . ,  SN: They are real (in fact, positive) 
whenever a+b~(q) is positive on IR, i.e., when b>__0 and a> - b e l ,  cf. (1.4)-(1.5). 

(ii) (Degenerate cases) As the generalized hyperbolic Lax matrix we can take 

shy# 
(3.19) 

shv(qi-  qj + #)" 

S~ = (sh v(2 - #))k-  ~ sh v(2 + ( k -  1)it) 
(shv2)k Y~ exp(i~ 0i ) 

I c { 1  . . . . .  N} lxl =k 

x [I (1 sh2v~ )1/2 
i~,, j~, sh2v(qi_qj), ] , (3.20) 

cf. (B 28). For the trigonometric and rational cases one needs only replace sh by sin, 
and send v to 0, respectively. 

(iii) (Relativistic invariance) As the classical analogs of (2.19)-(2.21) we may 
take N 

H = m c  2 Y~ ch(OJmc)Vi(q), (3.21) 
i = l  

N 

P =mc ~ sh(Oi/mc)Vi(q), (3.22) 
i = 1  

N 

B = - m  Z q~, (3.23) 
i = 1  w h e r e  

z ig 
(3.24) 
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Note that the difference with Eqs. (1.1)O.4) consists only in the adoption of 
position and momentum dimensions for q and 0, and in the parametrization of the 
potential. As in Sect. 2, these conventions simplify the nonrelativistic limit, which 
we consider next. 

iv) (Nonrelativistic limit) Using the fact that the functions e-2a(~)2-1 and 
ez~(e) - I are O(e 4) for e-~0, one gets 

H ~ =  lira ( H -  Nmc 2) 
c-+ oo 

~. 0 ] g2 
,=~ ~mm + ~ ~(q'-- q~)' (3.25) m l<i<j<N 

N 
P,~ = lim P = F, 0~, (3.26) 

c ~ i = 1  

N 
B,~= lira B = - m  ~ q~. (3.27) 

C-4- cO i = l  

Note that one can take g in H,r purely imaginary without violating reality, whereas 
this choice would lead to a loss of generality in (3.21) due to the branch points at 
q i - q j  = +-ig/mc [cf. also (i)]. 

Taking m = 1 henceforth, let us set 

O,~Offc, #~ ig /c  (3.28) 

in the elliptic Lax matrix (3.13}-(3.15). Denoting the result by L(c), one readily 
verifies that 

L(c) = t + L,dc  + 0(1/c2), c ~ oo, (3.29) 
where 

. . . . .  a(q i -  qj + 2) (3.30) (Lnr) i j= 6ijO j + lg~ l --  Oifl ~i~-(-~i  i ~ )  . 

The matrix Lnr is in essence Krichever's [11] Lax matrix for the nonrelativistic 
elliptic case, special cases of which Were first found by Calogero [12]. From (3.29) it 
follows as in [1, Chap. 4] that its symmetric functions are given by 

Sk, nr= lim Gk(c), (3.31) 

where 

k + (N- - f )  
G~(c)-c  kt~0 k t c ( - )  N k X~(). (3.32) 

Here, Xe(c) denotes the symmetric functions of L(c), explicitly given by (3.16) with 
the substitutions (3.28). It follows that $L nr,'", SN, nr are in involution and depend 
only on the momenta 0i and the potentials ~(qi-qi),  something which is far from 
obvious from (3.30). 

As promised below (2.25), let us briefly return to the question whether an 
analog of (3.31)-(3.32) holds true on the quantum level. As is well known (and 
easily verified), the quantization prescription (2.1) yields unambiguous, formally 
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hermitian operators gl ... . . . . .  gm n~- The point is, that no ordering problems occur 
in the nonrelativistic ease. If one ignores the ordering in Zl(c), ...,,~N(c), then (3.31) 
would hold at the quantum level. However, since 01 and h(q~-qj) t/2 do not 
commute, one gets additional terms, as we have already seen [recall (2.23) and 
(3.25)]. A priori, these terms might spoil the existence of lim Gk(C), but this turns 

c--+ ct3 
out not to happen for small k. Indeed, it is straightforward to verify that for k < 3 
the limit exists, yielding the "renormalized" operators 

~,nr__  l r e n  __ , Sl,n r~-ren = ~Oi, (3.33) 
i 

2 

g~2~,~r= • O, Oj-g(g-1)  F. ~(qi-qj)+ g@ N ( N -  I)N(2), (3.34) 
i < j  i < j  

o~e, _ OiOjO u -  1) ~(qj--qk)O, S3,nr-- Z g(g-  2 
i < j < k  i * j , k  

j < k  

The only change compared to the symmetric functions of L.r is the replacement of 
g2 by g (g -1 )  in the second term at the right-hand side of (3.34) and (3.35). We 
expect a similar behavior for arbitrary k, but have not found a proof. 

(v) (The role of the Lax matrix) As evinced by the above developments, our 
elliptic Lax matrix L leads to several useful insights that would be hard to obtain 
from a direct consideration of the Poisson commuting functions $1, ...,Su. 
However, the above does not answer the question whether L can be used to give an 
explicit construction of the action-angle map (whose existence, it should be 
recalled, follows from the Liouville-Arnold theorem). In this connection the 
obvious guess is that the "extra" parameter 2 plays the same role as in Krichever's 
[11] treatment of the nonrelativistic elliptic case. 

To study this, let us consider (following Krichever) the transcendental curve F N, 
defined by setting 

R(c~, 2) = 0, (3.36) 
where 

N 
R(~, 2) ---IL(2) + ~111 = E ~eSN-~(2)- (3.37) 

¢ = 0  

We may view F~v as an N-fold cover of the torus T 2, since the functions Sk(2) are 
meromorphic on T 2, cf. (3.16), (1.7). From (3.16) we also infer that near 2 = 0 one 
has 

R(~, 2) ~ 2 -  N[(C~2)N + (~2) N- 2c2(#)S 2 + ... + CN(#)SN]. (3.38) 

Putting z -  c~2, the polynomial in brackets has N non-zero distinct roots z~ .. . .  , z N 
for #, q, 0 in general position. Consequently, Fs has no branch points over 2 = 0 and 
one must have (generically) 

R(e, 2) = I-I c~- + fe(2) , z t ,  o, z~ + zj (3.39) 
g = l  
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near 2 = 0, where f l ,  -.., fN are regular. It follows from this that the functions a~R 
and ~zR have poles of order N -  1 and N + 1, respectively, at each of the N points 
lying over 2 = 0. 

Let us now assume that #, q, 0 are such that FN is irreducible. (For N = 2 this is 
easily seen to be the generic situation; for arbitrary N this is probably true as well.) 
Then we may regard F N as a closed Riemann surface. The functions pt :(e, 2)~e ,  
P2 :(~, 2)~2 are holomorphic from Fs onto C ~ { ~ }  and T z, respectively, and both 
have degree N. Assuming that VR ~:0 on FN (which, again, should be true in 
general), the total branch number of Pl and P2 equals the degree of 0xR and ~R,  
respectively, viewed as hotomorphic functions from ~,~ onto the Riemann sphere. 
Thus, by virtue of the above pole count these numbers equal N(N+ 1) and 
N(N--1), respectively. Applying now the Riemann-Hurwitz relation to Pl or P2 
one concludes that the genus of F N equals N(N-1)/2 + 1. 

For N = 2 this is the same result as in the nonrelativistic case; in fact, F2 is not 
essentially different from (Y2),r, as is readily seen. Also, the motion of q~ - q 2  under 
the St flow is in essence the same as under the H,~ flow, cf. [I, Eq. (2.14)]. Thus, we 
expect that for N = 2 the Jacobian variety J(FN) gives rise to an explicit model of 
the invariant tori, as in the nonrelativistic case. However, for N > 2 the genus of FN 
is greater than N, whereas it equals N for (FN),~ [11]. Thus, although the flows 
generated by S~,..., SN might still linearize on J(FN) under an appropriate map, one 
cannot fill out the Jacobian as in the nonrelativistic case. 

Unfortunately, these somewhat sketchy remarks are all we have to offer 
concerning the connection between our Lax matrix and the action-angle map in 
the general case. In support of our conjecture that such a connection should exist, 
let us point out once more that for special parameter values L reduces to Lax 
matrices that are known to yield action-angle maps [•0, 11]. Moreover, there 
appear to be no examples of Lax matrices [but for our contrived example (3.3) 
above] that are unrelated to the action-angle map; in fact, for many other 
integrable systems with compact level sets (e.g. the generalized periodic Toda 
systems) the flows linearize on the Jacobian of a curve whose relation to the Lax 
matrix is defined via (analogs of) (3.36~(3.37) [13]. 

Appendix A. Commutativity and Functional Equations 

In this appendix we first prove that the operators St, ..., ~s defined by (2.3) 
commute for any N if and only if the function h satisfies the functional equations 
(2.4). This is the content of TheoremAl .  In TheoremA2 we show that 
h=a(q+l~)/a(q) obeys these identities. As a consequence it follows that the 
function a+b~(q) satisfies the identities expressing classical commutativity 
(Corollary A 3). 

It is convenient to employ the following notation. Let I, J be disjoint subsets of 
{1, ..., N} and let h be a meromorphic function. Then we set 

(IS) =- I] h(q~-q~) t/z, (AI) 

j e J  

0 , -  Z 0i, (A2) 
i~I  
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so that the operators (2.3) can be written 

~k ~- 2 (ICI)e~O~(IIC), 
Ic{1 ..... N} 

Ixl =k 

We also introduce 

~ - k  ~ 

k = l ,  . . . ,N.  (A3) 

E (IY)e-  zO'(YI), k = 1,. . . ,  N ,  (A 4) 
xc{1 ..... N) 

Iq =k 

Finally, we set 

(Ifl~,) = exp [ - fi(eO, + e'Os) ] (IS) exp [fl(eO, + e'0j)], e, e' = + ,  - .  (A 5) 

Thus, a - / +  on a set denotes shifting down/up all q in the set by ifi, cf. (2.2). Note 
also that 

We are now prepared for 
[1, Theorem AI-I 

Theorem A1. One has 

if and only if 

E 

(Ifl~) = (I J) ,  (A 6) 

(I+J) =(I  J_) .  (A7) 

Theorem A1, whose proof is patterned after 

V(k, ~)e { 1, ..., N} 2 , V N > I ,  

((UI)2(I _ U) 2 -- (I c_ I)2(IU) 2 ) 
Ic{t ..... N} 

II[ =k 

= 0 ,  Vke{l  . . . .  , N } ,  V N > I .  

Proof. Due to (A6) the operators 

~_+N =exp(--+fl0(1 ..... N~) 

commute with Sk, k =  ++_ 1, ..., + ( N - 1 ) .  It is also readily verified that 

~k_N= Sk~_N, k = l  . . . .  , N - - 1 .  

Hence, (A 8) is equivalent to 

2, VN>I .  

Next, we use (A3), (A4) to obtain 

[~k,S-e] = E ((UI)e~O'(IIC)(JJ~)e-f°~(J~J) 
Iq =k 
ISl =~ 

-- ( J Y)e  - #O a( jc j )  ( i Ci)e~O,( i ic) ) . 

Introducing the pairwise disjoint sets 

A - I \ J ,  B -  J \ I ,  

C - I c ~ J ,  D - ( I w J )  c, 

(A8) 

(A9) 

(A 10) 

(All )  

(A 12) 

(A13) 

(A14) 
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one gets after a straightforward calculation using (A6) and (A7), 

[~k, ~-~] = IX~k,- (B, CuD)(CuD, A)(BA)(A_B)(BA_) 
tsl =t 
× ((DC)Z(C_D) 2 - (D_ c)z(CD) 2) 

× e p(oA- O')(AB)(CuD, B)(A, CUD). (A 15) 

Clearly, the terms in the sum involving exp fl(OA--0,) sum to zero if and only if the 
bracketed expression vanishes when summed over all disjoint C,D with CuD 
=(AuB) c, ICl=k-lAi--g-lBI, I D I = N - k - I B t = N - E - I A [ .  This entails the 
equivalence of (A12) and (A9). []  

This theorem has a corollary whose statement and proof amount to making 
some obvious changes in Corollary A2 of [1], so that we shall not spell it out. 
However, there appears to be no quantum analog of Lemma A3 in [1]. For  
instance, h(q) = l/shq obeys (A9) in view of the following theorem, whereas he(q) 
= l/shq + c violates (A9) with k = 1 and N = 3, as is readily verified. This holds true 
in spite of the fact that hc(q)hc(- q) gives rise to an integrable classical potential. 

T h e o r e m  A2. The function 

h(q) = Cl ec2q ff(q +ll) a(q) ' C l ' C 2 ' [ A e ~  (A16) 

(where a is the Weierstrass sigma-fimction) satisfies the functional equations (A9). 

Proof. We need only consider the case cl = 1, c2 =0. 
Let us introduce 

Ek, N(ql ..... qN) 

-- xc(lY~ ..... N}[i~1. j~I a(qj--qi)a(qj--qi--)O - - (q~- -q) l "  (A17) 
III =k 

Then our claim is equivalent to the assertion that E vanishes for arbitrary N >  I, 
k e {1 ..... N}, q e 1I; N, 2, # e 112. To prove this assertion, we begin by noting that E is 
doubly periodic in each qj in view of (1.7). Since E is a symmetric function of 
qt, ..., qN satisfying 

E( - -q)=  --E(q), (A18) 

we need only show that E, viewed as a function of ql, is pole-free. Indeed, 
Liouville's theorem then entails that E does not depend on q, and zero is the only 
constant satisfying (A 18). 

To prove absence of poles in the variable q~, we fix the remaining variables in 
general position. Specifically, we choose the points 2, 22, q j -  qi, q i -  qi + 2, j > i > 1, 
incongruent to 0. Note that this ensures that the terms in the sum have at most 
simple poles in q~. By double periodicity, symmetry and oddness we need only 
show that the residue sum at the two points 1) ql = q2 and 2) ql = q 2 -  2 vanishes. 
To this end we pair off the singular I in (A 17), i.e., we consider I = { 1 } u J, I = {2} w J 
with 1, 2 ~ d. For such a pair the residues at 1) of the two "left" products cancel. 
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Indeed, if one omits the singular factors a ( q z - q O  -1 and a ( q l - q 2 )  -1 
= - a(q2 - q O -  1 in the first and second case, respectively, and then puts q 1 = q2 in 
the remaining products, then these products are manifestly equal. Similarly, the 
residues coming from the "right" products cancel at 1). 

To handle the residue sum at 2), we use induction on k. First, let k = 1. For 
I = {1} only the left product has a pole, whereas for I = {2} only the right product 
does (recall 22 ~ 0). Hence the residue sum equals 

_ a ( q 2 - q l  +#)a(q2-q l  - # - 2 )  17 a ( q j - q  1 + # ) a ( q j - q l  - # - 2 )  

+ 

a(q2 -- qi) 3> 2 

o-(--ql +q2 + #)a( - -q l  +q2--#--2)  

a(q3-- qOa(qj--  ql -- 2) 

[[ a ( - - q 3 + q z  + #)cr ( - -q3+q2--#- -2)  

o'(--ql +q2) 3>2 a ( - - q i + q 2 ) a ( - - q 3 + q 2 - - 2 )  

(A19) 

evaluated at ql = q 2 - - 2 ,  which indeed vanishes. 
Now assume 

Ek_I,N-----0 , V N > k - I ,  

and consider Ek, N-The residue sum at q~ = q 2 - 2  is then equal to 

(A20) 

a(2 + #)o-(-- #) a ( q j -  q2 + 2 + #)o-(qj-- q2 -- #) 
2 1-I so{3 ..... N} 3e~J a(qj--q2 + 2)a(qj--q2) 

I J l=k-1  3>2 

× l-I a(q2 - q* + #)a(q2 - qi - # - 2) IJ a ( q j -  qi + # ) a ( q j -  qi - # -  2) 
i~s a ( q 2 -  q i ) a ( q 2 - q i -  2) i~s, j~s a ( q j -  q i )a(q j -  q i -  2) 

j > 2  

-1 a(2 + #)a(--#)  [I  a ( - - q i + q 2  + # ) a ( - - q J + q 2 - - # - - 2 )  
o'(2) j~j  a ( - - q i + q 2 ) a ( - - q j + q 2 - - 2  ) 

3>2 

a ( - q 2 + 2 + q i + # ) a ( - q 2 + q i - # )  
×lI  

i~J a(--q2 + 2 + q~)a(--q2 + qi) 

× I~ a( --  qj + qi + # ) a ( - -  q3 + qi --  # --  2) 

i~s, j¢~J a( . - -qj+q~)a(--q3+qi--2)  
3>2 

_ a(2 + #) a(qe-- q2 + 2 + #)a(q e -  q2 -- It) 
17 

a(q3-- qi + #)a(q3 - qz -- # -- 2) 
x ~ - - ( q e ~ - - q ~ ,  ~>2) 

J~a,...,N~ ~ J a(q3-qi)o-(q3--qi-  2) 
I,tl=k-1 

(A21) 

However, by virtue of the induction hypothesis (A20) the last sum vanishes, 
completing the proof. [] 

Corollary A3. Let  

V(q) = a + b~(q) ,  a, b ~ (12, (A 22) 
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where ~ is the Weierstrass ~-funct ion.  Then one has 

( ,ZOi)  I ] F ( q i - q j ) = O ,  Vks {I , . . . ,N},  V N > I .  (A23) 
IC{I'~'",N} \ ~ "  / ieI 

Proof. We have just seen that the function E given by (A 17) vanishes identically. 
Dividing E by 2, sending 2 to 0 and using (2.11) one arrives at (A23). []  

Appendix B. Generalized Cauchy Identities 

In this appendix we prove the identity (3.18) and then derive various special cases 
of interest. An ingredient of the proof is the following fact, which is a special case of 
the Weinstein-Aronszajn formula [14]. For completeness we include a proof. 

Lemma B 1. Let  M be a regular N x N matrix and let 

M = - M + u ® v ,  (B1) 

where u, v ~ IE N. Then one has 

IMI--IMI [1 +(v, M -  ~u)]. (n2) 

Proof. Since 

we need only show 

M -  1Ill = 1 + ( M -  l u ) ® v ,  (B3) 

where 

Then one has 

(a(#)'~ ~ a(2 - #)N- lo-(2 + (N - 1)# + Z) 

1 
× 1-[ 0 - (q i -  qj)0-(rj --  ri) F~ 

i< j i,i 0-(qi--rj+#) 

N 
S -  Z (qi- ri). 

i=1 

(B6) 

(B7) 

Ill + w ® v l  = 1 +(v, w). (B4) 

This is clear when v and w are proportional, so let us assume w and v are linearly 
independent. With respect to a base u l - w ,  u2=-v, u~Lv, j = 3 ,  . . . ,N of ~N the 
matrix of t + w ® v  is triangular with diagonal elements 1 +(v, w), 1,..., 1. Hence, 
(B4) follows. [] 

Theorem B2. Let  q l , . . ., qN, r l , . . ., r n, "~, # ~ IE and let a denote the Weierstrass sigma- 
function. Let  C denote the matrix with elements 

a(#) a(qz- -r j+2)  i, j =  1 . . . .  , A T . (B5) 
Cij= a(2) a ( q i - r j + # ) '  
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Proof. Let us introduce the auxiliary function 

A(v)-¢(v) (_a!qi--rj+v)) 
o'(v -t- S~ \•(V)O'(qi -- rj)/I ' V e 112. (B 8) 

Using the quasi-periodicity relation (1.7) one infers that 

a(v) (exp [2qk(q~ -- rj)] a(q i -  rj + v)~ 
A(v + 2Ok) = O'(V -1- zv.;) exp [--  2r/k2] \ a(v)a(q~- r j) J l 

=A(v). (B9) 

Hence, A is doubly periodic. It is clear from (B8) that poles of A can only occur for 
v = 0  and v = - S .  

We now assert that A is actually regular at v = 0 for q, r in general position. To 
prove this assertion, we write 

a(v) M+ ~@~e®e A - a(v + X~ ' (B IO) 

where 
e-0,1,... ,1), (Bll) 

Mij= ~L1 [tT(qi-rj+ v _ 11, (B12) 

and note that due to (1.10) one has 

lim M = (((q~- r j))- Mo. (B 13) 
t~---r 0 

In order to invoke Lemma B t, we now show that [Mo[ (and hence [M[, too) does 
not vanish identically. Indeed, let us set 

kco ko~ 
qk= ~ - ,  rk= ~ -  --&o, k =  1, . . . ,N.  (BI4) 

If we expand [M01, then the term coming from the product of all diagonal elements 
equals ((6m) N. Thus it blows up like 6 - s  for 6~0 .  Since the off-diagonal elements 
have finite limits for 6 ~ 0 ,  the other terms in the expansion cannot cancel it for 
~ 0 .  Thus, M 0 and M are generically regular, as claimed. 

By virtue of Lemma B 1, it then follows that 

A = IMI [¢(v) + (e, M-le) ] /a (v  + S). (B t 5) 

Therefore, one obtains 

lim A = [Mot (e, Mff le)/¢(Z). (B 16) 
v--*O 

Since [Md(e, Mo~e) is equal to the sum of all cofactors of M0 [recall (B 11)1, it 
follows that A(v) has no pole at 0 whenever Z % 0 and ql-  rj ~ 0 [-recall (B 13)1. Thus 
the above assertion is proved. 

It follows that A can only have poles when v - - 2. However, it is obvious from 
the definition (B 8) that the order of these poles is at most one. Since A is doubly 
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periodic, it follows that the residue at these poles vanishes. Thus A is everywhere 
regular, so that A = K(q, / )  by Liouville's theorem. We have, therefore, proved that 

( a ( q i - r j + v ) )  _ 
a( ) K(q,r) .  (B17) 

v+Z0 

We proceed by determining the ql-dependence of K(q,r).  To this end we 
introduce 

(P(qO-- e~(ql -- v) ( a (q l - - rL+  ~ ' ]  (BI8) 
tr(ql) \~r(v)~r(q i -  r j ) /  " 

This function is doubly periodic in view of (1.7). Picking v ~ 0, one easily verifies 
that q~ has zeros at 

N N 
qa---- ~,lrj  - ~=2qj - v ,  ql = v ,  q l = q j ,  j = 2  . . . .  ,N ,  (B19) 

j= j= 

the first zero being a consequence of (BI7). Generically, these points are 
incongruent and a(q i - r j )  does not vanish. Hence, the order of ~o(ql) is at least 
N + 1 for q2 .. . . .  qN, rl, ..., rN in general position. 

On the other hand, q~ has at most N + 1 incongruent simple poles, e.g. at 

q~ = 0 ,  q l = r j ,  j = l ,  ..., N.  (B20) 

Thus it follows that q~ is generically of order N + 1. Moreover, since the sum of the 
zeros (B19) equals the sum of the poles (B20) one must have 

er(v + S)a(qt  -- v) I] a(ql -- qj) 
(P(ql) = K(v, qz,..., qN, r) J > ~ (B 21) 

er( q O l]  (r( q l -- r j) 
J 

Comparing this with (B18) and (B 17), we conclude that 

1 
K(q, r) = K(q2, ..., qN, r) I71 a(q 1 -- q j) I-I (B 22) 

~7(q r j)" j > l  j 1 

Evidently, the dependence on q2, . . . ,qN and rl . . . .  ,rN can be determined 
analogously, yielding 

1 
K(q, r) = g [ I  ~ ( q i -  qi)o-(rj- ri) I]  (B23) 

i< j i,~ a (q i - r j ) "  

Next, we substitute this in (B 17), after which we replace v by 2 - #  and r by r - # .  
Then the result can be rewritten as (B 6), but for an extra constant K at the right- 
hand side. Thus it remains to prove that K = 1. To show this, we first set q = r, 
which implies C z = 1. Taking then # to 0, the off-diagonal elements of C go to 0, 
so that ]C] ~ 1 for # 4 0 .  However, if we set q = r at the right-hand side of (B 6) and 
then take # to 0, we also get 1 as limit. Hence it follows that K = 1, so that the 
proof is complete. [] 
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We proceed by pointing out some interesting special cases of the identity (B 6). 
First, if we multiply by o-(2) N or o-(t0 -N and then send 2 or it, respectively, to 0, we 
obtain 

a(#)a(q i - rj)~ = ( _ )N- 10_(#)2N - a a((N _ 1)p + X) 
a(q i -- rj + #),If 

1 
x t-[ a(qi-- qj)a(rj-- ri) 1-I (B 24) 

i<j i,i cr (q i - - r j+P) '  

°(2 +s )  1 rj 
- 1-[ t T ( q i - - q j ) a ( r j - - r i ) r [  . (B25) 

i< j i, j a(q~-  r j) 

Let us now recall that 

G(x+v) 

• e -  q3Xsnax/a, v = 0)3, 

- e-"2Xsnax/adnax,  v = 0) 2 , (B.26) 

e-" lXsnax /acnax ,  v = 0)1 • 

where a = (el - e 3 )  1/2. Thus we can obtain explicit formulas for the determinants of 
the matrices ( J ( q i -  r j)), with J one of the six odd Jacobian functions sn, sd, sc, ns, ds, 
cs by setting ff = 0)k, 2 = 0)k; formulas for the even ones follow by shifting r. The 
formula for J = ds can also be deduced from recent work by Carey and Hannabuss, 
who study temperature states on loop groups [15]. 

In (B24) one can set in addition q = r. Then one gets (a similarity transform of) 
an antisymmetric matrix, and the factor a ( ( N -  1)0)k) at the right-hand side ensures 
that its determinant vanishes for N odd, as required. For  N = 2M and ff = o) 3 we 
recover the formula 

](sn(ui- b/j))2 M x 2M[ = kM(2M- 1) ]~I snZ(ui-- u j) (B 27) 
l<i<j<2M 

obtained first by Palmer and Tracy in their study of the Ising model correlation 
functions (cf. [15, pp. 376-377]). [To verify that (B27) follows from (B24), one 
needs the little known relation a(e)a) -4 = ( e l -  e3)(e2- e3)exp(- 2t/30)3).] 

Let us now derive various identities for the hyperbolic case 0) = ~ .  Combining 
(B 6) with (1.11), it is straightforward to verify that all exponentials cancel. Thus one 
concludes that 

(sh  
sh 2 sh (qi --rj + #)/][ = \ sh 2 } sh (2 - #)N - 1 sh (2 + (N - 1)# + S) 

1 
x i<jI-I sh(q i -q j )sh(r j - r i ) Iq i . j  s h ( q i - r j + # ) "  (B28) 

To simplify special cases of this identity, we introduce the products 

1 
Ps --- i<jH sh (qi - q j) sh (rj - ri) i.jI] sh (qi - r j) '  (B 29) 

1 
P ~ -  H sh(qi - q j) sh ( r i -  rj) IF[ , (B 30) 

i< j i, j ch(q i  - rj) 
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which are related by 

P~(r -- #c/2) = i -  N Pc(r ) 

(note that one has r j - r i  in P~ and r i - r j  in Pc). 
If we take 2~#+irc/2, r--*r + #  in (B28) we get 

l (c th(qi-r i ) ) l  = ch(X)Ps. 

Taking r~r - i~ , /2  in this and using (B 31) yields 

~ch(S)P~, N even, 
I(th(q~-rj))]= [sh(S)P~, N odd. 

Letting 2--*o0 in (B28) one obtains, shifting r by #, 

( sh(q: -  rj)) =P~' 

and shifting r by -i7r/2 yields 
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(B31) 

(B32) 

(B33) 

(B34) 

,c  .35, 

Also, letting #~oo in (B28) and shifting r by 2 results in 

~sh(qa - q2) sh ( r l -  r2), N = 2, 
](sh(q i -  r j))] = t 0 , U > 2, (a 36) 

and shifting r by ire~2 this yields 

~sh(q 1 - q 2 ) s h ( r z - r l ) ,  N = 2 ,  
1(ch(qi- ri))l = (0,  N > 2. (B37) 

Next, we observe that Lemma B 1 can be used to infer that 

F. (cth(q~- r j)) = sh(Z)P~, (B 38) 
¢ o  

fsh(S)Pc, N even, (B39) 
( t h ( q i - r J ) ) =  (ch(S)P~, N odd, 

where Z denotes the sum over all cofactors. Indeed, setting M -  (cth (q l - r  j)) we 
c o  

have, using the notation (B 11), 

1 sh(qi-r j+2)~ 
sh).. sh(qi-r~) /I =IMl(l+cth2(e,M-le))  

= ]MI + cth 2 2 M. (B 40) 
c o  

Combining this with (B 32) and (B28) yields (B 38), and (B 39) then follows upon 
shifting r by -irc/2. 

A particularly striking special case of (B39) is obtained by setting q = r: 

(th(qi- qj))(2M + 1)× (2M+ 1)= 1~ th2 (qi-  qi)" (B41) 
co l < i <  j <  2 M  + l 
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This should be compared with the identity 

[(th(q~- qj))zu × 2M] = I] th 2 (q , -  q j), (B 42) 
l <i< j<=2M 

which follows similarly from (B33) [or alternatively, by taking k ~ l  in the 
Pa lmer~racy  identity (B27)]. 

Let us also note the formulas 

N 

~ (cth(qi-  rj))- ~ke = th(Z), (B43) 
k , d = l  

N )'th(Z), N even, 
( th(qi--rJ))- lke= - (cth(Z), U odd. (B44) 

k,d= l 

These follow upon combining (B 32), (B 38) and (B 33), (B39), respectively. 
Of course, trigonometric analogs of the above hyperbolic identities follow in 

the same way by using (1.12) or by taking q, r-*iq, Jr. Moreover, replacing q, r, 2,1~ 
by eq, er, ~2, ~# in (B28) and sending ~-*0 yields the rational identity 

q i - r j - f - # / I  

1 
x 13 (q,-  qj)(rj- r,) 11 

i< j i , j  qi--rj+ g 

Taking p ~ o e  and shifting r by 2 yields 

~(ql - q 2 ) ( r l  - r z ) ,  N = 2 ,  
I(q~-ri)l-- (0,  N > 2. 

Finally, letting 2 ~  oe and r ~ r  + ~, we obtain Cauchy's identity, 

i<j i,j q i - -r j  

(B45) 

(B46) 

(B47) 
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