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Abstract. A scheme is proposed and justified for examining the motion of the 
five dimensional Kaluza-Klein monopoles at low energy. The classical and 
quantum scattering is discussed and it is shown that for all separations and at 
small velocities the monopoles do not interact with one another. 

1. Introduction 

There has recently been progress in discovering the approximate motion of 
solitons arising in field theories, Yang-Mills-Higgs theory [1] and the CP  1 model 
[2]. This is of interest for two reasons; first, if one adopts the view that solitons may 
correspond to physical particles, then one has information on their dynamics and 
their interactions. Secondly, in the light of the conjectured dualities between 
solitons as non-perturbative phenomena and perturbative quanta in field theories, 
such information would either corroborate or alternatively completely eliminate 
the possibility of such a duality. These recent results have been obtained by 
constructing approximate time independent solutions of the field equations, which 
are successions of exact static solutions, the quasistatic approximation. The 
motion is geodesic on the space of static N-soliton solutions equipped with a 
natural metric. 

The aim of this article is to extend this scheme to the solitons of a gravity theory 
- five dimensional Kaluza-Klein theory [3] - and is organised as follows. In Sect. 2 
the monopoles of Gross, Perry, and Sorkin [4] are described. In Sect. 3 the space of 
gravitational degrees of freedom is discussed and the moduli space of N-monopole 
metrics is obtained. In Sect. 4 the approximation of geodesic motion on the moduli 
space is justified and in Sect. 5 the metric is constructed. Section 6 discusses the 
application of the metric to the problem of classical and quantum scattering and 
the accuracy of the scheme is considered. Section 7 concludes the article. 

2. Geometry of the Kaluza-Klein Monopoles 

Simple Kaluza-Klein theory is five dimensional General Relativity with the 
restriction that the fith dimension is given by a circle. That is, the coordinate x 5 is 
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identified modulo 2rcR, where R is very small. We may express the five dimensional 
metric, gas as a Fourier series in xS; 

i 1 = o o  

IXa X 5 x  ~ABt , )= ~ 9~B(x~)exp(inxS/R) e = 0 , 1 , 2 , 3 .  (2.1) 
n = - c ~  

All modes with n=~0 have energies greater than hc/R, and so the effective low 
energy theory is described solely by the n = 0  mode. Thus we may neglect any x 5 
dependence and therefore write the five dimensional line element as 

ds 2 = _ exp(4~ca/~/3) (dx 5 + 2tcAflx~) 2 

+ exp( -- 2tca/]/~)4a~(x ~) dx~dx ~ , a, fi, ~/= 0, 1,2, 3. (2.2) 

The five dimensional Einstein equations for this ansatz can be obtained from a four 
dimensional effective action 

d4x]/ _/~4 g ( 4to ¼exp(2l/~ica)F~F~ , + ½ 4 g~8~aQ f i )  , (2.3) S 

where R is the scalar curvature of the metric 4g,a. So we have Einstein Maxwell 
theory coupled to a scalar field a in a non-trivial manner, and we identify ~c 2 = 4rcG, 
where G is Newton's constant in four dimensions. 

If we seek time independent solutions of the form 

ds 2 = dt 2 - 4gu~dx~dx~ #, v = I, 2, 3, 5, (2.4) 

then 4~/uv must satisfy the four dimensional Euclidean Einstein equations and 

possess a Killing vector ~xS. In addition, in order that the internal space with 

coordinate x 5 be given by a circle, the constant time hypersurfaces must have the 
topology of an S ~ bundle over some base space. If our solution is to tend 
asymptotically to the vacuum of Kaluza-Klein theory, that is S a x Minkowski 
space, then the hypersurfaces must have the topology of an S ~ bundle over 
S2x R at infinity. In other words 4g,~ describes an asymptotically locally flat 
(ALF) gravitational instanton. We can choose as our solutions the Multi 
Taub-NUT metrics [5] 

4gu,,dxUdx~ = Udx. dx + U-  l(dx5 + 2teA. dx) z , (2.5) 

where 

I=M l I=N 

U = I + 4 G M  ,=1 ~' I X - X  = I +  x=lZ U~, (2.6) 

and 

V U = 2~cV x A. 

Clearly A is defined only up to A-~A + V~b, but by a coordinate transformation x 5 
~ x  5 -  2K~b, we obtain the same metric. Thus we are able to transform away the 
Dirac strings which arise, by covering the manifold with different patches in the 
northern and southern hemispheres of the points X x. These points themselves are 
non-singular if we identify 0 < x  5 <41caM. 
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Viewed from five dimensions these solutions are the monopoles of Gross, Perry 
and Sorkin which may be regarded as the solitons of the theory. The Maxwell field 
A~ is that of a collection of electrically neutral, magnetically charged static 
monopoles at positions X I with moments P = 2~:M. In addition we can identify a 
scalar charge. If a scalar field ~ behaves like 

¢,,~¢o+ S* as r - ~ ,  
/, 

then we call Z,  the scalar charge of the field, as on examining the expression for the 
energy of the superposition of two such static sources, we find that they attract 
each other with an inverse square taw force proportional to the product of their 
charges. Here we see that each monopole has scalar charge Z = - [/3 GM and mass 
M, and we have the equality 

22 p2 + 2 
Q =0 (2.7) M2 + G ~:2 , 

that is, the gravitational and scalar attraction is equal and opposite to the magnetic 
repulsion. This is Scherk's "antigravity" condition [63 and explains why we can 
place the monopoles at arbitrary positions. The non-singularity of the metric fixes 
the size of the internal radius R = 8MG, and thus the monopole mass is fixed by the 
geometry of the theory. 

3. Moduli Spaces 

It is clear that any member of the GPS family is given by specifying N points in 3 
dimensional Euclidean space and has 3N parameters. But we identify metrics up to 
a coordinate transformation, and so we subtract 3 parameters for an overall 
translation and 3 for an overall rotation. In fact the whole situation is more 
complex. 

The configuration space for the dynamics of five dimensional General 
Relativity [7] is the space of all geometries on a specified four dimensional 
manifold M which is the orbit space (or superspace) 

Riem(M) 
S(M)- Diff(M) 

of the group of diffeomorphisms Diff(M) acting by coordinate transformation on 
the space of Riemannian metrics Riem(M). However as some metrics equivalent 
by diffeomorphism are more equivalent than others S(M) fails to be a manifold. 
For example a metric exhibiting a continuous or discrete symmetry will be 
invariant under some subgroup of Diff(M), i.e. it has non-trivial isotropy group. 
Such metrics are called symmetric. A metric with no symmetries is called generic. 
Clearly a neighbourhood of a symmetric point in S(M) cannot be homeomorphic 
to a neighbourhood of a generic point. Specifically they could even have different 
dimension (if such existed) and S(M) is a stratified set [7]. Note that this 
superspace is not the same as Salam and Strathdee's superspace of supersymmetry 
theory. Now if we wish to make S(M) a manifold then we must factor Riem(M) by 
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Diff,(M) the subgroup of Diff(M) which fixes both a point at infinity and its 
tangent space. Since no isometry has this property, Diff,(M) acts freely and the 
resulting quotient space is a manifold. Although S,(M) thus obtained is infinite 
dimensional, some of these features persist in our finite dimensional case. 
Interchange of the positions of the monopoles makes no difference, so we factor 
out by the permutation group on N letters SN. By fixing the radius of the internal 
circle we cannot have one monopole sitting on top of one another and so SN acts 

~3N _ A 
freely. Now we wish to factor out by the action on - -  of E 3 the Euclidean 

SN 
group in 3 dimensions; A is the diagonal set where two or more of the points 
coincide. E 3 does not act freely as some of its elements fix symmetric configurations 
such as equilateral triangles for N = 3 or the regular polygons for higher N. We 
can take the union of sets with the same isotropy groups and factor out by E 3 in 
each union (or stratum). The strata of dimensions less than 3 N - 6  will then 
correspond to boundary points in minisuperspace - the set of all geometries 
corresponding to N monopole metrics. For computations however we will use 
N3N-A, which is the analog of S,(M), and call this the moduli space of our 
solutions. 

4. The Motion of GPS Monopoles 

We now consider the motion of the solitons described above. We use an idea due to 
Manton [1] namely that the motion is approximated by geodesic motion on the 
3N dimensional moduli space equipped with a metric inherited from the kinetic 
energy functional. This is not a general phenomenon and has to be justified case by 
case. For the monopoles of SU(2) Yang-Mills-Higgs theory (in the BPS limit), 
Manton's scheme is justified and this has been implemented recently by Atiyah and 
Hitchin [1]. 

Consider the action of simple Kaluza-Klein theory 

1 SdSx 5R(Sg)V~-t- 8 ~ S d Z ] / ~ K ,  (4.1) S= 16nG~ 

G~ = 2nRG and K is the trace of the second fundamental form of the boundary. We 
can perform the 4 + 1 space-time decomposition of this theory and write the five 
dimensional line element as 

ds 2 = ( N  2 - -  NuNU)dt 2 - 2NudxUdt- 4 guflxUdx~. (4.2) 

The action (4.1) then becomes (after dropping a divergence) 

S= 16nG--~l S d 4xdt NV~[4R(gg)  + K ~ K  u~ - K 2 ] 

1N ( l _ z g . ~ ± ~ r ,  (4.3) 
Ku~= . - 2  ~ & "~'(u;~)J' 

where ; denotes the covariant derivative in the 4 metric g,,. So far the lapse function 
N and the shift vector N,  are freely specifiable and they play no dynamical role in 
the theory. This is clearly the case as they may be given any values we choose (at 



Motion of Kaluza-Klein Monopoles 97 

least locally) by a coordinate change. N and N,  are to regarded as Lagrange 
multipliers and they yield constraints on 4gu~, Ku~,: 

V 4 d [  - -  4R(4g) -~- Ku~K "v- K 2] = 0, (4,4) 

[ K  "~ - K g  ~v]; v = o .  ( 4 .5 )  

These are the Hamiltonian constraint and momentum constraints which have to 
be satisfied if the initial data is to be consistent. We can choose N,  to vanish and 
N = 1 - this is called a synchronous reference system, but this will break down at 
some time in the past or the future [8]. With this choice then, 

1 
s = 16---=G~- f d4xdt[4R(4g)]//~+~Gu~zQOu~Ozo] = I Let, (4.6) 

where Gu~z°= ]/-g[gUafo+ guQg~z 2gu~fq. So we have a Lagrangian where the 
scalar curvature term may be regarded as giving minus the potential energy and 
the term quadratic in 0u~ as the kinetic energy. This latter term may be regarded as 
a pseudo-Riemannian metric - the de Witt metric - on snperspace [7]. We may 
view the evolution of our system as a track in superspace. Now suppose that our 
initial data is given by a four metric corresponding to a GPS multi-monopole 
solution and that the initial velocity is that induced on superspace by the velocities 
of the monopoles themselves. We will show that the kinetic energy is positive and 
that at least locally the potential energy increases in all but a finite number of 
directions in which it remains constant. The velocity of a point in superspace is an 
infinitesimal perturbation in 4gu~. However such a perturbation is really a 
representative of an equivalence class so we must choose a gauge condition. We 
choose 6guv to be orthogonal to the orbit that Diff(M) sweeps out through 4g,,. By 
orthogonal we mean with respect to the de Witt metric. This is assured if 0,, 
satisfies the transverse traceless condition. But such tensors are precisely those 
yielding positive kinetic energy and in addition satisfy the momentum constraints. 
We will show later that the potential energy is positive semidefinitc too and that 
the finitely many directions in which it is constant correspond to changing the 
positions of the monopoles. In any case the positive action theorem for ALF spaces 
ensures that the five dimensional energy is positive and increases about these 
solutions [9]. So our point in superspace moves in an infinite dimensional well, 
starting at a point in a finite dimensional local minimum, with velocity tangent to 
this minimum. But if the velocities are small, then we must stay near this minimum 
and describe free motion on this finite dimensional space which corresponds to the 
moduli space. Thus we need consider only finitely many degrees of freedom, and so 
our effective action is just the kinetic energy term. Hence the equations of motion 
will show that our point describes geodesic motion on the moduli space with the 
de Witt metric. However we have so far only checked the momentum constraints. 
Does our proposed initial data satisfy the Hamiltonian constraint too? Naively it 
would not appear to do so as the initial data has 4R(4g)= 0, and so we would be 
forced to take Op~ = O. However if we regard our perturbation as being the first one 
in a power series in some small parameter 2 say, and consider the substitution of 
this power series 

0 1 2 2 4g~ = gu~, + 2g~ +)~ gu~... 
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into both the action and the Hamiltonian constraint, then we find that the lowest 
order constraint term is 

gOuv A ,,2 + uv;,o o 1 1 Luu~ G (g)(gurgle)=0, A c =  E]gu,.g~o+2Riemt,~o, 

which can be satisfied for all g~. This is a consequence of Acg~  =0, which is the 
condition that the first perturbation is within the moduli space. So to first order the 
Hamiltonian constraint does vanish and our initial data is consistent. 

5. The Metric on the Moduli Space 

Perturbations within the moduli space satisfy 

ALO~,~=Ou~; ~=0~ =0 .  (5.1) 

Now recall that *g~, has self dual Riemann curvature, and so we may use the 
methods of Hawking and Pope [-10] to construct the zero modes of Av For such 
metrics the anti-self-dual Weyl spinor qA'8"C'D' vanishes, and thus there exists a 
spin basis comprising two independent covarianfly constant primed spinors 6A,, 
i'a,. Their three linearly independent combinations ~,R' are zero modes of the anti- 
self-dual spin 1 operator 

VAA, V AA'~iB, C, = 0 ,  i=  1,2, 3. (5.2) 

These three zero modes yield the quaternionic structure of M (that is they are 
Hyperkahler forms). They correspond to anti-self-dual two forms J ~  which obey 

j i j j =  _ 6iJi + _ 8 i j k j k  (5.3) 

where we raise an index and regard, J~U~ as a map from T~(M) to Tx(M) for each 
x ~ M. By the index theorem there are N self dualzero modes of the spin 1 operator 
that is N self dual Maxwell fields ~s B. These are the Maxwell fields associated with 
each monopole. The products of these fields produce 3N transverse traceless zero 
modes of the spin 2 operator 

iJ - -  J i 
h A B A '  B '  - -  ~ AB(Z A ' B '  , (5.4) 

which satisfy ALhi~S=O. By similar means one can show that the spectra of the 
Lichnerowicz operator and the scalar wave operator coincide. On a Euclidean 
manifold the latter has negative definite spectrum when acting on square 
integrable functions, and since R~, , (g+Jg)=Ruv(g)+AL@,~,  , we see that the 
potential for our problem is positive semi-definite as stated above. An ortho- 
normal basis for M is given locally by 

e 5 --- U -  1/2(dx5 + 21cA. dx), e~= U1/2(dxi), (5.5) 

where A is given by the non-singular form it takes in each local coordinate patch. If 
we set [11] 

j i  = e 5 ix d -  1/2eiJkd /x e k , (5.6) 

then d J i =  0 and *Ji= - j i .  Thus we have [d6 + 6 d ] f =  O, and the Ji are harmonic 
two forms which are linear combinations of the ea'~'~ above. Similarly it can be 
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shown [11] that 

F J = [U-  1UJ],i [e 5/x el+ 1/2ei~kd/~ e k] (5.7) 

are equivalent to ~ n .  So h IJ =-r i trJv -m, -rap- . m, n, p = l ,  2, 3, 5 and we have an 
explicit construction of all spin two zero modes on M. We need these transverse 
traceless zero modes in order to find the projection of the initial velocities in 
Tg Riem(M) onto the section given by our gauge condition, d XS ~ 

The velocities are those induced by giving the monopole velocities ~ ( ), 
so we have 

0g~, v d (XSi) + gauge transformation. (5.8) 40/tV = ~ X  Ji dt 

~g~ 
Now let ?,i~_ _ dX Ji" Then 

~ i 5 J 5 = _ U - 1 U J  iJ -1  J i J = u - l ( ~ k i f J i ~  ,i, 75k -2~cU Ak,i, 7ki 

with 2KV x A t = V U  I. 7 is can be shown to be gauge equivalent to h ~s, and so the 

iJ d Ji projection of 40, ~ is - h , ~ ( X  ). Hence the de Witt metric is given by 

ds~e 1 ~ d4xl/~(hiuShUuv)dXi,dXi s 
witt- 64nG~ 

1 
- 128nG~ }1FI/x FJdX/. dX1= GIJdX I. dX s . (5.9) 

So the moduli space metric is determined solely by the self dual harmonic two 
forms on M. For compact M, G ts encodes information about the topology of M, it 
is related to the intersection matrix of M. By Poincar6 duality 2 cycles not 
homologous to zero are dual to harmonic two forms and the integral of the wedge 
product of these forms over M describes how these two cycles intersect. For  non- 
compact manifolds, there are partial results about L z cohomology which is what 
we are considering here; however the proofs used do not apply to these metrics even 
though the results appear to. We must therefore compute G xJ explicitly. Locally F s 
is d ( c J - U - ~ U S ( d x  s +co)), where tos=2~A J which is well defined within each 
patch. We can then regard the integral (5.9) as a sum over integrals over patches in 
which F J is explicitly known. By Stokes' theorem this can be converted into a sum 
of integrals over boundaries which have opposite orientation where they meet thus 
yielding cancellations in the sum. After some algebra we obtain 

F I/~ F s = 256nZMZG26 Is" 

hence ds2~ w~tt =~ dX/'  dXS6U and the de Witt metric is flat. 

6. Classical and Quantum Scattering of GPS Monopoles 

We have seen that the de Witt metric computed in the previous section is flat. So 
our monopotes describe straight lines and neither interact nor scatter. Presumably 
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this means that the antigravity condition holds even for non-static monopoles, and 
yet this does not follow directly. The BPS monopoles [1] also antigravitated, that 
is, scalar and vector forces cancelled and they could thus be arranged in any static 
configuration. Yet their motion depended critically on a small parameter when the 
monopoles were well separated. We can ask then, under what conditions our 
approximation is valid. Clearly we have relied on the monopole velocities being 
small, and restricted ourselves to exciting only zero modes of the Lichnerowicz 
operator AL. What is the energy radiated to non-zero modes? The energy flux 
radiated by a system is proportional to the square of the third time derivative of the 
quadrupole moment of its matter distribution [8], that is to the sixth power of the 
velocity. Thus we may neglect this correction and consider our result exact to 
order (velocity) 2. In fact we have a check on our result. For the BPS monopoles 
Manton has performed a calculation of the long range forces between the 
monopoles when regarded as point particles with scalar and magnetic charges and 
mass, when in slow motion and thus obtains the asymptotic form of the Atiyah- 
Hitchin metric on the moduli space. We can do similarly here. If we expand the 
retarded potentials for a system of massive particles with electric and scalar 
charges GS,, KQ, respectively, then we obtain an effective Lagrangian which is (up 
to terms quadratic in v/c) 

2gmaVa l ~ 7 ~ t J  2~ "----" ~7 
a b*orob} oZ>b\ / 

b,,  2c2r~-~ ~ >b 2c2r~ [(v,. %) (Q,Qb- 7M, Mb + SaSh) 

+ (V~" r~b) (Vb" f,b) (Q, Qb - M~Mb-- Sa22b)] + O(1/r2). (6.1) 

(For the electric and gravitational fields, see [-8].) If we appeal to the electric 
magnetic duality of Maxwell theory and assume we can replace the electric charges 
by magnetic moments in our problem, then we have Ma = M, Q, = 2M, S~ = ]//3M 
for all a. rab is the separation of particles a and b. Substituting these values in (6.1), 

obtain 1 2 ( v,2~ we Z~m,V~a \1 + 4c2j. That is the kinetic energy of a system of free 

particles in special relativity to this order. So, as conjectured, the antigravity 
condition does persist at least at large separation in the non-static case. It is 
amusing to note that if we demand that identical massive objects with both scalar 
and magnetic charges antigravitate to this order, then they necessarily possess 
charges and mass proportional to those of the GPS monopoles. 

We can also describe the quantum mechanics of these monopoles. In the 
Feynman path integral we have to consider paths in Riem(M) joining two multi- 
monopole configurations. The paths lying wholly in the moduli space will give rise 
to an effective field theory equivalent to the quantum mechanical particle moving 
in the moduli space. This is described by the Schr6dinger equation in the moduli 
space metric. So this low energy theory would also be trivial. However paths not 
wholly in the moduli space could in principle also contribute a term to the effective 
action equivalent to a potential energy for the quantum mechanical particle. It is 
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plausible that the methods of Hawking and Pope [10] could show that the 
potential would vanish in the Gaussian approximation. 

It is not clear that our result could be predicted from the asymptotic form of the 
metric found above. For  example the Atiyah-Hitchin metric tended exponentially 
to the asymptotic metric. This is a feature of the exchange of massive particles 
which in Kaluza-Klein theory are those with nontrivial x s dependence. Since these 
have the U(1) charge associated with the compact dimension, these would have 
appeared as Yukawa type forces: that is the particles would have to be produced in 
pairs. In addition such arguments are inherently flat space in nature, and there 
could also have been curved space effects which would have been polynomial in 
1/r. We have shown to all orders in 1/r at low velocities that such effects do not 
occur. Thus it seems that at low energies the GPS monopoles are effectively 
structureless objects. 

7. Conclusions 

We have described the GPS monopote solutions and justified the application of 
Manton's  scheme for soliton motion to the solitons of a gravitational theory. 
However we find that for arbitrary numbers of gravitational monopoles the 
motion is trivial and they pass one another without interacting. 

One could speculate on the origins of this result. These monopole solutions 
have half the maximum number of supersymmetries in five dimensions when 
regarded as solutions of N =  8 supergravity [12]. One might be able to obtain 
qualitative information about the moduli spaces of supersymmetric solitons, and 
this would be useful in general as many purely bosonic states are supersymmetric 
when regarded as solutions of bosonic theories admitting supersymmetric 
extensions. One could also consider adding fermionic zero modes to the 
perturbations considered here to obtain a moduli space with both bosonic and 
fermionic coordinates. 
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