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An on-line algorithm is given that colors any P5-free graph with f(w) colors, where f is a 
function of the clique number w of the graph. 

A proper coloring of a graph is an assignment of positive integers called colors 
to its vertices such that adjacent vertices have distinct colors. 

An on-line coloring is an algorithm that  colors vertices of a (finite) graph in the 
following way: 

- -  vertices are taken in some order Vl, v2, . . .  ; 
- -  a color ci is assigned to vi by only looking at the subgraph Gi induced by Vl, 

�9 . . ,  vi, i =  1, 2, . . . ;  
- -  the color of vi never changes during the algorithm, i = 1, 2, . . .  ; 
- -  the obtained coloring is a proper coloring of Gi, i = 1, 2, . . . .  

The most common on-line coloring is the first fit coloring, FF,  that  at each step 
assigns the smallest possible integer as color to the current vertex of the graph. The 
concept of on-line and first fit chromatic number was introduced and investigated 
recently in [2], [3], [4] and [5]. Here we investigate the problem of effectivity of on-line 
coloring for a particular family of graphs. 

An on-line coloring A is said to be effective on a family X if there exists a 
function f ( x )  such that  the number of colors used by A for any ordering of V(G) is 
at most f ( x (G) )  for every G 6 X, where x(G) denotes the chromatic number of G. 
In most cases a stronger statement is proved, namel); that the number of colors is at 
most f (w(G)) ,  where ~(G) is the order of the maximum clique of G. 

A graph is called Pk-free if it contains no path on k vertices as induced subgraph. 
In [2], it is proved that  F F  is perfect for Pa-free graph, i.e., if G is a P4-free graph, 
then F F  colors G by exactly x(G) colors. 

On the other hand on-line colorings are ineffective on the family of P6-free graphs: 
there is a sequence G1, G2, . . .  of bipartite P6-free graphs such that  every on-line 
coloring colors Gn by at least n colors for n = 1, 2, . . .  (cf. [2]). 

In this paper we fill the gap by proving the following theorem. 

Theorem. There is an effective on-line algorithm for the family of Ps-free graphs. 
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The vertex set of a graph G = (V, E)  is considered as an ordered set, and we 
assume that vertices are taken by the on-line coloring procedure according to that  
ordering. We denote by G[A] the ordered subgraph induced by A C_ V. For x 6 A let 
Az = {v E A : v _< x} (in particular Vz = {v �9 Y : v < x}). Let Gz = G[Vx] and 
Cz be the component of Gz containing x. Let w(G) denote the order of a maximum 
clique of G. 

Our on-line coloring algorithm is a function c(x, Gx) defined by recursion on 
subgraphs of Gz with smaller clique size. The value of c(x, Gz) is a list of non- 
negative integers, all less than or equal to w(G). 

The algorithm maintains certain rooted forests, called "frames" of height at most 
three on subsets of V. If F is a frame and x > y for every y �9 V(F) then we shall 
define a new frame Fx on V(F) U {x}. For u �9 V(F) let CHAIN(u, F) be the list 
of colors on the unique path from a root of F to u, excluding u itself. (If u is a root 
of F then CHAIN(u, F) = 0.) 

The function c(x, Gz) is defined for each x �9 V by 

(0, O, 0) if Cz = {x}, 
c(x, Gz) = (w(Cz), CHAIN(x,  Fx), c(x, G[Sz])) otherwise, 

where Sz = {v �9 V(Cz) : w(Cv) = w(Cz) and CHAIN(v,  Fv) = CHAIN(x,  Fz)}. 
We shall show that  w(Gz) > w(G[Sz]) which implies that  the coloring procedure 

terminates in at most w(Gz) steps. Clearly, a proper coloring of G is obtained. 
Let G be a P5-free graph. Then Gx - x does not have two components each 

of which contains both neighbors and non-neighbors of x. If Gz - x has one such 
component, call it MCOM(x, Gz) (main component), otherwise MCOM(x, Gz) = 
0. Let LCOM(x, Gz) (lessor component) be the union of all components of Gz - x 
which only contain neighbors of x. The key idea used in the construction of frames 
is the obvious fact that  w(Cz) > w(LCOM(x, Gx)). 

We say that  F is a frame of G if it is a spanning subforest of G satisfying that 
(i) each component of F is a rooted tree; 

(ii) paths of F starting at roots are induced paths of G; 
(iii) if x and y are vertices from different components of F,  then xy is not an edge 

of G. 
If F is a frame with vertex set A then F is also called a frame on A. The empty 

set is also considered a frame. 
For colored frames an important  property (Brothers' rule) is maintained. Let 

x �9 A and F be a frame on Az - {x}. Assume for color c(u) = c(u, G[Au]) is defined 
for every u �9 Ax. 

Brothers' rule. If F is a colored frame and u and v are inner vertices and brothers 
in F then c(u) # c(v). 

The basic step for the construction of frames is to define the frame Fz on Az. 
We use the following notation. 

FATHER(x,  F) denotes a vertex y of M = MCOM(x, G[Az]) adjacent to x 
and satisfying: 
(a) The path from the root r of M to y contains no vertex but y that  is adjacent 

to x. 
(b) if there are inner vertices with property (a), then y is an inner vertex at minimum 

distance from r in M. 
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(c) if (b) does not hold, then y is a leaf at a maximum distance from r among leaves 
of M with property (a). 
If MCOM(x, G[Ax]) = 0 then set FATHER(x,F)  = 0. Note tha t  frame 

proper ty  (ii) remains true when xy is added to F as a pendant  edge. 
Then frame F on Ax - {x} is extended to a frame Fx on Ax as follows. 

1. The sons of x in Fx are the vertices of LCOM(x, G[Xx]) and x becomes the son 
of FATHER(x,  F). If  FATHER(x,  F) = 0 then x becomes a new root of Fx. 

2. In order to maintain Brothers '  rule the current Fx being is modified according 
to steps 3 or 4 or both. 

3. (FATHER(x, F) = y becomes inner.) If  Brothers '  rule is violated because y 
becomes an inner vertex in Fx, then there is a brother yr of y in F such that  
y ~ yr, yr is inner and c(y) = c(yr). Let z be a s o n  o f y r  and let t be the 
father of y and yr. Since y is defined according to (c), it follows tha t  xt ~ E(G), 
xy' ~ E(G), xz ~. E(G). Also yyr ~ E(G) because c(y) = c(y r) and zt ~ E(G) 
by definition of a frame. 
Since G is P5-free, zy e E(G) follows. Thus all sons of yl in F are adjacent to 
y in G. Therefore we can modify Fx by replacing the edges yrz with yz for all 
sons z of yl. Notice that  in this step the sons of yr gain a new father (namely y) 
having the same color as the old one. 

4. (x becomes inner.) If  Brothers '  rule is violated because x become an inner vertex 
in Fx (LCOM(x, G[Ax]) ~ 0) then there exists an inner vertex x r in F such tha t  
x r is a brother of x in Fx and c(x I) = c(x). Since the sons of x in Fz are not 
adjacent to any vertex of the pa th  zxry, by definition of a frame, zx E E(G) 
follows as in step 3. So it is possible to modify Fx by replacing the edges xrz 
with xz for all sons z of x r. This modification again preserves the color of the 
father of z (as in step 3). 

Let Cx be the component  of G[Ax] containing x. We show tha t  ~v(G[Az]) > 
w(G[Sx]), where Sx is the set of all vertices of Cx having a color with first and 
second fields identical to that  of c(x). 

By the definition of Fz, the first field of c(x), i.e., w(Cz), is larger than the 
first field of the color of any vertex in LCOM(x,G[Az]). Therefore Sz - {x} C 
MCOM(x, G[Az]). Assume that  u e Sz, u ~ x. The second fields of c(x) and c(u) 
are equal, i.e., CHAIN(x, Fx) = CHAIN(u, Fx). Then Brothers '  rule implies that  
x and u are both  brothers in Fx. Thus Sx is a subset of the sons of FATHER(x,  Fx) 
and ~v(G[Az]) > w(G[Sx]) follows. 

To prove the main theorem we show that  the number of colors used in our 
coloring is bounded by a function of w = ~(G).  Assume that  any graph H with 
w(H) < ~v is colored by at most f(w - 1) colors. 

Let F be the final frame on V(G). It  is enough to show that  a component of F 
has at most f(w) colors, since on distinct components the same set of colors is used. 
One may assume that  F has only one component.  

Let x be an inner vertex of F and let L be the set of all sons of x in F.  Then 
L = A U B ,  where A = {y e L : y < x} and B = {y e L : y > x}. Since 
w(G[A]) < w and A C (Vx - {x}), A is colored with at most f (w - 1) colors. If 
y E B, then the first field of c(y) is at least 2 and at most ~v; the second field is the 
same tbr all y E B, and the third field can have at most f(w - 1) values. Thus L is 
colored with at most ~ -  f(~v - 1) colors. 
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Using the fact that F is a tree of height at most 3 follows that  F (together with 
its root) is colored with at most f (~ )  _< w 3. f3 (~  _ 1) + 1 colors. I 

Notice that  we could not decide whether there are simpler non-recursive algo- 
rithms, perhaps F F  is effective to color a P5-free graph, t 

Sumner proved in [6] that if G is P5-free and w(G) = 2, then x(G) _< 3, and in 
[1] it is shown that  x(G) <_ 4 ~-1, where aJ = a~(G). Sumner's result has the following 
sharper form. 

Proposition. I f  G is a P5-free graph with no triangle, then F F  colors G with at most 
3 colors. 

Proof. Let G be a P5-free graph, w(G) = 2. Assume that  F F  colors G with k _> 4 
colors. Let Ai be the set of vertices colored with i, 1 < i < 4. Since F F  is perfect 
on Pa-free graphs (see [2]), there is an induced path (xl,  x2, x3, x4) in the subgraph 
of G induced by V(G) - A1. By definition of FF ,  B i = F(xi) M A i ~ 0 for each i, 
2 < i < 4 (F(x) denotes the set of all vertices adjacent to x in G). Since G is P5-free, 
we can find x E B1 M B3 and y E B2 M B4. Now x ~ y follows from ~(G) = 2, thus 
(y, x4, x3, x, Xl) is an induced P5 in G, a contradiction. I 
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t Note added in proof: H. A. Kierstead, S. G. Penrice and W. T. "Proffer answered this 
affirmatively. 


