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O N  T H E  O R A C L E  C O M P L E X I T Y  OF 
F A C T O R I N G  I N T E G E R S  

UELI M .  M A U R E R  

Abst rac t .  The problem of factoring integers in polynomial time with 
the help of an infinitely powerful oracle who answers arbitrary questions 

with yes or no is considered. The goal is to minimize the number of 
oracle questions. Let N be a given composite n-bit integer to be factored, 
where n = [log 2 N]. The trivial method of asking for the bits of the 
smallest prime factor of N requires n/2 questions in the worst case. A 
non-trivial algorithm of Rivest and Shamir requires only n/3 questions 
for the special case where N is the product of two n/2-bit primes. In this 
paper, a polynomial-time oracle factoring algorithm for general integers 
is presented which, for any c > 0, asks at most en oracle questions for 
sufficiently large N, thus solving an open problem posed by Rivest and 
Shamir. Based on a plausible conjecture related to Lenstra's conjecture 
on the running time of the elliptic curve factoring algorithm, it is shown 
that the algorithm fails with probability at most N -~/~ for all sufficiently 
large N. 
Key  words.  Oracle complexity; number theory; factoring; elliptic 
curves; cryptography. 
Subject  classifications. 68Q25, 94C60. 

1. Factoring integers 

One of the most prominent problems in computational number theory is in- 
teger factorization, which is exceedingly simple to describe to anyone without 
much background in mathematics.  While no efficient algorithm for factoring 
is known, every child knows how to multiply two integers efficiently, which is 
the inverse operation of factoring. Another reason for the importance of the 
factoring problem is its crucial importance in cryptography. The security of 
several cryptographic systems and protocols, including the seminal and widely- 
used Rivest-Shamir-Adleman public-key cryptosystem (Rivest et al. 1978), is 
based on the assumed difficulty of factoring large integers, typically the product 
of two large prime numbers. The discovery of an efficient factoring algorithm 
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would have dramatic impact on cryptography and in particular on the security 
of millions of information security systems implemented world-wide. 

This paper is concerned with the difficulty of factoring integers. While no 
progress in efficient factoring algorithms is reported, we show that  the appar- 
ent difficulty of factoring is concentrated in a.smalt number of difficult yes/no 
questions. The number  of such questions to be answered is an arbitrarily small 
fraction of the problem size. While this result has no direct impact on cryp- 
tography, it answers so the affirmative a question raised by Rivest and Shamir 
(Rivest & Shamir 1986), motivated by cryptographic security considerations. 

For simplicity, and without loss of generality, we consider as the integer 
factoring problem the task of finding a non-trivial factor of a given integer. In 
other words, for a given problem instance to be sotved, we do not require the 
complete factorization into primes. This distinction is not significant because 
repeated application of such a factoring algorithm would finaIly result in the 
complete factorization. Hence. according to our definition, many numbers are 
easy instances of the factoring problem, for example all numbers containing 
a small prime factor. The most difficult-to-factor integers appear to be those 
consisting of two primes of roughly equal size, which corresponds to the type 
of modulus normally used in implementations of the RSA system. 

We briefly review some known results on factoring integers. Let N be 
an n-bit integer to be factored. The fastest known general-purpose factoring 
algorithm is the number-field sieve (Lenstra et al. 1990) whose asymptot ic  run- 
ning t ime is e cnl/3(l~ for some small constant c. However, recent factoring 
records were achieved with a variant of the asymptotically slower quadratic 
sieve (Lenstra & Manasse 1991). The largest general integer that  has been 
factored by a massively parallel computat ion of several months  (Atkins et al. 

1994) has 129 decimal digits. 
There exist various special-purpose algorithms for factoring integers of a 

special form. Lenstra's elliptic curve factoring algorithm (Lenstra 1987) finds 
small factors efficiently. The largest prime factor found by an implementat ion of 
this algorithm has 40 decimal digits (Dixon & Lenstra 1993), and its asymptotic 
running t ime for finding a k-bit prime factor is e cku~(l~ for some small 
constant c. Other special-purpose algorithms exist for finding prime factors 
p of a special form, for instance when p - 1 contains no large prime factor 
(Pollard 1974) or, more generally , when some cyclotomic polynomial evaluated 
at p contains no large prime factor (Bach & Shallit 1994). 

A result with potentially dramatic consequences was recently obtained by 
Shor (Shor 1994) who showed that  there exists a polynomial-t ime factoring 
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algorithm for a quantum computer. Quantum computers are far from realizable 
but their existence appears to be consistent with quantum theory. 

2.  O r a c l e  c o m p l e x i t y  

An interesting direction of research in complexity theory is to determine to what 
extent the difficulty of a conjectured difficult problem can be concentrated in 
a few difficult bits. More precisely, we consider the number of binary-valued 
(yes/no) questions that need to be answered (say by an oracle) for the problem 
to become easy. By easy, we mean probabilistic polynomial time in accordance 
with the common practice in complexity theory to distinguish, as a coarse 
classification of feasibility of an algorithm, between polynomial and superpoly- 
nomial time. We allow the questions to be asked adaptively, and we require the 
problem to be solved only with overwhelming probability rather than always. 
We call the minimal number of questions needed to solve a problem with over- 
whelming probability in probabilistic polynomial time the oracle complexity of 
the problem. Clearly, the oracle complexity is of interest only for problems not 
known to be in P because it is 0 for every problem in P. 

One motivation for considering the oracle complexity of a problem is that 
when the number of questions can be reduced to O(log n), where n is the input 
size, then all possible oracle answers can be checked in polynomial time. This 
would correspond to a polynomial-time algorithm without access to an oracle. 

Motivated by a paper by Rivest and Shamir (Rivest & Shamir 1986), this 
paper is concerned with the problem of factoring integers, which is widely 
believed to have no polynomial-time algorithm. A non-trivial factor of every 
n-bit integer N can easily be determined by asking n/2 questions, namely, 
"What is the i-th bit of the smallest prime factor of N?", for 1 < i < n/2. For 
the special case of integers that are the product of two primes of roughly equal 
size, Rivest and Shamir described a polynomial-time algorithm based on integer 
programming techniques which asks at most n/3 questions. In this paper, a 
polynomial-time algorithm is presented which, for any given e > 0, asks at 
most en questions. The claim that the algorithm fails only with exponentially 
small probability is based on a plausible number-theoretic conjecture about the 
distribution of smooth numbers in certain intervals and is closely related to a 
conjecture used by Lenstra in the running time analysis of his elliptic curve 
factoring algorithm (Lenstra 1987). 

The major motivation of Rivest and Shamir for investigating this problem 
was that an adversary often has some side-information about the secret pa- 
rameters of a cryptographic system, and that leakage of small amounts of such 
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side-information should not strongly weaken the system. Our analysis shows 
that in a worst-case scenario in which the leaked side-information can be se- 
lected by an adversary who is restricted only in the size of the side-information 
string, an arbitrarily small fraction of bits of the solution are sufficient to break 
a system based on factoring. However, because oracles do not exist in real sys- 
tems, the results of this paper have no direct implication on the security of 
existing cryptographic systems. 

3. P r e l i m i n a r i e s  

The following lemma shows that in a sequence o fk  pairwise independent events, 
each having probability p, the probability that none of these events occur is at 
most (1 - p)/(kp). The events are pairwise independent if for any two events 
A and B, P ( A N  B) = P(A) .  P(B). 

LEMMA 3.1. Let XI,~ .., Xk be pairwise independent binary ral~dom variables 
where P(Xi = 1) = p t'or 1 < i < k. Then, 

1 - p  
P ( X I = X 2  . . . . .  X k = 0 )  _< kp 

PROOF. Note that the expected value and the variance of Xi are given by 
E[Xi] = p and Var[Xi] = p(1 - p), respectively. Let S be the integer sum of 
X1, . . .  ,Xk, i.e., $ = X1 + " "  + Xk. Hence we have 5" = 0 if and only if X1 = 
. . . .  Xk = 0, and E[S] = kp. It is not difficult to prove (Chor L: Goldreich 
1989) that the variance of the sum of several pairwise independent random 
variables is equal to the sum of the individual variances. Thus, Vat[S] = 
kp(1 - p). For every real-valued random variable Y, we have 

Var[Y] >_ P lY = 01. E[Y] ~ 

since the right-hand side is only one of several positive terms summing to the 
variance of Y. We conclude that P[S = 0] _< Var[S]/E[S] 2 = (1 - p)/(kp). 

For fixed p and k --+ oc the proved bound on the probability that X1 = 
. . . .  Xk = 0 is O(1/k), which is optimal for pairwise independent random 
variables. 

It is welt-known that a polynomial of degree at most d over a field can be 
interpolated from any set of d + 1 distinct arguments and their corresponding 
polynomial values. For the case of a finite field GF(q) with q elements (where 
q is a prime power) this observation leads to a construction of a sequence 
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of length q of (d + 1)-wise independent random variables: When the d + 1 
coefficients of the polynomial are selected independently and at random with 
uniform distribution over GF(q), then the polynomial's values for any set of 
d + 1 arguments are also statistically independent and uniformly distributed. 
We will make use only of the special case d = 1 (pairwise independence), i.e., if 
the coefficents a and b of a linear polynomial ax + b are chosen independently at 
random from the field, then any pair of polynomial values axl + b and ax2 + b 
are statistically independent and uniformly distributed over the field, which 
leads to a sequence of length q of pairwise independent random variables. 

For a prime p > 3 the elliptic curve over GF(p) with parameters a and b 
satisfying 4a 3 + 27b 2 r 0 is defined as the set of points (x, y) with x, y E GF(p) 
satisfying the congruence equation 

y2 =_ x 3 + a x + b  modp,  (3.1) 

together with a special element denoted O and called the point at infinity. This 
curve is denoted as E~,b(p). It is well-known that a group operation, which is 
called addition, can be defined on the set of points of the elliptic curve E~,b(p). 
Let P and Q be two points on E~,b(p). The point P + Q is defined according 
to tile following rules. P + O = O + P = P for all P on E (i.e., 49 is the 
identity element of E~,b(p)). Let P = (xl, y~) and Q = (x2, y2). If x~ = x2 and 
yl = -y~,  then P + Q = O (i.e., the inverse of the point (x, y) is the point 
( x , - y ) ) .  In all other cases the coordinates of P + Q = (x3, y3) are computed 
as follows. Let ,~ be defined by 

y 2 - y l  i f x ~ r  
X 2 - -  X 1 

3x~ + a 
2yl if xl = x2, 

where atl operations are to be computed modulo p. (When P + Q r O, then 
the denominator is not zero and thus the quotient is defined.) The resulting 
point P + Q = (x3, y3) is defined by 

X 3  ~ -  ~ 2  __ ~ 1  - -  X 2 ,  

y3 = A ( x l - x 3 ) - y l .  

The prime p can be replaced by a composite N in the above definition and 
equations. However, Ea,b(N) defined in this manner is not a group, but it 
can be extended to form a group by adjoining a small number of additional 
elements. (In the case where N = Pl""P,. is the product of distinct primes 
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Pi > 3, E=,b(N) is the direct product of the corresponding elliptic curves over 
G F ( p O , . . . ,  GF(p~).) Nevertheless, the addition operation, which is in this 
case called pseudo-addition, can be performed as long as it is defined, i,e., 
when the denominator is relatively prime to N, and it corresponds in fact to 
the addition operation on the extended curve. We refer to (Lenstra 1987) for 
further information on elliptic curves. Note that in (Lenstra 1987), points 
(x, y) are represented in projective coordinates as triples (x : y : 1), and O is 
represented as (0 : 1 : 0). 

Unless state d otherwise, logarithms in this paper are to the natural base e. 
The cardinality of a set S is denoted by # S .  

4 .  T h e  o r a c l e  f a c t o r i n g  a l g o r i t h m  

Let N be a given composite n-bit integer and let e < 0.5 be an arbitrary given 
positive constant. If N is not known to be composite, a simple probabilistic 
compositeness test such as the Miller-Rabin test (Rabin 1980) can be used to 
prove the compositeness of N. In the sequel, a polynomial-time (in n) algorithm 
is described for finding a non-trivial divisor d of N (1 < d < N) which, for all 
sufficiently large N, succeeds with probability at least 1 - N -~/2 and asks at 
most en oracle questions. 

The algorithm consists of four steps. 

(i) (Special cases.) If 2 or 3 divides N or if N is a prime power N = qt, 
output 2, 3, or q, respectively, and stop. 

(ii) (Setup.) Choose 5 with 0 < 5 < e as an arbitrary positive coc, stant and 
let 

1 
C - -  

= (log N) 

h = I-[  
r<w, r p r i m e  

<(r} (4.2) 

where e(r) is the largest integer m with r "~ <_ N 112 + 2 N  U4 + 1. Choose 
and t at random with uniform distribution from GF(2a~). Fix a natural 
enumeration of the elements of GF(2a~): a l , a 2 , . . . , a ~ 3 n .  For a given 
natural representation of the elements of GF(2 a~) as triples of n:bit  in- 
tegers, let (ak, xk,y~) E Z2~ x Z2~ x Z2~ be the triple corresponding to 
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(iii) 

(iv) 

sak + t where ak is the k-th element of GF(2an), and let bk C ZN be 
defined by 

bk -- y~ - x 3 - akxk m o d N .  

REMARK 4.1. A theorem due to Hesse states that every elliptic curve 
modulo a prime p has between p - 2 v ~  + 1 and p + 2x/fi + 1 elements. 
Therefore, N 1/2 + 2N 1/4 + 1 is an upper bound on the order of an elliptic 
curve over GF(p), where p is the smallest prime factor of N.  As mentioned 
in Section 2, the above construction guarantees that the tr/ples (ak, xk, Y~) 
are pairwise statistically independent. Instead of the field GF(23n), any 
other finite field with cardinality greater than N a could be used to cre- 
ate an appropriate list of pairwise independent triples (ak, xk, yk). Only 
triples for which all three components are smaller than N will actually 
be of possible use. 

(Oracle questions.) Ask the oracle the following question. If there exists 
a positive integer k < 2L ~'~/ such that  the following two conditions are 
satisfied: 

(1) for the smallest prime factor p of N, 

4 a { + 2 7 b ~ 0  m o d p ,  

and each prime factor r dividing 4~E=k,bk(p) satisfies r _< w, 

(2) for some prime factor q 5r p of N, 

4 a ~ + 2 7 b ~ 0  m o d q  

and ~Eak,b k (q) is not divisible by the largest prime number  dividing 
the order of the point (xk, yk) on the elliptic curve Eak,bk(P), 

where a~, xk, yk and bk are defined as in step (ii), then output  the binary 
representation of the smallest such k, else output  0. 

REMARK 4.2. Of course, this question can easily be transformed into 
Lend questions with a yes~no answer. 

(Factorization.) If the oracle's answer is 0, stop. In this case, the al- 
gori thm fails. If the oracle's answer is some k > 0, proceed as follows. 
Compute  (a~, xk, yk) and b~ as described in step (ii). Let P = (x~, yk) be a 
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point on Eak,bk(N) (which is not a group). Try to compute h. P using the 
pseudo-addition method described in (2.4) of (Lenstra 1987), pretending 
that N is prime. At some point during this computation, the addition 
of two points (x',y') and (x",y") will fail because gcd(x' - x" ,N)  > 1. 
Output this divisor of N. 

5. Analysis of the algorithm 

We need to prove two things: that the algorithm runs in polynomial time and 
that the failure probability is at most N -~/2. 

THEOREM 5.1. f f  the oracle's answer is k > O, then tile algorithm runs in 
polynomiai time and always finds a non-trivial divisor of N. 

PROOF. That the algorithm runs in polynomial time follows from the facts 
that the pseudo-addition can be performed in time O(n 2) and that the number 
of pseudo-additions required for computing h. P is at most 2 [log S h ] -  1, which 
is polynomial in n since according to (4.2), 

log 2h = ~ e(r) log 2r < w l o g  2w 
r<w,  r prime 

and w = O(n~). N is guaranteed to have a prime factor smaller than v/N 
and hence Proposition (2.6) in (Lenstra 1987) for v = v/N implies that the 
algorithm always succeeds. [] 

It follows from the Corollary to Theorem 3.1 of Canfield, Erd6s and Pomer- 
ance (Canfield et al. 1993) that the probability that a random positive integer 
s _< x has all its prime factors < L(x) ~, where 

L(z) = eV/l~176176 

is L(x) -!/(2~)+~ for x --+ oe. In the analysis of his elliptic curve factoring 
algorithm (Lenstra 1987), Lenstra stated the plausible conjecture that the same 
result is valid if s is a random integer in the interval (x + 1 - v~ ,  x + 1 + ~ ) .  
We will need a similar conjecture with a smaller smoothness bound. 

One can prove that for every/3 > 0, the mentioned result of Canfield et al. 
implies that the probability that a random positive integer s < x has all its 
prime factors < (log x) ~, for c > 1, is greater than x "1/~-~ for all sufficiently 
large x. Tile conjecture we will need is that the same result is valid if 1/c+fl < 
1/2 and s is a random integer in the interval (x + 1 - v G, x + 1 + ~ ) .  
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CONJECTURE 5.2. For every/3 > 0 and c > 1/(0.5-/3) ,  and for all sut~iciently 
large z, the fraction of  integers in the intervai (z + 1 - v ~ ,  z + 1 + v/~) with 
no prime factor greater than (log z) ~ is at least x -1/~-~. 

We believe that our conjecture is as plausible as Lenstra's conjecture. Note 
that in our algorithm we have c > 2 but that for 1/c +/3 > 1/2, the conjecture 
cannot be true since the expected number of smooth integers in the given 
interval would be less than 1. 

THEOREM 5.3. If  Conjecture 5.2 is true, then the oracle outputs 0 (and hence 
the oracle factoring algorithm fails) with probability at most  N -~/2. 

PROOF. Let p be the smallest prime divisor of N, and let U be the number 
of integers in the interval (p + 1 - v/fi, p + 1 + x/P) for which no prime factor 
is greater than w = (log N) ~. according to our conjecture with/3 = 5/2, U is 
bounded from below by 

U > (2Lv~] + 1)p -'/c-~12, 

for all sufficiently large p. Note that - l i e  - 5/2 = - e  + 5/2. It follows from 
proposition (2.7) of (Lenstra 1987) that the number T of triples ( a ,x ,y )  E 
ZN • ZN • ZN that  are successful in step (iii) of our algorithm is, for sufficiently 
large p, lower bounded by 

T > N3 C1 . U - 2  
logp 2Lv~J + 1 

N3 C2 . p_~+s/~ 
> log p ' 

where C1 and C2 are positive constants. Hence, the probability that a triple 
selected randomly from Z2- • Zz, • Z2- is successful is equal to T/23L Because 
the triples (at, xk, yk), for 1 < k _< 23n, are pairwise independent, it follows 
from Lemma 3.1 that  the probability Q that none of the triples (at, z~, yk), for 
1 < k < 2 [~j - 1, is successful (and therefore the oracle answers 0) is upper 
bounded by 

1 Q < 
(T/23n). (2LcnJ - 1) 

8 log p < 
C~p-~+5/2(�89 - 1)' 

1 C Since where we have made use of N3/23~ > 1/8 and 2 I~J > 2 ~-1 > 7 N .  
p < N 1/2, the last expression is smaller than N -~/2 for all sufficiently large N. 
f 7  
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6. Concluding remarks 

Our conjecture appears plausible, and could also be replaced by weaker con- 
jectures, but it remains an open problem to prove that our resu!t aiso holds 
without any number-theoretic conjecture. Further. we suggest to investigate 
the oracle complexity of other number-theoretic problems like the discrete log- 
arithm problem. It is also an open problem to determine whether the oracle 
complexities of cryptographically relevant problems are related to the security 
of the corresponding systems. 

The oracle complexity can always be reduced by an additive term of size 
O(log n) where n is the size of the input because the answers to this many 
oracle questions can all be guessed and checked in polynomial time. It is an 
interesting open problem to find computational problems for which the oracle 
complexity is as close to O(log n) as possible, for instance O((log n) ~) for some 
constant c > 1. 
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