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Abstract. Analytic maps of the form f ( z )  = eZ~i~z -I- (_9(z z) display quasiperiod- 
icity when ~ satisfies a diophantine condition. Quasiperiodic motion is 
confined to a neighborhood of the origin known as a Siegel domain. The 
boundary of this domain obeys universal scaling relations. In this paper we 
investigate these scaling relations through a renormalization group analysis, 
and we discuss singularities and asymptotic form of the scaling function. 

Introduction 

The discovery of scaling laws associated with the transition from quasiperiodic to 
chaotic behavior is an exciting development in the theory of dynamical systems. 
Shenker and Kadanoff [1], following Greene's [2] methodology, found that 
K.A.M. tori in area preserving maps disappear by becoming nondifferentiable in a 
scale invariant fashion. Shenker [3] studied the analogous phenomenon in 
dissipative systems and found scaling behavior in maps of a circle. 

These transitions lie in universality classes; many different mappings show 
identical scaling behavior. Thus one can use simple models to analyze the scaling 
behavior of complicated dynamical systems. Provided a dynamical system satisfies 
a few constraints, the scaling laws are independent of all other details. 
Renormalization group arguments, introduced into the theory of mappings by 
Feigenbaum [4], explain this universality. Collet and Eckmann [5] discussed this 
application of the renormalization group. 

In a previous application of the renormalization group to quasiperiodic 
systems, Kadanoff [6, 7] explored universal scaling functions for K.A.M. tori. 
Escande and Doveil [8] implemented the renormalization group on Hamiltonians 
instead of maps. MacKay [-9] obtained a numerical solution of the renormal- 
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ization group equations for area preserving maps. Feigenbaum et al. [10] and 
Rand et al. [ t  1] solved the renormalization group equations for circle maps. 

In this paper we employ renormalization group techniques to study the 
boundaries of Siegel domains [12, 13] in analytic maps. Siegel domains occur in 
maps of the form f(z) = e:~iOz + C(z z) for special values of I2. Inside the Siegel 
domain trajectories execute quasiperiodic motion on "Siegel curves" which are 
analogous to K.A.M. tori in area preserving maps. Manton and Nauenberg [141 
found that the boundary of the Siegel domain is nondifferentiable and obeys a 
universal scaling law similar to that obeyed by critical K.A.M. toil. Section 1 of 
this paper describes Siegel curves and the scaling laws they obey. In Sect. 2 we 
introduce the renormalization group, derive a set of equations which the scaling 
function must obey, and solve these equations numerically. In Sect. 3 we linearize 
the renormalization group equations to explore universality. Finally, in Sect. 4 we 
examine a family of singularities in the universal scaling function and address the 
question [15J : Is the critical point really on the boundary of the Siegel domain? 
We derive an analytic expression for the universal scaling function which should 
be valid only if the critical point lies on the boundary of the Siegel domain, and 
find that the scaling function fits this expression with great accuracy. 

1. Siegel Curves and Sealing 

Siegel considered mappings of the complex plane of the form 

z'= f(z)=eZ~i~z + ~ anz", (1.1) 
n=2 

where the sum in Eq. (1.1) converges to an analytic function. Siegel proved that 
when f2 satisfies the diophantine condition 

t~2-m/nt >2n -u (1.2) 

for all integers m, n>  1, and some 2, #>0 ,  there is a neighborhood U containing 
the origin in which f is conjugate to a pure rotation. This means there is a 
coordinate transformation z = ~b(w), smooth and invertible for ze U, which trans- 
forms f into multiplication by e z=ia, i.e. : 

f(¢(w)) = 4)(e2'~iaw). (1.3) 

Hence, in terms of the variable w, 

w'= c~- 1 of  oO(w) = eZrClaw. (1.4) 

Equation (1.3) is known as the SchrSder equation [16]. 
When z0E U we can use Eqs. (1.3) and (1.4) to simplify the process of iterating 

the mapping f If we write 

z, = f(")(Zo) = f of  . . . . .  f(Zo), (1.5) 

n-times 
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Fig. l. Trajectories of a quadratic mapping with f(1)= 1, f '(1)=e 2~m, and f'(0) = 0. The bumpy curve 
is generated by the critical point %=0 

and define w~by 

then by Eq. (1.4) 

z,=~b(w,), (1.6) 

w = e2~i"nW o . (1.7) 

The w,  densely fill the circle {w :lwl = lWo[}, so the z ,  densely fill the image of this 
circle under 4. This image is a smooth, closed, invariant curve of f known as a 
Siegel curve. The neighborhood U is known as a Siegel domain. Every point in the 
Siegel domain lies on a Siegel curve. 

Siegel curves have a winding number W = f2. To see this consider the rotation 
in the w-plane. After n iterations the phase of w increases by 2rcnf2. Thus we can 
think of the trajectory {w k : k=0,  1,..., n} as having wound around the origin 

m(n) = [nO] (1,8) 

times, where [a] denotes the integer part of a. We define the winding number W as 
the average number of rotations per iteration, thus 

W =  lim re(n) (1.9) 
n---~ oo ~,~ 

From Eq. (1.8) we see that the winding number in the w-plane is just O. By the 
conjugacy q~ we find that in the z-plane aIso we have 

W = O .  (1.10) 

Manton and Nauenberg studied the boundary 0 U at which ~b- 1 ceases to exist 
(see Fig. 1). They found that for a class of mappings of the form (1.1), •U has the 
following properties: 

1) ~U is a Siegel curve with winding number ~2. 
2) 6U is nowhere differentiable. 
3) ~U has universal scale invariant structure. 
4) z c ~ U ,  
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where z c is the critical point of f ( f ' (zc)  = 0) closest to the origin. For the remainder 
of this section we discuss the scale invariance of 0U. We address the observation 
zceOU in Sect. 4. 

Smooth curves in the interior U possess a trivial scaling simply related to the 

winding number O. We choose the value f2 = ] / /~-  1 because it is especially simple 
2 

to analyze, f2 satisfies the inequality 

[ f 2 - m / n l  > 1/V~ (1.11) 
?12 

We analyze trajectories contained in U in the w-plane instead of the z-plane. 
Consider the Fibonacci iterates z ~ = f ~ Q m ( Z o )  of a point ZoE U, where the N th 
Fibonacci number QN is defined by 

Q N = Q N - 2 + Q N - I = Q N - I  + Q N - 2 ,  

and the initial conditions 

Fibonacci numbers satisfy 

Thus for large N 

(1.12) 

Qo=0,  Q I = I .  (1.13) 

QN f2 = QN- 1 - ( - O) N' 

WQN,,~ W0(1 -- 2~i(-  ~-~)N) 

(1.14) 

or, inside the Siegel domain in the z-plane, 

ZQN ",~ Z o + C ( -  (2) N , C = - 2rCiWoC~'(Wo). 

(1.15) 

(t.18) 

where c~=1.34783 and 0 -  0N+ ~,~ 0 N ' -  =0.93611 are independent of 2 for all but 
isolated values of 2. 

Equations (1.16) and (1.18) can assume a form which suggests more general 
scaling properties. First translate coordinates so that the starting point is at the 
origin, then rotate so that 0 N + z = - O  N . Equations (1.16) and (1.18) take on the 

the scaling law takes the form 

zQ~. = f(am(zc)  = z c + cO..)~- N ei°'~ , 

Equation (1.16) is the trivial scaling for smooth invariant curves in the interior 
of U. Fibonacci iterates approach the starting point z 0 at the rate fl = f2-1. Note 
that fi is universal. Provided that Zo~ U, fl depends on no details o f f  other than O. 
Equation (1.16) cannot be applied for z 0 ~ 0 U because ~b-~ is n ondifferentiable on 
OU. 

The nontrivial scaling associated with t3 U found by Manton and Nauenberg 
resembles Eq. (1.16). They found that for functions of the form 

f ( z )  = e2'~mz + z 2 + 2z  3 , (1.17) 

(1.16) 
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ze ,  ~ f l -  % +-i~/z , (1.i6a) 

z Q N ~ a - N e  +-~°, (1.18a) 

where the + ( - )  sign holds for N even (odd). Defining f,,.(z) = f(eN)(z) and noting 
zQ~ = fN(0), we obtain 

J)(0) ,-~ fl-Ne± ~/2, (1.16b) 

fN(O)~c~-Ne +-i° . (1.18b) 

We can try to generalize Eqs. (1.16b) and (1.18b) to include nonzero values of the 
argument z. From the work of Manton and Nauenberg it appears that the limits 

lim f lNf*N(fl-NZ)=F~(z) ,  (1.16C) 
N-*oo 

lim ~Nf~N(C~- NZ) ---- Fc(z), (t. 18c) 
N~oo 

exist and that F~ and F~ are universal functions associated, respectively, with the 
interior of U and the critical point z c. The values of Fi(0 ) and F~(0) are e i'~/2 and e i°. 
We define the operation * by 

f * ( z ) =  f (~) ,  (1.19) 

where " - "  denotes conjugation, and ,N denotes * performed N times. Note that *~ 
is the identity when N is even, and that F* is analytic if F is analytic. In the next 
section we employ renormalization group techniques to investigate the validity of 
Eqs. (1.16c) and (1.18c). 

2. Renormalization Group 

The renormalization group is a set of transformations of a space of functions onto 
itself. We define a sequence of transformations with the universal functions F~ and 
F c as fixed points. A preliminary transformation translates the origin to some 
point z o we wish to study. If zoe U, then our subsequent transformations will 
generate F~(z). If z o = zc, then our subsequent transformations will generate Fc(z ). 
Define 

where we choose s = s [ f ]  so that 191(0)1=1. Let g2( z )=g l ( z )  and s2=s1=1.  
Generate the sequence gN(z) recursively by 

gN+ 1(Z) = SN + 1SNgN - 1 [SN l gN(SN t+ 1Z)] ' (2 .2)  

and choose real sN+i > 0  to make tgN+l(0)l = 1. If the scaling conjectures (1.16c) 
and (1.18c) are correct, then the sequence {gN} will alternate between two limiting 
functions: one function when N is even and another function when N is odd. 
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Define 

0 o + 0~ and define let A = 2 ' 

0~(o)= lim arg[gN(0)], (2.3) 
e v e n  (odd )  

GN(z) = e-i~gN(ei~z). (2.4) 

Conjectures (1.16c) and (1.18c) yield 

lira GN (z)=/~i,~(z). (2.5) 
N--+ c~ 

When ZoS U these transtbrmations can be carried out analytically. Using the 
scaling relation (1.16) we find 

lira s~,=/~=g2-1, (2.6) 

Fi(z ) = e i~/2 + Z. (2.7) 

To study scaling at z~we start w i t h f ( z ) = e Z ~ i a z + z  2 and change coordinates so 
that 

where 

g l ( z ) = ~ z 2 + s p ,  (2.8) 
S 

e2ni(2 e4~i(2 
p = , (2.9) 

2 4 

and choose s as in (2.1) so that Igt(0)] = 1. Equation (2.8) has a critical point at the 
origin, and a fixed point with derivative e 2~m. Composition of nonlinear functions 
generates higher powers of z. Thus we must carry out the transformation (2.2) on a 
computer, keeping many terms in the power series expansion 

M 

ON(z)= ~ ~a(N)'2m.z,,. • (2.t0) 
m = 0  

After many iterations of the transformation (2.2), errors introduced by the 
truncation of the power series in (2.10) will ruin the convergence of {gN} to the 
limiting functions. We have carried out this calculation with M =  38. We get the 
best convergence for N ~ 28 ; subsequent transformations drive the sequence away 
from the limiting functions. Taking g27(z) and g2s(z) as the best odd and even 
limiting functions, we compute the angle A and obtain an approximation to Fc(z ) 
(Table I). Comparing 926(z) and g2s(z) we estimate the accuracy of our approxi- 
mation as 10-5 inside the unit disk. 

By generalizing Newton's method to function spaces we can obtain greater 
accuracy in F c without repeating the calculation (2.2) with larger M. First we 
derive a pair of equations which F~ must obey. From the definition of Fibonacci 
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m 0 1 2 3 4 5 6 

Re[A2,, ] 0.593 0.622 -0.160 0.056 -0.015 -0.001 0.006 
Im[A2.~] 0.805 -0.365 0.240 -0.148 0.084 -0.045 0.023 

numbers (1.12), we find two recursion relations which fN obeys, 

fN(z) = i N -  2 °fN- I(Z), 

fN(z) = fN - 1 °f~' - z(Z) • 

Equations (2.11a) and (2.11b) are equivalent because 

L ° fo ( z )=fo° f l ( z ) ,  

where 

In other words, 

(2.11a) 

(2.11b) 

(2.12) 

fo(Z)=Z.  (2.13) 

all fN are iterates of the function f and hence commute. 
Combining Eqs. (2.11) with the scaling hypothesis (1.16c) and (1.18c), we find that 
Fi(z ) must satisfy 

Fi(z ) = fl2 Fi[ f l -  ~ F*(f l -  az)], (2.14a) 

Fi(z) = flF* [fiF~(fl- 2z)], (2.14b) 

and that F c must satisfy 

Fc(z ) = ~2Fc[~- 1 [ - F , ( ~ -  l z ) ] ,  

F c(z ) = o~F* [eF  c(C~- 2z)]. 

(2.15a) 

(2.15b) 

It is easy to check that Eqs. (2.14) are satisfied by the function Fi(z ) given by Eq. 
(2.7). Note that while the distinction between forms a and b of Eq. (2.11) is 
apparently trivial, it has nontrivial consequences in Eqs. (2.14) and (2.15). 

To apply Newton's method to improve the solution of Eqs. (2.15), we introduce 
the operators ~Ar" and ~ b  

~Ar,"[F(z)J = sZF[s - 1F*(s-  lz)], (2.16a) 

~4#~ b IF(z)] = sF* [sF(s-  2 z)]. (2.16b) 

The solution of Eqs. (2.15) is a fixed point of both J~" and j~,b with s=c~. The 
solution of Eqs. (2.14) is a fixed point of both J/~ and -A~ b with s=fl .  We show 
explicitly how to locate the fixed point of Ye" because difficulties appear in this 
"trivial" case which we must understand before we can solve the nontrivial 
equations. 

Assume that G(°)(z) is close to a fixed point of X~, and let D~A~[G] be the 
Jacobian of ~ "  evaluated at the function G(z). The sequence G(N)(z) defined by 

G(N)(z) = G (N- 1)(z)-  (1 - D~4~"['G (N- 1)])- 1. (G(N- 1)(z )_  j~.[G(N- 1)(z)] ) (2.17) 
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converges quadratically to a fixed point, provided the Jacobian has no unit 
eigenvalues. To compute the Jacobian we introduce a basis for the space of 
analytic functions by the coefficients in the power series expansion 

M 

F(z) = ~ [@F2m)+ i@F 2m+ 1)3zm. (2.18) 
m = 0  

Define the (m, n) eiement of DJV[F] by 

g,,,~,,) /~,,,c,) (2.19) ,4~ V [ F ] I ~ , ~ , F  . 

Both IDJff~[Fi] and IDJV'~[FJ are upper triangular with diagonal blocks corre- 
sponding to coefficients of z" taking the form 

o 

IDY~ differs from I D ~  b in off-diagonal blocks. 
The Jacobian DY~[Fi ]  has two unit eigenvalues. The eigenvalue/~2_/3 = 1, 

associated with ~p(F 1), is a consequence of the dilation symmetry of Eqs. (2.14). We 
can remove this symmetry by defining a new transformation on the space of 
functions with rF(0)l = 1. This transformation is N~FI with s[F] chosen so that 

IN~Evl [F(0)]I = 1. (2.21) 

The second unit eigenvalue /3-2+/~-1= 1 has no obvious interpretation. The 
corresponding perturbation violates Eq. (2.14b). Any function which is obtained 
by iteration of a single function f must obey Eq. (2.14b) if it obeys (2.14a). Thus 
this perturbation has no physical relevance. Thus the fixed point of N} is not 
locally unique in the space of functions with rF(0)[ = 1. A commutativity condition 

(g(z) ~ U"~[ F(z)] - U~[ F(z)] = 0 (2.22) 

is required to isolate the physical solution of Eqs. (2.14). 
With these considerations we can apply Newton's method to determine F~. Just 

as in the trivial case, IDX2[F~] has two unit eigenvalues. The restriction to a space 
of normalized functions (2.21) removes one of these. Holding 0 = Arg[F(0)] fixed 
removes the other. Thus we define a new transformation N; on the set 

where 

k~ F = (q~2), ~e3),...}, (2.23) 

M 

F(z)-- e i° + ~ [~p~2,,o + i~p~2m+ 1)]z2m" (2.24) 
m = l  

No is identical to N~ except that F(0) is held constant. Newton's method locates 
fixed points ku 0 of N~ which are locally unique solutions of 

gJo = N'o[~o] . (2.25) 

As we vary 0, a line of such solutions is generated. 
The condition Cg(z) = 0 for some z determines the physically relevant solution of 

(2.25). We choose, somewhat arbitrarily, to evaluate cg at z t =0.5978-0.9016i, and 



Quasi-Periodicity in Analytic Maps  129 

Table 2. Approach  to universal values of 0 and ~ as the number  
of coefficients in F c is increased. Note  that the error  is pro- 
port ional  to IIm[Cg(z,)]l 

M 0 ~ IImE~(z,)3l 

20 0.9356 1.3477 1.2 x 10 .3  
30 0.9361096 1.3478327 3.7 x 10 6 
40 0.936110819 1.347831985 5.7 x 10 s 
50 0.9361107980 1.3478319950 2.1 × 10 ~o 

vary 0 until [Re[Cg(z,)]l<10 -12. We gauge the accuracy of our solution by 
Im[Cg(zt)]. Table 2 lists values of e and 0 obtained as we increase the number M 
of coefficients in our power series representation (2.24). 

3. Universality 

We have now checked the scaling hypothesis (1.18c) numerically for the special 
case (2.8). How can we test the hypothesis for an entire family of mappings? We 
find the answer by analyzing transformations in function space. In the previous 
section we defned a transformation (2.2)-(2.5) with the universal function F~ as a 
fixed point. In this section we study the evolution of perturbations on this function. 
Perturbations with eigenvalue ]RI < 1 vanish under repeated transformations and 
are called "irrelevant" because their presence does not affect scaling. Perturbations 
with eigenvalue 121>1 grow under repeated transformations and are called 
"relevant" because they correspond to physical parameters which must be 
controlled to observe scaling. We call perturbations with eigenvalue IRl=l 
"marginal." As we have seen in the previous section it is desirable to understand 
the effect of marginal perturbations. 

Note that the transformation (2.2) is of second order. It takes a pair of 
functions and produces a third. The corresponding eigenvalue problem is non- 
linear and difficult to solve directly. Feigenbaum, Kadanoff, and Shenker show 
how to avoid this problem by defining a new transformation on a space of pairs of 
functions 

[ S ( z ) ]  [s2V(s-1U*(s-lz))] (3.1a) 

L V(z)J = [ U ( z )  ' 

[U(z)] [sU*(sV(s-2z))] (3.1b) 
= L U(z) ] 

The transformations (3.1) are fully equivalent to the transformations (2.16). When 

s = ~ the pair [Fc]isafixedpoint, whereas [Fi] isafixedpointwhen F i 
To evaluate the growth or decay of perturbations we must linearize (3.1) 

around Fi or F~. Assume F + ~b~ is a fixed point function plus an eigenperturbation 
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Table 3. Leading eigenvalues of Eq. (3.2), R ='°relevant," M = " m a r g i n a l , "  
and N = "noncommut ing"  

Physical Relevance Eigenvalue 
identification 

Interior  Criticat 

Winding number  R - O -  2 - O -  z 
Dissipat ion R f2 - z t? - 2 

N -/~ -~ 
N p 

Rotat ion M -- I - I 
N --I --1 

Dilat ion M 1 1 
N 1 1 

with eigenvalue 2. Eigenperturbations of R have the form [2~].  

[F-~- ~2~2]  
F + = [F] + 

when # = a or b and 

(3.2) 

[UI2I] [s2V(s-lF*(s-lz))+sF'(s-*F*(s-lz))U*(s-lz)] (3.3a) 
~9~ = [ U(z) ' 

DN: I U(Z)[- - = [ sU*(sF(s-2z))+s2F*(sF(s-2z))V(s-zz)] (3.3b) 

[~z( )j L U(z) ] 

We introduce a power series basis {~p"~} with 

(Ip(4m) 1/9(4rn + 1)  1/)(4m+ 2 )  l])(4rn+ 3)) 

= (Re l-g,n], Im fUm], Re[V,] ,  Im [ Vm] ) . (3.4) 

In this basis the Jacobian at the trivial fixed point, D ~ [ F I ] ,  is block upper 
triangular with diagonal blocks corresponding to coefficients of z" taking the form 

/3/3-~" 0 /32/3-2., /31- t i -/3/3-"~ 0 /32 2m 
0 0 " 

1 0 0 / 

(3.5) 

IDN~ differs from DN~ in off diagonal blocks. The four eigenvalues of the rrtth block 
are 

2 =  ..~_ f l  2 - m , _~ f i  - m (3.6)  

Table 3 summarizes the interpretations of the marginal and relevant per- 
turbations. The eigenvalues +/32 and -/32 correspond, respectively, to adding a 
real or imaginary constant to F~. A real constant destroys the Siegel domain by 
making the function (1.1) expanding or contracting at its fixed point. An imaginary 
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constant changes the winding number of the Siegel domain. We can think of these 
perturbations as adding a constant to O in Eq. (1.1). A real constant changes the 
winding number, whereas an imaginary constant changes If'(0)[. Perturbations 
with eigenvalue ___82." with m>  1 violate Eq. (2.22) and hence are not contained 
in the physical spectrum. Perturbations with eigenvalues ---8-" correspond to 
coordinate changes. To see this let 

and let 

(a ~,m(Z) =z(1 + ezm) , (3.7) 

Fe,  ra(Z) = ~21m eFioq6  ,m(Z) .  

From Eqs. (3.1), (3.2), and (3.8) we have 

V(z) = (c)~2~,mS24V, 1)oF(¢)~,,.8-1,~.-1~ 
"ff 2~, m ,I 

oF* * - i - i (¢~,m8 ¢22~, m) (Z), 

F(z)  = * o f *  * - 1 ( 0 ~ . , 8 0  ) (4) 8 ¢  ) 
- 2  - 1  

° V ( ~ , m 8  ( a ~ , m ) ( z ) .  

Comparing Eqs. (3.9) with Eqs. (2.14) we see that 

• -i -I 4~e,m(8 ¢22~,m(Z))=8 -lz, 
and 

Using the facts that 

* - 1  4o~2~, .(84)~,, .  (z)) : 8z ,  
* - l z  Z ~,m(8q~u.(  ))=/~ , 

q~, m(¢~- 2~3~ ' ~(z)) : 8 -  2z. 

c~, m(az) = a(o . . . .  (z) , 

+~m(Z)= 4~* o,(Z), 
4V,~(Z) = 4)-~,,,(Z), 

(3.8) 

(3.9a) 

(3.9b) 

(3.10a) 

(3.10b) 

(3.1i) 

we find that ~b~, m is indeed an eigenperturbation with eigenvalue 2 = _+ fl-m. Thus e 
grows at the rate f l - "  when e is real and at the rate _f l-m when e is imaginary. 
When m = 0  these perturbations are marginal and correspond, respectively, to 
dilation and rotation of coordinates. 

We numerically computed the spectrum of perturbations on the nontrivial 
fixed point F c. Table 3 lists eigenvalues of perturbations which are analytic 
functions of z 2. Note that the two relevant commuting eigenvalues reproduce their 
trivial values. This is a consequence of Eq. (1.10); winding number is not 
renormalized in the Siegel theory. 
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Generalizing the space of perturbations on Fc leads to relevant eigenvalues not 
included in Table 3. One such perturbation translates the coordinate system, 

~b(z) = z + e. (3.12) 

The eigenvalue of the perturbation is c~ when 8 is real and - c~ when e is imaginary. 
We have now outlined the extent of universality. In order to observe trivial scaling 
in U, we need to fix the magnitude and argument of f'(0). In order to observe 
nontrivial scaling, we need the additional condition 

Zo=Z ~ . (3.13) 

Relaxing (3.13) yields either trivial scaling or chaos. We discuss this question 
further in the following section. 

4. Properties of F c 

A. Asymptotic Behavior 

In Sect. 2, we established, numerically, that Fibonacci iterates of the function (2.8) 
converge to a limit. In Sect. 3 we showed that this limit is universal for functions 
with quadratic extrema at zc, and a fixed point nearby with derivative e 2~i~. We 
have not yet tested Manton and Nauenberg's conjecture that ~U passes through 
z c. If zc(~OU , the scaling laws we have obtained have no relevance to 0U. The 
following argument provides strong evidence that Zc~ O U. 

If z c ~ U ,  then in any neighborhood of z~ there are points that lie on smooth 
Siegel curves. Consider a function in the universality class of F c in a coordinate 
system such that 

lim ~N f*~(~-NZ) = Fc(z), (4.1) 
N---~ o~ 

and Re[F(0)] >0. We wish to show that in this coordinate system there is an 
interval (0, 2), along the positive real axis, which is entirely contained in U. For  
z~ U we have 

fu(z) = z + ~ ( -  O)"NC,(z), (4.2) 
n = l  

where C, are smooth functions obtained by differentiating the conjugacy function 
~b(w). In a generalization of a calculation performed by Manton and Nauenberg, 
we combine Eqs. (4.1) and (4.2) to get 

n = l  

Assuming that the functions C,(z) behave like power laws for small z, and 
requiring that ( -  f2)"N~nC*~(~-NZ) be independent of N for each n, we find that 
Fc(Z ) has the formal expansion for Re(z)~ + 

Fc(z)=z ~ Ami"z -my, (4.4) 
m = 0  
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Table 4. Asymptotic behavior of F~ compared with Eq. (4.8) 

z F<(z) z(i + i}'Z- ~)i/,,, 

1.3 1.36077 + 0.517668i 1.36072 + 0.517603i 
1.4 1.45260 + 0.497852i 1 A5254 + 0.497834i 
t.5 1.54582 + 0.479609i 1.54577 + 0.479620i 
1.6 1.64016 + 0.462807i 1.64013 + 0.462830i 
1.7 1.73542 + 0.447310i 1.73541 + 0.447334i 
1.8 1.83141 + 0.432989i 1.83142 +0.433006i 
1.9 1.92802 + 0.419724i 1.92803 + 0.419732i 
2.0 2,025 t2 + 0,407405i 2,02513 + 0.407405i 

where 

lnfl 
v ............ 1.6121... (4.5) 

lnc~ 

and A m are real constants, A0= l .  Fc should take the form (4.4) if z~et?U. 
Conversely, if F~ is of this form, then it is likely (though not proven) that z ecrU. 

We checked this result numerically. We cannot directly evaluate our power 
series expansion of F i for z >  1.35 because of singularities which are discussed in 
Part  B of this section. Instead we use the fixed point equations (2.15) to 
analytically continue F~ beyond its radius of convergence. We can find an analytic 
expression for Fc which is in very good agreement with the numerical data. 
Assume we can write 

Fc(z) = h -  ~l~(z-~), (4.6) 

where h is analytic and h(z) ~ z for small z. Requiring that F~ be a fixed point of ~#u 
with s = ~, we find that h must be a fixed point o f , J ~  with s = g2. Note that the scale 
factor s = f2 is the inverse of the trivial scale factor s = ft. Thus we can obtain a fixed 
point of Jffp~ from the trivial fixed point o f , ~  by the coordinate change ¢(z) = 1/z. 
Thus 

z 
h(z) = - -  (4.7) 

1 + iTz '  

where 7 is an arbitrary real constant, and 

Fc(z) = z(1 + iTz- v) ll~. (4.8) 

We find Eq. (4.8) fits the numerical data best for 7=  1.013205 (Table 4). We 
speculate that Eq. (4.8) is exact up to corrections which vanish faster than any 
power of z -"  as Re(z)~ + oe. 

B. Singularities o f  F c 

Examination of ratios of Taylor series coefficients of F c (Table 1) suggests that the 
series has a radius of convergence roughly equal to e. We determine the precise 
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location of singularities in F C in the following manner. Define the functions 

P(z) = c~-lF*(c~-lz), (4.9a) 

Q ( z ) = e P c ( a -  Zz). (4.9b) 

If a point ~ is a fixed point of either P or Q, then Eqs. (2.15) require that F c must 
vanish or have a singularity at ~. Note that if ~ is the singularity closest to the 
origin, then the power series (4.9) are evaluated within their circle of convergence 
for z in a neighborhood of ~. We find 

= 0.14377-1.3437i (4.10) 

is a fixed point of both (4.9a) and (4.9b). For z close to ~ we have 

F~(z) = o~ZFc[~ + P'(~) (z - ~)], (4.1 la) 

Fc(z) = ePc[~ + Q'(~) ( z -  ~)]. (4.1 lb) 

Evaluating the derivatives, we find that both P'(5) and Q'(~) are real. Thus as we 
approach ~ from a region where F~(z) is analytic, we expect 

F~(z)"~ ( z -  ~)- 0.89099... (4.12) 

where the exponent is computed from the magnitude of the derivatives. 
Equation (2.15) allows us to analytically continue F~ beyond its radius of 

convergence. In this way we find a family of singularities in F~, each with the same 
power law behavior as ~. Let z be some point of singularity of F~° Any point w 
satisfying 

z = P(w) (4.13a) 

o r  

z = Q(w) (4.13b) 

acquires the same singularity as z, provided P or (~ is analytic at w. 
Figure 2 shows the locations of some singularities determined in this manner. 

In Fig. 2a the points A o and B 0 are defined by 

- ~ = P ( A o ) ,  (4.14a) 
- ~ = Q(Bo). (4.14b) 

We obtain the points A, and B, by repeated application of P - 1  Note that the 
sequences A, and B, converge to z creating a sharp point. We apply Eqs. (4.14) 
with the sets A, and B, on the left hand side to get C o and Do, 

- {A, ,  B ,}  = P(Co) ,  (4A5a) 

- {A, ,  B ,}  = Q(Do). (4.15b) 

Repeated application of P -  1 generates C, and D,. Each C, and D, is a conformal 
image of {A,, B,} (Fig. 2b). We could continue this process indefinitely. Each 
singularity lies at the point of a scaled-down version of the entire set of 
singularities (Fig. 2c). 
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Fig. 2~-e. Singularities of F c. a -e  show the first, second, and third generation of singularities 

In this way Epstein and Lascoux [17] proved the existence of a natural 
boundary for Feigenbaum's universal period doubling function. From Fig. 2c we 
cannot see whether or not the set of singularities in F c forms a continuous wall. 
The existence of a natural boundary in Fc and its relationship to the Julia set [18t 
of the original mapping f are unresolved questions. 
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