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Abstract. We use the random-walk representation to prove the first few of a 
new family of correlation inequalities for ferromagnetic ~o 4 lattice models. 
These inequalities state that the finite partial sums of the propagator- 
resummed perturbation expansion for the 4-point function form an alternating 
set of rigorous upper and lower bounds for the exact 4-point function. 
Generalizations to 2n-point functions are also given. A simple construction of 
the continuum (p4 quantum field theory (d < 4), based on these inequalities, is d 
described in a companion paper. 

1. Introduction 

This paper is a continuation of the work begun in preceding papers [1-3], where a 
random-walk expansion due originally to Symanzik [-4, 5] (see also [6, 7]) is 
employed to derive a variety of correlation inequalities (among other results) for 
lattice models in classical statistical mechanics. The main result of [-2] (see also [3] 
for a variant of the proof) is the new correlation inequality 

O~U4(XI'X2'X3'X4)~ -- 2 ((])xlqgz) (q°:,SP~)J='J="(cP~'q),¢~) (qo="q~:,,,) 
Z,Z'~z" 

- two permutations - g ,  (1. t) 
where • is an extra term which turns out to be irrelevant in applications. This 
inequality implies [2, 3, 8-10] the triviality (i.e. Gaussianness) of the continuum 
limit for q~4 or Ising models in dimension d > 4. (For the Ising model this result was 
first obtained by Aizenman [8, 9], who proved a correlation inequality similar to 
(1.1) by graphical methods. A version of Aizenman's inequality also applies to the 
q~4 model.) 

In this paper we restrict attention to ~0 4 models, and derive new correlation 
inequalities which will be (among other things) important ingredients in the proof of 
the nontriviality (i.e. non-Gaussianness) of the continuum limit for weakly coupled 
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~0~ field theories in dimension d < 4. (This proof is carried out in a companion paper 
[11].) Of course, the existence and nontriviality of these superrenormalizable 
continuum field theories is already well known (see [12, 13] for d =  2 and [14--24] 
for d = 3) ; indeed, the construction for d = 3 is one of the most difficult and subtle 
proofs ever devised in mathematical physics. Thus, the primary goal of the present 
work is to provide a simpler (though less powerful) construction of these models, 
roughly along the lines proposed previously by one of us [10]. For further 
discussion of this application, see the Introduction to [11]. 

What we prove in the present paper are in fact the first few of an entire family of 
correlation inequalities which can be described in words as follows : Consider the 
perturbation expansion (in powers of the bare coupling constant 20) for the 
connected 4-point function u 4 in the q~4 lattice model. We now form the propagator- 
resummed perturbation expansion by considering only those graphs which contain 
no self-energy part, and by considering each line in these graphs to be the exact 
(interacting) 2-point function. Formally this is a partial resummation of ordinary 
perturbation theory. We then claim that the finite partial sums of this expansion 
form an alternating set of rigorous upper and lower bounds for the exact u4, valid for 
all 2 o >0. Actually, in this paper we give a complete proof only for the first three 
inequalities of this family (i.e. those to order 1, 2 0, and 202); although we are 
convinced that the entire family of inequalities is true, and we sketch briefly at the 
end of Sect. 3 how a proof ought to go, we must confess that the combinatorics 
required has been (up to now) beyond our ability. 

Thus, the correlation inequalities proven in this paper are the following: 

u4(xl, x 2, x3, x4) ~ 0 ,  (1.2) 

U4(X1, X2, X3, X4)~ - -202(q)xtq)z)  (q)x2@z) ((~Ox3q)z) (q)x4q)z), (1.3) 
z 

U4(XI' X2' X3' X 4-) ~ -- ")~0 Z ( @ xI(lgz) ( ~O x2(J)z) ( q)x3 q)z) ( (D x4 @z) 
z 

+ y Z (,pxl~o~) (~ox2'P=) (ez~%,)~(q'=,q'x~) (%,~ox4) 
z,z' 

+ two permutations. (1.4) 

Inequality (1.2) is, of course, the well-known Lebowitz inequality [25-29, 1, 3]. 
Inequalities (1.3) and (1.4) are improvements of inequalities proposed in [10, 
Eqs. (3.29) and (3.30)] and proven there subject to a conjectured correlation 
inequality on the 6-point function. We emphasize that no such conjecture is needed 
in the present work. An inequality of the type (1.3) is also a consequence of the work 
of Aizenman [9, Proposition 11.2]. 

Although (1.3) is similar in structure to (t.1) - both are "tree-graph bounds" - 
they have quite different meaning due to the different multiplying factors (2 o vs. j2). 
Inequality (1.1) yields a universal (i.e. 2o-independent ) upper bound on the 
renormalized coupling constant g; this bound is excellent for d > 4  (it implies 
triviality 9, but is useless for d < 4 (it is worse than the Glimm-Jaffe bound 9 < const 
[30], see also [31-33, 9]). Inequality (1.3), on the other hand, is not very useful for 
proving triviality in d > 4, but is an excellent bound for superrenormalizable models 
in d < 4  - as our analysis of these models [11] will show. 
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The plan of this paper is as follows: In Sect. 2, we recapitulate briefly the 
formalism of the random-walk expansion; more details can be found in [1] (see also 
[3] for a pedagogical introduction). The key new ingredient is a lemma on the 
"splitting of paths" (Lemma 2.1). In Sect. 3, we give a complete proof of inequalities 
(1.2)-(1.4) and a brief sketch of how one should be able to prove higher order 
inequalities. In Sect. 4, we derive some analogous inequalities for 2n-point 
functions. In Sect. 5, we give a simple proof of a very strong form of the Gaussian 
inequality [34, 35], and derive as a corollary a truncated Gaussian inequality. 
Finally, in Sect. 6, we discuss briefly some extensions and applications. 

2. Basic Formalism 

In this section we briefly recapitulate the basic formalism of the random-walk 
expansion; see [1, 3] for more details. We consider a model of one-component 
classical spins on a finite lattice, with partition function 

L j 
Z=S e2 (2.1) 

J 

Here J (called the "pair interaction") is a symmetric matrix, i.e. Ju = J)i. Beginning in 
Sect. 3, we shall require that Ji)->__0 for all i,j ("ferromagnetism"); however, this 
assumption is unnecessary for the identities derived in the present section. We 
assume that each g~ is C ° and decays faster than exponentially at infinity along with 
all its derivatives. This very strong restriction on g) (much stronger than really 
necessary) is made solely to avoid uninteresting technical problems; it can be 
removed by taking limits in the final formulae, 

The 2-point function of our model is 
1 j 

1 e --(~P, ¢P) r a r  " 2" " 
Qp~%) = Z -  j ~0x%e 2 llgjtq)j)arpj. (2.2) 

J 

We insert into (2.2) the Fourier representation 

2 __ - i a j  2 gj(q~i) - ~ e q)) gj(aj)da), (2.3) 

then interchange the order of integration and "half-perform" the now-Gaussian q~ 
integral; the result is 

1 ~ " 1 ~(~p,(J--2ia)~p)  
(q~xq~y) = Z -  j ( 2 i a -  J)2y e I-I dq~jOi(aj)daj • (2.4) 

J 

This interchange of integrals may appear somewhat dubious, but it yields a correct 
result because we can first move the contour of an integration in (2.3) to Ima i = large 
negative constant, which makes the integrals absolutely convergent. Later we move 
the contour back again ! This exploits the analyticity and decay of Oj(ai), which is a 
consequence of our decay and smoothness assumptions on g~. 

Next we expand ( 2 i a - J ) - 1  in a Neumann series 

(2ia - J)-  ~ = (2ia)- ~ + (2ia) - ~J(2ia)- a + ... (2.5) 

(which converges because of our distortion of a-integration contours). The sums 
over matrix indices implicit in (2.5) can be combined into one sum over a random 
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walk; doing this and inserting into (Z4), we get 
1 

(q~x%) = z - ~  Z g~f([I(Ziaj)-'(~))e-~(o'(s-z'")O)l~&°iga(aj)daj. (2.6) 
to:x~y \ j / j 

Here the sum ranges over all walks co = (co(0), coO) ..... co(n)) on the lattice starting at 
x and ending at y [i.e., co(0)= x, co(n)= y with n->_ 0 and coO),..., co(n- 1) arbitrary], 
hi(co) is the number of times that co visits the site j, and 

j o  = jo (0 ) (o (1 ) jo (m)o(2 ) . . .  J o ( n -  1)w(n) " (2.7) 

Using, for each site j, the identity 

oo e - t x t n -  1 

x - " =  ! ( n -  1)-------~ at 

in (2.6), we find 

(~o~%) = Z -  1 

_ _ _ Z - 1  

(n > 1) (2.8) 

1 ./ 

j~o ~ dv~(t)e z (~o, ~) 1-I d~oje- ~'(~] + 2")O~(a~)da~, (2.9) 
o:x-~y j 

1 j 

] a%~t)e [[  gj(rpj + 2tj)dq~j, (2.10) 
to:x-,y j 

where we have introduced the positive measure 

dv~(t) = I]  d%(o~)(t~), (2.11) 
with J 

d r ,  [6(s)ds if n=O,  
v,ts) = / s,_ 1 (2.12) 

[ ~ Z f o , ~ o ) ( s ) d s  if n>_-l. 

Now the q~-integral in (2.10) is precisely the partition function (2.1), except that each 
gj(q~ 2) has been replaced by gj(cp~ + 2t j). Thus, defining 

i j 
7(~ ,  O) r-r  , 2 , 

Z ( t )  = ~ e 1 1  gj[q) j  ~- 2t)&oj, (2.13) 
and J 

~( t )  = Z(t) /Z,  (2.14) 

we have derived the fundamental formula 

(q~x(P,> = Z J~°Idvo)(t)~°~(t)" (2.15) 
O0:x~y 

Similar formulas can be derived for 2n-point functions; for example, 

¢01 : Xl  ---> X2 

O~21X3--+X4 

+ two permutations (2. t6) 

t 

O,,X1 --~X2 

+two permutations, (2.17) 
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where ( . ) t  denotes normalized expectation with respect to the measure in (2.13), i.e. 

1 j 
1 -(~o, ~) 2 

( e ( ~ o ) ) t = Z ( t ) -  I e ( ~ o ) e 2  HOj(q)j +2tj)d~os. (2 .18)  
J 

(We have also written J~" +~,2 as a convenient shorthand for J°'*J°'~.) In fact, (2.15), 
(2.17) and their generalizations to higher-point functions can be unified into the 
single integration-by-parts formula 

,o / 0 F \  
(q~,F(cP)}=2 Z J Idv°'(t)~(t)~)t;w%/ (2.19) 

y ¢O:x--+y 

see [1, 3] for the proof. 
Finally, we present a lemma on the "splitting of paths" which we shall use 

repeatedly in what follows: 

Lemma 2.1. Let jp. . . , j~ be lattice sites, and let f be any (decent} function. Then 

Z j~O~dvo~(t)tj.." tiff(t) 
OJlX-~y 

= ~ ~ J~°°+'-+~"~dV~o(to)...dv~.(t.)f(to+ ... +t.).  (2.20) 
r ~ n  o)0 :x--+ ire(l) 

col :j, ,o) ~]~:(2) 

con: j~(n) ~ y 

Here ga is the set of all permutations of {1,..., n}. 

Proof We consider first the case n=  1. By (2.11) and (2.12), the measure tflvo,(t ) 
vanishes identically if the path co never visits the sitej; moreover if co does visit j, then 

t flv ~,( t) = nj(co)dv o/( t) , (2.21) 

where co' is any path having 

nk(co,)= ~nk(co ) for k~=j (2.22) 
[rig(co )+1 for k = j .  

(For example, co' can be a walk obtained from co by converting one of the visits to j 
into a double visit.) Now if coo and col are any two paths such that 

nk(co' ) = nk(coo) + nk(%) for all k, 

it follows easily from (2.11)/(2.12) [or from (2.8)] that 

dv~,,(t)f(t) = S dVo, o(to)dv,oi(q)f(to + q). 

(2.23) 

(2.24) 

So let co o and col be the pieces of the path co formed by splitting it at any one of its 
visits to the sitej. These coo and cot satisfy (2.22)/(2.23) : the extra visit to sitej arises 
becausej is now counted both as the final point of path coo and as the initial point of 
path cor Moreover, for each co arising on the left side of (2.20) there are ni(co) ways of 
splitting it into coo and col arising on the right side of (2.20). This exactly accounts for 
the factor n~(co) in (2.21), and completes the proof of the lemma for the case n = I. 
(Note that J'*= jo~o + o~1 because there is no double-counting of bonds, only of sites.) 
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The general case now follows by induction. Indeed, assume that the lemma is 
true for n = m. We wish to show that it holds for n = m + 1. Apply the case n = m to the 
function 

g(t) = tsm ÷1 f ( t )"  (2.25) 

Thus 
jo, I dv~o(t)tjl "'" tsm+ i f ( t )  

(O:X-~y 

= • jO~fdv~( t ) t s . . ,  tsmg(t ) 

= ~ ~ j~oo + ... + o~ ~ dv~o(to).." dv~,m(tm)g(t ° + . . .  + tin) 
~e~m cOo:xyj~(1) 

~m: j~(m)'-'~ y 

= ~ ~ j,oo+... +,o~ ~ dvoo(to).." dvcom(t,,) 

COrn : J~(m) ~ Y 

• [(to)j=+, + . . .  + (t,,)~= +,]f(t  o + ... + tin). (2.26) 

Now apply the case n = 1 to each of the functions hr(tr) = f ( t  o + ... + tin) [0 __--< r_--< m] 
with {ts}s, r considered fixed; this splits the path co, at the site Jm+l and leaves all 
other paths {cos}s,, unchanged. The sum of all these contributions is precisely the 
sum over r~'eN,~+l needed for the right side of (2.20). This completes the proof. 

3. Bounds on u4: Up to Second Order 

We now assume that the pair interaction is ferromagnetic, i.e. J~j>=O for all i,j. 
Moreover, we specialize to the case of a q~4 model 

r 9j(g02) = exp [ - ~ 

(2 o >0) for all sites j. Then 

, 2  [ 20 4 + gs(go + 2t) = exp [ -  ~.. rp - (~-~° ~ )  (p2 - (26t--~2 + B0t)], (3.2) 

so that the primary effect of the t variables is to add a space-dependent mass term 
20tsg0~/6 to the Hamiltonian. (The t-dependent constant term 2 o t ~ / 6 + B o t  j will 
affect the partition function Z(t)  but not the expectations ( . ) r )  The crucial fact is 
that all variables tj are nonnegative [by (2.12)], so that Griffiths' first and second 
inequalities [27] give 

ON ((pA) t < ((¢A)0 (3.3) 

for any product (p~ = I~ q~' of the spins go i. [Here ( . ) o  is, of course, the same as ( . )  ; 
i 

we append the subscript 0 to emphasize that this is the expectation in the measure 
with all ts=O. It should not be confused with a "free" (or Gaussian) expectation.] 
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Remark. It is allowable for 20 and B o to depend on the site j being considered. 
Indeed, a site-dependent B 0 is essential for the inductive proof given below (which 
uses lower-order inequalities applied to ( - ) t  in place of (-)o)- A site-dependent 20 is 
optional ; it would change the final results only by replacing 2 o by (2o) ~ and 2o 2 by 
(2o)z(2o) z, in (1.3)/(1.4). We have pretended that 2 o and B o are the same at all sites 
simply to lighten the notation. 

We now consider the connected 4-point function (Ursell function) 

u,,(xp x2, x3, x~) = <q~ox~o~¢Ox.> - <~o ~o> <~o ~o 4 > 

-- <~pXl~X3 > <(~X2~PX4> -- <(~XI(PX4> <~X2~X3> • (3.4) 

By (2.17) and (2.15), this can be written as 

u4(x 1, x 2, x 3, x,,) = F(xp X2[X3, X4, ) "~ F(xp x 3 Ix 2, x4) + F(x I, x4lx 2, x3), (3.5) 

with 

F(xp x2lx 3, x 4) = ~ jo, ~ dvo(t)~(t) [<cpx~o~,) t -  <~p:,~ox,)o]. (3.6) 
CO:X1 ~x2 

Since JO, dye, and :~r(t) are all nonnegative, Griffiths' second inequality (3.3) implies 
that F < 0 ,  and hence u4=<0. This is the Lebowitz inequality (1.2), proved by the 
method of [1]. 

To get a lower bound on u 4, we examine more closely the bracket in (3.6). By the 
fundamental theorem of calculus, 

= I d l e  - t . 2 
o j 

(3.7) 

where we have introduced the notation 

( A ; B )  = ( A B ) -  (A)  <B). 

Now 

(3.8) 

<~Ox3(Px 4 . a , qoi )~t = 2QPx3tPj)~t(q~xfi°j)~t + u4(x3, x4,j,J)~t (3.9) 

< 2(q)x cpj)o<q~4cpj) o (3.10) 

by the Griffiths inequality (3.3) and the Lebowitz inequality u 4 < 0 (valid also for the 
theory (-)~t, since the at is merely a mass term). The 0~ integration is now trivial, and 
we conclude 

<(PX3(~x4>t- <~QX3(~X4>0 ~ -- @ 2 tj<(PX3~Pj>O<q)X4q)j>O' (3.11) 
J 

and hence 

F(xpx21x3, x 4 ) > - @ ~ , [  2 J°'~dvo,(t)~(t)tjl(CPx3~Pi)o(q~x,q@o" (3.12) 
j [gO-*XI ~X2 
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Finally, we use Lemma 2.1 to handle the tj factor: 

O~1 -I- O) 2 ~ o  J°~dvo~(t)~e(t)tj ~, J ~dvo~(tl)dvo)2(t2) ( t i+ t2)  
¢o:Xl ~3c2 fO1 :Xl ~ j  

¢02: j--* X 2 

= ~ jo~ ~ dv~oj(tl)~(tl) (~ojq)x2)t 1 

<= ~ J°~dvo)t(tl)~(tl)(q)jqg~2)o 
0 ) I : X l ~ j  

where we have again used Griffiths' second inequality. Thus 

)~o 
f ( x l '  x21x3' x4)~> - 3 -  2 (~Oxl q?J)O(@x2(tgJ)O(q)x3q)J)O(f]gx4q)J)O 

J 

and 

(3.13) 

(3.14) 

U4(XI' X2' X3' X4)~ --/~0 2 (~Oxlq?j)O((]gx2@j)o(q)x3q)j)O(q)x4@j)O ' (3.15) 
J 

which is the "tree-graph lower bound" (1.3). In the Feynman-diagram notation [11, 
Sect. 3], (1.3)/(3.15) would be written 

u4(xl,  x2, x3, x~) > - ~o 

x1 X2 

(3.15') 

To prove the second-order bound (1.4), we analyze more carefully the terms 
thrown away by correlation inequalities in (3.10) and (3.13). Thus, we return to (3.9) 
and now seek a lower bound. For u 4 we use the tree-graph lower bound which we 
have just proved, namely 

u4(x3, x 4,j,j)~t >= -- ~t o ~ ( (P x3 q)k) ~t( q)~4 q~k)~z ( q~ j~Ok) ~* 
k 

~--20~(~x3Ok)O(O~4Ok)O(OjOk) ~, (3.16) 
k 

For each of the terms (~oq))~ t we use the lower bound (3.11); this generates four 
terms, of which we drop the last one (namely the one of order 22), which we are 
permitted to do since it is nonnegative. This gives 

2 ( qOx3(/g j)~t ( q?x4 ~O j)  c~ t ~- 2 ( (/) xa(19 j)  O ( ~ x4 q) j )  O 

220 
3 (~°x3~J)° ~' O~tk(@x4@k)O((DJq)k)O 

k 

22 o 
3 (q~xfi):)o~atk(~O~fi~k)o(~OfiOk)o" (3.17) 

k 
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We can now insert (3.16) and (3.17) into (3.9) and thence into (3.7), and perform the 
easy a integral; the result is 

<(px3(Px4> t - -  <(px3(Px4> 0 ~ - -  ~ 0  2 t j<q)x3(Pj>o<~Ox4q) j>O 3 j 

+ 7 y', J<~O~°k>o<~4%>o<%q~k>o 
"" j,k 

-}" t j t k < t P x 3 q ) j > O < ( P x 4 ~ k > O < q ) j ( P k > O  
-~u j,  k 

~2 

I U j ,  k 

(The last two terms in this formula can now be combined because they differ only by 
the labelling of dummy indices.) We now insert (3.18) into (3.6). The order-2o 2 terms 
in (3.18) are handled as before [-see (3.13)] : we use Lemma 2.1 to split the path co, 
then successively use (2.15) and Griffiths' second inequality to resum the random- 
walk expansion, bounding it from above by a product of 2-point functions. The 
result is 

~Y, <q,x~%>o<%q,j>o<q,~q,~>o<q,~O~>o<~Oj~O~>o ~ 
j , k  

+ ~ 2 <q'~q'~>o<%q'~>o<%q'J>o<q'~q'~>o<q'Jq'~>o ~ 9 ~,k 

..1_ ~2 2 q) 2 9 j.k <~OxlCPg>o<~O~Oj>o<~O~3~Oj>O<cPx4~Ok>o<CPJ k>O" (3.19) 

Finally, we consider the order-). 0 term in (3.18); we must handle it a bit more 
carefully, because it is only of order 2o, so there will be corrections to the tree graph 
of order 22 when the random-walk expansion is resummed [equivalently, the 
inequality (3.13) now goes in the wrong direction, since the term carries an overall 
minus sign]. We still use Lemma 2.1, but insert an inequality going in the opposite 
direction to (3.13): 

J~°~dvo~(t)Yf(t)tj= ~ J~'+°a2~dVo~l(tl)dvo~2(t2)~(tl q-t2) 
¢0: Xl ~x2 ¢01 :xl -+J 

¢o2: j-~x 2 

= ~ J~'.[dvo~,(tl)~(tl)((Pfi)xa>,l 
(/)i : Xl ~.~- j 

= <%~Oj>o<%%2>0 + F(xx,jlj, x2) 

)~o 2 <~Ox, , ~Ok>O<qOx2qOk>O<(p~qOk>O, (3.20) 
3 

where we have used the definition (3.6) of F and the tree-graph lower bound (3.14). 
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Combining (3.18), (3.19), (3.20) and inserting them into (3.6), we conclude 

F(xp x2lx 3, x4) <= - 20 
3 ~ ('#'~J#J>°<q~~%>°<%¢°~>°<~°:"%>° 

5, g _ 

2 2 
-J- "~- 2 < (tgx,(P j> O < q)xa q) j> O < q) j~Ok> 2 < (px2 ~Ok> O < (Px4 q)k> O 

j,k 

..If. ~ E <(Pxl(Pj)O<(~xa~Oj>O<(Pjq)k>2<q)x2Ok>O<q~x3q)k>O ' (3 .21)  
j, k 

and hence 

U4(XI'  X2' X3' X4) ~-~ --  20 2 <qgxl(Pj>O<q)xz(tgj>O<ex3~gj>O<(Px4q~j>O 
J 

+ ~-~- Z <%%>o<%%>o<q,jq'~>~<%%>o<q'~,e~>o 2 j, k 
+ two permutations. (3.22) 

This is precisely second-order propagator-resummed perturbation theory - even 
the coefficients are correct! In Feynman-diagram notation, (1.4)/(3.22) would be 
written 

/,/4(X 1, X 2 , X 3 , X 4) ___< 

XI X2 

-20  ~ + x~/2 

X3 X4 

x1 x3 

3<  
X 2 X4 

+ two permutat ions 

It is now fairly clear how to extend this procedure to arbitrary order in 20 . (It is 
also clear how tedious the computations will be !) The argument is inductive : at each 
order n, one produces both a bound on (q~0}, and a bound on F and u4, each 
expressed in terms of (q~rp}o (an upper bound for n even, a lower bound for n odd); 
for example, (3.3) and (3.6) ft. for n=0 ,  (3.11) and (3.14)/(3.15) for n =  1, (3.18) and 
(3.21)/(3.22) for n = 2. Given all of the bounds of order 0-< k -< n -  1, one constructs 
the bounds of order n as follows : 

1) In (3.9) one inserts the bound of order n -  1 for (u4)~t; the result is a sum of 
products of (q)q0>~t, with coefficients of order 2~ with 0-< k-< n - 1 .  

2) In the term of order 2~, one inserts everywhere the bound of order n -  1 - k 
for (~oq~}~t; these bounds will always have exactly the desired sign. The result is a 
sum of products of (~o~0}o with also explicit factors of c~t. 

3) One now inserts this into (3.7) and performs the easy c~ integrations. The 
result is the bound of order n for (~o~0}t ;it involves sums of products of (rp(O}o with 
also explicit factors of 20t. Unfortunately, terms of order higher than (2or)" do ap- 
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pear, if n > 2. For n = 2 this caused us no trouble, since the only such term was of 
order (2ot) "+ 1 and hence of a sign allowing it to be simply discarded [cf. (3.17) 
and (3.18)]. However, for n_>-3, higher-order correction terms of both signs will 
apparently occur and we do not know exactly what to do. It appears that one must 
keep these terms for the time being; later in the proof, one hopes, they may combine 
with other high-order terms and take on an unoffending sign. 

4) One inserts the order-n bound for ((0q0)~ into (3.6) and uses Lemma 2.1 to 
handle the explicit factors of t. This produces yet more terms involving ((p~0)r and 
F r which again have to be handled using the lower-order bounds on these quantities 
[cf. (3.19) and (3.20)]. And so on .... 

As the reader can see, the extension of our method to order n >= 3 is not entirely 
trivial. We have not pursued the matter, because for our main intended application 
- the construction of the q~z 4 and %4 quantum field theories [11] - the inequalities of 
orders n = 0, 1, 2 are sufficient. (In fact they suffice for ~o~ theories for any d < 10/3; 
see Remark 1 at the end of Sect. 6 of [11].) We invite the reader to try to work out 
the case n = 3. This should be a good warm-up toward constructing a proof to all 
orders. 
Note added in proof. A. Bovier and  G. Felder  have  recent ly p roved  the inequali t ies  to all orders.  

4.  B o u n d s  o n  2 n - P o i n t  F u n c t i o n s  

In this section we derive analogues of the preceding inequalities for general 2n-point 
functions. Let 

H(xpx2]x3,...,x2,)= ~ J~°j'dv~o(t)~(t)(q~3...~o )t. (4.1) 
(D :Xl -*~2 

[Note that here, unlike (3.6), we find it more convenient to consider untruncated 
correlation functions.] Then, by (2.19), 

2n 
(q~l "'" q~,)= ~ H(xpxi[xz'""~i'-'-,x2,), (4.2) 

i = 2  

where ¢, denotes that x, has been deleted from the list. Since 

(q~x~ ... ~°~.)t ~ (q~s "- q~2.)o (4.3) 

by Griffiths' second inequality, we obtain immediately [using (2.15)] that 

H(xl, X2IX3, . . . ,  X2n) ~ (~xtq?xz)O(q?x3... q l x 2 . ) 0  , (4.4) 

and hence 
2tl 

(q~l "'" (P:,~.) < ~ (q~xlq~,)o(q~2 "" ¢~, "'" q~ , )o -  (4.5) 
i = 2  

This is the strong Gaussian inequality of Newman [34, 35, 9], proved by the method 
of [1]. By iterating (4.5) one can obtain the ordinary Gaussian inequality [34-36, 1], 

(~°xl...~°x2,)--< ~ 1-I(~o q~ ) .  (4.6) 
pairings 
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However, in some applications the strong form (4.5) may be essential : compare, for 
example, the proof of the generalized Simon-Lieb-Rivasseau inequality as given in 
[1] with the inconclusive discussion in [-37]. 

To obtain the first-order lower bound, we write 

<~ ~x~.>,= <~ ~2.>o + i 
d 

. . . . . .  o d ~ ~  ( q~x3 "" (P~.>~t 

= <(P~3 "'" (P~.>o + de - tj(q~x3 "'" (Px2. ; ~oj >~,. (4.7) 
0 

Moreover, by the strong Gaussian inequality (4.5), 

2n 
<~Ox 3 . 2 

i=3  
2n 

E <(Pjq)x,>O<(Pj~gx3"'" ~x,"" q)x2n>O" (4.8) 
i=3 

Inserting (4.7) and (4.8) into (4.1), and using the splitting lemma (Lemma 2.1) in the 
accustomed way, and then again using Griffiths' second inequality, we get 

H ( x p  x21x3, . . ., Xan ) ~ <(P:q q)x~>oQP~3"" "(P~2,>o 

20 
<(~Oxl(Pj>O<(Px2(Dj>O<~Ojq)xi>O<(Pj(Px3 "'" ~xf  "" (~x2n>O" (4.9) 

6 i = 3  

Using (4.2) we find 
2n 

<~o ... ~ . >  > ~ <~Ox,~O >0<~% ... Cx,... ~2°>o  
i=2  

/~0 2n 

3 2 <q)xlq)j>o<q)xiq~j>o<Oxk~Oj>O 
i,k = 2 
i<k 

.<(pjq~ ... ~b ... ~b~ ... (P~.>o- (4.10) 

However, it is probably more convenient (although weaker) to apply the strong 
Gaussian inequality (4.5) to the last term in (4.9)/(4.10), yielding 

H ( X  1, XzlX 3 . . . .  , X2n) >-- < ~Ox/Pxz> O < (Px3 .. . gOxz,~> O 

~0 2n 
3 Z <~gx,Oj>O<f~x2~Oj>O<(~j@x,>O<~gj~gx,>O 

i , l=3  
i<l 

"<q~  - ' - ~ , - ' .  ~ ,  ... q~=~>o, (4.11) 

and 
2n 

i=2  

2n 

j i,k,l=2 
i<k<l 

"<q~2 ... Cx, --. q%.. .  qL, ... ~%°>o. (4.12) 
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An alternative (though weaker still) form of these inequalities can be obtained by 
applying the Gaussian inequality (4.6) to the last term in (4.11)/(4.12), yielding 

H(xl, x2lx3 .. . . .  Xz,) >-- <(P~fi~x~>o((O~ --- ~ox~.>o 

20 

j i , l=3 
i<l 

2 [-[ <cp~ cp~,> 0 . (4.13) 
pair ings of 

(x3 . . . . .  ¢~ . . . . .  ;~ . . . . .  x2 . l  

and 
2/1 

i = 2  

2 n  

-~o ~ <¢'xl~j>o<~,%>o<~°x~%>o<'P~,%>o 
i , k , I=2 
i<k<I  

[-[ (cp~ (p~> o . (4.14) 
pair ings of 

Ix2 ..... ¢t ..... ;~k ..... #s ..... :¢2,~ 

(We beg the reader's indulgence if our attempts to find an understandable notation 
have not met with success.) Inequalities (4.9), (4.11), and (4.13) are the com- 
plementary bounds to (4.4); (4.10), (4.12), and (4.14) are the complementary bounds 
to (4.5). To derive a bound complementary to (4.6), we insert (4.14) [or (4.10) or 
(4.12)] repeatedly into itself, i.e., use (4.14) [or (4.10) or (4.12)] to get a lower bound 
on the (2n-  2)-point function <~o~ ... (px ... cp~.> o. The result is 

<~..- ~o> > Y~ 1-[<~°~> 
pair ings  of 
x l ,  ...,x2n} 

2 n  

-~-o 2 2 <e~ep <e~op <ex~ep <e~ep 
j i , k , l , m = l  

i < k < l < m  

H <q~fi~x,> • (4.15) 
pal f ings of 

{Xl . . . . .  ~ i  . . . . .  S k  . . . . .  ~ l  . . . . .  2~m . . . . .  X 2 n  } 

Inequality (4.15) is exactly first-order propagator-resummed perturbation theory: 
one picks four indices i, k, l, m out of the 2n points and connects them in a tree graph 
with the internal vertexj; the remaining 2 n -  4 points are paired in all possible ways 
and connected using 2-point functions. 

Remark. It would be interesting to know whether the tree graph with factor - 2 o in 
(4.15) [or (4.11)-(4.14)] can be replaced by the actual u,(x i, Xk, X~, Xm) ; in view of (I. 3) 
this would be an improvement. Such an inequality is proven by Aizenman [9, 
Proposition 12.1] with, however, a sub-optimal coefficient multiplying the u 4 (~ 
instead of 1). Even more interestingly, Aizenman proves a reverse bound of the same 
structure [with coefficient 2In(n-1) multiplying the u4]. Both these bounds are 
quite interesting because, unlike (4. t 5), they are universal, i.e., 2o-independent. They 
give, for example, an explicit proof that for cp 4 or Ising models, u 4 --- 0 implies that the 
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theory is Gaussian. This was first proven by Newman [38] using the Lee-Yang 
theorem. Aizenman's methods are, however, somewhat complicated (unlike his 
proof of (4.5) for the Ising model, which is exceedingly simple). It would be of 
interest, therefore, to study these same questions within the random-walk 
formalism. See also [2, 3]. 

Order-2g bounds on the 2n-point functions [analogous to (1.4)] can also be 
derived, but we shall leave these as an exercise for the reader. 

5. More on the Gaussian Inequality 

In [34] Newman proved, by graphical methods, a very general form of the Gaussian 
inequality: this general inequality includes (4.5) and (4.6) but has other interesting 
consequences as well. Subsequently, Sylvester [35] gave a slightly simpler proof, 
also using graphical methods. In this section we rederive Newman's result using the 
random-walk formalism. Actually, we prove a slight generalization, which Newman 
conjectured [34, Eq. (3.11)] but was unable to prove. Although our method of proof 
is quite different from Newman's, the underlying combinatoric structure is the same. 

The first result, Proposition 5.1, is a corollary of the main theorem. We state it 
first, because it is easy to understand and because it will be used in our 
accompanying paper on the construction of q~4 [11]. 3 

We consider models of the form (2.1); thus, expectations are given by 
1 j 
-(~o, ~o) 2 

<F(cp)> = Z-1  j" F(~)e 2 I~ 9~(~Pj )dcp~, (5.1) 
J 

where F is any (reasonable) function of the spins {cpi}. We assume, as before, that 
Jij = Jj'~ > 0 for all i,j ("ferromagnetism"). Furthermore, we assume that each gj is log 
concave (N.B. 2 : as a funct ion o f  q)i, not (p j) and decays faster than exponentially for 
~0s2. large. This includes, for example, the q)4 model (3.1); more generally, it includes 
the Ellis-Monroe-Newman [28, 29] class 

9j(cp~) = e -  vj(~j), (5.2) 

where each V~ is even and C 1 and grows faster than quadratically at infinity, with V..' 
convex on (0, oo). The inclusion is strict, as can be shown by simple examples of ~o A 
models. (A partially contrary statement made in [1] is incorrect.) Of course, limits of 
such models - for example, the spin-½ Ising model - can also be handled by taking 
limits in the final inequalities. 

Remark .  Since the graphical formalism of [34, 35, 9] applies only to the Ising 
model, the resulting proofs are valid only for models obtainable from the Ising 
model by the Griffiths-Simon "analog system" trick [39, 40, 9]. This class includes 
the q)4 model but does not include the whole Ellis-Monroe-Newman class. 

We now denote by ( . ) ~  the expectation corresponding to the Gaussian measure 
(of mean zero) whose covariance is the same as that of the system ( . ) .  That is, 

(¢pi~0~) G = (~0/pj), (5.3a) 
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and so on. Let A = {A~} be a multi-index, and let 

(#A ~0Ai = H  i .  (5.4) 
i 

Then the Gaussian inequality (4.6) states that 

(~0 A) _-< (~oa) G (5.5) 

for any multi-index A. Now it turns out that once-truncated expectations are also 
dominated by their Gaussian analogues. That is, let 

( ~oA ; q)B 5 _~ ( (t)A ~oB) __ ( q)A ) ( ~gB) , (5.6) 

and similarly for ( . ) o .  Then: 

Proposition 5.1. For any multi-indices A, B, 

(cp a ; cpn5 < ( 9  A ; cpR) ~ . (5.7) 

Sketch of Proof It is enough to prove Proposition 5.1 when A and B are even 
(otherwise the truncation is trivial, in which case the result is the ordinary Gaussian 
inequality). It is convenient to use the notation 

~f(col,...,co.)= jo~, j dv,~,~(ti)Y~(tl + ... +t , ) ,  
i i = 1  

and to use explicit products, ~0xl ... q)~, instead of multi-indices. (Of course, the 
x~ . . . .  , x  m need not all be distinct.) We set X ~ ( x ~ ,  ...,X:k), Y==-(ya ..... Y2z)" As in 
Sect. 2, one may derive the identity 

(~oxl ... cpx2~ ; cpy, ... ~oy2, ) 

= Y E ~ ( %  . . . . .  cok, co '~, . . . ,co;)-~(co~, . . . ,co~)~(co'~ . . . .  ,co;l] 
£~1 . . ,  t°)k: ] ( ~  

+ Z Y(co~, -.., co~, co;, -.-, co~, col, ---, co~), 
co, . . .  cog: Y ~  

~i... ~ :x -  

where e < k, fi = l -  ( k -  e), ? = 2 (k -  e). Here col .-- co~ :X ~ ranges over all possible 
choices of a walks whose endpoints are 2c~ distinct elements of X, and two such 
choices of e walks are considered to be identical if they differ merely by a re-ordering 
of the e walks and/or by interchanges of starting and ending points of one or more of 

t! tt ---> • " tt those walks. The notation co~ ... coy :X Ymdlcates that the starting point of coj is in 
X and the ending point is in Y, for all j = 1 ..... 7. 

We note the inequality 

2 ..... co' )s{ 2 e(col ..... 
0~1 ...ok:W~ ~01 ,.,(DRzW~ 

where Wis a set of 2k points, wl, . . . ,  WZk. This inequality can be derived by repeated 
application of Griffiths' second inequality, as in Sects. 3 and 4. By successive 
applications of this inequality we see that 
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t t I t  <q, xl...q~;q~,,...%~,><__ y, ~(oJ,...,%,%,...,%,%,...,o~) 
<01 . . . o ) ~ : X ~  

o i  ... %~:Y~ 

---< E ~(~o0 ... zr(oO~(o;,)... ~(%)~(~o~)... zr(o',3 
ml ... o ~ : [ ~  

= ( ~ o  . . . ~ o  ;%~.. .%~,)G. []  

We now discuss the general Gaussian inequality (Theorem 5.2). It is convenient 
to continue to talk about explicit products (Pxl ".. (°xm instead of multi-indices. Now 
fix an integer n > 1, and let cg be a class of partitions of the set { 1, ..., 2n}. Here ~ is 
said to be admissible (following [34]) if each way of partitioning { 1 . . . .  ,2n} into pairs 
is a refinement of some partition in c6. A trivial example of an admissible class is the 
class of all pair-partitions. As we shall see shortly, however, there exist many other 
interesting examples. 

Theorem 5.2. Let  ~ be an admissible class of  partitions of {1,..., 2n}. Then 

Proof. We first introduce some notation (which is by far the worst part of this 
subject): Let ~ be the set of all partitions of { 1 .. . . .  2n} into pairs. Now let 

7z o = { {i l , j l  }, {i2,j2),.. . ,  {in,j,) ) 

be one of those pair partitions. Let to = (o)1, ..., co,) be a family of walks on the lattice. 
We then say that co is subordinate to n o, which we write as co ,no ,  in case 

091 : X i l  " ~ X j 1  

09 2 : X i 2 " * X j 2  

(.O n : X i  -+  X jn  • 

(Note that since reorderings of the n pairs, or the switching of i and j  within one or 
more pairs, do not create a distinct partition, the same is considered to be true of the 
to; that is, to should be considered to be an unordered family of unoriented walks. 
Alternatively, we could consider t~ to be an ordered family of oriented walks and 
then divide everywhere by the factor 2"n !.) 

Using the random-walk formalism (see Sect. 2), it is now easy to derive the 
identity 

( (pz )=  ~ Z J°~dv~(t )~( t )  • (5.9) 
~0~ 0~0 

2n 

i = 1  i = l  i = 1  i = 1  

For  example, the case n = 2 of (5.9) is just (2.16). Now let c¢ be an admissible class of 
partitions of {1,..., 2n}. Since every n o e ~  refines at least one nec¢ (we denote this 
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by ~0~z),  it follows from (5.9) (and the positivity of everything in sight) that 

(~°x) < E E Z J~dv~(t)~(t ' ) .  (5.10) 
r~ec¢ 7ro~¢ ~ 0 ~ 0  

re0 -<~z 

Now fix a partition z~ -- {Iz ... . .  Ira}. Since co is subordinate to z~ o which refines z~, we 
can decompose co into subfamilies 0~1, ..., o),, (each consisting of one or more walks) 
corresponding to the sets 11, ..., I,,. Similarly we decompose t into subfamilies 
t 1, ...,t,, with corresponding partial sums q,  ..., t,,; clearly t = q  + ... + tm. Note 
now that 

J~=J~'  . . . J ~ ,  (5.11) 

dv~ (t) = dr,, ~(t~) ... dye, ~(tm), (5.12) 

and 

= Z(il  + . . .  + z(;2 + . . .  + (5.13) 
Z ( t  2 + ... q-tm) Z ( t  3-}- ...  -I-trn)"" Z 

[recall (2.14)]. We now perform the sum over ~ in (5.10) in steps, starting first with 
the subfamily ~,,, then ~,,_ 1, etc., through co r At each stage, we use the by now 
familiar relation 

2 o . < x ,  
J ' jdv"( t i )~{ i+l+ . . .  ~ - t m ) = ( q ) X i ) f i + ' + ' " + t m = ( q ?  ) '  (5.14) 

where q~x~ is shorthand for ~ q~j, the equality is a resummation based on a multi- 

spin analogue of (2.15), and the inequality is Griffiths' second inequality (which 
applies here because of the hypothesis on the single-spin distribution gj; see [1]). 
Collecting results, we get precisely (5.8). [] 

We sympathize with the reader who is by now totally mesmerized by the 
notational and combinatoric complexity - this proof was painful for us to write out, 
too. But let us emphasize again that the underlying ideas are extremely simple : they 
are nothing more than the ideas involved in our proof of the Lebowitz inequality 
(3.4)-(3.6)ff. or the Gaussian inequality (4.4)-(4.6)ff. 

Example 1. Let {11, I2} be a partition of {1,..., 2n} into two subsets. The class of 
partitions consisting of this single partition is not admissible, because any partition 
of {I,... ,  2n} into pairs where one or more pairs "join" 11 and I z (i.e., one element of 
a pair is in 11 and the other in I2) cannot be a refinement of {It,/2}. However, we can 
produce an admissible class (g by supplementing {I 1, I2} with all partitions of the 
form 

{I1\Z1, I2\Z2, P1, "', Pl} , (5.15) 

where Z 1 C 11, Z 2 C 12, [Nil= IN2[---l> 1, and PI,. .-,  Pz are pairs each of which has 
one element taken from Z 1 and the other taken from Z 2. Using this admissible class 
in Theorem 5.2, we get the following strong form of the truncated Gaussian 
inequality: 
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Corollary 5.3. 

(~°X~;q~X~) < ~ ~ Z (q~X~XZ~q)x~\z~) 1-[ (q~x,~Ox,(,,), (5.16) 
Z1CX1 Z2QX2 ~:ZI-*Z2 [~Zl 

where IZt[ = [Z21 > 1 and y is summed over all bijections f rom Z 1 t o  Z 2. 

Example  2. As in the preceding example, let {11,12} be a partition of {t,.. . ,  2n) into 
two subsets. We now produce an admissible class fg' by supplementing {I1, I2} with 
all partitions of the form 

{P1, .--, e,,}, (5.17) 

where P,  ..... Pn are pairs, at least one of which has one element taken from 11 and 
the other from I z. Using this admissible class in Theorem 5.2, we recover the 
ordinary truncated Gaussian inequality, Proposition 5.1. (Alternatively, 
Proposition 5.1 can be derived by applying the ordinary Gaussian inequality (4.6) to 
(~ox~\Zl~o x2\zz) in Corollary 5.3.) 

Finally, we sketch the proof of a first-order skeleton inequality for 

complementary to Proposition 5.1. Let H denote an arbitrary Feynman diagram 
with a single internal vertex of order 4 and with external vertices at the elements of 
X~) Y,, which connects at least one element of X to at least one element of Y Let I n 
denote the Feynman amplitude corresponding to H, with propagators given by the 
exact twolpoint function, (q~(py). 

Proposition 5.4. 

<~% --- ~°x2~; %1... qb2~> == <q~, .-- q'x2~; %~... % 2 S - ' ~ o  Y~ G.  
H 

The proof is a straightforward, but notationally cumbersome, combination of 
the arguments leading to (4.14) and those of the proof of Proposition 5.1. 

6. Assorted Remarks 

(1) Two-component  models. The results established in this paper can be extended to 
two-component 2o[q~14-models : 

Firstly, all the results proven in previous sections are valid for two-component 
isotropic ferromagnets (with some changes in combinatoric coefficients in the 
second-order skeleton inequalities) if q~ is replaced by q~l, the 1-component of q~. The 
proofs are virtually identical to the one-component case, once one knows that 

((°~i--. 'P~,~)t < (~°~1 ..- (P~,,)o (6.1) 

whenever t i > 0, for all j. This in turn is an immediate consequence of the Ginibre 
inequality [41, 42], 

( @xl . . . q~, ; [q~slz)t > O . (6.2) 
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More generally, one can establish numerous correlation inequalities for mixed 
@ 1 2 2 expectations ( x~ . . . . . .  q~x~q~yl %,)  and certain truncated versions thereof. For 

example, using the random-walk formulation, it is extremely easy to show that 

1 1 .  2 2 (6.3) (~°x~°x2 ' %fi~y2> < 0 ,  

an inequality first proven in [43]. The methods of proving all these inequalities are 
essentially identical to those used in Sects. 3-5, for the one-component case; for 
example, (6.3) is proven by the arguments leading to (3.6)ff. The key fact is that 

Z jo, ~ i~=l dvo~(ti)~(tl + . . .  q_ tk -b S) 
~1 ... ¢ok \i = i 

k 
i=lI~ ( ~  j~o~ ~ dvo~,(t,)Lr(t,)] . Lr(s) ;  (6.4) 

this is a consequence of the Ginibre inequality (6.2). [There are more general 
versions of (6.4), proven by the same arguments, which we refrain from stating.] The 
beauty of the random-walk formalism, in the isotropic case, is that the quantities 
~e(t) make no reference to internal indices; the only effect of internal indices is to 
restrict the class of pairings (endpoints of random walks) entering into the sum over 
random walks; only like indices can be paired. 

One can also develop a random-walk representation for models with anisotrop- 
ic pair interaction, j l  .1_1 2 2 2 --iFi qJj +J/iq~i q~J' j¢j~]j2[, and/or anisotropic ~04 coupling 
[e.g., 1 2  2 2  2o(q~) (q~x) ]. In the latter case, the variables t i carry internal indices. One can 
prove numerous correlation inequalities, some of which go in the reverse direction 
from the usual isotropic case. 

Finally, the correlation inequalities discussed in this paper would extend to 
general N-component 2o1~[ 4 models if the Ginibre inequality were known for these 
models. Unfortunately it is known, at present, only for N = 1, 2 [44]. 

(2) Edwards model (self-suppressing walk). The Edwards model [45] of self- 
suppressing walks is a simplified description of the excluded-volume effects in 
polymer physics. Correlation functions in the Edwards model are defined as 
follows: 

G 2 n ( x l , Y l , " ' , X n ,  Yn) = 2 ~ ( c o l ,  " ' ,  COn)' (6.5) 
¢Oi:Xi-'+yi 

where 

and 

We note that 

Y--'(COl,"', co,) = jo~ dvo~,(ti)~(t 1 + ... + t,), 
i=1 

(6.6) 

~(t)  --- I-I e-(X°/6)'] -Bo,j ; 2 o > 0. (6.7) 
i 

2 G2n(Xp(1)' Xp(2)' "" "' Xp(2n - 1)' Xp(2n)) ' 
P 
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where p ranges over all pairings, is analogous to the correlation function 
(~o~ ... (p~,) in a one-component 2o~O4-model; however, in the Edwards model, 
~e(t) is given explicitly by (6.7). The key identity in the analysis of the Edwards model 
is 

from which follow 

and 

~(t +s)=Lr(t)2Ze(s)exp[-22o~ tfl~] , (6.8) 

:~(t + s) <= ~(t)~(s) (6.9) 

~(t +s) > ~(t)~(s)[1-- 22o ~ t flj ], (6.10) 

From (6.9) we obtain the analogue of the Lebowitz and the Gaussian inequalities, 
and from (6.10) we deduce first-order skeleton inequalities. Higher-order skeleton 
inequalities have been established recently by A. Bovier, G. Felder et al. (private 
communication). 

(3) Skeleton vs. universal bounds. Let £e(t) be as in (2.14) (2o(O4-model), or as in (6.7) 
(Edwards model). We define 

~( t )  = 17[ e(Z°/6)q + ~°'s£e(t). (6.11) 
J 

We claim that if tj>O, sj>O for all j, 

~(t + s) ~ ~(t)~(s). (6.12) 

In the Edwards model this is an equality. In the 2oq~4-model, 

0 o 
o o 1~-~ yf(t+c~s) 

ln.~f(t + s) = ln~e(t) + ! ~e(t + as) " 

Clearly, by (2.13)/(2.14) and (3.2), 

a o 

~ ( t  + c~s) 6 j 

and, by the second Griffiths inequality, 

~ 0  ~ 2 ~ 0  - -  2 

for positive 20 . Thus 

1 ~ ~(~s) 
In ~ ( t  + s) > In ~e(t) + ~ ! ~ da 

= In ~((t) + In ~e(s), 

~(o~s) 
~(~s) 

(6.13) 
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proving (6.12). By (6.11), 

Y{(t + s) > ~( t )~(s )  [ I  e -  ~°/3)tJ~J ; (6.14) 
J 

see  [2]. Now, note that by (2.t6) and (3.4), 

u4(x P x2 ' x3 ' x4 ) = ~, ~ jo~ljo,2 ~ dvo~ l(t)dvo~2(s ) [~ ( t  + s ) -  ~e(t)Lie(S)] 
p o~1 :Xp(1)~¢'Xp(2) 

O~2 : Xp(3) ~ X p ( 4 )  

> Z Z J°'~J~2f dv~,(t)dv~2(s) 
P ~I:Xp(1)-~Xp(2) 

O02 : Xp(3 )  ~ Xp(  4) 

If we now use the bound 

l-[ e-  cao/3)~jsj _ 1 > - ~ ~. tjsj, (6.16) 
J J 

and apply the splitting lemma, we obtain the first-order skeleton inequality, (1.3). 
The universal lower bound, (1.1), follows by inserting the bound 

~e_(Zo/a)~jSS_l > { - 1  if (DI(~(D2:::~0 (6.17) 
j , 0 otherwise, 

and using a Simon-Lieb type inequality; see [2, 3]. Aizenman [9, Proposition 11.2] 
also has a bound which unifies the universal and first-order skeleton inequalities. 
Similar arguments work also for 2n-point functions. 

(4) Correction o f  an error in [1]. A. Holtkamp and E. B. Dynkin (private 
communications) have independently pointed out to us that the equation asserted 
in Lemma 1.2 of [1] is incorrect. The correct formula is 

d e t ( A - J ) - ~ = ( d e t A ) - ~ e x p [ ~ _ ~ j f ~ [ ~ 2 ~ - ~ ' ° ~ ) ] .  (6.18) 

The difference in the formulas arises from walks co which traverse some loop 
several times. This inaccuracy does not affect any of the theorems of [1]. 

(5) Dynkin [46] has reformulated the ideas of [1] in a more probabilistic 
language. 
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