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Abstract. We give a general theory for the construction of oscillator-like 
unitary irreducible representations (UIRs) of non-compact supergroups in a 
super Fock space. This construction applies to all non-compact supergroups G 
whose coset space G/K with respect to their maximal compact subsupergroup 
K is "Hermitean supersymmetric". We illustrate our method with the example 
of SU(m, pin + q) by giving its oscillator-like UIRs in a "particle state" basis as 
well as "supercoherent state basis". The same class of UIRs can also be realized 
over the "super Hilbert spaces" of holomorphic functions of a Z variable 
labelling the coherent states. 

1. Introduction 

Lie groups play a fundamental role in the formulation of modern physical 
theories. The continuous symmetries observed in nature find expression in terms 
of them. The theory of their unitary representations is a well-established chapter of 
mathematics in the compact case. The rotation group and essentially all internal 
symmetry groups such as isospin SU(2) x or colour SU(3)c are compact. On the 
other hand, most space-time symmetry groups such as the Lorentz group, 
Poincar6 group and conformal group are non-compact. The general theory of the 
unitary irreducible representations (UIRs) of non-compact Lie groups is however 
not yet at the same stage of completion as the compact case l-l]. 

About a decade ago a new kind of symmetry principle entered physics, namely 
supersymmetry [2]. The novel feature of this symmetry is that it operates between 
bosons and fermions which have different space-time (or spin and statistics) 
properties. The generators of supersymmetry transformations form a Lie super- 
algebra whose even subalgebra is an ordinary Lie algebra. The odd generators 
corresponding to transformations between bosons and fermions close into the 
even subalgebra under anti-commutation. A complete classification of the simple 

~' Permanent address: Yale University, New Haven, CT 06520, USA 
** Address after 1 Sept. 1982: Ecole Normate Sup~rienre, F-75231 Paris, Cedex 05, France 



32 I. Bars and M. Giinaydin 

Lie superalgebras was given by Kac [3]. A labelling of the irreducible repre- 
sentations of compact supergroups was first developed by Kac in [4] using the 
method of highest weights and Dynkin's diagrams. Some properties of the so- 
called "typical" representations were also given [4], and further developed in later 
investigations [5]. Another approach to the representation theory of supergroups 
was introduced in [6, 7]. Using Young supertableaux techniques many properties 
of typical, as well as atypical, representations of certain classes of compact 
supergroups were obtained. Furthermore, oscillator-like representations of some 
compact supergroups have been introduced [8] and discussed in [7]. The relation 
between Kac-Dynkin diagrams and supertableaux has also been obtained [7] and 
analyzed in detail [10]. Some of these results have already found applications in 
physics [7, 8]. 

Recently, a set of remarkable non-compact internal symmetry groups have 
been discovered in extended supergravity theories [11, 12]. Motivated by a study 
of the unitary realizations of these non-compact internal symmetry groups, a 
general theory of oscillator-like UIRs of non-compact groups with a Jordan 
structure with respect to their maximal compact subgroups was given in [13-15]. 
This general construction applies to all non-compact groups G whose coset spaces 
G/K with respect to their maximal compact subgroups K are Hermitean 
symmetric. 

Our aim in this article is twofold. First we extend the construction of oscillator- 
like UIRs of non-compact groups to the case of non-compact supergroups G with 
a Jordan structure with respect to their maximal compact subsupergroup K. In 
this case the coset space G/K becomes a super Hermitean symmetric space. Second 
we show how the same class of UIRs can be realized over supercoherent states as 
induced representations. The coherent states are parametrized by a "superspace" 
of bosons and fermions which we label collectively by a rectangular super matrix 
Z. Then we show that Z undergoes a generalized linear fractional super- 
transformation under the action of G. In the coherent state basis it becomes 
evident how the same unitary representations can also be realized over the Hilbert 
spaces of holomorphic functions of Z, showing that these UIRs belong to the 
holomorphic discrete series both for the ordinary as well as super non-compact 
groups. Our coherent state construction of these induced representations is related 
to the orbit theory approach used in modern treatments of representations of 
semi-simple non-compact Lie groups. 

The use of boson and fermion annihilation and creation operators to construct 
representations of ordinary Lie groups has a long history in physics. In fact, the 
first unitary representation of the Lorentz group was constructed by E. Majorana 
using boson operators. Later this method was extended and applied in physics by 
many authors, notably Schwinger, Goshen and Lipkin, Dirac, Gell-Mann, Gtirsey, 
Neeman, Biedenharn, Barut, Nambu, Moshinsky, etc. References to these authors 
and others can be found in the books and review articles listed in [16]. Oscillator- 
like representations have also been studied by mathematicians, starting with the 
work of Bargmann [17]. Two of the more recent mathematical works on the 
subject are those of Kashiwara and Vergne [18] and Howe [19] to which we refer 
the reader for further references. In fact, the general theory of the construction of 
oscillator-like UIRs of non-compact groups with a Jordan structure that was 
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given in [14] is related to the notion of dual pairs developed by Howe [19]. The 
present work extends these methods to the construction of the unitary repre- 
sentations of superalgebras and supergroups by the simultaneous use of Bose and 
Fermi quantum oscillators. As such it unifies the construction of oscillator-like 
unitary representations of compact and non-compact Lie groups as well as 
supergroups [20]. 

The plan of the paper is as follows. In Sect. 2 we give the construction of the Lie 
superalgebras of certain classes of non-compact supergroups with a Jordan 
structure in terms of boson and fermion annihilation and creation operators. In 
Sect. 3 we study the properties of the operator representing the unitary supergroup 
action in the super Fock space of boson and fermion operators. In Sect. 4 we give 
the explicit construction of the oscillator-like UIRs of the non-compact super- 
group SU(m, pin + q) in the corresponding super Fock space. In Sect. 5 the same 
representations are given in terms of coherent states constructed out of boson and 
fermion operators. In the last section we formulate the general theory of oscillator- 
like UIRs of non-compact supergroups with a Jordan structure and give the list of 
such supergroups whose Lie superalgebras can be constructed from Jordan 
superalgebras via the generalized Tits-Koecher construction. 

2. Construction of Lie Superalgebras in Terms of Boson and Fermion Operators 

The construction of ordinary Lie algebras in terms of boson or fermion annihi- 
lation and creation operators has a long tradition in physics. It has often been used 
to study the representations of the corresponding group of physical interest. 
Recently a general construction of the oscillator-like unitary irreducible repre- 
sentations (UIRs) of non-compact groups has been given [10, 11]. This method is 
applicable to all non-compact groups G whose coset space G/K with respect to its 
maximal compact subgroup is Hermitean symmetric. It can also be applied to the 
construction of the finite dimensional unitary representations of the corresponding 
compact groups G. If one uses fermion annihilation and creation operators for the 
construction of the Lie algebras, one can then obtain the unitary representations 
of compact groups only, whereas in terms of boson annihilation and creation 
operators one can obtain the UIgs of both compact as well as non-compact 
groups [14]. Again recently the Lie superalgebras of certain classes of compact 
supergroups have been constructed using boson and fermion annihilation and 
creation operators [7-9]. In this section we shall extend this construction to the 
Lie superalgebras of certain non-compact Lie supergroups. We define a non- 
compact supergroup as a supergroup whose even subgroup is non-compact. 

Consider a set of boson and fermion annihilation and creation operators at(a i*) 
and %(a~*), respectively: 

[at, a jr] = 5 / ;  i,j = 1, 2, . . . ,  m,  

{%,a~t}=5 ~ ; # ,v= 1,2,.. . ,n, 
(2.1) 

[al, a,] = 0 = [a~, ~ ' ] ,  

{%, ~} =0 = [a t, ai]. 
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We shall denote the boson and fermion operators 
A = 1, 2, . . . , re+n,  where 

~i_-- al, i= 1,2, ...,m, 

~m+~-- C~,, #=1,2,  ...,n, 

and write symbolically 

generically as ~A(~A'~), 

[~A, ~B* } = $a B, (2.2) 

where the product [ ,  } is to be understood as an anticommutator between any 
two fermionic components and as a commutator otherwise. Of the bilinear 
operators ~A~ B*, the bosonic bilinears a j *  and fermionic bilinears %c~ ~* generate 
the Lie algebras of U(m) and U(n) under commutation, respectively. The Bose- 
Fermi bilinears a~c~"* and c~a s* close into the set a j *  and ~ , t  under 
anticommutation : 

=6 i o, a~+J~a a~, 
(2.3) 

{ aic~ ~ *, a ja ~t } = 0 = { c~ ~,a i *, o~ ~a j* }. 

Thus, considering the boson-fermion bilinears aicW r and %a i* as the odd gene- 
rators and a~a j* and %e~* as the even generators, one finds that the operators 
~A¢ ~* form the Lie superalgebras U(m/n) with the Lie superproduct. Throughout 
this paper the Lie superproduct will mean an anticommutator between any two 
odd generators and a commutator otherwise. 

The Lie superalgebra of U(m/n) generated by ¢A¢ B* can now be enlarged to the 
Lie superalgebra Osp(2n/2m) with the inclusion of di-annihilation and di-creation 
operators of the form ~A~B and ~A,~,. The even part of the resulting Lie 
superalgebra is the Lie algebra of O(2n)®Sp(2m, lR), where the symmetric group 
Sp(2m, IR) is non-compact, with the maximal compact subgroup U(m), and O(2n) is 
compact. The form of the non-compactness of the even subgroup is determined in 
a superHermitean basis as defined in Sect. 3. We shall denote this "non-compact 
superalgebra" as Osp(2n/2m, IR). 

If we consider a pair of bose-fermi operators ~A(~ A*) a n d  tlA(l'l At) : 

[~A, ~B,} = ~A B = [~A, ~*}, 
(2.4) 

[UA, ~Bi'} = 0 =  [UA, ~B}' 

A ,B=I ,2  .... , m , m + l , . . . , m + n ,  

then the superalgebra U(m/n) generated by TA B= #A~ B* +tlAtl B* can be enlarged to 
other superalgebras by the inclusion of bilinear operators of the form ~tl. For 
example, the supersymmetric bilinear operators SAB=#A~B+tlA~B and S AB 
=#a'~tlBt+rlA'~vIB* extend the superalgebra U(m/n) generated by Ta B to the 
superalgebra Osp(2n/2m, IR). If, instead of the SAB and S aB, we consider the 
superantisymmetric operators 

AaB = ~Atln-- tla~B ; A AB = ~AttIB'~ __ q A t ~  B~f ' 

then they, together with TA B, generate the Lie superalgebra of the non-compact 
supergroup Osp(2n*/2m) whose even subgroup is O(2n)*®Usp(2m). Here, O(2n)* 
is non-compact with a maximal compact subgroup U(n) and Usp(2m) is compact. 
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If, instead of extending the Lie superalgebra U(m/n) generated by TA ~ with di- 
creation and di-annihilation operators, one considers an extension by bilinear 
operators of the form ~*t/ and t/*~, then one obtains the Lie superalgebras of 
"compact" supergroups in the corresponding superHermitean basis i. For example, 
the operators 

(~al~ B'~ ~- ~B~ a~f ) and (t/a~ B* "1- qB~ at) 

extend the superalgebra U(m/n) generated by TA B to the Lie superalgebra of 
Osp(2n/2m). Similarly, the antisymmetric bilinear operators 

(~Aq B'~ -- ~B~ A'~) and (qA~ B*- qB~ a*) 

extend U(m/n) to the Lie superalgebra of Osp(2m/2n). 
If the bose-fermi operators ~ and ~/transform differently, i.e., 

[~A,~*} =fiAB ; A,B=l ,2 , . . . ,m+n ,  m4:n, 

and (2.5) 

[qM,@'*}=JMN; M , N = l , . . . , p + q ,  p4:q, 

where the first p components of/I are bosonic and the last q components fermionic, 
then the bilinear operators 

1 
1A B = ~ A ~B* -- (~ AB(~c~ C*) (2.6) 

m - -  rl 

and 

1 
JM ~ = tlMtl ~ -- 3MN(rIQrl Q*) (2. 7) p--q 

generate the Lie superalgebras SU(m/n) and SU(p/q) under the Lie superproduct. 
Note that Ia/~ and JM u are supertraceless, i.e., 

m + n  

Str(Ia B)- ~ IcC(- 1) °¢c) = 0, 
c= 1 (2.8) 
p+q 

Str(JM N)-- ~ Jee( - 1) °~Q)=0, 
Q=I 

where g(A) denotes the grade of an element A of the Lie superalgebra and 9(A) = 0 
for even indices A and g(A)= 1 for odd indices A. 

The di-creation and di-annihilation operators T aM= ~AttlM* and TAM =qM~a 
and the operators Ia n and JM N, together with the U(1) generator 

1 1 N = ~A*~A + r/Mi'r/M (2.9) 
m - n  p - q  

close under the Lie superproduct and form the Lie superalgebra of the non- 
compact supergroup SU(m,p/n+q). The even subgroup of SU(m,p/n+q) is 

1 That is, if the corresponding compact forms of these supergroups exist. If the compact forms do not 
exist then the method explained in the next section will lead to non-unitary finite dimensional 
representations in this case 



36 I. Bars and M. Gtinaydin 

S(U(m,p)®U(n+q)), where SU(m,p) is non-compact with a maximal compact 
subgroup S(U(m) x U(p)). 

If we have R generations of bose-fermi operators ~(r) and ~(r) (r = 1, ..., R) that 
"supercommute" with each other 

[CA(r), (~t(s)} ----- 6AB~rs, 

[~( r ) ,  riN*(s)} = ~MN~,s, (2.10) 

[Ca(r), rIM(S)} = 0 = [~a(r), r/M*(s)}, r, S = 1, 2, ..., R,  

then one can construct the Lie superalgebra SU(m, pin + q) similarly by summing 
over the generation index 

t IA B=~A'~B*- ~B(~ c.~c,), 
m - - n  

1 
JM N = q M "  !1 Nt - -  (~MN(TIp. q e t ) ,  

p - q  

1 1 
N =  {At'{A + •M*'I]M , (2.11) 

m - n  p - q  

T~=llM'~A, 
TAM : ~ A'~ . ,qU'~ , 

R 
where ~ .q = ~ ~(r) ri(r), etc. This applies to all the above constructions. If we have 

r = l  
R pairs of operators that supercommute with each other, then the construction of 
the respective superalgebras is achieved by summing over the generation index r. 
This corresponds to taking a direct sum of R copies of the same superalgebra. 
However, as we shall see later, the possible unitary irreducible representations 
(UIRs) of the non-compact supergroups that can be constructed will be de- 
termined by the number R of generations of Bose-Fermi operators. 

3. Superhermitean Basis of Lie Superalgebras 
and the Unitary Supergroup Action 

In the following sections we shall give the construction of oscillator-like UIRs of 
non-compact supergroups in the super Fock space of boson and fermion 
operators. Before going into this explicit construction, let us explain how we 
choose the generators of a unitary supergroup action in the super Fock space. 
Denoting the generators of the even subgroup by H a and the odd generators by A~ 
we can represent the supergroup action in the Fock space by the operator 

(J (g )= elW"H, + iO'A~, 

where w a and 0 ~ are real "bosonic" and "fermionic" (e.g., Grassmann) parameters, 
respectively. Since U mixes bosons with fermions, the consistency of the transfor- 
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mations requires that 0" be taken as anticommuting with the odd generators A~ 
[21], 

= 0  

This is equivalent to taking the 0 ~ as anticommuting with the fermion operators. 
On the other hand, for U(g) to be a unitary operator in the super Fock space, we 
must have 

a + 0  = t O t = O - l = e - i w  Ha i A~, 

which implies that we choose the generators such that Hta=Ha, A~ = - A o c  Thus 
the even generators H, are Hermitean operators and the odd generators A~ are 
antiHermitean operators. In this basis all the structure constants of the Lie 
superalgebra are pure imaginary numbers, except for those relating two odd 
generators to an even one, which are pure real. We shall refer to this basis as the 
superHermitean basis. Throughout the paper it will be implicitly assumed that we 
are working in such a basis and the form of non-compactness of the supergroup 
(i.e., the Killing form) is to be determined in such a basis. As an example, let us give 
the superHermitean basis of the non-compact supergroup SU(2, 1/I) whose even 
subgroup is SU(U(2, 1) x U(1)). In this case we take 

where 

4= , t /=b, 

[ %  a j~ ] = 6i j,  i ,j  = 1, 2,  

= a ,  (3.2)  
[b, b t] = 2, 

[a i, b] = 0 = [a, b]. 

The compact SU(2/1) subgroup is generated by IA B as defined by Eq. (2.6). The 
"non-compact" generators are ~A b and ~Atbt. To go to the superHermitean basis 
we must choose Hermitean combinations of the even generators and 
antiHermitean combinations of the odd ones. For the even generators and their 
parameters we thus choose 

Wi j = I i j + I j i = Wj  i ~ w i j ,  

Vj  = i(Ii j -  I j )  = - Vj  ~ vi j ,  (3.2) 

N = a l t a i + a t ~ + b * b  ~ O, 

W~ 4 = aib + aitb * ~+ w~ 4 , 
(3.3) 

V~ 4 = i(a~b- ai*b *) ~ vi 4, 

and for the odd generators we choose the following antiHermitean operators and 
their Grassmann parameters 
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Pi3 =aio~t -o~a  i$ ~-, Oi 3 , 

Q i 3 = i ( a i ~ t  q-c(a if) ~ 8i 3, 
(3.4) 

p34=(eb -e tb  t) ~-, Oa 4, 

Q34=i(ab+etb ~) ~ ~34. 

The unitary operator representing the action of SU(2, 1/1) in our super Fock space 
can thus be written as 

(J(g)=e ie~e~ , (3.5) 

~p= 

where 

and 

(aa t (i oo (D = o'°, 
\ b * /  0 0 -  

[ w,l+e w~2-ivl 2 i 013-i~, 3 t w~4-iv14\ 
. . . . . . . . . . . . . . . . . . . . .  I 

\-w~4-ivl 4 -w24-iv/~ I 034+i~34 - e  

Note that in writing t~T(9) in this form we used the fact that the Grassmann 
parameters 0, e anticommute with the fermion operators. The unitarity of t~ 
follows from the hermiticity of t ? ~ o  : 

= ~ptT~p = upx4~, 

since 7 o ~ 7 = ~  t, where Hermitean conjugation interchanges the orders of fer- 
mionic parameters as well as all the operators. Here oUg is also supertraceless as it 
must be! In fact, a f  corresponds simply to the four-dimensional fundamental 
representation of the Lie superalgebra SU(2, 1/1), where the representation 
matrices are multiplied with their parameters (Bose or Fermi). This is a very 
general feature of the unitary group actions in super Fock spaces, which we 
explain below. 

Consider for example the fundamental representation of the Lie superalgebra 
SU(m/n) (m 4= n). Let ~ represent the matrix of the generators in the fundamental 
representation multiplied with their parameters. It can then be written in the form 
of an (m + n) x (m + n) Hermitean matrix : 

°t0* l u /  
where H,, and H.  are m x m and n x n Hermitean matrices and 0 is a m x n matrix 
whose entries are anticommuting complex Grassmann numbers. 0 t is the 
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Hermitean conjugate of 0. Furthermore, 9f' is supertraceless: 

S t rgf  = T r H , , -  TrH,  = 0. (3.7) 

These matrices close under commutation 

[~1,  ~2]  = i~'~3 • (3.8) 

~¢f3 is seen to preserve the hermiticity and supertracelessness properties provided 
one takes care of the order of Grassmann numbers in a product. Hermitean 
conjugation is defined such that it changes the order of fermions in a product in 
addition to complex conjugation and transposition of matrices. Thus we have the 
property of closure for SU(m/n) with only commutators and no anticommutators 
as long as we insist on combining the parameters with the matrix representation of 
the generators. 

We can now try to combine the parameters with the "quantum" generators 
constructed from the Bose-Fermi operators. The following combination will be 
covariant [7] under SU(m/n): 

~Atj#ff ~B = ~ a t  ~¢~'AB(-- 1) gw) 

= IB a ~ d f f ( -  1) °(g) = Str Elggf], (3.9) 

where the supergenerators I f f  constructed in the previous section appear in the 
supertrace with the matrix ~ which contains the parameters (bosonic as well as 
fermionic). The closure property is now seen to take the simple form 

[~t~'~l ~, ~*~'~(z~] = ~* E~l, Jt~2] ¢ = i~*~'/g3~ • (3.10) 

Again, since we have combined the generators with their corresponding parame- 
ters, closure is achieved with only commutators and no anticommutators. This 
property is essential in order to understand how a supergroup is constructed from 
the superalgebra by a simple exponentiation or by taking an infinite number of 
infinitesimal products 

( )" ~)(~)=eie*Je¢= lim 1+ i~*J f~  . (3.11) 
n--, Qo \ n 

One can verify that since closure and Jacobi identities are satisfied with the 
ordinary Lie product, the "quantum" operators [~" form a group. 

0 (~1)  0 ( ~ 2 ) =  tJ(,Cf3). (3.12) 

U(J¢~) is a unitary operator in the super Fock space since ~tj¢~ is Hermitean. 

0 ( ~ ) =  tS(-~¢~)= U-1(,¢#). (3.13) 

We define the supergroup element in the fundamental representation by the 
matrix 

UAB = (e~'ce)AB (3.14) 

U 1 U 2 = U 3 . 

It is easy to show that 
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£T*~ a* (T = ~S*(e-i~e)BA (3.1 5) 

(Jt l A s (J = (eiaV)Aa" I ~," (e-ise)B,n . 

Thus ~A is covariant, ~a, is contravariant and the generators Ia s transform just as 
they should under the group action. We should emphasize that the orders of the 
factors as written on the right-hand side are of crucial importance. If one attempts 
to change their order one has to keep in mind the fact that the odd generators (or 
equivalently the fermion operators) anticommute with Grassmann parameters. 
Even though the above equations formally appear like the familiar ordinary Lie 
group transformations, they are actually somewhat different and their content 
should carefully be understood. 

4. Oscillator-Like Unitary Irreducible Representations 
of the Non-Compact Supergroup SU(m, pin + q) 

In this section we shall illustrate our method of constructing oscillator-like unitary 
irreducible representations of non-compact supergroups with the example of 
SU(rn, pin+q). This method is applicable to all non-compact supergroups whose 
coset spaces with respect to their maximal compact supersubgroup are Hermitean 
supersymmetric. The general theory will be given in Sect. 6. 

Consider now R pairs of Bose-Fermi operators {a({ At) and IIM01*M) satisfying 
the supercanonical relations 

[~A(r), ~B*(s)} = 6a B 3rs' 

[qM(r), r/~,(s)} = 5m¢ 6,,, (4.1) 

A , B = l , . . . , m + n ;  M , N = l , 2 , , . . , p + q ;  r , s = l  . . . .  ,R ,  

where the annihilation operators { transform covariantly under SU(m/n) and the 
annihilation operators !1 transform contravariantly under SU(p/q). The Lie 
superalgebra SU(m, p/n + q) than can be constructed from these operators has a 
three-dimensional graded structure (in a split basis): 

L = L - I @ L ° @ L  +1, 

where L ° denotes the Lie superalgebra of the maximal compact subsupergroup 
S(U(m/n)®U(p/q)), and L-  and L + spaces correspond to the "non-compact" 
generators. Explicitly, we have 

L ° ~IAB(~KMS@N, 

L - I ~ L 4 U ;  L+~--LAM, 

where 

L , = { A . { , , _  1 6A,({c,.{c), m#n 
m - - n  

1 
KM N = -- q~.  11N + 5MN(q Q. q~), P * q 

p--q  

(4.2) 
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1 1 
N . . . . . . . . .  {At .{A + ilM.qtM, 

m--n p--q 
(4.3) 

LA u = ~a" qu  ; LAM = Ii ~ . ~A*. 

Note that the grading is achieved with the generator z N i.e., 2 ' 

[½ N, I f f]  = 0 --- [½ N, K u  z'] 
(4.4) 

[½ N, L A  M] = - -  L A  M" l- t N L A "] , t_~ , M J =  + L A M ,  

and L -  space consists of di-annihilation operators and L + of di-creation 
operators. 

Consider the super Fock space f f  formed by taking a tensor product of the 
Fock spaces of all the Bose-Fermi operators ~ and t/. The vacuum state 10, 0> in ~" 
is then simply the tensor product state of all the individual vacua and is 
annihilated by all the annihilation operators 

~A[O,O>=O; I1M r0,0> =0 .  (4.5) 

Now, if we have a set of states K ~ / . )  in ~- that transforms according to some 
representation of the maximal compact subsupergroup S(U(m/n) x U(p/q)) and are 
annihilated by all the operators LA g belonging to the L -  space, then the infinite 
set of states obtained by repeated application of the L ÷ operators LA~r on the 
states K ~ /  >: 

A... B A... L N IKM...>, lg~...>, LCv LBN g~i';.),... (4.6) 

forms the basis of a unitary representation of the non-compact supergroup 
SU(m, p/n + q). The proof of this statement will be given in Sect. 6. The remarkable 
property of these representations is that if K~/'L) is chosen so as to transform 
irreducibly under the maximal compact subsupergroup S(U(m/n)x U(p/q)), then 
the resulting unitary representation of SU(m, p/m + q) is also irreducible. They are 

• the analogues of the highest weight representations of ordinary compact and non- 
compact groups [1, 14]. Thus the set of UIRs that we can construct this way is 
determined by the set of states IK) in ~,~ that transforms irreducibly under 
S(U(m/n) x U(p/q)) and is annihilated by the operators in the L -  space. Clearly any 
state of the form 

(~at)k t0, 0>-- ~At~.m... ~C!,lO, 0> (4.7) 

K times 

or of the form 

(t/~) k [0, 0>, k = 0, 1, 2,... (4.8) 

is annihilated by the operator LA u = ~A" 11 ~ of the L -  space. A linear combination 
of pure ~ and pure t/states will also be annihilated by LA M. However, since they are 
not irreducible representations of S(U(m/n) x U(p/q)), we will not consider them. 

The state ~Atl0,0) transforms like the contravafiant fundamental repre- 
sentation of SU(m/n), whose first m components are bosonic and the last n 
components fermionic. Following [6, 7], we shall represent it by a dotted superbox 
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(corresponding to the supergeneralization of ordinary boxes in Young tableaux) 

¢attO, O)~l[~,O), A,B=l,. . . ,m+n. (4.9) 

Then the state Ca,~m 10,0) corresponds to the supersymmetrized representation 
of SU(m/n) : 

~A'~Bt l0 ' 0 >  ~ 1 ~  0 > .  (4 .10 )  

Similarly, the state (~at)k [0, 0) transforms like the irreducible representation 

L/I/qAA M 
1 2 3 k 

of SU(m/n) (k = 1, 2 ... .  ). If we have only one set of operators ¢, these are the most 
general irreducible representations that can be constructed in the super Fock 
space. On the other hand, if we have R sets of operators ¢(r) (r = 1, ..., R), then the 
set of irreducible representations that one can construct is richer. For example, if 
R = 2, we have 

(¢At(1))e' (¢m(2))e~ 10, 0)  ~- [/]/~ ...  [/] ® [ / ] A / ]  "'" ~"]. (4.11) 
1 2 ~'1 I 2 3 g'2 

Thus the irreducible representations one obtains in this case are those that are 
contained in the tensor product of f l  supersymmetric and f2 supersymmetric 
representations of SU(m/n) (•1 and ~2 being positive integers). In the general case 

({a*(1)y* ({~*(2))e~... (~C*(R))t~ 10, 0> 

~ ""  H ®  H / d  "'" H ® . . . ®  ~'J/q "'" H .  (4.12) 
1 2 ~'1 1 2 •2 1 2 ~'.R 

Thus, if we have R generations of the operators ~.(r) (r = 1 ..... R), then the states that 
transform irreducibly under SU(m/n) correspond to dotted supertableaux that can 
have up to R rows. These irreducible representations can be projected out of the 
set (4.12) by using appropriate projection operators. Note that all states con- 
structed from only dotted (or only undotted) superboxes in a supertableau are 
irreducible [6, 7]. 

The same arguments apply to the multiple action of the operators q~ on the 
vacuum. In this case one obtains the representations of SU(p/q). One can use any 
one of the irreducible representations obtained by multiple applications of ~at(r) 
only [or of q~(r) only] followed by a suitable projection operator to construct a 
"lowest" state [K) on which to build the basis of a UIR of SU(m,p/n+q). Such 
states IK> will also be irreducible under the maximal compact subsupergroup 
S(U(m/n) x U(p/q)). The irreducible representations obtained by the action of {A*(r) 
alone transform like the representation [(71, r2, %,...), 11 of S(U(m/n) x U(p/q)), and 
those obtained from r/~ transform as [1,(q,r2,r3,...)l, where (q,r2, . . . )  [or 
(~, k2, ...)1 denote the supertableaux of an irreducible representation which has 
%(~i) super(dotted) boxes in its i th row. Note that there is no limit to the number of 
rows in a supertableau. 

The operators LAv=~a*.~l~ of the L + space transforms like the repre- 
sentation [(1,0,...), (I,0,0,...)1 of S(U(m/n)xU(p/q)) and (LaM)e,~[(~,0,0,...), 
(E,0, 0 ... .  )1. Now, starting from a "lowest" state K~/2 ) transforming irreducibly, 
say like the representation [(rhl, rhz, ...), 1], under S(U(m/n)x U(p/q)) and annihi- 
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lated by the operators LA M of L -  space, we can construct an infinite tower of states 
by applying powers of the operator LaM of the L ÷ space. They transform as 

(LaM) ' IK> = (~a,. I1~)' IK) 
-~ [(d, 0, 0, ...), (d, 0, 0, ...)] ® [(rhl, rh2, ...), 1], d = l , 2  . . . .  , (4.13) 

and form the basis of a UIR of the non-compact supergroup SU(m, p/n + q) in the 
Fock space ~ .  Thus, for each such lowest state [K) we obtain a UIR of 
SU(m,p/n+q). By choosing the generation number R large enough, we can 
construct any representation of SU(m/n) with dotted supertableaux only and any 
representation of SU(p/q) with undotted supertableaux only as a lowest state. For 
n = 0 =q  these representations reduce to the oscillator-like UIRs of SU(m, p) [14]. 
For r n = 0 = p  they give the finite dimensional UIRs of the compact group 
SU(n+q). The state [K), annihilated by the L -  operator, corresponds to the 
highest weight (up to a reflection) of the irreducible representation thus obtained. 
To write down the unitary ~/representing the group action of SU(m, p/n + q) in the 
super Fock space ~- we must exponentiate the generators in a superHermitean 
basis multiplied with their respective parameters. As explained in the previous 
section, this leads to the representation 

(J = e i ¢'u'~ , (4.14) 

where 

and 

(G). v~ =~,v =(~A,_ ~u), 
~ =  r/~ ' 

1 l o_ 
= \ o I - l p + ]  

and ~ is the supertraceless (m + n + p + q) × (m + n + p + q) matrix representing the 
(m + n + p + q) dimensional fundamental representation of the Lie superalgebra of 
SU(m, pin+q) multiplied with their respective parameters. The J¢ can be repre- 
sented in the form 

/ ~ ( r n / n )  I - - iv  
= - - . ~ - I  . . . .  (4.15) 

where ~(rn/n) and ~(p/q)  are (m + n) and (p + q) dimensional Hermitean matrices 
representing the Lie superalgebras of U(m/n) and U(p/q) multiplied with their 
respective parameters such that 

Str ~ '  = Str 2,f(m/n) + Str 2/g(p/q) = 0 ; 

v is a (m + n) x (p + q) matrix of the form 

p q 

m [V---J-~I (4.16) 
v=. \z  t wJ' 

where V and W are (m × p) and (n x q) complex matrices, respectively. Here 2 and )C 
are (mx q) and (n x p) matrices whose entries are complex Grassmann numbers. 
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Unitarity of U follows from the identity (T J{) t = °/Y7 or ~ g t =  7j/Z7. The operator 
/ I  = t~Zg~v is Hermitean and 

(}* =(eiO)* =e-ia= O-1. 

5. Coherent State Representations of the Non-Compact Supergroup SU(m, pin+q) 

In this section we shall give the UIRs of the non-compact SU(m, pin + q) in terms 
of supercoherent states constructed out of the "particle states" in the super Fock 
space ~ .  For  each oscillator-like UIR there exists such a coherent state basis. In 
the coherent state basis the analyticity properties of these representations will 
become more evident, showing that they indeed belong to the "holomorphic 
discrete series." 

The unitary operator ~) representing the supergroup SU(m, pin + q) action in 
our super Fock space o ~ is now given by Eq. (4.14) 

(7 = e ~ t ~  = ~)(~/), (5.1) 

where ~v, ~ were defined by Eqs. (4.14) and (4.15). The (m + n + p + q) dimensional 
non-unitary fundamental representation of SU(m, pin + q) is given simply by the 
exponential of the matrix J / :  

U = e ~ . (5.2) 

The operator tp transforms covariantly under the action of SU(m, pin + q) as 

6"*(~) ~v (7(~) = (ei~v) = U~v, (5.3) 

and t~ contravariantty as 

U*(J¢') t~ ~)(Jg) = ~ e -  i~t = v~ U-  1 (5.4) 

The supermatrix U can now, in general, be decomposed as [22] 

U = th, (5.5) 

where h is a group element in the maximal compact subgroup S(U(m/n) x U(p/q)), 
and t sits on the coset space SU(m, pin + q)/S(U(m/n x U(p/q)), with h represented 
as  

and t as 

where ~f(m/n), ~(p/q) and v were defined by Eq. (4.15). Now t(v) can be rewritten 
in the form 

i 
Z t 

t(~)= 1 / 1 - z 2 V  _ - t ( z ) ,  (5.8) 
1 Z* 
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and h as 
0 

Note that the (re+n)x (p+q) supermatrix Z has the same graded structure as v, 
and is related to v by 

tanh v ~  (5.10) Z -  v. 

Similarly, the unitary operator U can be decomposed as 

where 

U = t(Z)h, (5.11) 

?) t ( Z ) = e x p i g p ( ? ~  lp, 

t(Z) = exp (t/Tv*{ -- {*Vtl*r), 
(5.12) 

t(Z) = exp(t/ev*aa{ a -  {a*VAet/*e), 

;(z)* = ; ( z ) -  1. 

Note that the order in the exponential is important since v is a rectangular 
supermatrix involving Grassmann parameters anticommuting with the odd 
generators (or equivalently with the Fermi operators). 

The super Z variable appearing in t(Z) parametrizing the supercoset space 
SU(m, pin + q)/S(U(m/n) x U(p/q)) transforms non-linearly under SU(m, p/n + q). 
Consider for example the left action g of SU(m, pin + q) on t(Z): 

gt(z) = t(z') h(z, g) , (5.13) 

where g=e i~u. Writing the matrix g representing a general group element of 
SU(m, p/n + q) in the fundamental representation as 

m+n p+q 

g = e i ~  = "+" (c~ ~/~), (5.14) 

we find that Z undergoes a linear fractional transformation 

and 

where 

and 

g : z - , z '  = (~z +/~)(~z + a)- 1, 

h(g,Z) (U,,/,~,Z) I 0 )) 
I Uv/q(9 ' Z I 

Up/q(g, Z )  = (1  - Z'~f Z ' )  1/2 (~) Z Jr 15) (1  - Z~f Z )  - 1 / 2 ,  

(5.15) 

(5.16) 

U,,/,(g, Z) = (1 - Z'Z'*) 1/2 (~ + fiZ*) (1 - ZZ*)- 1/2. (5.17) 
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Similarly, for the operators U(g) and t(z), we find 

U(g) = e x p i ~ / ~ p ,  

t3(g) i(~) = i(~') ~(z, g), 

where 

(5.18) 

and 

where 
z '  = ( ~ z  + fl) (?,z  + a ) -  *, 

U~/~(z, g) = (1 - Z'Z) t/2 (?Z + 6) -~ (1 - Z'*Z')- 1/2. 

Thus, using Eq. (5.21) we obtain 

0 ( g )  IKM; Z 5  = [ 6 ' Z  + a ) -  ~]M M' E(1 - z '*z ' ) -  ~/23~M,, i(z')IKM,.5, 

0(g) IKM; Z5 = [(vZ + 6)- ~]u M' IKM, ; (~Z + fl) (7Z + 6)- ~ 5. 
(5.253 

/~(z, g) = exp {~*(ln Um/,(g, z))~ - t/0n Up~q(9, z))tf }. (5.19) 

Note that the unitarity of h(z, g) follows from the unitarity of U,,/, and Up/q. 
Consider now a "lowest state" K ~ t )  that transforms irreducibly under 

S(U(m/n) x U(p/q)) and is annihilated by the operators LA M of  the L -  space. We 
define the supercoherent state IK~/2., Z )  labelled by the rectangular supermatrix Z 
as 

e Jz"~'"2 I,&.: 5-II,;~i::. ;z>. (5.20) 

The coherent states ]Z) are clearly a linear combination of the particle states 
discussed in the last section and form an overcomplete basis of the UIR  
determined uniquely by K~/-) .  We will now relate them to the coset space 
SU(m, p/n + q)/S(U(m/n) x U(p x q)) by using the identity 

i(z)=e¢'Z~'e Ctln(1-zzt)l/2¢-"lncl-ztz~-It2~ e -"z*¢ , (5.21) 

which in the fundamental representation corresponds to the decomposition 

t(z) = (10 1)((1-ZZ*)1/2 0 1 
0 (I_Z,Z)_I/2)(Z ~ ~). (5.22) 

For example, consider the case when the lowest state IK) transforms like the 
representation [(0, 0 .... ), (1, 0, 0,...)] of S(U(m/n) × U(p/q)), i.e., it transforms like a 
covariant vector under U(p/q). Then 

tKM ; Z )  = e ¢'z~' IKM) 
= ~'(z) e.Z'¢ e-  ¢*,.o -zz'v/2¢ +.,.(1 -z'z)--2.*IKM) 

= i(z) [(1 - Z'Z)-  1/2]MM' ]Ku,5, (5.23) 

Under the action of U(9) we get 

U(g) IK u, Z> = [(1 - Z'Z)-  ~/2]uu" CT(g) i(z) lKu. > 

= [(1 - z + z ) -  ~/~]~'  i(z') ~(z, a)IKM,> 
= [(1 - Z'Z)-~/2]MM' i(Z') U-  ~ z M" , [ ~,/q ( , g)]~t' IKM',> (5.24) 
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This shows that the coherent states IKM, Z)  transform among themselves under 
the unitary supergroup action and hence form a UIR of SU(m,p/n+q). The 
extension of the above analysis to the general case is straightforward. One needs 
only be careful about the order of the representation matrices of 
S(U(m/n) x U(p/q)), which are uniquely determined by the transformation proper- 
ties of the Bose-Fermi operators { and 9. Thus, for each "lowest" state [K> 
transforming irreducibly under the maximal compact subsupergroup 
S(U(m/n) x U(p/q)) and annihilated by LA M we obtain a UIR in the coherent state 
basis by the above method. 

The analyticity properties of the UIRs constructed in the previous section 
become evident in the overcomplete coherent state basis. For example, the 
expansion coefficients of a coherent state in the particle basis <KI (L+)eIK;Z>, 
f = 1, 2,..., are all polynomial functions of Z. The coherent state representations of 
ordinary groups and their analyticity properties have been extensively studied 
[15, 16]. What the above analysis shows is that our supercoherent states have the 
same analyticity properties as the ordinary coherent states. Just as in the case of 
ordinary non-compact Lie groups [17-19, 25], one can realize the above UIRs on 
the super Hilbert space of the analytic functions of Z. In fact, our formalism can be 
used to define such "super Hilbert spaces" and study their properties. 

6. Oscillator-Like UIRs of Non-Compact Supergroups with a Jordan Structure 

The Lie superalgebras of non-compact supergroups constructed in the previous 
sections all have a Jordan structure with respect to the Lie superalgebra of their 
maximal compact subsupergroups, i.e., they can be decomposed in the form 

L = L -  10LO(~L + 1, (6.1) 

where L ° is the Lie superalgebra of the maximal compact subsupergroup. It 
contains the generator Q of an Abelian U(1) factor which gives the grading 

L° = H G Q ,  

[ Q ,  H] = 0, (6.2) 
[Q, L + 1] = L  + 1, 

[Q,L - I ]=-L- I  

There is a conjugation t in L such that 

( L + I ) ~ L  -1 , 

and 

[ L + I , L - 1 } ~ L  ° ; 

[LO, L+I}~-L +1 ; 

(L°) * = L ° , 

[L+l,L+l} =0,  

[L° ,L-1}~-L  -1 " 

In [14] a general theory of the construction of oscillator-like unitary repre- 
sentations of non-compact groups with a Jordan structure in the corresponding 
bosonic Fock spaces was given, tn this section we shall extend this general 
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construction to non-compact supergroups with a Jordan structure with respect to 
their maximal compact subsupergroups. The UIRs of SU(m, p/n+ q) given in the 
previous sections is a special example of this general construction. 

Consider now the Lie superalgebra with a Jordan structure as in Eq. (6.1) 
constructed from the bilinears of Bose-Fermi annihilation and creation operators. 
Choose a set of states IK~7) in the super Fock space ~- of the Bose-Fermi 
operators that are annihilated by all the operators belonging to the L-1 space: 

L -  1 [K[ii' > = 0 ,  (6.3) 

and which transforms as some representation of the maximal compact subsuper- 
group K generated by L °. Then the infinite set of states obtained by applying the 
operators L +~ on the states IK[2" > form the basis of a unitary representation of 
the non-compact supergroup G generated by L:  

m. . .  IKa...>,L + IK~...>,L+L+ M... ... tKA... ) , . . . .  (6.4) 
M.,. If the states [KA... ) transform like an irreducible representation of K, then the 

infinite set of states thus generated forms the basis of a UIR of the non-compact 
supergroup G. The proof of this statement is identical to the case of ordinary non- 
compact groups [14] which we outline below. 

Any Casimir operator of G must commute with the U(1) generator Q that gives 
the grading. This means that every term in the Casimir invariant must contain an 
equal number of L ÷ and L -  operators. For example, the quadratic Casimir 
operator must be of the form 

Ca = L  + 1 L -  1 + L -  1L+ 1 + F2(LO), (6.5) 

where F2(L °) involves the linear and quadratic Casimir invariants of the maximal 
compact subsupergroup. Now, by commutations and/or anticommutations, one 
can bring all the L -  operators to the right of each term, i.e., 

C2 = 2L + 1 L -  1 + F,2(LO). (6.6) 

Thus, on the lowest state K ~ " )  we have 

C2 K~. . . )=F2(L  o) M... [KA... >. (6.7) 

Since ~'" [KA... ) transforms irreducibly under the compact subgroup K, it must be 
an eigenstate of F'2(L °) and hence of C2 

C 2 [K~.i i)=2 2 K ~ 7 ) .  (6.8) 
+ k M., .  From [ L + , C 2 ] = 0  we then find that all the higher states (L)JKA. . .  ) are 

eigenstates of C 2 with the same eigenvalue 2 2. One can similarly show that all the 
higher Casimir invariants are diagonalized by K~ii' ) and consequently by the 
states (L + 1)e iK~il. ) (~ = t, 2,...), proving the irreducibility of the resulting unitary 
representation of G. The UIRs of G that can be constructed by this method are 
then determined by the set of lowest states K ~ " )  that can be constructed in the 
super Fock space which transforms irreducibly under K and is annihilated by L -  1. 
This in turn is determined by the number R of Bose-Fermi operators that enter the 
construction of L. In general, the generator Q which gives the grading in L can be 
chosen as half the Bose-Fermi number operator. Then the space L ÷ i corresponds 
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to di-creation operators and L -  1 to di-annihilation operators. In such cases there 
always exist lowest states IK) in the super Fock space ~ that transform irredicibly 
and are annihilated by L-1  operators. However, in some special cases the L-1  
space involves not only di-annihilation operators, but also di-creation operators. 
In such cases there may not exist such lowest states IK) in f t .  If this is the case, 
then our method leads to reducible unitary representations. 

The Lie superalgebras of non-compact supergroups OSp(2n*/2m) and 
OSP(2n/2m, IR) constructed in Sect. 2 have a Jordan structure with respect to their 
maximal subsuperalgebra U(m/n) and their oscillator-like UIRs can be constructed 
by the above method. One would like to know if there are other non-compact 
supergroups with a Jordan structure with respect to their maximal compact 
subsupergroups in addition to OSp(2n*/2m), OSp(2n/2m, IR), and SU(m, pin+q).  
Of the ordinary simple Lie algebras, all have a Jordan structure with respect to 
some suitable subalgebra except for G2, F4, and E s. The simple Lie algebras with 
a Jordan structure can be constructed from Hermitean Jordan triple systems by 
the so-called Tits-Koecher method [26]. This construction establishes a mapping 
between the elements, say in the L + space of the Lie algebra, and the elements of 
a Hermitean Jordan triple system. The Tits-Koecher construction of Lie algebras 
has also been extended to the construction of Lie superalgebras from super Jordan 
triple systems [27-29]. In particular one can construct a class of Lie superalgebras 
from Jordan superalgebras. Below we give the complete list of Jordan super- 
algebras Y as classified by Kac [30] and the resulting superalgebras L ° and L 
[27-29]. 

js Dimension of Y L ° L = L- a + L 0 + L + 

A s (m+n) z SU(m/n)~)SU(m/n)~Q SU(2m/2n) 
m(m + 1) 

B C  ~ - -  + n(2n- 1) + 2ran SU(rn/2n)~Q OSp(4n/2m) 
2 

D s m + 2n - 1 OSp(m/2n) • Q OSp(m + 2/2n) 
!m 2n 2 SU(n/n)@Q P(2n- 1) 
QS 2n 2 Q(n- 1)GQ(n- 1)GQ~F Q(2n- 1) 
D~ ~ 4 SU(1/2)GQ D(2, t ;t) 
J38 27 E6(~ Q E 7 
F ~ t0 OSp(2/4)~Q F~(4) 
K 3 SU(1/2) SU(2/2) 

where Q stands for the SO(2) generator that gives the grading and F stands for the 
generator of one parameter Lie superalgebra [similar to U(1)]. Note that we have 
denoted the Lie superalgebras with their "compact forms." Now, one constructs 
the Lie superalgebras L listed above as bilinear Bose-Fermi operators in such a 
way that in a superHermitean basis L ° generates a maximal compact subsuper- 
group K. Then one can construct the unitary representations of the non-compact 
group G generated by L in the super Fock space of these Bose-Fermi operators. 
The corresponding coherent states can be labelled by the elements Z of the 
underlying Jordan superalgebra, which undergo a linear fractional transformation 
under the action of the non-compact group G [29]. In fact, for all the UIRs of non- 
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c o m p a c t  s u p e r g r o u p s  wi th  a J o r d a n  s t ruc tu re ,  a c o h e r e n t  s ta te  basis  exists. T h u s  
they  can  equ iva l en t l y  be  rea l ized  o v e r  super  H i l b e r t  spaces  o f  ana ly t i c  func t ions  o f  

the  super  Z va r i ab le  labe l l ing  the  c o h e r e n t  state.  
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