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Abstract. This note has two goals. The first is to give an explicit description 
(Theorem 1) of the duals of certain weighted products ~h of a countable family 
of Banach spaces. These products include the usual spaces of interactions 
which arise in statistical mechanics. The second goal is to use this description 
to prove that if the factor spaces are finite dimensional and the weight function 
h satisfies a certain growth condition, then the pressure is Fr6chet differentiable 
wherever it is Gateaux differentiable (hence is Fr6chet differentiable in a dense 
G~ subset). 

1. Notation and Definitions 

The set-up described below is a slight generalization of a standard one for lattice 
systems. Let 7P denote the v-dimensional integer lattice. Throughout the paper the 
letters X and Y will denote non-empty finite subsets of ~ .  We assume that to each 
X there corresponds a real Banach space 9.1 x containing an element I x of norm 1. 
For each v-tuple i in Z ~ we let z i be an isometry from 91 x onto ~x+i, with 
Zilx= lx+ i and "giT£j="[i+ j. 

Definition. Let h be a positive function on the non-empty finite subsets X of 2~ ~ 
satisfying h(X + i)= h(X) for each such X and each i in Z ~. Let ~h denote the 
Banach space of all functions • on the non-empty finite subsets X of ~" which 
satisfy 

qs(X)~ 9/x (for each such X), 

zi~(X ) = ~(X + i) (each X, each i in Zv), 

and 

with norm 

Z h(X)l[~(X)ll < + oo, 
OeX 

II~tl = ~ h(X)[l~(x)ll. 
O~X 
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The basic example of such a space ~ uses h(X)= [XI- 1, where [XI is the number 
of points in the set X. The space Nh in this particular case will be denoted simply 
by N. Although our representation theorem for ~ is valid with no restriction on 
h, the only spaces Nh of interest are those which are naturally included in N. This is 
the case, obviously, if h(X) > [X]- 1 ; for instance, if h(X)-= 1 (this corresponds to the 
space ~ of [4]) or if h(X) = [XI. Our differentiability theorem (Theorem 2) applies 
to the case 

h(X) = ~Y[- 1(1 + diamX)*, 

where r > 0. (The diameter can be defined using the supremum metric on Z ~, say.) 

2. A Representation Theorem 

Before proving Theorem 1, we prove a useful lemma which exhibits an absolutely 
convergent basis-like decomposition of the members of ~h' TO this end, we 
introduce certain elements of ~h which correspond to the interactions ~x defined 
by Israel [4, p. 7]. 

Definition. If X_2U and A~9,I x, let [A;X] be that element of .~h such that 
[A ;X] (Y)= ziA if Y=X +i for some i~2U, while [A ;X] (Y)= 0 otherwise. 

Note that [A ;X] is in Nh for any h; indeed, 

l[ [A ;X] 1t = ~ h(IOlt [A ;X] (Y)i[ 
Oeg 

= Y. h(X+i)llz,Al[= Y, h(X)lrAII 
O e X  + i - i ~ X  

Lemma. If q~6 ~h, then 

(1) 

and 
(2) 

= ~1" h(X). IIAII • 

II~H = ~ ~ l - l l l [ ¢ (x ) ;x ] l ] ,  
OaX 

m= ~ ~l - ' [m(x) ;x ] .  
OmX 

Proof From the norm computation just completed above, the right side of (1) is 

~Cl- 1 ~CJh(X)ll m(X)ll, 
OaX 

as required. This shows that the infinite vector sum in (2) is absolutely convergent. 
We prove (2) by showing that for each Y__c~ ", 

~(Y)=(o~xP~'- I[~(X);X])(Y) • 

I fX  is not a translate of Y,, then by definition [~(X);X] (Y)=0, so we need only 
consider the above sum over those sets X which contain 0 and are a translate of Y, 
say X = Y -  i. There are [Y[ such sets and for each one we have, of course, [XI = ]YI 
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as well as 

[q~(X) ;X] (Y) = [q~(Y- i); Y -  i] (I1) = r ~ ( Y -  i) = ¢(Y). 

The factor [XI- ~ now guarantees that the sum of these t YI-many copies of ~(Y) is 
equal to 4~(Y). 

Theorem 1. The dual ~*  of ~ is linearly isometric to the Banach space du¢~ of all 
elements a = (~x) satisfying 

(i) exe N~ for each X ,  
(ii) 0~x+io'ri=~ x for each X and each i e TZ" , 

and 

(iii) ]Ic~ll =sup  lXI- lh(S)-  ~ll~Xll < oo, 
XgO 

The pairing between an element ~ = (c~X)e.~Ch and an interaction ~ h  is given by 

( i )  <~, ~ 5  = - ~ ~ I -  *c~x [~(X) ]  • 
OsX 

Proof It is straightforward to verify that d h is a Banach space. We first show that, 
given e e d h ,  the pairing in (1) defines a continuous linear functional L~ on ~h for 
which I{L~II = Ilall. Indeed, defining L~(~)= (~, @> for each ~e~h ,  we have 

IL.(~)I < ~ IXV~ll~Xll • II~(X)ll 
OcX 

= ~ ~ I -  ~h(X)- ~llcdtl • h(X)IVNX)II  
0eX 

<= (o~x h(X)I[ ~(X)[[ ) "sup ~ [ -  l h(X)- l l[°~X 

= II~iI" Ii4~ll ,  

so that L~ is continuous, with liL~ll <llc~ll. On the other hand, if AegcI x, then 
[ A ; X J e N  h so from (1) we have 

L . ( [ A ; X ] ) =  - 
OeX + i 

= -  
OeX + i 

Thus, for A~9.I X, 

~X -[- i I - lo~x + i ( T i A  ) 

~ 1 -  l ~ x ( A )  = - °~X(A) • 

(2) lc~X(A)l = IL~(EA ;X])T ~ ]IL~II" flEA ;X] II = IIL~II" IXI .h(X). JlAII, 

which implies that NI-lh(X)-Xll~X[I < IIL~II ; in turn, this implies that II~ll = IIL~II. 
We must now show that the map a~L~ (which is clearly linear) takes .~¢h onto 

~ * ;  that is, given L ~ * ,  it is necessarily of the form L~ for some 0c To this end, 
define, for each X and each AEgA x, 

(3) ~X(A) = - L ( [ A  ;X]).  

The inequality in (2) shows that exs  9.I~" for each X and property (ii) follows easily 
from (3), so (c¢ x) defines an element ~ of d h. To prove that L = L~ is equivalent to 
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proving that for each ~eMn, 

L(~) = <~, ~> = ~] iXl-  ~XE~(X)]  
O~X 

=-- ~ [321-'L([~(X);X-]). 
O~X 

This is immediate from the lemma and the continuity of g. 
Henceforth, we will write a in place of L whenever we consider an ele- 

ment of ~ .  There is a simple but useful consequence of the relationship ~zX(A) 
X = -~( [A;X])  (A~9.Ix), namely, if(c~) is a net in ~*  with c%~0 weak*, then ~ ~ 0  

weak* in 91]: for each X. 

3. Differentiability of the Pressure 

We will shortly need a few specific properties of the pressure, but first we look at 
an arbitrary convex continuous function P on a Banach space d .  Recall that if 
• ~ d ,  then the subdifferential 3P(~) of  P at 4) is the non-empty weak* compact 
convex subset of d *  consisting of all those e~ d *  satisfying 

c~(~)- ~(¢i) __< P(~P) - P(~), ' F e d .  

The differentiability of P (both Gateaux and Fr6chet) can be characterized in 
terms of the subdifferential as follows. (These will be our definitions.) For details 
see, for instance, [3-] or [6-]. 

The continuous convex function P is Gateaux differentiabIe at • if and only if 
OP(~) consists of  a single point. If this be the case, then the (set-valued) 
subdifferential map OP is norm-weak* upper semicontinuous at ~, that is, if 
OP(~) = {e}, say, if II ~ , - ~  I I ~ 0  and if e,~ 0P(~,), then c~n-*e weak*. 

The continuous convex function P is Frdchet differentiable at • if and only if it 
is Gateaux differentiable at el) [-with ~P(~)= {e}, say-] and 6P is norm-norm upper 
semicontinuous at ~, that is 

Ilc%-~ll--'0 whenever II~,-~lt-- '0 and e,~3P(~,).  

In order to define the pressure one must, of course, be much more specific 
about the spaces 9.I x. For our purposes, however, it suffices to assume that we are 
given a continuous convex function P, defined on the space N (hence on each Nn 
contained in ~), which satisfies the following two conditions: 

(a) P([t. lx; X])= - t  for each X and each real t. 
(b) IP(~)-P(kg)] < l l~ -~ l ]  for each ~, 7/in N, the norm on the right being 

that of .~. 
(These are well-known properties of the pressure as defined in [4], say. 

Property (a) follows from the definition in [4, p. 35], keeping in mind that [A ;X] 
corresponds to kux.) 

In the proof of the next proposition, which uses a well-known technique, we 
will simply write t in place of t- 1 x, since no ambiguity seems likely. 

Proposition. I f  ~ = ( ~ x ) ~  is in ~P(~) for some c~E~ h, then for each X, 

II~xll-- 1 = ~X(lx) 

(and hence ]tc~II =suplXl-lh(X)- 1). 
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Proof. If aeOP(~), then in particular, for any X and any real number t we have 

- ~x(t) = ~([t  ;X] )  < P([t ; X ] ) -  P ( ~ )  + ~(cp) 

= - t -  P ( ~ )  + a ( ~ ) .  

Taking t > O, we can divide both sides by t and let t - ,  Go to conclude that ex(1) >__ 1. 
A similar argument with t - ~ -  oo yields aX(l)= 1, which in turn implies that 
ll~xll >1. If t>O and AEN x, then from the definition of the subdifferential and 
property (b) we conclude that 

c~([tA ; X ] ) -  ~(~)_-< P([tA ;X]) - P(q~) _-_ I! [tA ;X] - • il --< t II A !1 + II ~ ll- 

The same device as before shows that a([A ;X] )<  [IAI], so that N~xll < 1 and the 
proof is complete. 

In order to prove the differentiability result we seek, we need to impose a 
growth condition on the weight function h; more precisely, on the function tXIh(X). 

Definition. We say that h satisfies condition (G) provided the following holds: 

(G) For any ~>0, we have ~[h(X)>e -1 for almost all X 
containing 0, that is, this inequality holds for all but finitely 
many non-empty finite subsets X for which 0eX  g ;g~. 

Condition (G) is satisfied if ~f[h(X)~ oo as d i a m X ~  oo ; for instance, this is the case 
when h(X)=IX[-I(1 +diamX). It is clear that if h satisfies condition (G), then 
Nh_-C-N. 

The following theorem is now quite easy. 

Theorem 2. Suppose that the weight Junction h satisfies property (G) and that each of 
the spaces 9.I x is finite dimensional. Then the pressure P is Fr~chet differentiable at 
any point of ~h where it is Gateaux d~ferentiable ; in particular, then, it is Frdchet 
differentiable on a dense G~ subset of ~h. 

Proof Suppose that P is Gateaux differentiable at ~ h ,  with QP((b)= {a}, say. 
Suppose further that {~b,} __c~ h with l l ~ , -  ~lJ ~ 0  and that %~0P(~,), n = 1, 2 . . . . .  
By the Gateaux differentiability hypothesis, a~-~a weak*, and hence a,x-+ax 
weak*, for each X. Since 9A~ is finite dimensional, this means that Ila~- ~x II-~0 for 
each X. Moreover, from the proposition, we know that tla~-~xlt _-<2 for all X. 
Since, by Theorem 1, 

It~,-~ll =su~ {~l-lh(X)-lll~x-c~xll}, 

it follows easily from property (G) that II~.-~II~0 and hence P is Fr~chet 
differentiable at ~. That such points form a dense G~ subset of the separable space 
Nh is guaranteed by Mazur's theorem. 

An example where the weight function h(X)= ~g[- ~(1 + diamX) is used may be 
found in Chap. 5 of Ruelle [8], which is devoted to one-dimensional lattice 
systems. Corollary 5.6 of [8] shows that the pressure for such systems is 
everywhere Gateaux differentiable; Theorem 2 shows that it is therefore Fr~chet 
differentiable. (This is, of course, also a consequence of Dobrushin's (Gateaux) 
analyticity theorem. For a recent proof of the latter, see Cassandro and Olivieri 
[ i ] . )  
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Dani~ls and van Enter [2] have shown that for the space N of [4], the pressure 
is nowhere Fr6chet differentiable (see also [5]), even when the spaces 9.1 x are finite 
dimensional. Thus, some restriction on h is needed in order that the conclusion of 
Theorem 2 be valid. That h(X) should depend on the diameter of X is indicated by 
some specific examples. For  instance, in a private communication, Israel has 
pointed out that the construction which DaniEls and van Enter use in their 
Theorem 1 can be applied to the interaction ~ for a two-dimensional nearest- 
neighbor antiferromagnet at low temperature to show that the pressure is Gateaux 
- but not Fr6chet differentiable at 4~. The interactions involved in this example 
have finite range, hence lie in every Nh, while the proof itself is valid provided h 
satisfies 

sup {h(X) : [X I = 2} < oo. 

Thus, if h(X) does not grow somehow with the diameter of X, the conclusion of 
Theorem 2 can fail. Daniels and van Enter's Theorem 3 can be modified to show 
that if the pressure is twice continuously Fr6chet differentiable in a neighborhood 
in ¢]h of the interaction they consider, then 

lim inf{h(X)Z/diamX : ~21 =2,  diamX-~ oo} > 0 .  

[Their inequality (16) can be replaced by a similar one derived from the Taylor 
formula for a C 2 function.] 
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