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Abstract. We construct the first model of particles in the plane with completely 
symmetric, short range, two body interactions which has quasiperiodic, but no 
periodic, ground states. 

I. Introduction 

It is a problem of fundamental importance [1-5] to determine why, at low 
temperature, real matter strongly tends to have crystalline symmetry at the 
molecular level. The recent discovery [6] of quasicrystalline matter gives further 
impetus to understand to what extent, and especially by what mechanism, low 
temperature prescribes the symmetry of configurations of many interacting 
particles. 

Using a grand canonical ensemble for several particle species, the low 
temperature distribution is concentrated On configurations with low value of 
(e  - , , ~ j m f l j ) ,  where e is the energy density and m~ (respectively d j) is the chemical 
potential (respectively particle density) of the jth species. The symmetry of these 
configurations is the matter at issue. 

Results on this "crystal problem" [7-23] have concentrated on classical 
mechanical models, mostly lattice gas models. The problem is essentially solved for 
one dimension, both for lattice gas [19] and continuum [20] models. Among two 
dimensional models a class with highly symmetric interactions is known [15, 21, 23] 
to have periodic ground states. In contrast, recent results [21,23] have exhibited 
lattice gas models with n o  periodic ground states. 

Using these recent lattice gas models we will construct the first model of 
particles in the plane (i.e. a continuous model) with completely symmetric, short 
range, two body interactions which has quasiperiodic, but n o  periodic, ground 
states. This will require that we also significantly enlarge the class of continuous 
models known to have periodic ground states. 
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2. Definitions and Notation 

A (doubly) periodic configuration of particles in the plane is a "ground state" if it 
achieves the minimum value for (e(C) - ~,jmflj(C)) amongst all periodic configura- 
tions C; the mj are fixed; see [20]. (From now on energy will mean potential energy, 
as kinetic energy is trivially minimized separately.) A configuration is "quasi- 
periodic" if, for any e > 0, with the exception of the part of the configuration in some 
area of relative density less than e, the configuration is (doubly) periodic; the smaller 
the e, the larger the period. 

Throughout this paper we use a fixed coordinate system in the (complex) plane. 
In particular we will often refer to the unit triangular lattice {mexp( in /3)+ ntm, 
n = 0, _+ 1, + 2... }, and we denote such points by their coordinates; (m, n) stands for 
m exp(in/3) + n. 

3. The Models 

We start with Berger's fundamental result [24]--an example of N unit square"tiles" 
with top edges parallel to the real axis, copies of which, using translation alone and 
with given matching rules (which describe which edges may abut, corner to corner) 
can tile the plane but only quasiperiodically, not periodically (nor even periodically 
in a single direction.) (Since Berger's work various persons, e.g. Ammann [25], 
Penrose [25] and Robinson [25, 26], have produced examples with lower values of 
N; the lowest value I am confident of is N = 16, due to Ammann [27,28].) 

Using any such example we construct N regular hexagonal tiles of edge length 3, 
one hexagon for each of the N squares. Fixing the hexagons with two edges always 
parallel to the real axis, we impart to the top (respectively bottom) edge of each 
hexagon the matching rules of the top (respectively bottom) edge of the correspond- 
ing square, and to the upper left (respectively lower right) edge the matching rules of 
the left (respectively right) edge of the corresponding square. Finally we allow any 
upper right edge to abut any lower left edge. 

It is easy to see that, with the given matching rules, translations of copies of the 
hexagons may tile the plane but only quasiperiodically, not periodically. 

Next we define 19 different "types" of "atom" for each hexagonal "molecule" as 
follows. Centering one of the N hexagons on the point (0,0), the 19 lattice points 
covered by the hexagon define the 19 atom types, each one henceforth labelled by the 
type of molecule it is associated with and by its defining coordinates with respect to 
the center of that molecule. For example (3;(2,0)) represents the atom type 
associated with the top right corner of the third type of hexagon. So we have 19N 
different types of atoms. Arbitrary numbers of each of these atoms will eventually be 
allowed to be positioned independently in the plane, with two body interactions 
defined as follows. 

The interaction between two atoms will depend only on their types and their 
separation; for each pair of types the interaction will be one of the following three 
functions of their separation r. 

f +o% 0 _ < r < l  
V1-- ~ ( r -  1.15)/~.15), 1 -<r-< 1.15 

[0, 1.15 <r, 
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( + ~ ,  O < r < l  
- 4 ( r - 1 ~ 1 5 ,  1 < r ~ 1 . 1 5  

1/~ = ](r - 7/4)/15, 1.15 < r < 7/4 
[0, 7/4 < r, 

+oo,  0 = < r < l  
V3= 0, l__<r. 

For each given atom type A (e.g. (3;(2,0))) we must define through which of these 
interactions such an atom interacts with each other atom type B. To do this, place A 
at the point in the plane with A's defining coordinates (i.e. (2, 0)) and place one of 
each of the other 18 atom types associated with A's molecule (call this molecule T) at 
its coordinates. We now place other atoms near these, again in groups of 19 
associated with molecules, as follows. The group of 19 atoms associated with tile W 
may occupy the 19 lattice sites centered at (5, - 2), each at the position which is the 
translation by (5, - 2) of its coordinates, if and only if the bottom edge of tile W may 
abut the top edge of tile T by the matching rules. Similarly, the 19 atoms associated 
with tile U may occupy the lattice sites centered at (2, 3) if and only if the lower left 
edge of U may abut the upper right edge of T. Continue for sets centered at ( - 3, 5), 
( - 5, 2), ( - 2, - 3) and (3, - 5). Then atom A interacts through 1/1 with an atom of 
type B if and only if B appears at distance 1 from (that first) A in any of the above 
allowed constructions. Atoms A and B interact through I/2 if and only ifB appears at 
distance 31/2. Otherwise A and B interact through V 3. The chemical potentials for the 
19N atom species will have a common value m ~ 0. 

Now we allow arbitrarily many of each atom type to independently occupy 
positions in the plane (not just lattice sites.) For any (doubly) periodic (locally finite) 
configuration C the energy density e(C) and particle density d(C) can be computed. 
We will show that in a ground state atoms automatically form hexagonal molecules, 
which can effectively be thought of as interacting so as to form a nonperiodic array. 
Since the atoms have a hard core, the hexagonal molecules (with atoms at the 
corners and in the interior) do not actually form a tiling but are separated and shifted 
in a simple way from a tiling. 

Theorem 1. The infimum f of (e(C)-  md(C)) over periodic configurations C is not 
attained at any periodic C, but is attained at some quasiperiodic configuration. 

Before we begin the proof we need to analyze a simpler system of one species of 
"new particles" with interaction F 1 + F 2 and chemical potential m. The following is 
of independent interest. 

Theorem 2. Assume one species of particle in the plane with chemical potential m' > 0 
and interaction V'(r) satisfying 

V'(r)= + ~ ,  O < r < l ,  (1) 

V'(r) is strictly increasing on the interval [1,c], 
where c is some fixed number, 31/2 < c < 1.9, (2) 

V' (r )  = O, c < r, (3) 

V'(1) = - 1, (4) 

V'(r) > - 0.04, 1.15 < r < c. (5) 
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Then the infimum f '  of ( e( C) - m'd( C) ) over periodic configurations C is attained at the 
C consisting of the unit triangular lattice. 

Proof We begin with a lemma. 

Lemma. The minimum energy of interaction of a single particle P with arbitrarily 
many other particles, all pairs with separation at least 1, is obtained when P interacts 
with exactly twelve particles; six at distance 1, six at distance 31/2. 

Proof of the Lemma. By compactness there exists a configuration C' achieving the 
minimum interaction energy with P. From the separation restriction C' cannot 
contain more than six particles within distance 1.15 of P. Using (3) and the 
separation restriction a crude area argument shows that P can interact with at most 
24 particles. Therefore using (5) C' must have six particles within distance 1.15 of P. 
From (2) these six must actually be distance 1 from P. Then using the range of V' it 
follows that P can interact with at most six more particles, one in each "valley" 
between pairs of those nearest to P. Finally, again from (2) these second six particles 
must be distance 31/2 from P. • 

Now note that in any periodic configuration C 

(e(C) - re'd(C) = { ½ F, jE(P j ) -  m'N "]{ N \ .  ~ ] \ ~ - j ,  (6) 

where { P j} are the particles in some unit cell of C, E(Pj) is the energy of interaction of 
Pj with all other particles in C and N (respectively A) is the number of particles in 
(respectively the area of) the unit cell. Using the lemma, the first (negative) factor on 
the right-hand side of (6) is minimized and using [29] the second (positive) factor is 
maximized, when C is the unit triangular lattice. This proves Theorem 2. • 

Proof of Theorem 1. The energy between any pair of atoms at given positions 
cannot be lower than the energy between a pair of new particles at those positions. 
Sof>->_f'. However by using a nonperiodic tiling C" it is possible to place the atoms 
so as to make e(C")- md(C")=f', so f = f ' .  We will now prove by contradiction 
that there is no periodic configuration C such that e(C) - md(C) = f  Assume C is 
such a periodic configuration. By the same argument as in Theorem 2 we see that the 
positions of the particles in C form a unit triangular lattice with every pair of atoms 
separated by 1 interacting through 1/1 and every pair separated by 31/2 interacting 
through 1/2. We have thus reduced the problem to that of a lattice gas version of the 
model. The last step is then very similar to that in [23], so we only outline the 
argument. We show that C can be decomposed into disjoint "molecular" groups of 
19 atoms in the same spatial relationships as in their definitions (with the possible 
exception that all the molecules may be rotated and/or reflected in the same way), 
and the molecules obey the matching rules. This contradicts the periodicity of C and 
completes the proof. • 

4. Stability 

Though we could generalize the above interactions to some extent, we do not know 
whether or not every sufficiently small change in the interactions preserves the 
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qualitative result. One way to at tack this stability problem, at least for lattice gas 
models, is by means of  the Fract ion Space introduced in [21]. For  simplicity we 
will work with the two-dimensional  tr iangular lattice, but  the ideas generalize 
easily. Let vl, v2 and v3 be three unit vectors in the lattice, pairwise 120 ° apart. 
Assume N species of particles can occupy each lattice site, with nearest neighbor  
interactions in the directions of  the vj. For  each doubly  periodic configurat ion C of  
particles associate the ( 3 N 2 +  N)-component  vector f(C) whose components  are 
defined as follows. The first N components  are the frequencies with which each of the 
N species appears in C. The next N 2 components  are the frequencies with which each 
of the N 2 pairs of  species appear  as nearest neighbors in C in the direction of  vl (the 
order in the pair is important);  the next N 2 components  similarly refer to the 
direction v 2 and the last N 2 to v 3. It is easy to check that  the closure _P of F = {f(C) IC 
is periodic} in R 3N2+N is bounded  and convex. The support ing hyperplanes to F 
naturally correspond to the possible nearest neighbor interactions, together with 
chemical potentials, and the exposed points of F represent certain features of  the 
ground states. If, as seems quite possible, F is a polyhedron,  this would imply a great 
deal of stability in the crystal problem. For  instance, convert ing the lattice gas 
version of the main example in this paper  into a nearest neighbor model  (by defining 
new lattice sites in place of sets of  three original lattice sites as in [19]), the 
support ing hyperplane corresponding to the interaction contains a unique exposed 
point  in F/F. If  F were known to be polyhedral  we could vary the interaction 
(hyperplane) while preserving the nonperiodici ty of  the ground state. We note that  
the corresponding polyhedron problem for one dimensional models has an 
immediate positive solution for all N from [19]. 

Acknowledgements. It is a pleasure to acknowledge useful conversations with Clifford Gardner and 
Robert Maier. 
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