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Summary: A quadratic Box-Cox methodology is presented for choice of flexible functional form that 
includes consistent computation of variance estimates. Empirical viability of the procedure is inves- 
tigated by specifying a dual profit function using highly aggregated U.S. agricultural data. Condi- 
tional and unconditional variance estimates for the parameters are compared and contrasted. Like- 
lihood ratio tests are utilized to discriminate among the generalized Leontief, normalized quadratic, 
translog, and square-rooted quadratic functional forms. Statistical results indicate that the square- 
rooted quadratic is the preferred choice of functional form for these data, followed by the normal- 
ized quadratic. 
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1 Introduction 

Quadratic Box-Cox models (QBCM) have become increasingly popular for choos- 
ing among nested locally flexible functional forms (LFFF) such as the general- 
ized Leontief, quadratic, and translog (e.g., Berndt and Khaled, 1979; Appel- 
baum, 1979; Blackley et al., 1984; Dagenais et al., 1987; Rasmussen and Zuehlke, 
1990). Grid search or gradient methods have generally been employed to obtain 
parameter estimates. However, econometric evidence (e.g., Seaks and Layson, 
1983; Spitzer, 1982a, 1984) suggests that standard applications (e.g., SHAZAM, 
SAS) of both methods may render inconsistent t-statistics of the Box-Cox 
parameter estimates. 

In this paper, a QBCM is programmed for a dual profit function of agricul- 
tural production in order to choose among alternative nested LFFFs. In order 
to obtain consistent estimates of the standard errors, it computes the variance 
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of the parameters from the Hessian matrix. Emphasis is given to the fact that 
choosing a L F F F  is seldom an independent research objective, Most often, 
precise estimation of individual parameters and variances is also a concern. 
Therefore, correct application of likelihood ratio tests and accurate computa- 
tion of all parameter variances are essential for correctly determining the preci- 
sion of parameter estimates. 

The paper is organized as follows: Procedures for more accurately computing 
variances of QBCM parameter estimates are developed in the next section. They 
are followed in turn by a description of the data and estimation details, a discus- 
sion of the empirical findings, and the conclusions. 

2 Methodology 

A functional form is considered locally flexible if it can reflect any combination 
of economic effects at a particular point. However, LFFFs  are usually well 
behaved only over a limited range of points (Despotakis, 1986). Because no 
single functional form is unequivocally superior with respect to all theoretical 
and empirical criteria, this study focuses on parametric testing to discriminate 
among LFFFs nested within the generalized Box-Cox. Among the second-order 
Taylor expansions (LFFFs) nested within the QBCM as specified in this paper 
are the translog (TL), generalized Leontief (GL), normalized quadratic (NQ), 
and square-rooted quadratic (SRQ) functional forms. Statistical discrimination 
among them is possible by testing for the validity of alternative restrictions on 
the parameter transformation of the QBCM. 

For a dual profit function, let the QBCM be defined as follows: 

Y(6) = ao + c(X(2) + .5X(2)'flX(2) + g , (1) 

where X is a vector of output and variable input normalized prices and fixed 
input quantities; Y is the level of normalized profits; 6 and 2 are power transfor- 
mations; ao, a, and fi are conformable parameters (scalar, vector, and matrix, 
respectively) to be estimated; and e is a column vector of random error terms. 
Profit and prices are normalized by an output or variable input price, or a linear 
combinaton of them. This normalization maintains linear homogeneity of the 
profit function in prices regardless of functional form. 

Y(6) and X(2) represent the transformations: Y(6) is (y2~ _ 1)/25 if 6 r 0 
or In Y if 6 = 0, and X{2) is (X ~ 1)/2 if 2 # 0 or In X if 2 = 0. By utilizing 
l 'Hopitars rule, the transformations are continuous around zero. Therefore, as 

= it -+ 0 the QBCM becomes the TL functional form: 

l n Y = a o + a ' l n X + . 5 1 n X ' A t n X + e ,  . (2) 

At a = it = .5 the QBCM becomes the GL functional form: 
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Y = bo + b ' X  "~ + . 5 ( X 5 ) ' B X  "5 + ~2 . 

At 6 = .5 and 2 = 1 it is the NQ functional form: 

Y = Co + C 'X  + . 5 X ' C X  + e 3 . 

At 6 = 2 = 1 it is the SRQ functional form: 

Y = [d  o + 2 d ' X  + X ' D X ]  "5 + ~,, . 

(3) 

(4) 

(5) 

Assuming that there exists some 6 and 2 for which the random term for 
equation (1) is approximately normally distributed with mean zero and variance 
a 2, the concentrated log-likelihood function can be written as: 

T 
L(O; X ,  Y)  = K - T / 2  In o "2 + (26 - 1) ~ In Y~ , (6) 

i=1 

where 0 = (,, fl, 6, 2), K is a constant, and T is the number of observations. 
From this log-likelihood function one can derive the first and second-order 
conditions to be utilized in estimation of the asymptotic variance-covariance 
matrix, { -  O2L/OOOO'} -1. Computation of this matrix permits estimation of the 
unconditional parameter variances. 

To estimate the QBCM, re-specify equation (1) as follows: 

Y(6) = x(,~)/~ + ~ ,  (7) 

where X(2) is the design matrix conformed as 

X(A) : XT](t~ ) XTin(.~) XTIO~)XTI(I~) XTI(~;XTn(~) XT2(~)XT2("~) XTn(~)XTn(I~)-J 
(8) 

e and Y(6)  are column vectors of order (T x 1), X(2) is a T x (1 + (n + 1). 
(n + 2)/2) matrix of independent variables, and fl is a (1 + (n + 1)(n + 2)/2) x 1 
column vector of parameters. 

To maximize the concentrated log-likelihood function (6) let ex = ~/02,  exx 
= 02e/63)~ 2, e a = Oe/O6, ea,~ = 0 2 8 / 0 6  2, and X~ = OX(2)/O2. Hence, the required 
first-order conditions are: 

OL/Ofl = X ( 2 ) ' e / o  2 = 0 , (9) 

T 

8 L / S J  = 2 ~ In Y / -  e'e~/o z = 0 , (10) 
i=1 

8 L / 8 2  = --  e 'e~/a 2 = 0 . (11) 

For  these conditions to hold, the second-order conditions require that the 
Hessian matrix for the unconditional variances, 

V X(2)'X(2) X(2)% -(X/~a + X(2)~a) 
02L/OOO0 ' = - l/a 2 [ (e'e,, + e;e,) - 4T-Xg'e, Z L ,  In Y~ e,'e z (12) 

[_ symmetric - (e 'e~ + e]e~) 



642 F.S. Orneias et al. 

be negative definite. The inverse of the negative of this matrix is the estimated 
covariance matrix of 0 = (/3, 6, 2). Its dimensions are (3 + n(n + 3)/2) x (3 + 
n(n + 3)/2). 

Maximization of equation (6) can be accomplished by using nonlinear estima- 
tion (e.g., Newton-Raphson or modified Newton nonlinear procedures with the 
dependent variable scaled by the geometric mean [Zarembka, t974; Spitzer, 
1982b]) or iterative OLS. In iterative OLS, a bi-dimensional grid search for the 
power transformation can be implemented to obtain/3* = (X(2)'X(2))-IX(2)'Y(~). 
Variances and t-statistics of the parameter estimates not conditional on  ,~ or 
are calculated for both methods using matrix (12). 

3 Data and Estimation 

The procedure outlined in the previous section was applied to (t) using Ball's 
(1988) annual U.S. agricultural data for the period 1948 79. Independent vari- 
ables included three aggregate expected output prices (for grams, other crops, 
and livestock and fluid milk), one fixed-input quantity (for self-employed labor), 
and one aggregate variable-input price (for all other inputs). Time was included 
as a proxy for disembodied technical change. 

Linear homogeneity of the profit function in prices was maintained by nor- 
malizing profit and output and variable input prices by grain price. Because of 
high collinearity, the squared terms on the fixed input and time variables were 
deleted from the model specification as were the interaction terms between other 
crops and time and between self-employed labor and time. Thus, the second- 
order Taylor expansion is complete in the prices of output and variabie inputs 
but is incomplete in the fixed input quantity and in time. 

Computer programs (available on requestj were written using SAS PROC 
MATRIX to estimate the QBCM in its quadratic form with different power 
transformations for the response and explanatory variables and to compute 
unconditional variances. The QBCM and four alternative LFFFs  {TL, GL, NQ, 
and SRQ) were estimated with iterative OLS. A bi-dimensional grid search for 
both power transformations was performed using equation (1); 6 and 2 were 
iterated between 0 and 2.5 in increments of .01. The QBCM was also estimated 
with a Newton-Raphson program and obtained similar results. 

To discriminate among the four LFFFs,  a likelihood ratio test was utilized. 
Each functional form test required that the power transformations, 6 and 2, 
satisfy the relevant restrictions. The null hypotheses were 6 = 2 = 0 for the TL, 
6 = )~ = .5 for the GL, 6 = .5 and 2 = 1 for the NQ, and 6 = 2 = 1 for the SRQ. 
The alternative hypothesis in each case allowed the unrestricted parameters of 
the power transformations to take on values that maximized equation (6). 
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Table 1 reports the statistical results for choice of functional form. The square- 
rooted quadratic and the normalized quadratic failed to be rejected at a .05 
significance level. At a significance level of .01, only the TL would be rejected. 
Since the square-rooted quadratic had the lowest value for the test statistic, it 
may be regarded as the preferred choice and is followed by the normalized 
quadratic. 

Table 2 presents unrestricted QBCM estimates along with their conditional 
(on 2 and 6) and unconditional standard errors. All estimated first-order param- 
eter terms (al - a s )  have the expected signs (i.e., positive for output prices, 
negative for variable-input price, positive for fixed-input quantity, and positive 
for time). Estimated second-order terms (flo) are also consistent with the expec- 
tation that the profit function is convex in prices at the point of approximation. 
Conditional standard errors for both sets of estimates were computed using a 
maximum likelihood estimated variance. 

At a 5 percent significance level, nearly half the parameters were judged statis- 
tically significant using the inappropriate conditional standard errors. Although 
caution must still be exercised in interpreting any standard errors since some 
statistics are not invariant to scale of the regressors (Spitzer, 1984), only 6 and 2 
were found to be statistically significant when the unconditional standard errors 
were used. Thus, the parameter estimates are less precise than the conditional 
variances would suggest. These results agree with the findings of Blackley et al. 
(1984) and Spitzer (1982b) for the linear generalized Box-Cox. Some previous 
studies using the Box-Cox transformation for selection of functional form may 
have incurred a serious statistical fault utilizing grid search and/or approxima- 

Table 1. Log-likelihood results 

Locally Transformation Log-Likelihood Likelihood 
Flexible (6, 2) Function Value Ratio Test ~ 
Functional 
Form 

Translog (0, 0) - 27.9276 16.50 
Generalized 
Leontief (.5, .5) -22.8537 6.35 
Normalized 
Quadratic (.5, 1) -21.9977 4.64 
Square-rooted 
Quadratic (1, 1) -21.0033 2.65 
Quadratic 
Generalized 
Box-Cox (.88, 2.19) - 19.6744 

~Critical value of LRT=--2(L(6",2")- L(6,2))~Z2..o5 = 5.99, where 6* and 2* are the 
unrestricted power tranformations 
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Table 2. Parameter and standard error estimates from the iterative OLS estimation of the quadratic 
generalized Box-Cox 

Parameter" Iterative Conditional b UnconditionaF 
OLS Standard Error Standard Error 
Value 

~o 201.69 24.27 267.16 
~1 1041.26 258.26 1747.46 
~z 4811.94 1478.68 8004A3 
~3 --2354.03 547.56 3885.21 
~4 194.35 114.45 368.59 
a5 3.40 5.37 7.96 
flll 917.77 1221.52 2146.59 
fl22 96219.00 37567.70 162740.00 
fi~3 11630.60 3596.50 21343.2 
fl12 7856.70 5186.18 13644.00 
fix3 -1899.24 1822.54 4446.65 
ill* 350.96 194.56 608.29 
ills 13.49 38.29 53.93 
fl2s -28806.50 10081.80 48727.70 
flz4 -1568.27 1131.87 2783.58 
fl34 932.76 374.50 1634.70 
fl35 --41.44 48.82 95.39 
3 .89 n.a. .2388 

2.19 n.a. .2955 

n.a. means not applicable 
a Parameter codes: ~0-intercept; ~l-livestock and fluid milk price; az-other crops price; cq-vafiable 
inputs price; ~a-fixed input quantity; as-time variable; fll a-square of livestock and fluid milk price: 
fl2z-square of other crops price; f133-square of variable inputs price; flo (i = 1, 2, 3; j = i . . . . .  5; i # j)- 
cross products (interaction terms) among prices, fixed input quantity, and time; 6-power transform- 
tion for profit; ,~-power transformation for the explanatory variables except time 
b Conditional statistics were computed by maximizing equation (6) in a bi-dimensional grid search 
for 6 and 2 using iterative OLS 

Unconditional statistics were computed by expanding the OLS variance-covariance matrix to 
conform the full Hessian matrix (12) 

t ions  of the Hess i an  m a t r i x  to c o m p u t e  ( i n a p p r o p r i a t e  cond i t i ona l )  va r iances  of 

the p a r a m e t e r  es t imates  because  they  were i ncons i s t en t  e s t ima to r s  of  the  t rue  

var iances .  

5 Conclusions 

Based  o n  the d e v e l o p m e n t s  of  Spi tzer  (1982a, 1982b, 1984) for the  l inear  gener-  
al ized Box-Cox ,  a m e t h o d o l o g y  has  b e e n  p resen ted  to es t imate  the  q u a d r a t i c  
genera l ized  B o x - C o x  a n d  o b t a i n  u n c o n d i t i o n a l  va r i ance  est imates .  T h e  m a i n  
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concerns of this paper were selection of a LFFF, computation of unconditional 
variances, and empirical application to U.S. agriculture. 

Empirical results indicated that (a) the popular translog functional form was 
strongly rejected for the profit function specification of U.S. agriculture, (b) 
unconditional variances were much larger than conditional variances for some 
parameters and (c) the power transformations were statistically significant. Cur- 
rent software packages (e.g., SAS, SHAZAM) require modification in order to 
conveniently handle different power transformations and compute uncondi- 
tional standard errors. With convenient software, functional form tests could 
become common practice in exploratory analysis for model specification. 
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