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Abstract. We provide here the details of the proof, announced in [1], that in 
d > 4 dimensions the (even) 4) 4 Euclidean field theory, with a lattice cut-off, is 
inevitably free in the continuum limit (in the single phase regime). The analysis 
is nonperturbative, and is based on a representation of the field variables (or 
spins in Ising systems) as source/sink creation operators in a system of random 
currents - which may be viewed as the mediators of correlations. In this dual 
representation, the onset of long-range-order is attributed to percolation in an 
ensemble of sourceless currents, and the physical interaction in the ~b 4 field - 
and other aspects of the critical behavior in Ising models - are directly related 
to the intersection properties of long current clusters. An insight into the 
criticality of the dimension d = 4  is derived from an analogy (foreseen by 
K. Symanzik) with the intersection properties of paths of Brownian motion. 
Other results include the proof that in certain respect, the critical behavior in 
Ising models is in exact agreement with the mean-field approximation in high 
dimensions d > 4, but not in the low dimension d = 2 - for which we establish 
the "universality" of hyperscaling. 
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1. Introduction 

Expansions in geometrically identified objects (like "contour" surfaces, strings, 
lines and sheets of flux) are common in perturbative treatments of various theories. 
In this note I present a nonperturbative geometric analysis of systems of Ising spins, 
and related theories. The class includes Ising models with pair interactions, 72:(2) 
lattice gauge models, and the Euclidean q5 4 field theory - taken here as the 

continuum limit of lattice system with the action (~. ¢4 + BCZ + C) + the kinetic 
term. 

The main results can be read off the table of contents. In essence, we can now 
prove, and explain, a number of basic features of the critical behavior of Ising 
models and q~4 fields, in high and low dimensions. High - means above the 
dimension d = 4, where various aspects of the critical behavior are shown to agree 
exactly with the predictions of the mean-field approximation, and where we prove 
that the continuum limits of the ¢4 Euclidean field theory, in the single phase 
region, are inevitably Gaussian (i.e. exhibit no physical interaction). For the low 
dimension d = 2, we offer a simple explanation of the non-Gaussian behavior in 
Ising models, and a general proof of hyperscaling. 

The multiple correlations of spins, or fields, in these systems can be represented 
as the result of a mediation by an ensemble of random currents, on which the spins 
act as external sources. In this representation, the effective interaction, measured 
by the deviation in the high-order correlations from the Gaussian behavior, can be 
traced to the probability of intersection of current clusters. The criticality of the 
dimension d = 4  is then strongly suggested by the fact that the intersection 
probability of two Wiener paths (Brownian motion) vanishes exactly for d > 4 (see 
Appendix I). Such intuition is present in the early ideas of Symanzik [2] (which 
were brought to my attention by T. Spencer). 

The main results discussed here were announced in [1]. Since then they found 
an extension to the two-component ¢4 field in the work of FrShlich [3], who used 
an independent argument. 



Geometric Analysis of ~b* Fields and Ising Models 3 

In Part III, which appears separately, we discuss some well-known problems 
which have a natural formulation in terms of the properties of random surfaces. 
These, however, are not yet that tractable. Our main purpose there is to motivate, 
by partial results, a further study of stochastic-geometric methods. Included there 
is also a unified derivation of various "classical", and some new, correlation 
inequalities. 

Readers who seek a quick access to the main field-theoretical results may start 
directly at Sect. 10, and - after reading Proposition 10.1, proceed to Sects. 13 and 
14 (where use is made of Propositions 11.1 and 12.1). 

Part I. Ising Systems 

2. A System of Random Currents Associated with the Ising Model 

The first part of this paper concerns equilibrium states of Ising models, with 
ferromagnetic pair interactions (at zero magnetic field). The systems consist of spin 
variables, a x = +_ 1, which are associated with the sites of a set, A. The interactions 
we consider are represented by the Hamiltonian function 

1 
H = -  ~ Y'. Jx.,axG,, (2.1) 

x, y~A 

with some fixed couplings Jx, y--> 0. Extension of our analysis to nonferromagnetic 
cases, and to higher than two-body interactions, is suggested by the methods used 
in Sects. 16 and 18. 

The most familiar Ising model has the nearest-neighbor interaction on a 
d-dimensional cubic lattice, i.e. A=2~ d and 

Jx, y=~lx-yl, 1 • 

However in this section, and in the next one, the structure of A plays no role. 
States of the system are given by probability measures on the space of 

configurations - the "thermodynamic equilibrium", at the inverse temperature/~, 
being described by the Gibbs states. Specifically, for a finite system the correspond- 
ing expectation value of functions of the spins are : 

( f ) a  ----- trA f(a)e - Mt(a)/tr a e -/~R(~), (2.2) 

where tra represents the average [ I ( ~  ~+ ). For infinite systems, e.g.A =71~, 
x e A  e x  1 

the Gibbs states are defined by limits of this expression. The subscript in ( - ) a  
would often be omitted. 

The critical behavior in the above systems is related to the spontaneous 
breaking of the global symmetry, a--, - a. The symmetrical states defined by (2.2) 
correspond to the free boundary conditions. One may break the symmetry at the 
boundary, by restricting the average to spin configurations which take there only 
the value + 1. These states are denoted by ( - )a, +" (Other states are considered in 
Sects. t6 and 17.) 
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We shall now discuss another representation for the states ( - ) A "  Ultimately, 
we are of course interested in the infinite volume limits, e.g. A = 7&. However, since 
the convergence in the standard setup is well understood, we shall discuss the 
alternative representation in finite volumes, and gloss over its direct formulation 
for infinite systems. The relations which would be derived for spin correlations 
hold, by continuity, in the infinite volume limit. 

The starting point is a variant of the expansion of exp(- /3H)  in characters of 
2[(2) A, which has been used to set a high temperature expansion (although we 
approach it nonperturbatively, avoiding any problems of convergence). We regard 
pairs of sites as bonds, b = {x, y}, with Jb --- Jx, r The partition .(unction, of a finite 
system, is then 

ZA=trAe-Pn=tra I] e~J~*x*Y. (2.3) 
b=-{x,y} 

Let us expand, for each bond, 

exp(/~Jb~xcr,)--= ~ (r;x~r,)"b(lgdYb/nb! 
nb=O 

The substitution of this expansion in (2.3) gives: 

ZA = 2 w(n)tr a H a~ ~xx'b, 
n xeA 

where n varies over all the functions which assign an integer to each bond of the 
lattice, and 

w(n) = H (flJb)nb/nb ! (2.4) 
b 

[Notice that bonds with J~ = 0 can be ignored, since for such bonds the weights 
w(n) produce the restriction: nb=0. ] The average (tra) in Z A is easy to carry out. 
For  each n its value is either 0 or 1, the latter being the case only if ~ n b is even for 
each x. Thus b~ 

Z A =  2 v¢(n), (2.5) 

where 0 is the empty set and 

0n= { x e A f ( -  1)~xx'~ = - 1 }. (2.6) 

It is convenient to regard each n as a configuration of f lux numbers, 
representing a current through the lattice bonds, and 0n as the set of sources 

| 

i 
m 

Fig. 1. A possible representation of n with c~n = 13 

|ram! 

ami 
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( -s inks)  for the corresponding current. Specifically, it is easy to see that each n 
with On= 0 can be obtained (without uniqueness) by summing the fluxes of a 
collection of eddy currents, which are closed loops formed by lattice bonds, 
allowing the loops to repeat any bond (Fig. 1). For infinite systems one should 
include currents which extend to oe. 

For correlation functions, i.e. expectation values [in the sense of (2.2)] of 
O'A = H (rx' A C A, o n e  may follow, mutatis-mutandis, the derivation of (2.5), to 

x ~ A  

obtain 
(a~)A= ~n~ w(n)/~n~= ~ w(n). (2.7) 

Similarly, the ( - ) a ,  + state is given by 

c~n\OA = A 

1 
The quantity - ~ l n Z  A is usually regarded as the free energy of the spin system. 

Were we to regard it instead as the free energy of the system of(eddy) currents, (2.7) 
would tell us that @a)  = exp(-fl(~AF), where 6aF is the increase in the free energy 
of the system of currents due to the insertion of sources at the points of A. 

Notice that configurations n with On = {x, y} (in a finite system) can always be 
represented as sums of fluxes of a current which runs between x and y and a system 
of eddy currents (Fig. 2). The same is true for configurations with ~n\0A = {x, y}, 
provided one regards two current lines which connect to OA as connected (i.e. 
regard 0A as a single point). 

For low values of/3, the combined weight of configurations which have long 
current lines connecting to any given point, is small. This observation leads to high 
temperature expansions which, for example, prove that for translation invariant 
interactions over A = ;ga of finite range 

(6x~y) < e- mix- Y], (2.9) 

with m = m(fi) > 0, provided fi < fi~. (We define m(fi) and tic, by optimizing the above 
inequalities ; a simple rederivation of (2.9) and of the continuity of re(t) [4] is given 
in [5].) Such expansions suffer from problems of convergence even below fi~. As 
could be expected, this phenomenon is related to the formation of long current 
lines. In the next section we shall make such a relation precise. 

In general, our approach to the study of Ising systems is to utilize the 
properties of ensembles of currents, restricted by ~n=0, with the probability 
weights w(n)/Z a. As already stated, we shall not discuss here the limiting states of 
currents on infinite lattices ; these can be defined and are of interest (- exhibiting a 
different form of symmetry breaking at high temperatures, fl < fl~, see Appendix II). 
Rather, we derive properties of correlations in finite volumes and rely on the 
continuity as A ~ 7/a. 

X 
Fig. 2. A representation of a current with On = {x, y} 

Y 
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3. The Long Range Order as a Phenomenon of Percolation 

The representation (2.7) of spin correlations can be used in a number of ways. In 
this section we introduce a method which leads to a simple geometric in- 
terpretation of a variety of quantities of the spin system. The resulting formalism 
offers an insight into the critical behavior in high and low dimensions, and 
provides simple means to prove various properties of the model. Another method 
to extract some of this information from (2.7) is discussed in Sect. 9. 

For a given configuration of (integer) flux numbers m = {rob} let us decompose 
the set of sites of A to clusters which are connected by bonds with nonvanishing 
m b, and let cfm(x ) be the connected cluster containing the site x6A. Thus the 
condition that m connects x with y is expressed by C~m(X ) = C~m(y) or, equivalently, 
by ~m(X)gy- 

We shall consider duplicated systems of two independent currents (-= flux 
numbers) n 1, n 2 each of which has a specified set of sources ~ni=Af, and a 
probability distribution where the probability of n is proportional to w(n). We 
denote the probability of an event F in such an ensemble by 

Prob (FIA t, A 2) = Prob IF [ ~nl = A1 / - the latter being the notation used in E 1 ]. For 
\ 

\ [0n2 =A2/ 
instance, when A~ = A 2 = 0 the probability of a pair of sourceless configurations is 
w(nl)w(n2)Z 2 [see (2.5)]. In other ensembles the probability of an admissible pair 
n 1, n 2 is 

Pr ob({n t, n2 }]A a, A 2)-- w(nl)w(n2)_/~_As w(n'a )w(n~) 

= w ( n O w ( n 2 ) / [ z ~ ( %  >(%>] (3.1) 
[by (2.5) and (2.7)]. 

In some instances we shall refer to ensembles which consist of more than two 
independent current systems nl,nz, n 3 . . . . .  This would be manifested in the 
notation by listing the source constraints - in the right order. By Prob(K) - where 
K is a condition, we refer, of course, to the measure of current configurations in 
which the condition K is satisfied. 

The first examples of the geometric identities mentioned above are described 
by the following result. 

Proposition 3.1. For all x, y, ze A 

( a~ar ) 2 = Prob (%, +,~(x) = ~.~ +,~(y)10, 0), (3.2) 

and 
(a~%) (arab) = (a~cr~) Prob(~,~ +,2(x)~yl{x, z}, 0), (3,3) 

where cg.~+,~(x) is defined as above with m = n  1 + n  2 (i.e. mb=nl,b +n2, b on each 
bond). 

Remark. Graphically, (3.2) is suggested by the fact that adding two currents with 
sources at {x, y} one obtains a sourceless current which necessarily links x with y. 
Similarly, adding two current lines linking {x, y} and {y, z} one obtains a single 
line, which necessarily passes through y as it links the sources {x, z} (Fig. 3). 
Remarkably, the weights are so adjusted that the correspondence is precise. 
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% ~ . . I  

X ~  Z y 
Fig .  3.  The  cance l l a t i on  of  sources  in Eq.  (3.3) 

The proof of Proposition 3.1 is based on the principle expressed in the very 
useful Lemma 3.2, which follows from the following combinatorial identity. 

Lemma 3.1. Let m = {rob}  be a configuration of integer flux numbers, and A, B C A. I f  
there exists k={kb} such that 0-<k<m (i.e. O<--kb<__m b Vb) and 0 k = A  then 

0=<n<m 0_<n_<m 
g n = B  ~ n = A A B  

where n varies over integer flux configurations, (m)=I-[b (m2), and AAB is the 
"symmetric difference" A~B\Ac~B. 

Proof. With the given m we associate a graph ~¢d which consists of lines connecting 
the lattice sites, with m b, b={x,y}, lines connecting each pair {x,y}. The 
assumption implies that Jd has a subgraph Y with ~S(=A,  where z s~g(  iff the 
number of edges of s f  containing z is odd. 

The left side of (3.4) equals the number of subgraphs G C J/ /such that ~G = B, 
whereas the right side counts G'CJg such that OG'=AAB. However the two 
families of graphs are isomorphic under the relation G ~ G ' = G A f ,  since 
0(GAS() = 0G&0SC and (GAdC)Ao(( = G. [] 

Remark. Lemma 3.1 appears already in [6], where it was used to derive the GHS 
inequality. Its power, however, has not been fully utilized, possibly because the 
probabilistic content of the results has not been exposed. 

Lemma 3.2. For a finite A, let {x,y}, A CA and let ~¢ be a collection of flux 
configurations over bonds of A. Then 

w(nl)w(n2) = ~ w(nl)w(n2)X[~,l +,2(x) = ~d,~ +,2(y)], (3.5) 
anl = A  0ni = AA{x, y} 

On = {x ,  y} On2 = 0 

where X [ -  ] is a characteristic function which takes the value 1 ~ the condition in 
[ - ]  is satisfied, and 0 otherwise. 

Proof. Let us change the summation variables to m = n I + n  2, n = n 2. One obtains 

y '  w(nl)w(n2)= ~ w(m)~. ( : / ,  (3.6) 
0nl =A ~ m = A A { x , y }  O-<n--<m \ n /  

~n2 = {x, y} m e J  On = {x, y} 
n l + n 2 ~ J  

where we used the facts that 

b t nl,b. J 
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and 

0(n 1 + n2) = 0nl &0nz- 

Observe now that the configurations m can be divided into the two following 
classes: 

i) Configurations for which Cgm(X)~y. For such m 

O_<n_<m 
on--- {~, r} 

Since if there is a configuration n =<m with Qn = {x, y} then Cgm(X ) 3 Cg,(x)~y; a 
contradiction l 

ii) Configurations for which Cgm(X)=Cgm(y ). For such configurations the con- 
ditions of Lemma 3.1 are satisfied with A = B = {x, y} (and AAB = 0), therefore 

2 m 2 m 

0 n =  {x,y} O n =  0 

Substituting (3.7) and (3.8) in (3.6), and then changing back to the variables 
n 1 = m - n ,  n 2 = n  we obtain 

w(nl)w(n2)= ~ w ( m ) ~  (m] 
0 n l = A  0 m = 0  O ~ n 6  m \ / n  

0n2  = {x, y} ogre(x) = ~m(Y) 0II = 0 
n £ + n2~5  ¢ m ~ J  

= ~ w(nl)w(nz)X[C~n,+n2(x)=~,+n2(x)]. [] 
Onl = AL'X{x,y} 

0n2 = 0 
n l  + n2~M 

Proof of Proposition 3.1. Let us square (2.7) and apply Lemma 3.2, with A = {x, y} 
(and AA{x, y} = 0): 

= ' ~  (°'~°'r)2 ~.~ =~x,v} w(nl)w(nz)/~n,=~/w(nl)w(n2) 
~2 =(X,y} / 0n2= 0 

0n2 = 0 

Since the last numerator is a partial sum of terms which appear in the 
denominator, the ratio is the probability that the condition cg m +,~(x) = cg,~ + n~(y) is 
satisfied in the duplicate ensemble (see 3.1 and the explanation preceding it). This 
proves (3.2). 

For @~ay)(arab) one repeats the above argument. The difference is in the 
constraint on n 1 in the numerator, which here is c3nl={x,z } (=- {x, y}&{y,z}). 
Adjusting the denominator one arrives at (3.3). [] 

Proposition 3.1 has a number of implications : 
i) It is well knowm that Ising models with a translation invariant interaction on 

gd, d>2,  exhibit Long Range Order at low temperatures (i.e. high /~). This is 
described by a uniform lower bound: 

(a~y> >= const > 0. (3.9) 
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Equation (3.2) identifies the onset of the Long Range Order (in any Ising model) as 
a phenomenon of percolation - of the set of bonds on which n 1 + n 2 ~ 0 ,  in the 
duplicate system of sourceless currents. By percolation we mean here the 
formation of infinite clusters of connected bonds, which have positive density. 

A priori, the last statement may be stronger than the occurrence of infinite 
clusters [7]. However, it follows from our next observation that for the 
translation-invariant nearest-neighbor models on 7Z d, d>4 ,  the two forms of 
percolation coincide [the same should certainly be true for d = 2, by other (yet 
incomplete) arguments]. 

ii) Equation (3.2) implies the following simple formula for the expected size of 
the connected cluster. 

E(lCgnl +.2(x)[[0, 0) = ~ (c~xa,) z , (3.10) 
y 

where we denote by E ( -  IA~, Az) the expectation value with respect to the measure 
(3.1). To prove (3.10) one just has to express: 

with 

[(g,(x)l = ~, X:,,r(m), (3.11) 
y 

cg,,(x) + ogre(y), 

substitute it in the left side of (3.10), and evaluate using (3.2). 
The quantity ~ (axar)  2 which appears in (3.10), plays an important role in our 

y 

arguments. It may also be expressed by the Fourier transform, 
G(p) = ~ eiP~(aoa~), as : 

x 

2(o-oa~)2=(2rc) -a ~ d'lplG(p)l 2 
[ - . , ~ r ]  a 

(Plancherel identity). In this form, for the nearest-neighbor model it is controlled 
(as noted in [8]) by the infrared bound of Fr6hlich et al. [9] : 

G(p) < d 1 (3.12) 

2fi ~ [2 sin 2 (p]2)] 
1 

valid for any fl at which there is no long-range-order [otherwise (3.t2) is modified 
by a 6(p) term]. Thus, if d > 4 and 

then 
1 1 

E(lCg,~ +.2(x)1t0, 0) ~ 2fl(27r)a ~- S ~jd ddp d 
[2 sin2 (Pi/2)] 

i = 1  

< oo. (3.13) 
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[It can be shown, using continuity arguments, that (3.13) is valid also for 
fl = fi~-0.] In other words, we see that above four dimensions the expected size of 
the cluster remains uniformly bounded up to the percolation threshold (!). 

iii) Since a probability is never larger than 1, (3.3) implies, by inspection, the 
special case of the second Griffiths inequality 

Furthermore, having the probabilistic interpretation 

(a~6y) ( a y ~ )  = Prob (cg.~ +.~(x)~y[{x, z}, 0), 

we may look for lower bounds on this quantity. For  instance, by a similar 
argument to the one made for (3.10) 

(a~%)(axaz)(o,a~) _ e(IB~n~ +.~(x)l] {x, z}, 0) 
y~B 

(3.14) 

for any set of sites, B C A. If B separates the sites x, z, in the sense that every path 
from x to z along bonds with Jb +0  has to intersect B, then IBc~Cg,1 +.~(x)] > 1 for 
any (nl, nz) in the above ensemble. (Since n 1 connects x with z.) This implies the 
Simon inequality [5]: 

Y~ (~%) (%~)->_ ( ~ ) .  (3.15) 
yeB 

For finite lattice models has the nontrivial that if the range (3.14) consequence 
1 ) 

correlations decay faster than Ix -y t  e ~ - I  then the decay is exponential. 

The above is a typical example, in the sense that our method offers a unified 
derivation of a variety of"classical" correlation inequalities (FKG is the exception). 
These can be presented as "evident by inspection" once the expressions are 
transformed by identities. Occasionally we would be able to obtain opposite 
bounds by bringing geometric considerations into account (Sects. 5 and 12 and 
Appendix II). 

iv) The reason that in (3.2) the probability that two sites are connected is the 
square of (%cry) is that the statement refers to ensembles of sourceless "eddy 
currents." If the two sites are connected by such a current then, when properly 
defined, there would be two paths connecting these points. 

It may be desirable to have a simpler probabilistic interpretation for (~r~ay) 
itself. For this purpose, consider an ensemble of currents with ~?n 1 = {x, z}, ~n 2 = 0. 
Here ~fn~+n~(X) looks like a random path connecting x with z, augumented by 
sourceless "current loops." As we have seen above, for the nearest-neighbor lattice 
models in ;ge, d>4 ,  these current loops are not very large at any B<flc, The 
probability for such a path to "visit y" is given by (3.3); The mean value of this 
probability, in a translation invariant system where z is averaged with the weights 
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(i.e. over distances of the order of the correlation length), is: 

~, r~- -7- - - ,  1Pr°b(C~n~ +n~(x)~Yl{ x, z}, O) 

= ~  ( ~ a , )  (ara~)/~ (a~a~,)=(a~a,), (3.16) 

where we used (3.3) and the translation invariance. 
Heuristically speaking, when cgnl +,,2(x) is approximable by a simple random 

walk with a "weak" self interaction, as we expect the case to be if d > 4, fl__< tic, one 
could expect the above probability to be similar to the well-known law for the 
corresponding Markovian random walk, i.e. 

(axar)~ (x,y), and at fi=fl~: (aoax),, ~ 1 
Ixld-2" 

While this has not yet been fully proven, in the following sections we shall 
demonstrate the power of a similar intuition. 

4. A Heuristic Explanation of the Gaussian Structure 
of Continuum Limits in d > 4 Dimensions 

Probability Theory is a Measure Theory - with a Soul 
Mark Kac 

We now focus on translation invariant systems over Zd. An infrared bound like 
(3.12), which holds for the nearest-neighbor interaction, is expected to be valid also 
for systems with finite range interactions (i.e. such that Jx_ r=0  if [x-yl >R for 
some R < ~). As we have seen, it implies that for temperatures above the threshold 
of the long-range-order (i.e. fl_<_/~c) the sourceless current loops would be "sparse," 
if the dimension is d > 4. Consider now (axl ... ax2,) for 2n widely separated points 
(the odd correlations vanish). It is expressed in (2.7) by a sum over currents with 
sources at these sites. For each such current one may organize the sources into n 
linked pairs. If the (long) linking currents intersect, the pairing is not unique. 
However, we have just seen that for d>4,  even at fl=/~c(-0), the system does not 
favor long currents, except of course those imposed by the separate sources. 
Furthermore, it may be expected, on the basis of analogy with the behavior of 
paths of the "Brownian motion," that for d > 4 these long currents miss each other. 

As an aside, let us recall that the probability for two independent Wiener paths 
(in IR d) to intersect is zero, above four dimensions, [10] (see also Appendix I). This 
probability is positive for d<4,  d = 4 being the critical dimension. At d = 4 the 
intersection probability is zero, however the probability that two paths (defined for 
t~[0, ~)) come to within distance e>0, is one for each e~e0. The intersection 
properties as well as the ]x[ 2 -d law for the hitting probability which was mentioned 
in Sect. 3) are better understood if one observes that the Wiener paths have 
"dimension" two. It is also expected that "mild" self interaction of random paths 
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(e.g. self avoidance for random walks on a lattice) does not modify their long range 
behavior (since the path's positions at two distant times would only seldom be 
close). If, in the picture described above, the effects of distant currents factorize, 
we should obtain 

(ax~ . . .~rx~)= ~ ( %  (r~j~) ... (ax a~j,.)+correction , (4.1) 
pairings 

with a small correction due to interaction (e.g. intersection) of long currents. 
Indeed we shall prove that, at least for the nearest-neighbor interactions, for d > 4 
the correction is insignificant at large separations. Removal of the "correction" 
term from (4.1) leaves it in the form of the W~ck identities which characterize 
expectation values of (centered) Gaussian variables. 

The statements about the long distance behavior are best formulated in terms 
of the rescaled correlation functions. Although small, the correlations at large 
distances are significant if the correlation length, 

~ - - - . m -  t 

is large [see (2.9)]. Since ~ diverges as/?~/3~, it is natural to consider 

S~ont, X2,)= lim (4.2) 2n IX1,  " ' "  ~2n(O'[xl r / ]  ' ' "  a[x2, ,r /])  , p-,p~ 

where x ~  IR e, and [x~t/] ~TZ e are defined by the integral parts of the components of 
xit/. In the limit (4.2) c~ and :1 are varied in a way which ensures (weak) convergence 
of, say, Sz(x , y). The picture we described above suggests that the limits (4.2) 
describe Gaussian fields, if d > 4. 

Remark. Since the lattice points in the limit (4.2) are widely separated, one may 
regard S~ °"t as describing the correlations of averages of Ising spins, taken over 
blocks which are large, yet o(t/). This explains the transition from a discrete single- 
site distribution to a continuous one. 

The above considerations also strongly suggest that in low dimensions, where 
random paths do intersect (this certainly is the case in d = 2) the scaling limits are 
not Gaussian. 

In the next sections we shall prove similar assertions, and in Part II we shall 
consider analogous limits to (4.2) which have been used in the attempts to 
construct f ield theories over the continua IR e . 

5. An Upper Bound on [L~[ for Ising Models 

For n= 2 the correction in (4.1) is, by definition, the truncated two point function 
(for the one-phase regime, fl > ~c) 

U4(xl, ..., x4)- (%. . .  % ) -  [ (%%)  ( % % )  

+ ( % % )  ( % % )  + (%~x4) (%%)] .  (5.1) 

Lemma 3.2 permits us to perform exact cancellations. The result can be described 
as follows 
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Proposition 5.1. For any (finite) ferromagnetic system 

U4(X 1 . . . . .  X4) = -- 2(a~, .., a~, )  Prob(eg,1 +.~(x ,)~x 2, x 3, x4l{xp ..., x4}, 0) 

= - 2(a~la~2 ) (ax3ax 4) Prob  (cg.~ +n2(Xl) 

=(% +,~(x~) I{x~, x~}, {x~, x,}). (5.2) 

(Notice that both expressions refer to probabilities that all four points are 
connected.) 

Remark. If  x t = x 2, by an 1 = {x 1, x2} - or  {xl, x2, x3, x4}, one should unders tand 
0n 1 = 0, or, correspondingly,  {x 3, x4}. 

Proof. The claim is trivially true if x~ = x 2 or  x ,  = x3. We assume therefore that  the 
four points are distinct. By (2.7) and (3.5) 

Z2U4(x l  . . . .  , x 4 ) =  ~ w(nl)w(n2) 
On1 = { x l ,  . . . , x4}  

0 - 2  = 0 

- [  Y~ + 2 + E w(nOw(nO 
I On1 = {xl,x2} Ont = {xl,x3} 0 - i  ={x l ,x4  
LOn2 = {x3, x4} 0 - 2  = {x2, x4} 0n2 = {x2, x3} 

= ~ w(nl)w(n2) [1 - X~I,~2(n 1 +nz)  
0"1 ={Xl,X2,X3,Xa} 

. 2 : 0  

- X,q,  x~(nl + n2) - X,q,:,,,(n 1 + n 2 ) ] ,  

X~, y(m) being defined in (3.11). Fo r  configurat ions n 1 + n 2 in which the source x I is 
connected to exactly one other  source, we obta in  for the above  expression 
[ 1 -  X - X - X ]  =0 .  The  only other  possibili ty is tha t  x ,  is connected to all the 
other  three sources, since no single source can be left disconnected f rom the rest. In  
that  case, [1 - X -  X -  X] = - 2. Therefore  

Z z U , ( x l , . . . ,  x4) = - 2 ~ w(n~)w(na)X[Cgnl + n2(x 1)~x2, x 3, x 4] 
~n l  = I x l , . . . , x a /  

On2 = O 

= - 2 ~ w(nl)w(ni)X[Cg.1 +.2(x1 ) = cg,~ + n~(x3)] ' 
Onl ={xl,x~} 
0n2 = {x3, X4} 

where the last equality follows by L e m m a  3.2, with 

J = {m(g=(xl Dx2, x3, x4}. 

Dividing each of the above  expressions by the corresponding unrestr icted sum 
over  (nl,n2), one arrives at  (5.1) and (5.2). [ ]  

P ropos i t ion  i implies, in part icular,  the Lebowitz  inequality [11], U 4 < 0, and  a 
simple lower b o u n d :  

0 > U4(x 1,'" ", x4) > - 2(a~,~rx2) (erx~a~) • (5.3) 

G l i m m  and Jaffe used an even mildly weaker  lower bound  (i.e. upper  bound  on 
[U41) to derive f ini te  upper  bounds  for the renormal ized coupling constants  [12]. 
[ In  Sect. 15, (5.3) is applied for a related result.] 
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Furthermore, since we now have an exact expression for U4, which is of 
definite sign, we are able to obtain significantly improved lower and upper bounds. 
These are expressed by Propositions 5.2-5.4. 

Proposition 5.2. For any (finite) ferromagnetic system 

2(o'xla~ 2) (ax30-j¢ 4) Prob (Cgn~(X t) ~CKn2(X3) 4=0 

]{xi,x2I,{x3,x4} ) <IU4(x i,...,x4)l (5.4) 
and 

lUg(x1 ..... x~)t <= 2 ( % % )  (%a~4) 

• Prob(Cg~l +a~(xi)c~.2(x 3) 4= 0]{xl, x2}, {x3, x4}, 0), (5.5) 

where the last probability refers to a system of three independent currents, and is 
defined by an extension of (3.1). 

Remark. The conceptual (and technical) advantage of Proposition 5.2, over 
Proposition 5.1, is that in each case it refers to probabilities of intersection of two 
random sets (current-connected clusters) which are now independent of each other. 

Proof (5.4) is a trivial consequence of (5.2) [since cg~, +~2(x)} ~ , ( x )  etc.]. (In Sect. 9 
we prove that for a proper pairing this lower bound is in fact correct up to a lesser 
factor than 3.) 

To prove (5.5) let us assume that the four points are distinct (the other cases are 
obvious). To shorten the notation we represent x~ by i, i = 1, ..., 4. A comparison 
with (5.2) shows that we have to demonstrate that 

Prob (Cdnl + ~2(1)nCgnl +~(3) + 0]{1, 2}, {3, 4}, 0) 

< Pr°b  (cg~ +n3(1)cVg~2(3) 4= 01 { 1, 2}, {3, 4}, 0) 

or, equivalently, that 

Prob(Cg.1 +.2(1)~cd.~ +.2(3) = 01{1, 2}, {3, 4}, 0) 

> Prob (cg.i +.~(1)cVd.2(3) = 01{1, 2}, {3, 4}, 0) 

- Prob(~, ,  +,2(1)cVgn~(3) = 01{ 1, 2}, 0, {3, 4}) (5.6) 

(exchanging n2~-~n3). 
Explicitly, (5,6) is the following statement (obtained after multiplying it by Z~). 

On1 ={1,2} 
gn2={3,4} 

~n3 = 0 

~'. w(nl)w(n2)w(n3)X[Cgn, + n2(1)~cgn3(3) = 0]. (5.7) 
0nl ={1, 2} 

On2 = 0 
~n3={3,4} 

To compare the two terms, let us consider the partial sums which correspond to 
fixed" 

i) n i 
def 

ii) m=n/+n3, 
iii) cg~ +~(1). 
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Notice that the two sums have identical source constraints on m. By the 
construction used in the proof of Lemma 3.1 - with each m we associate a graph 
JAL. The corresponding partial sum for the left-hand-side (LHS) of (5.7) is then 
w(nl)w(m ) x the number of subgraphs GCJ#, corresponding to n2, which are 
consistent with the condition iii) and have the sources 0G= {3,4}. On the right- 
hand-side (RHS) one counts the sourceless graphs G'CM/{ whose complement 
satisfies the condition imposed by: 

iv) ~ . ,  +.2(1)c%3(3) = 

and has the sources OJg\G = {3, 4}. 
For each of the abovementioned graphs J¢{ there is a subgraph ?CJg  

describing a path from x 3 to x4, i.e. 07 = {3, 4}, which avoids c~., +,=(1). The graph 
7 may be chosen in a way which depends only on n I and the set cg,, +.2(1) . Repeating 
the symmetric difference argument which was used in the proof of Lemma 3.1, we 
associate with each graph G which is counted in the RHS the graph G '=yAG 
which contributes the LHS. Not all the relevant graphs would be obtained this 
way, since the constraint iv) plays a role only for the RHS, however the mapping 
G~G' is invertible. Thus (5.7) holds even at the level of the above partial sums. 

A side remark: (5.7) can be also proved by an alternative argument which uses 
the Griffiths inequality, [] 

The upper bound (5.5) leads to the following new correlation inequality: 

Propos i t i on  5.3. In a ferromagnetic system, for every four points 

t U4(x 1,'" ", x4)l =< 2 ~ @x,a>,> < ~ , >  <~x3av> @~4~,,>. (5.8) 
Y 

Proof. Let us first prove (5.8) for finite systems, where the right side of (5.5) is 
already well defined. For (nl, n2) for which ~,,1 +-3(x0c~g-2(x2)4: 0, the size of the 
intersection is certainly not less than 1. Therefore 

Prob (c#,1 + n3(X 1)¢~(~n2(X2) # ~[{X1, X2} , {X3, X4}, 6) 

< E(lCg., +.,3(xt)m~,,2(x2)li{xa, X2}, {X3, X4}, 9) 
< E(IC#~1 +.3(xl)~c#. 2 +,,(x2)i { {xa, x2}, {x3, x4}, 9, 9) 

V 
<%%5 <%~5 

In the last step we assumed <a~,,~x~><a~a,~,>+O and used (3.11) and (3.3). 
Substituting this result in (5.5) we obtain (5.8). 

x4'~ / x3 
IU41<2y~ ~ ,where 

xl X2 

Fig. 4. A schematic representation of (5.8) 

o o =<Crx o-y> 
x y 
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For infinite systems, one defines the states ( - )A by limits of the restriction of J 
to finite regions A' C A. For such limits (5.8) follows by the monotone convergence 
theorem, since (aA) a, are increasing as A'TA. [] 

Remark. It is important to keep track of where does one lose significant factors. It 
seems that a major loss in (5.8) occurs in the step (5.9). However, an analogy with 
the study of intersection properties of the simple random walk suggests that this 
tactic is quite efficient for d>4.  We expect (5.8) to be a bad bound for d < 4  (this is 
obviously the case if d = 1) and marginal (i.e. overestimating by an infinite factor, 
but still somewhat useful) for d = 4, see Appendix I. 

6. The Vanishing of the Renormalized Coupling Constant in d > 4 Dimensions 

We postpone to Sect. 13 the analysis of the scaling limits (4.2), where it would be 
carried out in a more general context (see however a remark on the subject in [1]). 
Here we shall consider a very instructive implication of Proposition 5.3 for the 
renormalized coupling constant, g, which is a scale-invariant measure of the 
"interaction" of two currents, i.e. deviation of the model from the Gaussian-like 
("free-field') behavior. It is defined as 

where 

g = I U4l/( Z 2 ~a), (6.1) 

I U41= Y~ I U4(O, x2,x~,x~)l 
X21X3,X4 

[see the discussion of (4.1) and (5.1)], and X is the magnetic susceptibility 

X = ~ (Ooax). (6.2) 
x 

Proposition 5.3 implies that generally 

l U4l ,~ ) t4  (6.3) 

reducing the problem of bounding g to that of the study of only the two-point 
function, which is better understood. In fact, by the consequences of reflection 
positivity, for the nearest-neighbor models, 

for fl<flc (see [13, 14]). 
Combining (6.3) with (6.4) we have: 

g < t -  2/~<d- ~), (6.5) 

for the nearest-neighbor models at inverse-temperatures/3 < tic. 
Therefore, in more than four dimensions g-,O when ~-~ co. (The divergence of 

in the limit fl-~flc, is proven in [4, 5].) 
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7. Proof of  the Mean-Field Value for the Critical Exponent 7, for d > 4 

The critical exponent 7 has been defined by the expected power law: 

z(3) ~ t-~ (7.1) 
for 3 < ]?c, t = (tic- fl)/flc. 

Generally, ? >= 1 (Glimm and Jaffe [15]). In the simple mean-field approxima- 
tion, 7 = 1. We shall now prove that 1 is indeed the exact value of 7, in translation- 
invariant models (over 2ga), with ]JI =- ~Jo,x < 0% for which 

x 

E @oa~)~o-o < oo, (7.2) 
x 

with 
/~c = sup {fl[ Z(fl) < Go }. (7.3) 

This class of models includes the nearest-neighbor interaction in more that four 
dimensions, for which (7.3) is equivalent to our previous definition of/~c - via (2.9) 
[4, 5], and (7.2) follows from the infrared bound (3.12). That  fact has already been 
used by Sokal [8] to prove the mean-field behavior (i.e. finiteness) of the specific 
heat, at 3c-O, in d > 4 dimensions. To avoid a new symbol, for the rest of this 
section we adopt (7.3) as the definition of/~. 

Proposition 7.1. I f  z in translation invariant ferromagnetic model (with JJI < Go) 
(7.2) is satisfied for the tic defined by (7.3), then for any o < fl < fl~ 

[z[J[flc]- i t -  1 ~ )~(fl)2> [[J]flc] I t - 1  (7.4) 

with some e = e(J) > O, and t = ( ~ -  ~)/~. Consequently : 

7- - - -  lim lnx(fl) - 1 .  (7.5) 

Remark. A formal differentiation of the Gibbs formula (2.2) gives 

<(7o ~x) = ~ 2 J,,v[(~o(Tx) ((Tu(Tv) -- <(7o(7x) ((Tu(Tv)] 
U~v 

= ~ S,,~[@o(7,) ((7,(7~)-½1uAo, x,u,v)l] (7.6) 

(using the symmetry Ju, v=Jv, u, and the fact that U 4 < 0  ). Summing over x one 
obtains : 

d 
~-fiz=lJIz z -  2 ½Ju, v[U4( O'x'u'v)[' (7.7) 

where IJl= ~Jo ,  y. Since (7.6) is a standard expression, we shall mention only 
Y 

briefly how its validity is established for infinite systems. For  this purpose, it is 
convenient to use the integrated version of (7.6) in the finite-system approximation 
of Z(fl~)-X(fiz)-The monotonicity properties of ((7A)A,~, as a function of A and 3, 
and the finiteness of )~(fi) for fi < fl~, allow then an application of the dominated 

1 This result is further simplified in [29~], where it is shown that X(fi) <= t l[Jlflc/[1 + [Jifl~(~roax)~ o] 
(note added in proof) 
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< , d  
convergence theorem. These arguments prove (7.6) for fl =tic ~ being interpreted 
as the derivative from below when fl = tic. 

To illuminate the stochastic-geometric context of Proposition 7.1, we invoke 
(5.2) and rewrite (7.7) as follows: 

dx -1 -2 dx 
dl~ - z df l  

= jj] ~ (aoa,)Ju, ~(a~a~) Prob (Sfnl + n~(u)c~l  + ~(u) = 01{O, u}, {v, x}, 0) 
.~ ,  [JIz 2 

a°JlJI Prob (cg.~ +.~(u)c~ cg,~ + n~(v) = 0), (7.8) 

By Prob we denote here the normalized probability in a duplicate system of 
currents whose sources are also subject to the averaging procedure, as described in 
the second expression (n 3 is, at this point, superfluous). 

Strictly speaking, so far we made sense of expressions like (7.8) only for finite- 
system approximants. Since the bounds on e which would emerge are uniform in 
A, we ignore this minor detail in our notation. 

Replacing the probability in (7.8) by 1, one obtains the universal upper bound 
on [dz-1/dflt of Glimm and Jaffe [15]. However, for (7.4) to be satisfied this 
probability should not vanish. For instance, it would not vanish if the probability 
for two currents to avoid each other is uniformly positive, even if their sources are 
close. For simple random walks this is indeed the case above four dimensions. 

Proof of Proposition 7.t. Let Br, u= {yelRdl ly--u I <_r}. Then 

Pm'6(c~.~ + ~2(u)c~Cg~(v) = 0) = Prob (cg~ +.2(u)c~,3(v)\B~,,, = O)e l(r), 

el(r ) being the conditional probability that the two clusters are disjoint, given that 
outside of Br, u they have no point in common. It is easy, albeit cumbersome, to 
prove that for each r, el(r)>0. 

By the same argument as in (5.9): 

P r o b ( ~  + ~(u)c~cg~(v)\B~,~ 4:0 1{O, u}, {v, x}, 0) 

ys tga \B  ~ 

Let us now substitute this in the previous equality. By the translation invariance 
one obtains cancellation of Z 2 terms. The result is : 

P~(~enl + ~ ( ~ ) ~ ( v )  = O) 

=>el(r)[ 1 -  ~k °r°'k(~r°az)<Cr~ak)/lJ[] 
!Zl > r 

~ l ( r ) [  1 -  (,z'.~l>r(ff °az)2) 1/2 (~x (ff °ax)2) 1/2] --=~l(r)~2(r) (7.9) 

(for the last expression we used the Schwartz inequality for each k). If (7.2) is 
satisfied then e2(r)>O for r large enough. With such r, let us substitute (5.6) and 
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t Idl IdB I = ~  

UtV (S;\) 
o x 

Fig. 5, A graphical representation of the relation (7.8) 

(7.9) in (7.8). We obtain: 

d)(- 1 
l J l > -  - -  ->_elJI (for f l</~),  (7.10) 

with e = el(r)e2(r ) > O. 
The upper bound on ]dz-1/dfll (which holds also for finite systems at any/~) 

implies that 
~ -  l(fl) ---------~ 0 ,  

/G c being defined (for this proposition only) by (7.3). Thus (7.10) directly implies 
(7.4). [] 

8. Proof of Hyperscaling in Two Dimensions 

In low dimensions the critical exponents of the Ising model are no longer given by 
the simple mean-field approximation. It is also known, from the exact solution, 
that the scaling limit of the two dimensional nearest-neighbor Ising model is not 
Gaussian. We shall now offer a simple explanation of these facts, and prove that a 
"universal" relation - known as hyperscaling [16], is indeed satisfied by the critical 
exponents in two dimensional modeIs (of the type considered here). Hyperscaling 
means the vanishing of the dimension-dependent combination of critical- 
exponents which describes the behavior of g - the renormalized coupling constant 
defined by (6.1). 

The abovementioned properties of the spin models are related, by Proposition 
5.1, to the question of how typical is it for random currents to intersect. The key 
point is now that in two dimensions intersection is quite natural, and sometimes 
even hard to avoid. Quantifying it, we obtain a simple lower bound on g. 
Hyperscaling follows from this lower bound and the upper bound of Glimm and 
Jaffe [12], - or actually a new variant of the latter. 

Although limited, the following result is presented as a specially simple 
example. 

Proposition 8.1. In the nearest-neighbor Ising model on 2U, the spin correlations Jbr 
the sites x 1 = - x  3 =(x,O), x2= --N4=(O,x ) satisfy 

I g4(xl,  x2, x3, x41 > < o'xl(~m ) (a~2o'~a > . (8.1) 

Proof. Let Fx2,~ 4 be the collection of curves in the punctured plane IR2/{x2,x4} 
which are homotopic (i.e. deformable) to the segment 

IX1, X22 : {~X 1 -~'- (1 --,~)X2t~,@ [0  , 1]}.  
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X4 
Pa ~ .... \ 

/Xt X3X I 

x .f./' 
Fig. 6. The non-intersecting current configurations in d = 2 dimensions 

We denote by P1 and P2 the probabilities of the following two events : 

PI [P2]  =Prob(C~nl(Xz)~{x2, x4} , and any [no] path linking x 1 and x 3 along neigh- 
boring sites in cg.,(xl) is in F x ....  I {xl, x3}, {x2, x4}). 

Clearly P l + P 2 < t .  A simple analysis of the two possibilities in which 
cgn~(xl)c~Cg,2(x3) = 0 (Fig. 6) shows that 

Prob(~,~(x ~)~ cg.2(x 2) = 0j{xl, x3}, {x2, x4}) 

~2P,P2=--[(P1 -J-P2)2-(P1-p2)2]/2~½, (8.2) 

where we used the similarity of cg.,(x2) to cg,2(x2), which follows by either rotation 
or reflection symmetry. 

Substituting (8.2) in (5.4), we obtain 

I U(x 2,-,., x4)l > 2(ax,a~3) (Gx=crx~) e rob  (cg,,(x 2) ch cg,~(x 2) q= 01 {x,, x 3 }, {x 2, x4}) 

> ( % % )  ( % a ~ ) ,  

thus proving the claim (8.1). []  

Remark. Equation (8.1) clearly extends also to other quadruples {xp.. . ,  x4} with a 
two-fold symmetry. While it suggests that in the continuum limit U 4 ~0,  it is not 
conclusive, since it applies only to exceptional points in (JR.2) 4. 

The next result is more general. We refer in it to the modified notions of the 
correlation length, {~, and the renormalized coupling constant, g~, which are 
defined as follows 

x 

and 
g~ =T-U74L/[z2{~]. (8.4) 

We also denote J[xlj ~ =max(Ix(l)l, Ix(Z)J,...), and define the range of an interaction 
by 

R(J) = sup { [j x tl ~ Ix ~ ~gd, Jo, x ~= 0}. (8.5) 

Proposition 8.2. For any finite range interaction in d = 2 dimensions, which has all 
the translation and reflection invariance of g2, and fl < tic, 

92 >_4 1/[2R(j)2]. (8.6) 

Furthermore, if  in the limit (4.2) S 2 is rotation invariant, and 

lim sup 5 dx(1 + Ixl 1 + ~)S~"1)(x) < oo 
t/~oO 
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for some e > O, then 

lim gl > 4/[nR(j)2] • (8.7) 
?/---~ oO 

Remark. The symmetry which we demand of J excludes interactions which are 
effectively one dimensional, in which case (8.6) is not satisfied. 

An upper bound on gl is given by Proposition 15.1. 
In the proof of Proposition 8.2 we shall use the following result: 

Lemma 8.1. Let A = {x 1 . . . .  , xi}, B =  {Ya, ..., Y J}  be two sequences of points in 2g z, 
such that 

][xi+a --x~l[~ , [[yj+i--yj][~<=R V1 <i_<I- -1 ,  l=<j=<J-1 .  (8.8) 

Let A + B~f{x + ytxeA, y~B}. Then 

IA + BI > l(x x -  x 1 ) a (y j -  y l)l/R 2 , (8.9) 

where IAI is the number of points in the set A, and /x is the skew product. 

Proof Let 2 = x x -  x~, p = yj - -  Yl, and A k = A + { k2 }, B t = B + {lp}. Clearly IA k + Bl[ 
= IA + B[, and thus 

1 U (Ak+Bz) IA + Bt > ~-~ k-l;Z; ~ 

> ]2 A Yt l'ma 1 r ~ Bz 

f (A,B)  is the density, in T/2, 0f the set U Ak+ U Br 
k = - - m  l = - m  

Viewing this set as the union of the translates of one doubly-infinite sequence, 
Ak, by the other, ~ Bl, it is clear that, as a consequence of (8.8), any translate of 

the cube [0, R) x [0, R) contain at least one point of this set. Therefore 

f (A,  B) > 1/R 2 , 

which implies (8.9). [] 

Proof of  Proposition 8.2. By (5.4) 

1U4(0,1,2,3)1= ~ [g4(O,x,y,Y+Z)t 
1, 2, 3 x , y , z  

>2 ~ (aoax) (aoa~) ~Prob(Cg, l(O)c~g,2(y)+O[{O, x}, (y, y+  z)). (8.t0) 
X,Z y 

However, using the translation invariance, 

~ Prob( %~( O )c~ ~.2(y) + O [ { O, x}, (y, y+z}) 
Y 

= ~ Prob (cgn~(O)c~(y + cgn2(O)) + 0 I{O, x}, {0, z}) 
Y 

=e(l~.l(O)-~.2(O)lt{O,x}, {O,z})>-_lx Az[/R(J) 2. (8.11) 
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The last steps follow by performing the sum over y before the average in (n 1, !12) , 

and then applying Lemma 8.t. Notice that cg.~(O), and ~,~(O), necessarily contain 
paths from O to x, and from 0 to z, which satisfy (8.8). Therefore: 

[U4[ > 2 ~ <aoa~> <%a=>[x /x z[/R(J) 2 
2¢~Z 

>= 2 ~ (aoa~) (Croaz)(x(l~z~2)- x(Z)z (1)) sgnx (1) sgnz(2)/R(J) 2 
x , z  

= 2 ~ (~roCr~) (aoa~)[x(a)[ [z(Z)[/R(J) z 
x , z  

(using the reflection symmetries) 

>=Zz~2/E2R(J)Z], 

which proves (8.6), 
To prove the better bound (8.7) one may rewrite the first inequality as follows 

g, > J" dx ~ dzS(~,"~(x)&~,"~(z)fx ~ ~1 2 
= .[ dx ~ dz&~,,~(x)S(2=.,~(z)lxllzJ ' R(j)2 '  ( 8 . 1 2 )  

and use the (unique) value of the ratio for rotation invariant functions S z. (The 
continuity of the integrals at q = Go is ensured by the assumed bound.) [] 

Corollary 8.1. Under the main assumptions of  Proposition 8.1, if the limit (4.3) exists 
(for S, regarded as densities of measures on ]R 2") then the limiting theory is not a free 

field. 

Sketch of  the Proof It suffices to prove that for some bounded A C IR 2 

dxdydz[ U]°"t(O, x, y, z)[ # 0. (8.13) 

One is tempted to use (8.11) to deduce that, similarly to (8.12), (8.13) is bounded 
below by 

2 ~ dxdyS~z°"t(x)S~z°"'(y)lx A yl/R 2. 
A x A  

Unfortunately, the continuity of the integrals is not automatic, since z is 
integrated over all of IR 2, while we assumed only local convergence of S z. This 
problem may be overcome by restricting the range of z in (8.13) to 
{zldist(z,A)Ndiam(A)}. One needs then a correspondingly improved version of 
(8.11). We claim that this can be derived, using the symmetry of J, but we shall 
omit here the details. 

Corollary8.2. (Hyperscaling in d=2). I f  under the main assumptions of 
Proposition 8.2, 

Z ~ t  -~, ~l ~ t  -~  , [U#[~t -(y+ 2A) (8.14) 

for t=(fl~--fl)/fi~>O (in the sense that y= l imln  z/Jlnt[, etc. t then 
\ t~O ] 

dv 1 - 2 A 4 + 7 = 0 .  (8.15) 
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Proof Equation (8.15) is an immediate consequence of the fact that, as t~0 ,  g~ 
remains uniformly bounded above and below, (8.6). For the upper bound we need 
an extension of the results of Glimm and Jaffe [12] and Schrader [17], who proved 
it for g and g+, q~>d. Such a bound on ge/2 has recently been proven by Lieb and 
Sokal [18]. In Sect. 15 we also derive it, using a very simple argument. [] 

9. A Random-Walk Representation 

In the above discussion we have related the coupling in Ising models to 
intersection of random currents. It is also useful to express such a relation in terms 
of random walks, which in concept are simpler than the clusters ~¢nl +n2" 

Our starting point is the expression (2.7) and the observation that, in a finite 
system, if ~n = {x, y} then any nonrepeating path along bonds with odd values of n 
which starts at x, eventually reaches y. We construct a random walk by the 
following iterative procedure, in which it is assumed that we are already given a 
(finite) flux configuration n, with 3n = {x, y}. 

i) The walk starts at x. 
ii) At each step choose a bond at random, with equal probabilities among all 

the bonds with Jb 4:0 which link to the present site and which were not traversed 
before. 

iii) Check the parity of n for the chosen bond. If n b is odd, the random walk 
traverses the bond, moving to its other end. If n b is even, no move is made but the 
bond is recorded as attempted. 

iv) The walk stops upon the first hit of y. 
Before formally presenting the random walk expansion which is thus generat- 

ed, let us state our main result. 
We denote by c#,(x, y) the (random) set of sites visited by the above walk. 

Clearly 
~,(x, y) C cg,(x). (9.1) 

Proposition 9.1. In a finite system with ferromagnetic pair interaction let 

V(xl, . . ,  x4) 

= (axlcr~2) (crx3cr~,) Prob(~,t(x 1, xz)c~ c~,2(x a, x 4) # 0[ {x 1, x2 }, {x3, x4}) 

+ 2 permutations, 

where the probability is an average over both the ensemble of  random currents and 
the random walk variables. Then, for any x 1,..., x4e A, 

V(Xl, ..., x4)<IU4(xl,.. . ,x4) I < V(xl, ..., x4). (9.2) 

For the sake of concreteness, we use the following terminology. 

Definition9.1. i) A step sequence is a sequence of pairs of sites and bonds, 
o = {(x~, bj)}~= 1 with bj~x~, whose bonds are separated into two given, mutually 
exclusive, sets - B, and B~, each bond of B t appearing only once in the sequence. 
With a slight abuse of notation we shall refer to the sets of bonds as B,(co), Ba(c0 ), 
and denote B(co)= B~(o~)~Bo(o ). 
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ii) A path is a step sequence in which b j =  {xj, xj+ 1} whenever b f B  t (we then 
regard the bond as traversed), and x~+ 1 = xj when b y  B, (in which case we regard 
the bond as merely attempted). 

iii) f2(x, y) is the collection of paths from x to y, i.e. co = {(x j, b)}~= 1 with x 1 = x, 
b k = {x k_ a, y}, for which in addition xj 4: y for 1 < j  < k. 

The compatibility of a step sequence co with a flux configuration n is expressed 
by a function defined as follows 

0(co, n)= if 1)~= +1 Vb~B~(co) 

otherwise. 

For  a fixed flux configuration n, with 8n = {x, y}, the probability that the above 
mentioned random walk follows a path toe f2(x, y), with 0(co, n)= 1, is 

k 

q(co) = I ]  (the number of bonds containing x k which are not among 
j = l  

{b 1, ..., b k_ 1 } c~B~(c~)), and for which Jb4:0)-1 (9.3) 

We therefore have the following identity, details of whose proof we leave to the 
reader. 

Lelnma 9.1. Let n be a flux configuration over a finite system, with gn = {x, y}. Then 

0(co, n)q(co) = 1. (9.4) 
~o~(x, y) 

As a corollary we have the following random-walk representation of the 
correlation function. 

Proposition 9.2. In  a finite system with a ferromagnetic pair interaction 

( a x a , } =  ~ g(co) (9.5) 
o ~ ( x ,  y) 

with g(co) = q(co)s(r~)z(B(co)) ; s(co) and z(B) being defined for each step sequence co and 
a set of bonds B, as 

s(co)= 1-[ tanh(flJb) (9.6) 
b~Bt(o)) 

and 
z(B) = ~ w(n)/Z. (9.7) 

On=~ 
nb iseven Vb~B 

Proof (9.5) is obtained by substituting the decomposition of identity (9.4) in (2.7), 
and noting that for each coEf2x, r 

O(co, n)w(n)/Z = s(@z(B(eg)). [] (9.8) 
On = {x, y} 

To express a correlation function of a higher order, @xl -.. ax,} we consider a 
random walk which is generated by starting from x I and proceeding, as before, 
until the first hit of either of the sites {x2,...,x4}. After that, a second walk is 
started at one of the remaining sources; specifically - the one with the lowest index 
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(with respect to some arbitrary but fixed order of the sites). This construction leads 
to the following definition and result. 

Definition9.2. i) Paths COl,...,e) . are compatible (in that  order) if for any 
l <=i@-j<k: 

Bt(co~)c~B(o~) = 0 (9.9) 

and if, for each k, the end points of C~k, ..., O)~ are not visited by o) I . . . . .  e)k- 1" 
ii) The composition of compatible paths is defined by composing the sequences 

of steps, and is denoted by co 1 oco 2 o. . . .  
iii) The composition of an ordered collection of sets of paths f21 . . . .  , ~2 k is 

01 o... o~2k= {O) 1 . . . .  o e~kl{c91 . . . . .  OJk} are compatible and c o l  [2i}. 

Proposition 9.3. In a finite system with a ferromagnetic pair interaction 

(axl . . .  ax2~> = y, y. g(co), (9.10) 
TEN({1, ..., 2n}) e~I?I(T)o...oO(T) 

where ~({1, ...,2n}) is the collection of pairings of {1, ...,2n}. Each pairing is 
represented by a permutation, T, such that for all 1 < k < l<-_ n: Tk < T1 and 
T(k + n) > T(k) (e..g. Tk =- k) - the k th pair being { Tk, T(k + n)}. Correspondingly, 

Ok(T ) = £2(XTk , XT(k+ n>) 

is the collection of paths which link the k th pair of sites, starting at XTk. 

The following lemma expresses another  useful property. Since it is an identity, 
we again leave the proof to the reader. 

Lemma 9.2. In a finite system, for any step sequence oJ~ - which does not visit {x, y}, 

g(cq) = g(col) (a~a,)~o,, (9.11) 
we{~l}o~9(x, y) 

where (aSy>2~ is the correlation in a system obtained by setting the interaction to 
zero on all the bonds in B(col). [Hint :  It is useful to reduce the paths in (2(x, y) by 
removing (via partial summation) the attempts along the bonds of B~(co~).] 

Remark. The substitution of (9.12) in (9.11) leads to yet another derivation of the 
Lebowitz inequality (using the Griffiths inequality: @ a > ' <  (a~>). 

A key ingredient for the proof of Proposit ion 9.1 is the following lemma. 

Lemma 9.3. Let cop co z be a pair of compatible step sequences, then 

i) s(o 1 o o)2) = s(col)s(co2), 

ii) q(c01 o c~2) >= q(c') 1)q(c92). 

Furthermore, for any two sets of bonds B 1, B 2 

iii) Z(B~ uB2) => Z(B~)Z(B2), 

iv) and if B 1CB 2, then 

Z(B1)>Z(B2). 
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In particular : 

g(co, o ~2) ~ g(°l)g(e)2) - (9.12) 

Proof i) is obvious, and ii) follows by the observation that for q(colo e)2) each factor 
in (9.3) is not smaller than the corresponding factor in q(co,)q(oJ2). In fact, we have 
an equality unless the sets of sites visited by the two walks intersect. 

Next, we argue that iv) is valid as a consequence of the fact that increasing B 
only reduces the collection of terms which contribute in (9.7). 

In view of iv), to prove iii) it suffices to demonstrate it for disjoint sets. Let us 
denote 

K i = ~ JbCrxay . 
b = {x,  y}eBi 

Then, assuming B 1 c~B 2 =0, 

trexp( ~ Jbaxa,) 
z(UlwS2)= ]-I c°sh(flJb) ~b---Ix, y~,uB~ 

b~BI,~B2 trexp( ~ Jbaxa,) 
\ b  =- Ix,  r} 

= I-I cosh(flJb)t/(eKl+r2)'B,,~B2, (9.13) 
b~B1 u B2 

where (-)~I~B~ represents the Gibbs state obtained by setting the interaction to 
zero over all the bonds in B 1 u B  2. Similarly one derives: 

z(B1)= 1-1 cosh(flJb)<eK~);~B~/(e~'+K~)'B,,~n~ 
b~ B l 

and a corresponding expression for z(B2). 
Combining these expressions, we see that iii) is equivalent to the following 

statement. 
(e K' + ~:~}' > (eK~}'(eK~y. (9.14) 

This however is true by the Griffiths inequality (which is applicable after the 
exponentials are expanded into power series). [] 

We shall now return to: 

Proof of Proposition 9.1. i) The lower bound. Recalling that cg~(xl, X2)C ~nt(X1), we 
see that if 

(~nl(X 1, X2)Vh (b~n2(X3, X4) =~: 0 

then the four sources are necessarily connected, i.e. in the same cluster - 
cg~ +,~(x ~). Therefore Proposition 5.1 [specifically, Eq. (5.2)] implies that, up to the 
factor 2, each of the three terms of V and hence also their mean, is a lower bound 
for IU4I. 

ii) The upper bound. By the Lebowitz inequality [see (5.3) and a remark in this 
section], we know that I U 4 I = -  U 4. We seek therefore a lower bound on 
( a ~  ... a~) .  Such a bound is obtained by an application of Lemma 9.2 in the 
representation provided by Proposition 9.3. 
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Explicitly, using (9.10), (9.12) and then (9.5) 

T a ~ ( { l  . . . . .  4}) ( w l ,  o 0 e I 2 1 ( T ) ° I i 2 ( T )  

> E E 9(o~)0(~o,) 
T a ~ ( { 1  . . . . . .  4}) ( a i , t o 2 ) ~ l  x a 2  

compatible pa i r s  

= ( a x a ~ )  (ax ~x4 ) + 2 permutations 

T e ~ ( { 1 ,  . . . , 4 } )  (f, Ol, W2)eOl  X ie'~2 
u n e o m p a t i b l e  

Thus 
(o<)-  u~(x~ .... ,x4)<_- ~ Z 

T ~ ( { 1  . . . . .  4.}) ( o  t ,  a~2)eOl (T)  x 1"/2(T) 
u n c o m p a t i b l e  

< V ( X l , . . . , x 4 ) .  

g(col)g(co2) 

(9.15) 

(9.t6) 

The last inequality follows from the simple observation that a necessary condition 
for the uncompatibitity of two paths, is that the corresponding walks visit a 
common site. The total sum over such paths is exactly V(x~ . . . .  ,x4) , as follows 
from the discussion preceding Proposition 9.2. [] 

Thus, some of the results discussed earlier can be derived without the use of the 
identity expressed by Lemma 3.2 - using instead a random walk representation. A 
related expansion was used by Fisher [19] to derive bounds on the critical 
temperature. For us, the key property is the fact that the interaction of the random 
paths is attractive as long as the paths do not intersect. Similar arguments were 
used by Fr6hlich [3], in the context of a different expansion. Here we enjoy the 
advantage of the availability of the two methods, due to which we obtain in 
Proposition 9.1 both upper and lower bounds. We shall use this combination in 
Sect. 12. 

" = " T 

I _?i 
X4 Xl 

Fig. 7. Random paths which contribute to (ax~ ... a~4) 

Part II. ~4 Fields 

10. The ~)4 Field Theory as a System of Block Spins 

The ~b 4 field theory is described by its Schwinger functions, 

S n ( x  l , . . . , x , )  = ( 4 ) ( x  J . . . ¢ ( x , )  ) , (10.i) 
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which are (or would have been) averages with respect to the formal measure 

I] dcJ(x)exp! -~(~lV4)(x)12+Bcp2(x)+ 24~. (°4(x))dx]/N°rm. (10.2) 
x ~ N .  d 

(See [19-21] for a preliminary discussion of the structure of the corresponding 
measure space.) 

In order to make sense of (10.2) it is natural to consider its lattice approxi- 
mations, obtained by partitioning the continuum to cubic cells whose centers form 
the lattice lL=a2g e, a- ,0 ,  and replacing the field q$(x) by variables 4bx, xslL, 
associated with the lattice sites. Substituting the corresponding "Riemann sum" 
for the action integral in (10.2), one obtains a well defined system of lattice 
variables, whose correlations (in the infinite-volume limit) define the Schwinger 
functions 

S(~)t'~,, ,~ 1, ..-, x,) = (¢[x~1~ ..- ¢~x,,j,) , (10.3) 

[x]a being the lattice site closest to x. 
The question now is whether there is a method of adjusting the bare parameters 

/1, 20-~/ / ]2 , /~,  as a ~ 0 ,  so that the Schwinger functions (regarded as densities 
of measures) attain a limit which describes an interacting field, i.e. one which is 
not Gaussian. (An analytic continuation would then lead to Wightman functions 
of a quantum field theory.) 

For  d=2 ,  3 such a construction was carried out, see [19, 21], and references 
therein. (However some issues, related to the very strongly coupled theory in 
d = 3 dimensions, have not yet been clarified.) 

For  d > 4 we answer the above question in negative, for limits derived from the 
single-phase regime. 

Proposition 10.1. In d >4  dimensions any limit obtained by the above procedure, in 
which S(2~)(O,x) ixl_+~>,,O for every a>0 ,  and S2(O,x)~limS(aa)(O,x) is locally 

a--+ O 

integrable, inevitably describes a Gaussian field. 

The proof, and a discussion, of this result is given in Sect. 13 - which is directly 
accessible. In order to set the stage for the proof of the key inequalities which are 
used there, we shall now describe a relation of the lattice ¢4 field with a system of 
Ising spins. 

Explicitly, the above lattice action is 

1 J ~ ¢~, (10.4) 
) 

with 

J= fta d- 2 , [~= Bad + 2dfla d- z and ,~=,2~aa. 

Thus the ~b 4 lattice system is a collection of variables with the continuous a priori 
distribution 
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and a pair interaction similar to (2.1). The Ising modet rnay be recovered from the 
above system in the strong coupling limit: choosing B so that 

and letting ,t~o0. However, there is also a converse relation. This is based 
on the Simon and Griffiths [22] representation of the a priori measure (10.5) as the 
limiting distribution, for N ~  oo, of the "block-spin" variable 

N 

&;~=(2N/i)l/gN-~ ~ ~(2 ), (10.6) 
~ = 1  

where a(~ ~) are Ising spins with the mean-field Hamiltonian 

N 

Hx= -- [1-B(~N/23)- l /2](2N)  -1 ~, ax(~)ax(6). (10.7) 
~ , 6 = 1  

Our strategy is to use the representation (10.6) to derive bounds on the Schwinger 
functions in which N does not appear, and then let N ~  oo. 

We shall not refer to any of the details in (10.7), except for the basic fact that one 
may view the q54 lattice field as describing the "block spins" of an underlying 
system of Ising spins, which are organized into blocks with a ferromagnetic 
interaction which is independent of the intrablock parameter (c~) (see Fig. 8). We 
shall therefore always assume that N is so large that [1-/~(,~N/23) - 1/2] >:0. 

The above representation is of course vaguely reminiscent of the deeper 
relation of Ising systems (near Tc) to a q~4 field theory, which is postulated in the 
Landau-Ginzburg theory of phase transitions. 

We shall ignore here the question of the infinite-volume limit. One may use 
standard arguments to show that for the lattice field this limit exists, at any fixed 
bare parameters with ~, J > 0 ,  and is continuously approached as N~oo .  
Alternative organization of the argument is to say that for finite systems our 
derivation would be complete, and the resulting bounds hold in any limit at which 
the Schwinger functions are continuous (as functions of the domain). 

l L.I--. 
l 

L 

Ol:t X 

Fig. 8. A system of block spins which generates the ~b 4 field 
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11. An Upper Bound on [U4[ for ~4 Fields 

Extending (5.1) let us denote 

g ~ " ~ ( x  ~ , . . . , x O = S ~ ( x , ,  . . . , x ~ )  

-- [ S(2a)(X1, x2)S(2a)(x3, x4)  -1"- s(a)(xp x3)g(a)(x2, x4) 
+ S ~ f ( x  ~, x 4 ) S ( 2 ° ~ ( x 2 ,  x3)], (11.1) 

with the function S(f defined in Sect. 10. 
The results of this section are valid for any lattice approximation, however 

their most interesting implications are about  the continuum limit. We therefore 
use the continuum notation in the following statement of the main result. 

Proposition 11.1. For any lattice dp 4 field, with 7t, ,~>0 and the lattice spacing a, 

0 . . . .  <- - U~4")(xl, . x4) N GSddyS(2")(xl, Y)S{z")(x2, .~,~'2 ,'~'v('Wx3, y,"~S(a)tx2, , ,Y)  (11.2) 
with 

where 

and 

G = 3 ( 2 d ) Z A 2 a  a -  4 1 t  - e x p ( -  Cd2oa 4 -a)]e2ma ( <  C'e2""A22o), (11.3) 

20 ~--- ~ / A  2 

d 2' 

1 

The quantity 2 0 is the (dimensionless) bare coupling constant - in a common 
field theoretical nomenclature. The mass m is measured in the units of the 
continuum, being defined by maximizing the constant kt for which 

S~a)(O,x)<conste -"llxll°°, as Ixl~oe.  (11.4) 

Lest one doubt the relevance of m, which as defined by (11.4) may seem to 
reflect only the properties of S 2 for hyperlarge x, let us point out that 

$2(0  , x + y) ~ $2(0  , x)e -m[yl 

for x, y directed along one of the principal axes (we return to this point in Sect. 13). 
We now switch back to the lattice notation, which will be used until the final 

step in the proof of Proposition 11.1, at the end of this section. The major 
ingredient in that proof is the following correlation inequality, which extends 
Proposition 5.3. 

Proposition 11.2. For the lattice ~)4 system described by (10.4) 

0_~ ~ --  U4(N 1 . . . . .  X4).~3 ~ (~bx,qS,) ... (~b~,qS~,)(1-e-i<o~>~/2)/(4)z)~, (11.5) 
y~lL 

where ( - - ) o  is the expectation value with respect to the (&coupled) measure (10.5). 
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To prove it, we consider the system of Ising spins which was introduced in 
Sect. 10. The sites, which can be thought of as "microscopic" on the scale of the 
lattice IL, are now parametrized by (x,e)elLx {1 . . . . .  N}. Correspondingly, the 
criterion provided by Theorem 9.1 refers to the probability that two random 
trajectories cg,1, cg,~ not only visit the same block, but also intersect inside. 

For yelL, let 

~1,= {(3:, coil <a_<N} 

denote the yth block of sites. We then have the following bound on the probability 
of it being visited by a random path. 

Lemma 11.1. 

Prob(Cg.((x, e), (z, c~'))C~Ny # 0 I{(x, c0, (z, cQ}) 

a , y = l  

( - } o  being defined as in (11.5). 

Remark. The last factor on the right hand side of (11.6) is 1 if x 4 = z, due to the local 
symmetry of the interaction. For large N it is not significant even when x -- z, since 
by (t0.6) (and the Griffiths inequality) 

N 
(a) (7) 2 (a) (e') 

a , ~ = l  

The last term is O ( - ~ )  for fixed bare parameters. When handled explicitly, the 

above factor is typically canceled in the bounds on U 4. However we lose nothing 

by regarding it as t + O ( ~ N ) "  

Proof. Let us assume that y¢{x, z}, for otherwise (11.6) is trivial, and consider the 
following ratio 

R = Prob @,((x, ~), (z, ~'))c~y ~: 0 I{(x, ~), (z, c~' )})(a~ ~) % (~') }/(G, (~) ar (1) }. 

As explained in Sect. 9, 

R= Z g(°)/ Z g(°), (11.8) 
~e~( (x ,~ ) ,  (z,~')) / w ~ ( ( x , a ) ,  (y, 1)) 

~ (o )  n ~'y -i: 0 

where 

cg(c°) = U b 
b ~ B t ( o )  

is the set of sites visited by the corresponding random walk. We claim that 

R < ( ¢r(1)tr(a')''/g'cr(2)cr(1)\ 
= \ - - y  ~ z  i l k U y  U y  / 0  " (11.9) 
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To prove (11.9), let co~ denote the part of the path co obtained by stopping it at the 
first time Ny is hit. More specifically, co~ consists of the step sequence interrupted 
after reaching the first traversed bond which intersects gy. 

It is easy to see that, regarding co~ as a function of co, for each admissible (5 

E 5 _ ~ O) (~') o),,6g(co)--g(co)(6y cr )~ 
o) e[~((x, a), (z, ~')) 

9"(0) ngSy ,4= o 
and 

5 c o -  d) crO)o-(1) ' ~1,¢,g( ) - g (  )( y y )~, (11.10) 
o)s~((x, a), (y ,  1) 

where we denote by (y, 5) the site in Ny which is hit by d), and by ( - -}~ the state 
obtained by setting J to zero on the bonds of M(&). 

Fm'thermore, we have the following consequences of the Griffiths inequality 

(,,r(a)er(cc)'5' < O) (~') 
\ - - y  - -Z /(~0 = \ y Z / 

(11.1]) 
((rO)a(1)~L >/~(a)~(1)\ ~ . / _ (2 )~ (1 ) \  

. ~y - - y  / o = \ ~ y  ~y  l o W b O y  Oy / 0 '  

The last expression in each line is justified by the local symmetry of the interaction. 
Equations (11.10) and (11.11) prove (11.9), since R is shown to be a ratio of two 
sums whose terms can be matched so that the bound is obeyed pairwise. 

Inequality (11.9) may be restated as follows: 

P r o b ( ~ , c ~ y  =~ 0) </~(~)~.(1)\/~(1)~(~')\/r/,~(~),~(:~')\/~o)~(2)\ 'l (11.12) \ ~ x  ~y / \ ~ y  ~ z  / / L X ~ x  ~ z  / \~ 'y  ~y  / O d  " 

The symmetry in the inter-block parameter, and the homogeneity of the right hand 
side of (11.17) almost permit to substitute there the fields ¢ for the spins a, by the 
relation (10.6). However some care has to be exercised, since 

@(a)~(~)\ ~_/~(,)~(2)\ if 5=7  ~'y Uy / O - ~ - \ U y  U y  / 0  

Nevertheless, a slightly more attentive analysis of the above argument shows that 
the replacement of % by (by is justified back at (11.9). The improved inequality is 
equivalent to (11.6). [] 

Actually, we need to estimate the probability that the two random paths not 
only hit a given block, but that they truly intersect inside. For this we shall use the 
following result on the probability of intersection of random sets. 

Lemma 11.2. Assume that for each integer N we are given a probability distribution 
of pairs of subsets AN, D N C {1, ..., N}, for which the two sets are independent, and 
which is invariant under the permutations of {1, . . . ,  N}. I f  

Prob(A N # O) ~ a o 

Prob(D N # O) _-< d o , 

and if the expected values of the sets' sizes obey 

((IANIS/]fN, (ID ~IS / lffN) <= (a, d) , 

componentwise with ~, d< co, then 

lim sup Prob({AN•D N 4= 0}) ~ aodo[1 - e- aa/(a°a°)]. 
N ~  

(11.13) 

(11.14) 

(]1.15) 
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Proof. For specified values of IAs], IDN[ the probability distribution of A N, D N is 
still invariant under independent permutations. If [AN[ + ]DN] <=X, simple com- 
binatorics yield 

(N-]AN[) ! (N-tDN])i 
Prob(AN~DN = 0 T IANt, IDd) = (X-IANI-- IDNI)! N !  ==- fN(aN' dN)' (11.16) 

where 
{IANI tVN!] (aN, tiN)---- 

Using the Stirling formula, 

it is easy to see that for each a, d < oo 

fs(a,  d) ~ e -  ae. (11.17) 

The convergence is locally uniform, in the sense that 

lim sup {[fN(a,d)--e-ad]}=O 
N.~oo a,d<fi 

for each h < oo. 
The random distributions of A N, D N induce probability distributions for the 

variables a N, d N. For each ~, d <  0% the space of probability measures on 1Re+ which 
satisfy (11.14) is compact in the weak topology. Therefore the uniform bounded- 
ness of fN ( < 1), and its local convergence, imply that 

lim IProb(ANC~O N = 0 ) -  (e-~"a~')I = 0. (11.18) 
N-+oo 

We need therefore an upper bound on ( 1 - e - ~ e N ) .  To derive it, let X be the 
function 

Then 

X(a)={10 a=0.a4=0' 

( 1 -- e-a~,a~) = (X(aNdn))  
( X(aNdN)(1 - e - ,,Nd~)) 

( X(aNdN) ) 

the last ratio representing the normalized average conditioned on aNdN4=O. 
Applying the Jensen inequality to this average, we obtain 

(1 - e -a~'~N) < (X(aNd:¢)) {1 -- exp [--(aNdN)/(X(aNdN))]}. (11.19) 

The function 
f ( x ,  y) = x(1 - e- v/x) 

is monotone increasing in each component. Applying this monotonicity, and the 
bounds (11.13) and (11.14), to (11.19) we obtain 

( 1 - e-a~d~,) < aodo [1 - e-~/(~oeo)]. 

The assertion (11.15) follows now by combining the last inequality with 
(11.18). [] 

We are now ready to prove the correlation inequality (11.5). 
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Proof  o f  Proposition 11.2. We shall use the setup explained after the statement of 
the proposition. To shorten the notation we denote x i = (x i, oh). By Proposition 9.1, 
and (10.6), 

N 
1 2 0 <= - U4(x 1 . . . . .  x4) < limN~sup (~b~lq~,~) ( q~ b~ , )  ~-g ~ ....... 4= 1 

• Prob(C~n~(xl, x2)c~@.2(x3 ' x4 ) 4= q~ I {xl, x2}, {x3, x4}) 

+ 2 permutations. (i 1.20) 

Restating the principle which was used in Proposition 5.3 we have, with the 
obvious abbreviations, 

Prob(@,d~c~,~ + ~b) < 2 Prob (c~n c~c~ , j~y  =t= q~). (11.21) 
Y 

To bound a term in the last sum [with the source assignment spelled in (11.20)], let 
A N = ~n~ c~Ny and D N = c~. c',~ r. We are now in the situation which was assumed 
in Lemma 11.2. Furthermore, Lemma 11.t, and (11.7), provide us with the values 

ao = (q~x~q~Y)(~')(~b~,~4~x2 ) (q52)o ( 1 + 0 (  1 ) ) ~ ,  
g ' "  

(11.22) 
do: (¢x3¢Y) (¢x4~)Y) (1+0(~)). 

For ~ we use the following bound 

N 

E(16n~c~N',t[{x~, x2})= E Prob(~.  ~(y, ~)l{x~, x2}) 

N 

< ~ Prob(Cg.~ +.~(xl)~(y, ~)l{xi, xz}) 

(~)  (~) O-(~2) (~) = ( %  % ) (  ~ % ) 
(cr(~)cr(-2)b 

~ =  1 \ - - X l  "2C2 / 

= l / ~ 8  (11.23) 

[the inequality could have also been justified by (11.t0)]. We used here (3.3) and 

(10.6), and the O ( ~ ) i s  explained in conjunction with (11 .7) .1  similar 

expression is obtained for d, by replacing (xl, x2) in (11.23) by (x3, x4). 
We can now invoke Lemma 11.2, which implies that 

lim sup Prob(C~nl c~c~n2c~CJy* ~bl{xl, xz}, {x 3, x4}) 
N-~eo 

o~1,...,a~4 < N 

< ( ¢ ~ ¢ ' ) ' " ( ¢ x ' ~ b ' )  ( 1 -  e-i<02>g/2). (11.24) 
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The claimed (11.5) is obtained by the substitution of (11.24) in (11.20). The 
exchange of lim sup with the summation is justified by an implication of 

N ~ o o  

Lemma 11.1, which is that up to a constant factor the terms of the final sum 
dominate the summands for each N. The resulting contribution is the same for 
each of the three pairings of the sources. Hence the factor 3. [] 

Remark. Equation (11.5) is a significantly improved version of the inequality (13) 
claimed in [1]. However, the factor 3 was prematurely reported there as 2. With 
the factor 2 the inequality would have been a direct generalization of (5.8), which 
(as our formalism makes clear) is saturated under certain conditions. 

We close this section by proving Proposition 11.1 which, essentially, is a recast 
of Proposition 11.2 in the continuum notation, with (q~2)o replaced by quantities 
which may be more recognizable. 

Proof of Proposition tt.1. Equation (11.5) acquires the form of (11.2) upon the 
substitution of S(a)(x, y) and a-a[dy for ( q ~ y )  and ~ [with our convention that 

Y 

Sa(x, y) is constant as y varies over a lattice cell]. However instead of G we obtain 
the following constant G': 

G' = 3a- d[ 1 - exp ( - i <~2 >~/z)]/(~2)2. (11.25) 

To relate G to G' we need both an upper and a lower bound on J(qSZ)o in the 
single-phase regime. The former is obtained by the Griffiths inequality and the 
~'infrared bound" [9], which imply, assuming there is no long range order, that 

((a2)o<=((a2)<JT~(2--n)-a I daP 4sin2(pj2) . (11.26) 
[-~,~1 i 

[If there is long range order then (11.2) is trivially rapid.] 
Thus the term in the exponent in G' may be replaced as follows 

ia 
~-<q52>oe/2 < ~2 Ca = ~ 2 a ~ - -  2) Ca = Ca*~oa4 - ,1 (11.27) 

d -  

with the notation defined in (10.4) and (11.3). 
For the lower bound we recall the result of Sokal [231 : 

2dd($z)o>e-ma, (11.28) 

m being the mass defined on the scale of the continuum. 
For completeness let us just remark that (11.28) is derived using the following 

consequence of Lebowitz inequality: 

s(a)(x, y) <= ~,  S(a)(x, Z)~lz__z,l,aS(a)(z' , y) , (11.29) 

which implies the pointwise bound: 

(0 <) S(")(x, y) < G s(x, y), (11,30) 
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where Gj(x, y) is the solution of the system 

This shows that 

d 
j )  Gs(x, y) = ~ Gj(x, z)~i~_~,f,~Gs(z', y) 

z,z'  

Go(x, Y) = (q~2)of~,,y. 
(11.31) 

S(")(x, y) <= [ - J A  + ((q~Z)o 1 _ 2dJ)] -1,  (11.32) 

where A(~aZA) is the lattice second-difference operator. Equation (11.28) is an 
easy consequence of (11.32). 

Thus, by (11.28), 

a-d/(O2)zo <= a-d(Zd)ZJZe 2ma = (2d)Za e 4 ft2e2ma. (11.33) 

The substitution of (11.28) and (11.33) in (11.25) shows that G'< G, which proves 
Proposition 11.1. [] 

12. Bounds for the Higher Correlation Functions 

In the next section we shall demonstrate that under certain conditions, in 
particular when d>4,  continuum limits of the q~4 field theory are Gaussian, i.e. 
generalized free fields. This amounts to proving that Wick identities [(13.4), below] 
are obeyed by all the Schwinger functions Sn, n=4,  6, ... (in the even theory 
S2k+ 1 ~0). For the systems at hand, it was shown in Newman [24] (using the "Lee- 
Yang property") that it suffices to prove that for some n the fully truncated 
correlation function vanishes, e.g. to show that U 4 ~ 0. We shall now derive some 
relations which manifest a similar equivalence in an explicit form. 

We regard the "Gaussian component" of a Schwinger function to be given by: 

a2,(xl,..,, x2,) = ~ (-I S2(x~k, x~k +,~), 
re~({1, . , , ,2n}) k=  1 

where the sum is over pairings, as explained in (9.10). For Ising models, S2(x , y) is 
to be replaced by (%ay). 

Gaussian fields are characterized by the following Wick identities 

S2n~Gen n=2,  3, . . . .  (12.1) 

For q54 fields and Ising systems, with the interactions discussed above, we have the 
Newman inequality [253: 

$2,(xl , . . . ,  x2, ) < Gz,(Xl,..., x2,) (12.2) 

of which the Lebowitz inequality is a particular case, since 

U4 - $ 4 -  G 4 . 

We shall now obtain an estimate on the difference in (12.2). 
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Proposition 12.1. In a dp 4 field theory described by (9.4), or a ferromagnetic Ising 
system (12.t), let 

Rz , (Xl , . . . ,  X2,) = ~ I U4(xj ,"  ", x,,)IG2,- 4(" ", xj,.. . ,  x k . . . .  , x l . . . . .  Xm,...), 
l < j<k <I <ra<n 

where /x indicates an omitted site. Then 

2 
n(n- 1) R2"(x l""  "' xz") <= tS2n(X1 . . . .  ' x2") -  G2"(xl . . . . .  x2")t--- ~R2"(Xl"" "' X2n)" 

(12.3) 

Before proving this result let us state an obvious implication, part of which, as 
mentioned above, was already derived by very different means, [24]. 

Corollary 12.1. If, in the continuum limit, (12.1) is obeyed for some n, e.g. if  U 4 - O ,  
then it is satisfied for all n, and the "theory" is Gaussian. 

Remark. For the completeness of the argument let us offer a simple rederivation of 
the Newman inequality. 

The representation (t0.6) makes it clear that it suffices to prove (12.2) for 
finite systems of Ising spins, with a general two point ferromagnetic interaction. 
Furthermore, we assume that the 2n points x l , . . . ,x2 ,  are all distinct. The cases 
with coincidental points are easily reduced to this situation. Using Lemma 3.2 we 
then obtain : 

$2(X1 ,  x k ) S 2 n -  2(X1, "" ", ~k . . . .  ) 
k = l  

= E(I% +.2(x,>(x2 ..... x2.}ll{x1 . . . .  , X2n}, O) S 2 n ( X l , . . . ,  X2n ) 

> Sza(X 1 ..... x2,), (12.4) 

where the inequality is derived by the observation that x I is necessarily linked to at 
least one other source. Inequality (12,2) is obtained by a simple iteration of(12.4) (I 
am grateful to R. Graham for pointing this out to me). []  

Proof  of  Proposition t2. t .  Let us use the representation (10.6), making the same 
assumptions as in the proof contained in the last remark. 

i) The upper bound. By Proposition 9.3, and Lemma 9.3, we have 

S2,(x , . . . . .  x2, ) => ~ ~, g(coa)...g(c%) 
T ~ ( {  1 ...... 2n}) o)l°..,°COn~f21(T)%..°g2n(T) 

= y,  .g(oo,) 

-- E g(a),)...gtc%) 1 
(oi , . . . ,o .)eO1 x ... x g2. J not all compatible 

~ G 2 n ( X I '  " ' " X 2 n ) - -  2 E 2 
1 <=a< b<n T (ol,...wn)~Fal(T) x ... x fa,(T) 

(O)a,Ob) not compatible 

(12.5) 



38 M. A i z e n m a n  

The last inequality takes into account the fact that there may be more than a single 
pair of incompatible co's. 

Arranging the final expression in (12.5) in terms of the vertices ore% and co b one 
obtains : 

(0 <Z ) [ G2n __ S2n] ( X l , . ,  •, x2n) 

=< Z Z E g(°,)g(°~2) 
l~j<k<l<m<=2n T'~({xj,xk.xt,xm}) (ol,f.oa)~QI(T') x ~Q2(T') 

' G2,-4("" "' X"''"Xk'""X~AJ ,, . . . .  ,X,,,...). (12.6) 

However, by the lower bound in Proposition 9.1 [i.e. in (9•2)], and the second 
inequality in (9.16), 

~ g(c°Jg(°°e)<=}lUAx~,xk, xz, xm)l. 
T'e~'({xj,xk, xl,xrn}) (o l,o2)ef21(T' ) x •2(T') 

not compatible 

(12.7) 

Substituting (12.7) in (12.6) we obtain the upper bound of (12.3)• 

Remark. By a slightly more careful analysis one can also obtain the following 
upper bound on the "error" in (12.4): 

(0 <) i S2(Xl, xk)Si,,(xl ..... xk .. . .  ) -  $2,(x1,..., x2,,) 
k = l  

<-_ ~ Y~ I U4(x~, x~, x,, xm)l S 2 , - ¢ ( x ,  . . . .  , xk , . . . ,  x, . . . . .  xm, . . . ) .  
1 =j<k<l<m<2n 

(12.8) 

The iteration of (12.8) leads to a slightly improved version of the upper bound in 
(12.3)• 

i) The lower bound. There is a combinatorial identity, regarding the pairings of 
{xl ..... x2,} n >  2, which is simply expressed as follows 

2 
G2n(XI""  "' X2n) "= n (n -  1) ~ G4(xj '  xk' Xt' Xm) 

1 <=j<k<l<m<=2n 

• G 2 n - 4 ( " "  "' AXj' "" ", X k ' ' "  ", Xl . . . . .  ~ m , "  " ) '  (1.2.9) 

The proof of (12.9) is obvious, once one observes the fact that the number of 

pairings of {x I, ...,x2, } is i~I ( 2 n - 2 k +  1). 
k = l  

Applying the same identity to the representation (9.10), we obtain, in the 
notation explained there, 

S2n(X 1 . . . . .  X2n) ~ - -  
2 

E E 
n(n-- 1) 1 <=j<k<l<m<-_2n T'~({j,k,l,m}) 

T"e~({ 1 ...... j . . . . .  k , . . , l  . . . . .  m,.. . ,  2n}) 
A A A A 

E g(o,l  . . . . .  co.). 
Ol %..°oneF21(T')~F22(T')°-QI(T")o...°12n. 2(T") 

(12.10) 
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By the argument of Lemma 9.2, for each (OlOO.)2~Ql(T' )o~"~2(Y')  

T " e P ( {  1 . . . . . .  j . . . . .  k . . . . . .  l , . . . , m , . . . , 2 n } )  e a ~ O l ( T " ) o . . . ° I 2 n -  e ( T " )  
^ A A ^ compatible with OLO¢O 2 

=g(o31°fo2)S2n_4(...,X j . . . . .  AXk, ...,X, ..... X . . . . .  )o~o,o2<g(eol°og2)S2,_4, (12.11) 

where S'(-)o,, oo,~ represents the value of the multiple correlation in a system with 
reduced interactions, as in (9.11), and the last step is by the Griffiths inequality. 

Substituting (12.11) in (12.10), and reapplying (9.10) and (12.2), we obtain the 
following simple inequality: 

2 
$2"(Xl . . . .  ' Xe") < n ( n -  1) ~ S4(xJ' xk' x~, x=) 

I < _ _ j < k < l < m < 2 n  

• G2,_4( .... xj .. . . .  x e...,x~ . . . .  ,x . . . . .  ). (12.12) 

The subtraction of (12.12) from (12.9) leads to the lower bound in (12.3). [] 

13. Proof of the Triviality of the (Single Phase) Continuum Limits 
of ~b~, for d > 4 

Combining the results of the two preceding sections, we shall now prove the 
triviality of the class of limits described by Proposition 10.1 

To repeat the procedure, we are considering Schwinger functions which are 
constructed as limits of infinite-volume lattice approximants : 

S , (x  1 . . . .  , x , )  = w-lira S ~ ) ( x l , . . . ,  x , ) .  (13.1) 
a ~ O  

The "bare" parameters A,/~, 2 are adjusted as a-+0, the only restrictions being 
imposed are that for each a 

S(a)10 x) > 0 (13.2) 
2 ~ ,  , IxI-+oo 

and the local integrability of $2(0, x): 

d x S 2 ( O , x ) <  ~ (13.3) 

for some e > 0. 

Remark .  For d => 2, and any a > 0, the lattice fields have a phase transition, where 
m~0.  In essence, the continuum limits are constructed by approaching the 
"critical manifold" in the parameter space, since it is there that correlation 
functions become significant for separations which are large on the scale of the 
lattice spacing (corresponding~ to finite distances in the continuum limit). For large 
values of J(a), at fixed B(a), 2(a) [see (10.4)], the lattice fields exhibit long-range- 
order, due to a symmetry-breaking (of qS--.- qS). Expression (13.2) is a restriction 
on the bare parameters, confining them to the single-phase region. The study of the 
limits obtained by approaching the "critical manifold" from the symmetry-broken 
regime is a very interesting problem which would not be resolved here. The two 
classes of limits need not be the same. 
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As a background for our result, let us summarize some known features, first of 
the two point function (in the configuration space): 

i) S(a)(02t,x)>0, and S(z a) is decreasing as function of the coordinates of 
x = { x p . . . , x a }  (the Schrader-Messager-Miracle Sole inequality [26], see also 
Appendix II). The same is true in any coordinate system in which the lattice has a 
reflection-symmetry plane. As noted in [14], this implies that S 2 has the following 
regularity property : 

S(2")(0, x) ~ S~a)(O, y) ( > O) (13.4) 

whenever Ix] < lyld- 1. 
ii) Although the "mass", m, was defined by the asymptotic decay of $2(0, x), 

being the gap in the spectrum of the "transfer-matrix" its presence has also local 
implications. Specifically, let x,  = x + ny, where x, y are two vectors oriented in the 
same direction along a principal axis. Then, by a reflection-positivity argument, 
s(2a)(O,x,+ 1)/S~)(0, x,) is non-decreasing in n. Combined with (11.4), this implies 
that 

S(za)(0, x + y) __< e-ml,t (13.5) 
s~(o,x) 

(t e  . q a ity bei.  s tur.ted by 
iii) The infrared bound [(3.12) - with/~ replaced by 4],  of Fr6hlich et al. [9], 

has the following manifestation in the configuration space (Sokal [14]) 

S(2a)(O,x)<_ C(d) (13.6) 
- ~ilxld-2, 

for any a > 0, assuming there is no long-range-order. 
Thus we learn that if a limit (3.2) exists, in "any" weak sense (e.g. regarding S 2 

as a density of a measure), and S z t 0  then 

lira sup A(a) < oo. (13.7) 
a ~ 0  

And if, furthermore, S2(O,x) is not infinite over a region of the form 
{x 1 l xt _-< ~(->_ 0)}, including here the case Sz(0, x) = const 6(x), then necessarily [by 
(13.5) and (13.4)] 

lim sup re(a) < m < oe , (13.8) 
a-*0  

m being defined by $2(0, x). 
Corresponding statements can be shown for limits formulated in the momen- 

tum space, where the spectral representation of $2(0, x) plays a fundamental role. 
As for the n-point functions, S,, their singularities, and zeroes, are controlled by 

those of the two point function; since pointwise 

I~ [2(n-  k) + 1] 1Gz, < S2n <~ G2, 
k = l  

(Griffiths and Newman inequalities). 
We shall now turn our attention to the question of triviality of the limits. 
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Proof  of  Proposition t0.1. Let us assume that a field is constructed by the 
procedure explained above, (13.1) and (13.2) being satisfied. As previously proven 
by Newman [24], and shown explicitly by Proposition 12.1, the field is Gaussian if 
and only if U 4 -= 0. 

A bound on U 4 is provided by Proposition 11.1, where a crucial term for our 
discussion is the factor a d- 4 in G. Taking into account (13.7) and (13.8), we see that 
for dimensions d > 4: 

lira G--0  [as 0(a~-4)]. (13.9) 
a ~ 0  

By compactness, and the local integrability (13.3), for any R <  oo 

dayS(2"l(x , y) . . . s(2a~(x 4, y) (13.10) 
lyI-<R 

is continuous as a-~0, and the limit is finite (for non-coincidental points x 1 . . . .  , x4). 
Thus (13.9) almost proves that U¢-=0; except that one still has to control the 
contribution from large y. However, choosing R large, the remainder can be made 
arbitrarily small, since for R > R0: 

lim sup G S ddyS(2~)(xl, Y)""  S~(x4  , Y) 
a~0 bq_>_R 

C(d) 2 
d R ~o ~0 (13.11) <3(2d)2K(Ro) j" d y t y _ x y - 2 b , _ x z l d - 2  

Ir1~R 

[using (13.6)], where 

K(Ro) = lira sup sup {S~a)(0, x) I Ix[ > R0} < 
a -+ 0 

is finite by the local convergence of S(2 ~), and the regularity condition (13.4). []  

14. S o m e  C o m m e n t s  on ~b 4 

The bounds on the interaction in ~b~ fields which were discussed in the previous 
sections yield only partial answers for the question of possible constructions of 
non-trivial $** fields. The situation in four dimensions is very interesting both on 
physical and mathematical grounds: physically - since the Schwinger functions 
are a stepping stone for the construction of the Wightman functions of a scalar 
field theory in the Minkowski space-time, mathematically - since four seems to be 
a critical dimension. Nevertheless, even the above bounds do yield some infor- 
mation about ~b~. 

A key argument in our proof of the triviality of the constructive limits for ~b~, 
d > 4, was provided by the vanishing of the factor 

G = 3(2d)2A2a e- 4[-1 - e x p ( -  Ca2o a4- d)]e2ma (14.1) 

which multiplies the "tree diagram" integral in (11.2). As we saw, in addition to 
this, one needs some control on the possible divergence of the integral itself, the 
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only worrisome part being the contribution from large y. That problem does not 
present itself in limits for which 

lira inf re(a) > 0, (14.2) 

due to (13.5) and (13.4). (One may also hope to resolve this issue by an entirely 
different argument - keeping in mind the fact that we are really bounding a 
probability of intersection.) 

Returning to the prefactor, let us point out that 

lim G = 0 (14.3) 
a ~ 0  

under either one of the following three conditions, assuming the necessary bounds 
(13.7) and (t3.8) are satisfied. 

i) d > 4 .  

This case was discussed in the previous section. 

ii) 20-2/A2--,0, d > 2 .  (14.4) 

The proof is by an application of the inequality 1 - e - X < x  in (14.1). (The 
restriction d > 2 is presumably just due to a removable technicality.) This result 
may sound as "Gaussian limits are Gaussian," since 20 is the "bare coupling 
constant" - 2 o = 0 corresponding, for a > 0, to a manifestly Gaussian system [see 
(10.4)]. Nevertheless, the statement is not an explicit tautology, since it expresses 
independence of all the other adjustments of the bare parameters in the continuum 
limit (except for the constraints we have discussed). 

iii) d = 4 ,  A ~ 0 .  (1.4.5) 

In a work which extends the results reported in [1] to the two component ~b 4 field 
theory Fr6hlich [3] obtained, using independently derived arguments, a similar 
bound to (11.2) (except for the term involving 2o), thus proving the conditions i) 
and iii) in that generality. As he pointed out in this context, the asymptoticity of 
the perturbation theory would have implied that the condition (14.5) is satisfied! 

Therefore, there are now at least two possible directions, which if followed 
successfully could provide a key argument for the extension of Proposition 1 t.1 to 
four dimensions. 

i) Show that _ ~ 0  is a necessary condition for the existence of the limit (13.1), 
if either the bare coupling constant, 20, or the renormaIized coupling constant, g, 
are kept away from zero. This calls for an improvement (say in the "ultraviolet 
region") of the "infrared bound," or at least for a proof that 

lim S2(O,x)IXt 2 = OO (d=4) (14.6) 
]x[-~o 

[see (13.6)]. 
ii) Improve the bound (11.2). I am reasonably convinced that this should be 

possible for d--4 (drawing encouragement from the analysis in [27]). 2 
Let me end these comments by calling the attention again to the point made in 

Sect. 13, that even if the above routes can be followed, a very interesting question 

2 An improvement which should be significant for d=4 is derived in [29] 
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would remain with respect to the possible construction of fields by limits of a 
symmetry-broken phase. Some very preliminary, non-perturbative, results can be 
found in the work of Graham [28]. 

15. More on Absolute Bounds on the Coupling 

In this anticlimax we return to an observation made by Glimm and Jaffe [12] that 
renormalized coupling constants in a q~4 field theory obey uniform upper bounds, 
which depend only on the dimension. 

As a dimensionless measure of the physical interaction one may define the 
coupling constant(s) 

- -  2 d g(,~) = IU4I/[Z ~t~)], (15.1) 
where 

]U-£4t = ~ dx2d..~3dx4l U4(x1,-.., 14)t 
z = S dxS2(0, x) 

and ~ = m-* is the "correlation length" which is alternatively expressed by 

~ = [5 dxS2(O, x)lx[4,/Z]*/4, " 

For lattice approximations, and for Ising models, we extend the functions U 4 and 
S 2 to the continuum - the extension being constant on the lattice cells. 

In addition to the Glimm and Jaffe [12] bound on g, g ,  were bounded by 
Schrader [17] - f o r  q~>d. This result was recently extended by Lieb and Sokal 

d 
[18] to 4)> ~. We shall now present a simple derivation of a bound on gel2 and, in 

effect show that what seemed to be a difficult borderline case is perhaps the most 
natural one. Our special interest in ge/2 derives, however, from the fact that in two 
dimensions we get a simple lower bound on g, (Sect. 8), we then need the upper 
bound for a proof of hyperscaling. 

The only ingredient which is used for the following result is the inequality: 

t U4(xp..., x4) i < 2S2(x,, x2)S2(x3, X4) , (15.2) 

which by (5.3) is satisfied for general Ising models, and hence, by the Griffiths- 
Simon representation (10.6), for 4> 4 fields (all in the single-phase regime). 

Notice that the factor which is lost in (15.2) is the probability of intersection of 
the random currents -wh ich  is all the interaction in these models. Nevertheless, 
one still obtains the following bound. 

Proposition 15.1. For the ¢4 fields, and translation invariant Ising models with 
ferromagnetic pair interactions, in the single-phase regime 

gdl2~l~t /[~  dxS2(O,g)lxtd'2125~ 127'~d/2//" ( d -t-1) (15.3) 

(at the critical point, where Z= oo and possibly tU--441 = 0% gdI2 is defined by 
introducing factors e -~lxt, and letting e~O). 
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Proof As a consequence of the permutation symmetry of U4(xl, ..., x¢) we have : 

~. [~ dx2dx3dx41U4(O, x2, x 3, x4)l 

= ] j  dxdydzlU4(O,x, z,y+z)lX[tz] <min  {]x], [y], Jy+z-  x], ]x-zt, ]y + z]}]. 
(15.4) 

Equation (15.4) is apparent if one realizes that both sides represent the average, per 
unit volume, of Iu41 evaluated at random quadruples of sites. The integral on the 
left hand side corresponds to randomly labeling the sites of each quadruple as 
(0, x> x 3, x4), whereas on the right hand side {0, z} are reserved to denote the ends 
of the shortest segment, the other points being labeled by x and z+y. 

Substituting (15.2) in (15.4) (and using the translation invariance) we obtain 

2.4! 
1~441 < _ _  j dxdydzS2(O, x)S2(0, Y) 

= 4 tzt=<C]xllyl 

12. =a/2 
- F(2 + l) [~ dxS2(O,x)lx]a/2]2 (15.5) 

which proves (15.3) [=a/2/F(~ + l) being the volume of the unit ball ; the analogous 
3 

bound for the expression obtained by replacing Ixl with [Ixh/1 is 12.2a/d! I. [] 

Remark. Equation (15.2) is slightly stronger than the bound used in [12, 17]. To 
recover a bound on 9 from the above result, one may use the inequality: 

~ >const~a/2 (15.6) 

derived in [14] from the spectral representation of S 2. 

Appendix I. The Criticality of d = 4 Dimensions 
from a Geometrical Point of View 

The lever which is applied in our study of the Ising models and q5 4 fields is a 
representation in which the correlations are being mediated by a system of random 
currents. Various features of the critical behavior in these models are directly 
related to the probabilities of intersection, under various circumstances, of currents 
which link widely separated sources. Faced with such a stochastic-geometric 
system, it is quite instructive to search for a simple setup in which similar problems 
can be formulated, and try to extract a general lesson from its solution. 

An example which we shall consider here is provided by the paths of Brownian 
motion (the Wiener process). The motion can be viewed as the continuum limit of 
the random walk, on a lattice of spacing a with a~0 .  However it is possible, and is 
even quite advantageous, to define the process directly in the continuum. A key 
fact is the continuity of the motion, as function of the time, which allows one to ask 
for the probability of intersection of two independent paths. Although the paths 
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are parametrized by IR+ (the time) one should not be misled into thinking that 
their intersection properties are similar to those of simple polygonal lines. These, 
generically, do not intersect already in three dimensions. For Brownian motion the 
situation is described by the following celebrated result. 

Proposition 1.1. (Kakutani and Dvoretsky et al. [10].) Let co i, i= t, 2, be the tra- 
jectories of two independent Brownian motions in IR d, which start at x 1 and, cor- 
respondingly, at x 2. Then, for any region A C IR d, 

Prob({co~csco2c~A#{xl}c~{x2}}) is {=0>0 d<4.d=>4 (I.1) 

(That is, the probability of having a point in common, except for the starting point if 
x 1 = x  2, vanishes if d>4.) For A=IR ~ the probability is one if d<4.  

The critical dimension for triple intersection is d = 3. To reconcile all this with a 
simple intuition one may regard the Brownian paths as ("almost") two dimen- 
sional (in fact, that is their Hausdorff dimension). 

For d>4,  the proof of Proposition 1.1 is quite simple and instructive. The 
following is a variant of an argument shown to me by T. Spencer. The main input 
is the hitting probability - which may be viewed as an analog of the two point 
function. 

Lemma 1.1. For any yElP~, and a> IYl, the probability that a Brownian motion (in 
lRd), which starts at O, hits the ball of radius a centered at x, is 

(ate-2 
Prob ({dist ((-0, y) < a}) = \lYl/ " (I.2) 

(The proof is easy, once one observes that the probability is necessarily a 
harmonic function of x.) 

Proof of Proposition I.i, for d >4. Let us assume that A is compact, and at finite 
distance from xl, x 2, the general case follows by the countable additivity. For a 
specified pair of paths coa, (-02 

Va((-0I, (-02) = t dyX[dist(coi, Y) < a ;i = 1, 2] 
A 

is the volume of points which are within the distance a from both paths. Here 
( X [ -  ] is a characteristic function, which is i if the condition [ -  ] is satisfied and 0 
otherwise.) If there is a point of intersection in A then, ignoring a trivial boundary 
effect, 

V~(%, (-02) > IBol, 

[Bal being the volume of a ball of radius a. In fact, 

lira Va(col' (-02) = card ((-01 n(-02 c~A). 
o ~ o  tBol 

The point now is, that it is very easy to evaluate the expected value of the 
integrand in Va(co~, co2), which is just the product of two (independent) hitting 
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probabilities, (I.2). Thus, (using Fatou's lemma) 

Prob ({co 1 ~co 2 nA =t = 0}) < E(card(oJ1 ~co 2 c~A)) 

1 -2( a t d-2 < lim inf.---.- ~ dy 
=a~o IB,t a \[Y-Xl[} \ tY-Xzl]  

1 1 1 
=l imaa-4i~l[  ! dY 

a~0 [y-x1[ a-2 [Y-X2] a-2 

= 0 ,  for d>4 .  (I.3) 

Proof completed. [] 
Notice that the key inequality which is used in the above argument is a bound 

on the probability of intersection in terms of the intersection's "coarse grained" 
size. A moral to be learned is that while such a bound is grossly inefficient for 
d < 4  - it is very effective for d>4 ,  and marginal for d=4,  where at least it is finite. 

In the work in this paper we apply the tactic suggested by the above analysis. 
The pivotal factor a a-4 emerges again in (6.5) and (11.3). 

Another important hint which (I.3) offers us is the suggestion that perhaps we 
should not expect the argument described in this paper to be conclusive for the 
case of a massless 4~44 field. After all, even for Brownian motion in IR 4, (I.3) is only a 
marginal upper bound which misses a crucial, logarithmically weak, factor. The 
analysis, in [10], of this case utilizes potential theory and other arguments which 
at this point have no analog in the situation we encounter. It may therefore be very 
desirable to have a more rudimentary (yet simple) proof of Theorem 1.1 for four 
dimensions. Such arguments would be presented in [-27]. 

Finally, to impress upon the reader the critical nature of d = 4 dimensions, let 
us describe another approach to the problem of intersection of Brownian paths. 
Since we are dealing with the question of whether the probability is strictly zero, or 
not, it suffices to settle the issue for A the unit ball, and Xl,X z having a uniform 
distribution on the sphere ~A - rather than being fixed. 

Let {cgi}i~__ 1 be a partition of A, formed by a collection of open disjoint balls 

which exhaust the volume, i.e. A -  U ~i = 0. By scaling it down we may use this 
i=1 

partition to further populate each of its elements, ~f~, by a collection of second 
generation balls. Iterating this construction, we obtain a hierarchical collection of 
partitions. The cheese is then defined as the union of the remainders which are left 
out at the various steps (i.e., what is left after all the "holes" are removed). 

We shall now use this hierarchy of partitions to associate with each pair of 
paths col, co z a random tree. 

First, let n(col, c%) be the number of the elements of the partition {cg~} which 
are intersected by both paths. With each such ball, cg~l__<k=<n(co~,co2), we 
associate a vertex which is then linked to a fixed point, 0. 

Next, from each vertex we draw a number of lines, each corresponding to a 
second generation bail, of the subpartition of ogle, which is intersected by both 
paths (see Fig. 9). 

By iteration, we obtain a "tree" which may, or may not, have an infinite 
"ascending" path. Each such path corresponds to a point of the intersection 
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Fig. 9. A random-tree formulation of the intersection problem 

o 
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co 1 c3¢02~A which does not fall in the cheese (this having Lebesgue measure zero, 
may be ignored here). 

Hence we have converted the problem of intersection to one of percolation, on 
a random tree. Using stopping-time arguments, it is easy to see that, given that a 
fixed sphere (in A) is doubly hit - the number of elements of the corresponding 
subpartition which are hit by both paths has the same distribution as n(col, o)2). 

Were we to ignore the existing interaction between the numbers of lines which 
are drawn at the various vertices, we would obtain a solvable model. At this 
approximation the answer is determined by a single quantity - the expected value 
E(n(o) l, co2) ). The (classical) answer being: 

there is percolation of E(n(c01, co2) ) > 1, 

and (II.2) 

no percolation if E(n(col, o)2) ) < 1. 

The following result manifests therefore that d = 4 is indeed a critical case. 

Proposition 1.2 [27]. Let E ( -  ) represent the average over independent paths (co 1, G02) 
whose starting points have the uniform distribution over the sphere OA. Then, in d = 4 
dimensions, 

E(n(col, co2)) = 1 (!) 

for any partition of A into balls {cdi}, as described above. 

An analogous result holds for any other shape which can be "packed" 
efficiently. In d-dimensions, for successively refined partitions, 

E(n(a)  l,  6o2) ) = O(a d- 4). 
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