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Abstract. We use the Brydges-Spencer lace expansion to prove that the mean 
square displacement of a T step strictly self-avoiding random walk in the d 
dimensional square lattice is asymptotically of the form DT as T approaches 
infinity, if d is sufficiently large. The diffusion constant D is greater than one. 

1. Introduction 

A T step self-avoiding walk on the d dimensional square lattice Z a is a set of T +  1 
points co(0) = 0, co(l), co(2), ..., co(T) in 2~ d with [co(/+ 1 ) -  co(i)l = 1 and co(i) =~ co(j) for 
i =~j. A probability measure is defined on the set of all T step self-avoiding walks by 
assigning an equal probability to each such walk. Numerical and other evidence 
suggests that the mean square displacement with respect to this measure, i.e., the 
expected value (co(T)2) of co(T), co(T), is asymptotically of the form D T ~ as T--+ 0% 
where e = l . 5  for d=2 ,  0~=1.18 for d=3 ,  c~=l with logarithmic corrections for 
d = 4, and e = 1 for d >  5 [4]. For d = 1 there are only two self-avoiding walks, 
(co(T) 2) = T 2, and c~ = 2. Removing the self-avoidance constraint co(i)Je co(j), i~j  
gives the simple random walk, for which (co(T) 2) = T in all dimensions. 

In spite of the apparent simplicity of the self-avoiding walk model, apart from 
the result obtained below there is no rigorous proof that ~ is as stated above. In this 
paper we prove that ~ = 1 and D > 1 for d ~ do, for some do > 5. No effort has been 
made to obtain the best possible value of do. It is not surprising that D > 1 here, 
since it is to be expected that a self-avoiding walk will on the average end up farther 
away from the origin than a simple walk. 

Other results for the critical exponents of self-avoiding random walk can be 
found in [7, 8]. In [8] the connection between self-avoiding walk and quantum 
field theory is also explained. Lawler [6] considered a related model, the loop- 
erased self-avoiding random walk, and proved that for d >  4 scaled loop-erased 
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walk converges in distribution to Brownian motion. In particular, a = 1 for d > 4 
(with logarithmic corrections for d=4)  in this model. Brydges and Spencer [3, 1] 
used their lace expansion to show that ~ = 1 for d_> 5 for weakly self-avoiding 
random walk, for which self-intersections are not forbidden but rather discouraged 
by a small probability penalty. 

The weakly self-avoiding walk was studied in [3] by exploiting the fact that it is 
a small perturbation of simple random walk. But in high dimensions the strictly 
self-avoiding random walk is also a small perturbation of simple random walk. A 
result in this spirit was obtained by Kesten [5], who showed that in high 
dimensions the main effect of the constraint that a walk be self-avoiding is the 
exclusion of immediate reversals. In this paper we apply the Brydges-Spencer lace 
expansion to the strictly self-avoiding walk in high dimensions, obtaining 
convergence of the expansion by taking d to be large rather than by taking the 
probability penalty associated with self-intersections to be small as in [-3]. We use a 
simplified proof of convergence of the expansion, avoiding the intricate induction 
argument used in [3]. To help make this paper self-contained a derivation of the 
lace expansion is given in the next section. 

We now introduce the notation. We begin by considering walks which have no 
self-intersections on any time interval of length less than a memory z. That is, we 
consider T step nearest-neighbour walks co whose probability is proportional to 

I1 (1+ Us (co)), 
s t  e ~([0, T]) 

where for an interval I of positive integers 

~(I)={st:s<t,[s-t[<__z,s, tEI}, (1.1) 

and U~t(co)= - 1  if co(s)= co(t) and equals zero otherwise. For z = 0 this is simple 
random walk while for z > T it is strictly self-avoiding walk. For x e 2g e, let 

N~(x,T) (2d) r~.l~=r~l ~.(to,[[ T1)(I+U~t(co))' (•.2) 
~(T) = x 

We set N,(x, 0)= 6.. o. The following transforms of N~(x, T) are distinguished from 
one another by their arguments: 

N~(k, T)= ~. N~(x, T)e ik'~, k ~ [ - ~ ,  ~]d, (1.3) 
x 

N~(k, z) = ~ N~(k, T)z T, z ~ (E. (1.4) 
T = O  

The expectation value for a T step walk is defined by 

The mean square displacement (co(T)2)~ of a T step walk is given by 

-- ~2 N~(k, T) (1.5) 
(co(T)2)~- N,(k, T) k=o' 

where Vk 2 is the Laplacian with respect to the variable k. 
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Let 1 ~ 
D(k)= dj=~l c°sk2' (1.6) 

where the kfs are the components of k. For simple random walk it is well known 
that 

No(k, T) = D(k) T, 
and hence 

No(k, z) = (i - zD(k))-t. 

We define H,(k, z) and F,(k, z) by 

N~(k, z) = (1 - zD(k) - II~(k, z))- 1 = F~(k, z)- 1. (1.7) 

The quantity lI~(k, z) will be used as a measure of the deviation of the self-avoiding 
walk from the simple walk. The lace expansion is an expansion for II,(k, z) that can 
be used to estimate H~ and its derivatives. 

Denote by r~(k) the radius of convergence of the power series (1.4) and let 
r~ = r~(0). Since 1 + U~t< I and [N~(k, T)] <N~(k=0, T), 

r~(k)__> r~__> ro = 1. 

Let 
D~(a) = {z : [z[ < r~(l + az- 1 ln~)}. 

We now outline the main ideas involved in the proof of the main result: 

Theorem 1.1. There is a constant do > 5 such that for d > do, 

(o(T)2)T---DT+O(T1/21nT) as T~oo ,  

with D > 1. 

The first step in the proof of Theorem 1.1 is to use the lace expansion as in [-3] to 
obtain 

IH*(k'z)'<IIN~a)(x"z[)lI~[ 'z[+ u=2~lN(~)Cx ~ , ,  z ' ~ I N [ I N ~ ° ) ( x , [ 2 ' ) I ' ~  2 ' . , ( 1 . 8 )  

where 

N~)(x,z)= F, N~(x, T)z T, 
T = 6 ~ , 1  

and the norms are x-space L p norms. Similar bounds are obtained for ~Q~II~(k, z), 
involving llx"'O~'N~)(x, Izl) ll with u' < u, v' ~ v, although if u 4:0 the first term Izl in 
the square brackets in (1.8) is absent. We then note that the right side of(1.8) should 
be small, in fact O(d-1), because the factor (2d) -T in N~(x, T) should make 
IIN~l)(x, lzl)ll®<=O(d-~), I[N~°)(x, lz])ll2<_<_O(1), and IIN~l)(x, lzl)ll2<=O(d -~/2) uni- 
formly in z and z E D~(1/2). This will be explained in more detail below. The d-  ~/2 in 
the L 2 norm can be understood from the fact that 

tiN'a)( x, IzJ)lt22= Z ~ N~(x, T)N~(x,S)IzlS+T> ENd(x, 1) 2 ]zl2=(2d) -~ Iz] 2. 
x S . T = I  x 

Similarly [Og, II~(k, z)[ and ]OjI~(k, z)] will be bounded by inverse powers of d, 
uniformly in • and z e D,(1/2). 
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Given these bounds o n / / ,  and its derivatives we argue as in [3] that Ne(k, z) has 
a simple pole at rjk) for small k 2, with re(k) ~ D~(1/4), and is otherwise analytic in 
D~(1/2). Then N~(k, T) is evaluated using the Cauchy Integral Formula to be the 
sum of the residue of - -NJk,  z)z-(T + 1) at r~(k) and a small correction involving an 
integral around ~D,(1/2), yielding 

N~(k, T) ~ - [~zF~(k, re(k))] - 1 r~(k)-(T + a). (1.9) 

Estimates on/ /~  and its derivatives can then be used to show that the dominant 
contribution to Vk2N,(0, T) is given by 

Vk2N~(0, T) ~ [O~Fe(0, re) ] -1 ( T +  l ) r [  (r+ 2) Vk2r~(0). (1.t0) 

Taking the memory to be T and using (1.9) and (1.10) in (1.5) gives 
(o)(T)2)T',~DT T, where DT=rT*~2rT(O). It can then be shown that 
DT=D+O(T -1) with D > I .  

We now describe the method for obtaining bounds on norms ofxUQ~N~l)(k, z), 
uniformly in z and z ~ D~(1/2). First we obtain bounds for v __< 2, lul < 2, 2v + lul < 4, 
uniformly in r and z ~ De(0). It is then straightforward to extend the estimates to 
z ~ D~(1/2) at the expense of one z-derivative, i.e., for v < 1, ]u] < 2, 2v + [ui < 2; see 
Theorem 4.3. The bounds for z ~Dj0)  are the main technical problem faced in this 
paper. This is also the place where our method differs from that of [3]. 

To obtain the estimates for z ~ D~(0) we proceed as follows. We first show that 
for fixed u, v, ~ the relevant norms of x"(3~N~)(x, O) are continuous in Q. We then 
show that there are constants Ko and do such that for d > do, 0 ~ [0, r J ,  and all ~, 
P4 ~ P2, where Pa is the statement that the various norms are bounded above by 
aKod-P. Here p is the power appropriate to a particular norm and is determined by 
looking at the leading behaviour of the corresponding simple random walk norm. 
It then follows from the value of the norms at 0 = 0 that they are in fact-bounded 
above by 2Kod-~'. This type of argument has been used in a different context in [2]. 
The basic idea in proving the implication P4 ~ P2 will now be illustrated for 
IIN{I)(x,o)II2 . 

Using the assumed bounds 4Ko d-p on the norms, it follows from (1.8) that 
]II,(k, z)] =< Kid-  a, and from the analogue of (1.8) for 2 ~k,k JI,( k, Z) that ]c~2,k JI,( k, z)l 
<Kl(6i t -  s/2+ d-a), where K 1 is a constant depending on K o. It is only ¢ ~ (1, r,] 
that poses any difficulty, and an elementary argument shows that for d > do(Ko) 
and 0 ~ (1, r J ,  

F~(k, q) = F~(0, Q) + 0(1 - D(k)) + II~(0, ~) - II,(k, O) > c(1 - D(k)) = cFo(k, 1), 

where c is a universal constant which does not depend on K o. Then using 
Parseval's equality to convert an x-space L 2 norm to a k-space L 2 norm gives 

IlN~l)(x,e)[12 < T~=IN~(x, r)o r 2 = ItN~(x'e)-6~'°ll2 

= IlN~(k, 0 ) -  1112 = oD(k)+II~(k' O) 

~OC-I ~ 2 + K 1 d - l c - 1 1 - - ~ 1 2 "  (l.1/1) 
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The norms on the right side of (1.11) are norms of simple random walk 

quantities and in x-space are respectively 'r~l No(x, T) 2 and T~=oNo(x, T) 2" 

These are bounded above by qd-1/2 and c~ respectively, so 

l[ N(1)(x, 0) ll 2 :< ~Cl C-- l d-  112 + K1 c - l cl d-  1. 

The assumption P4 can be used to show that o<=l+K~d -~. Thus taking 
Ko>__qc -1 and d sufficiently large (depending on K0) gives IIN£1)(x,o)ll2 
< 2Kod-~/z. The other norms are handled similarly. 

This paper is organized as follows. In the next section the lace expansion is 
derived and it is shown how to obtain bounds like (1.8). In Sect. 3 estimates are 
obtained for the various simple random walk norms which are needed as explained 
above. Section 4 is concerned with convergence of the lace expansion and contains 
the proof of the implication P4 ~ Pz and estimates for//~ and its derivatives. 
Finally in Sect. 5 the bounds on//~ and its derivatives are used to fill in the details 
of the argument involving the Cauchy Integral Formula sketched above and to 
complete the proof of Theorem 1.1. The proof that D is greater than one can be 
found at the end of Sect. 5. 

2. The Lace Expansion 

This section contains a derivation of the lace expansion, following [3, 1]. 
Elements of the set ~ ( I )  defined in (1.1) are referred to as bonds. Define 

~(I)= H (l+U~t). (2.1) 
st ~ ~ ( I )  

Then 
Z 1-[ ust. (2.2) 

BC ~ ( I )  s t~B 

A connected graph G on I is defined to be a subset of 2~(I) such that each endpoint 
o f / i s  part of a bond in G, and for each m in the interior of / there  is a bond st~ G 
with m ~ (s, t). Subsets of ~ ( I )  are in a one-one correspondence with partitions of I 
into ordered subintervals I1,.. . ,  I ,  with disjoint interiors but possibly overlapping 
endpoints, with a connected graph on each Ij, as in Fig. 2.1. A subinterval may 
consist of a single point. It follows that 

~p(I) = Z Z ~Pc(I1)... ~Pc(I,), (2.3) 

where the sum is over partitions of I as above and 

IPc(I)= ~ H Us,, (2.4) 
G s t a g  

the sum being over connected graphs G on I. We use the convention that if I 
consists of a single point then lpc(1)= 1. 

O 1 2 ~ 4 5 6 7 8 910 

Fig. 2.1 11 = [0,2] , 12 = [3,3] , 13 = [4,7] , 14 = [7,101 
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G • " - - - - > "  
0 I 2 3 4 5 6 7 8 9 

r ......... 

F i g .  2 . 2  ~ ( G ) 0 ¢ ~ i  ~ 3 4 5 5 7 8 9 

Let S,(I) denote the set of connected graphs on I such that the removal of any 
one bond from the graph results in a graph which is not connected. Elements of 
5Y~(I) are called laces. The following prescription defines a way of obtaining from 
any connected graph G C N~[a, b] a lace ~¢(G)C G. 5f(G) has bonds s~tl, Szt 2 . . . .  , 
where s l = a ,  t l = m a x { t : a t ~ G } ,  

ti+ l =max  {t: st ~ G,s <ti} , 

si = min {s: st i ~ G}. 

An example is shown in Fig. 2.2. Given a lace L, the set of all bonds st ~ M~(I)\L 
such that L, Cp(Lw{st})=L is denoted by cg~(L). Bonds in ~(L) are said to be 
compatible with L. 

With these definitions we have 

~oc(I)= E H U~t= E H U,, E I-I U,t 
GonI s teG La£-caz(I) s taL G:S~a(G)=L s taG\L 

= Z H U~ 1~ (I+U~,). (2.5) 
L ~ . ~ ( I )  s taL sta~g~(L) 

The following theorem gives the lace expansion for H~(k, z). 

Theorem 2.1 (Brydges-Spencer). (zy 
II~(k, z)= ~,.., 2 eikW(T) 2 II U~t I[[ (1 + U,,). (2.6) 

T = I  ca, Io~ I = T  Le5~. ~[0, T] s t~L ste~f,(L) 

Proof. By Eqs. (1.2-4), (2.1), and (2.3), 

g~(k,z)= ~ ~ • eik°~(T)tp([O, T]) 
T = 0  co, lo~l= T 

= I + ~ 2 eik°~(T) 2 ~ ~c(IO... toil ,) .  (2.7) 
T = I  o),l(~l=T n = i  I I  . . . . .  In  

The contribution to the sum on the right side coming from partitions with 
I1 = [0, 0] is 

T = I  2d Z eik°'(r) 2 ~. ~f12). . .  tPc(I,) 
~9, [mI = T n = 2  I2 . . . . .  In  

/ z'~r 
= ~ , ~ 2 - d )  ~,.lo~l=rY' eik'°(rbP([l'T]) 

/ z \ r - ,  
= rZ--1 [Yd) o~, Mo, IY = r ei~('°(r)-'°(1))w([l' T])Zeik'°(1)=zD(k)N~(k'z)'2d (2.8) 
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The contribution to the sum on the right side of (2.7) due to partitions with 
11 =# [0, 0] is given by the following expression, where s__> 1 is the upper limit of 
I1 = [0 ,  s]  : 

eik°(T) 2 1Pc(E0, S]) ~p(ES, T]) 
T = I  ~ o~, [t~l = T s = l  

oo / z V  / z ' ~  r - "  
= ,~,  i2-d) r:,i ~.lo4=rZ e'k°~(~)tPc([O,s])i~) eik(~(r)-~°('))~P([ s, T]) 

oo / z V  
= ,~,  ~-~)  ~,1~1 = ,y '  eiko(')tpc(CO, s])N~(k,z ). (2.9) 

Replacing the sum on the right side of Eq. (2.7) by (2.8) and (2.9), using (2.5), and 
comparing with the definition of II~(k, z) in Eq. (1.7) completes the proof. 

The quantity I]  U,t in the right side of (2.6) gives a nonzero contribution to 
s t e L  

H~(k, z) only for walks which intersect themselves as indicated in Fig. 2.3. The 
product over cg~(L) in (2.6) disallows many but in general not all other self- 
intersections. The generic walk whose topology is that corresponding to a lace 
with N bonds will be denoted GN. Consider the walk GN to consist of 2N--1 
subwalks over time intervals [0,s2], [s2, tl], [tl, s3], Is3, t2], ..., [tN-1, r ] .  Each 
subwalk consists of not more than z steps because every bond st in a lace 
Le  S¢~[0, T] satisfies i s -  tl < z. Also, it is consistent with the definition of a lace to 
have t~ = s~ + 2 for i > 1 but inconsistent to have t~ = s~ + t for i > 1, and so for N > 2 at 
least N + 1 of the subwalks consist of at least one step. Except for G1, no subwalk 
consisting of at least one step on an interval [e, fl] begins and ends at the same 
place since e/ /e  cg~(L). The set of lines in GN which must consist of at least one step is 
denoted by G# ). The remaining lines, which may have zero length, comprise the set 
G~ ). In Fig. 2.3 lines in G~ ) are slashed. 

The lace expansion (2.6) can be used to obtain an upper bound on iH,(k, z)i as 

follows: take absolute values inside the sums of (2.6), factor \2dJ among the 

L 

0 T O,T 

Fig. 2.3 

~ 2,T 

0 s 2 t ]  T O, t ]  

s2, t 2 

G3 
0 s 2 t 1 S 3 t 2 T O, t l  s3,T 

$2,t2 . s4,T 

0 s 2 t 1 s 3 t 2 s 4 t 3 T 
O, 3 
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subwalks, and omit factors (1 + Ust ) whenever st is a bond linking two distinct 
subwalks. We let x I =0  and denote the position of a generic walk at time s~ by 
x2~- 2, i > 2 and at time h by x2~+ 1, i > 1. (Many x~'s are equal, for example for G 3 
xa = x~ = O, x5 = xz, and x6 = x4.) We denote the line in GN corresponding to the 
subwalk from x~ to x~+ 1 by f~. With this notation the upper bound is 

/IzIV In~(k,z)l< E L - -  
.... l~l=T~2d ) [UoTI I~ (1+ Ust) T = 2  sta~(L = OT) 

11,~, ~ ~ i + l - x i ,  iz]), (2.9) 
N = 2  x~ . . . . .  x2iva/~ a a = 0  {i:~'iaG}~'} 

where 

NT)(x ,z )= ~ N~(x, T)z  T. (2.10) 
T=5~,l 

The first term on the right side of(2.9) is special in that it cannot be bounded above 
by N~l)(0, lzl) = 0. However using (x ,  O) to indicate the nearest neighbours of the 
origin we have 

2 \2d] IUorl I I  (1 + u ~ 3 =  Izl T=2 e),l,:e,l=T sta~(or) ~ (x,O)2 T=2~ N:(x, Y -1 ) l z [  T-1 

_<-Izl IlX~l)(x, tzl) ll ~ ,  

where the norm is the x-space L ~ norm. It is shown in [3] how to use the Young 
and H61der inequalities to obtain the bound 

1 

Z 1-I r~ N(~)t,. ,, . . . .  ,~i+l-x,,l~l) 
x2 . . . . .  x2N a = 0  { i : d i eG~ '}  

< lIN~l)(x, lzI)tl ~ IIN~)(x, lzl)ll~ lIN~°)(x, tzt)ll~-2. 

The norms here are x-space L p norms. Thus from (2.9) we have 

k N = 2  A 
(2.11) 

Similarly upper bounds on k and z derivatives of H: can be obtained by 

factoring both \ 2 d )  and among the subwalks and using the product rule 

to have the derivatives act on single subwalks, giving 

(2.12) 

In the first term on the right side the derivative is performed before evaluating N{ 1) 
at ]zl. For  u + 0 the first term on the right side is absent because for G1, ~o(T) = 0, and 
so the contribution to/ /~ from G, is independent of k. The unlabelled sum is over 
ways of choosing nonnegative multi-indices u~ such that Zu~ = u and nonnegative vj 
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such that Zv~ = v. Any one norm in the product can be taken to be the L ~ norm. The 
others are L z norms. The unlabelled sum consists of ( 2N-1 )  I'1 +v terms. 

Since the contribution from G1 to He(k, z) is independent of k, 

IOe(k, z ) - n e ( 0 ,  z)l_-< 211N~)(x, Izl)ll ~o E IIU~)(x, Izl)l[f HN~°)(x, Izl)l[f -2 • 
N = 2  

(2.13) 

To control the rate of convergence of the diffusion constant D~ to its limiting 
value D it will be necessary to have estimates for fill(k, z) = He(k, z ) -  ll~,(k, z) and its 
derivatives. For  ~ > a, ~ , [0 ,  T] C A°~[0, T] and for Le  A°~[0, T], cg,(L) C cg~(L). This 

a 
last inclusion is often strict, but i fL contains no bond of length greater than 2'  then 

cg~(L) can contain no bond of length greater than o, and hence cg,(L)= (g~(L). 
Therefore in fill there is a cancellation of all terms involving laces with all bonds of 

a 
length less than or equal to ~- and 

<~ t r Ifin(k, z)l = Ills(k, z)l + In~(k, z)r, 

where l l '  is defined by the right side of (2.6) with just laces having at least one bond 
a 

of length greater than ~ participating. 

At least one of the subwalks corresponding to a lace with a bond of length 
O- ¢7 

greater than ~ must consist of g or more steps. By the same argument used to 

derive (2.•2) we have 

IO~,O~ fill(k, z)[ < 2 [fi,, 0 ]l c~(zfiN(x, [z[))]l ~o 

N = 2  a = 0  2v 

Here 

N~(x, T)[z[ r, Ne(x, T)Izl T fiN(x, [z[) = max T =~/6 T: ~/6 ' 

one fi*N (~) is chosen to be fiN, and the remainder are taken to be max{N~ ), N~)}. 
The unlabelled sum also extends over ways of assigning one fi*N (') to be fiN. One 
norm in the product is an L ® norm and the remainder are L 2 norms. 

3. Estimates for Simple Random Walk 

The proof of convergence of (2.12-14) will be obtained in Sect. 4 using estimates for 
simple random walk which we obtain in this section. 
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By virtue of its definition in Eq. (1.2), No(x, T) is the probability that a T step 
simple random walk starting at the origin ends at x. Since D(k) [-defined in (1.6)3 is 
the characteristic function of a single step, 

No(x, 2 T + S) = (2n)- a ~ dke- ikXD(k)2 r + S =< (27Z)- a ~ dk D(k)2 r = No(O ' 2 T). (3.1) 

Here we have used the fact that [D(k)l < 1. The integrals extend over I - re ,  rc]~, and 
S, T = 0, 1, 2, . . . .  Also, since a 2T step walk which ends at the origin must lie in a T 
dimensional subspace of ~ga for T < d we have 

No(0, 2T)< < T! d r .  (3.2) 

The following lemma is a simple extension of a result of [5]. In the proof c 
stands for a universal constant which may be different in different occurrences. 

Lemma 3.1. 

T3No(O,2T) <__ O(d-1). (3.3) 
T = I  

Proof. The sum of the first four terms on the left side of (3.3) is O(d-1) by (3.2). By 
(3.1) and (3.2), 

d -1  d -1  510 
2 r3go(O,2T) < 2 T3No( 0, 10)<(d- l )3 (d-5)5 . -  ~ <O(d-1) • 

T=5 T=5 

To bound the sum over T>_d we observe that 

T3No(O,2T)< ~ (2T)(2T-1)(2T--  2)(2~)-a S D(k)2T dk 
T = d  T = d  

=(270-aSI ~=2am(m-1)(m-2)D(k,m-31D(k)Sdk. (3.4, 

The factor in square brackets is the third derivative of x2a(1-x)-1 evaluated at 
x = D(k). Explicit evaluation of this derivative together with [D(k)t _-< I can be used 
to bound (3.4) above by 

4 
cd3(2zc)-a ~ dk D(k) 2d Z (1 - D(k))-P. 

p = l  

Arguing as in [5] we observe that if 0 < k j < ~ < k  z<n for j = l , . . . , m  and 
/ = m +  1, . . . ,d, then 

d 
ID(k)l <d-1 2 Icoskil <1-4~-2d-1 Z k~ -4~-2d-1 

i=1  j = l  

<exp - 4 z - 2 d  - 1  k -k- E ( r c - k t )  2 • 
k \d=l l=m+I 

d 

I2 (~-ky 
l = m + l  

(3.5) 
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By symmetry and (3.5), 

d3( 2re)- a S D(k) 2d (1 - D(k))- p dk 

=dare -a ~. ~ dk~ ...dkm dk,,+ 1 ...dkdD(k)2a(1-D(k)) -v 
m=O 0 ~/2 

<d 3 ~. dkexp(-8~-2k2)(4rc-Zd-lk2)-P 
[o ~1 ~ 

<=dare -d ~ dk k- 2p exp(-87z- 2k 2) 
( -  oo, m)a 

=d3rc_d['gZd"~p 2rca/2 o~ . _ - -  - -  a - -  zp- -  
t 4 ) F(d/2)! dtt l exp ( -8 rc -  2 t 2  ) 

d 
3 1"g2dx~P "K-d~2 I /7C2"~2-P I'd _ p )  

t 

= F ( d ) ( T f / :  _-< O(d- ' ) .  (3.7) 

This provides the required bound for the left side of (3.4) and the proof is complete. 
We now use Lemma3.1 to obtain bounds on L 2 and L ~ norms of 

xUO~ ~ No(x, T)z r for Izl less than or equal to the critical value of 1, where 
T = I  

No(k = O, z) diverges. 

v=0,1,2,tz[__<l. 

v=0,1,lzl~l. 

T2No(x, T). 

L e m m a  3.2. 

(a) c~r=a ~ N°(x' T)zr oo <O(d-~)' 

oo 2 

(b) c~ 7 ~  N°(x' r)zr 2 < O(d- 1), 

Proof. (a) For  v = 0,1, 2 and [zl_-< 1, 

T = I  T = I  

By (3.1) and Lemma 3.2, 

~,, T2No(x, T)=No(x, 1)+ ~ (2T)2No(x,2T) 
T = I  T = I  

+ 
T = I  
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(b) For v=0,  I and Izl<l,  

< TNo(x,  T) = 
T=I S , T = i  

= ~ STNo(O,S+T)<= 
S , T = I  n=2 

using Lemma 3,1 in the last step. 

Lemma 3.3. 

1 < ]lNo(x,z= 1)112< 1 +O(d-X). 

Proof. Since No(x, T =  O) = 6x, o, 

No(x , T) No(x, S ) S T  
x 

(n-- 1) 3 No(O, n) < O(d- 1), 

 xo+ No,x T)i=1+2 T=i  No,0 No,x i 
By Lemma 3.2 the sums on the right side are O(d-1). 

Before dealing with norms where a factor x u is present we derive a consequence 
of Lemma 3.3 for certain k-space integrals. It follows from the definition of D(k) 
that 

2 2<~ 2~ Z d  k = 1 - D(k) <= k 2 . (3.8) 

Let B = {k ~ R d : Ikl < dl/2}, Then for 2_< m_< [ ( d -  1)/2], 

(2re)- a ~ (1 - D)-"I dk = (2re)- a ~ (I - D)-m dk 
B 

+(27z) -a ~ ( 1 - D ) - m d k = - I i + I 2  . (3.9) 
[ -  ~, zOa\B 

Now by (3.8) and Stirling's formula, 

11<(2~) -a 2~a/2 ! = r(d/2) dtt a- t - 2., 

< c ( m ) ( 2 ~ )  a d a/z c ( m ) d e c a l 2  1 _-<0(1). (3.10) 
= d -  2m F(d/2) d -  2m \ ~ 1  

The term 12 is bounded as follows: 

I2 =<(2re) -a ~ _ ~, S,1,\, ( I - D ) - 2  \ ~  ! dk<= (2~z) -a ~ - ~,[ ~1" ( 1 - D ) - 2 d k "  

(3.11) 

By Parseval's equality and Lemma 3.3 the right-hand side of (3.11) is O(1) and 
hence 

(2rc ) -a~(1-D)-mdk<O(1) ,  m=2,3 ,4 ,  .... [ ( d -  1)/2J. (3.12) 



Self-Avoiding Walk in High Dimensions 673 

The estimate (3.12) will be used repeatedly. Note that in the next lemma the L 2 
norm is not squared, unlike in Lemma 3.2 (b). 

Lemma 3.4. For v =  O, l ,  lzl __< l and p = 2  or 0% 

(a) x i ~  ~--1 No(x, T)z  r p <O(d-1) ,  

oO 

(b) xixjcq~ r~__ 1 No(x ' T)z  r p < 6ijO(d- 1) + O(d- 2). 

Proof. Part (a) is an immediate consequence of(b) since Ix~l < x 2. The left side of(b) 

P Then is bounded above by putting v = 1 and z = 1. Let q = P -  1 

xixic~ r~=l N°(x'  T)zT v <- IIO2~k' O~N°(k' z =  1)I1~. 

Throughout this paper k-space norms are with respect to normalized Lebesgue 
measure on [ - ~ ,  7z] ~. Using subscripts to denote partial derivatives, 

O2,kj ~No(k,  1) = (1 -- D)- 2 D~j + 4(1 - D)- 3 D~Dj + 2(1 -- D)- 3 DD~j 

+ 6(1 - D)-  4 DD~Dj. (3.13) 

By (1.6), [Dil < d-  ~ and [Dij[ < 6~jd- 1. With these inequalities and (3.12) the lemma is 
proved. 

4. Analyticity of H 

In this section we show convergence of (2.12) to prove that H~(k, z) and 2 Ok~ fl~(k, z) 
are analytic in z s D~(1/2) and suitably bounded. First bounds are obtained on L 2 
and L ~ norms of x"O~N~l)(x, p) for lul < 2, v N 2, lul + 2v <__ 4, uniformly in ~ e [0, r~]. 
Then these bounds are used to bound L 2 and L ~ norms of x"~'~N~l)(x, Q) for lul <2, 
v < l ,  lu l+2v<2 (i.e., one less z-derivative than above) uniformly in 

~ [0, r~(1 +(1/2)z-1 lnz)]. The method is conceptually simpler than that used in 
[3] and could be used to give an alternate proof of the results of [3]. However, 
the extra z-derivative used here would lead to divergent integrals in d =  5 and 
would have to be replaced by a fractional derivative. 

They key idea is contained in the following theorem. It is similar in form to an 
idea used in [2]. The universal constant K o in part (b) wilt be fixed in the course of 
the proof. 

Theorem4.1. (a) For fixed z and d and for any u and v, the norms 
IIx"O~N~I)(x, o)rl 2, ~ are continuous in 0 ~R .  

(b) There is a universal constant do such that for d >do, ~0 e [0, re] and all z, 
P4 ~ P2, where Pa is the following: 

u v (1) l + ~ u 0  - s  I[x (~g~ (x,o)][ 2 , <=aKod , [u[=<2,v<l 
P": I[~'~g~l)(x,o)ll~<aKo d-l,  v<=2. 

Here s = 1 unless x" = xix~ with i:#j in which case s = 2. 
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Corollary 4.2. (a) I4~th parameters fixed as in Theorem 4.1 (b), 

IIx"t?~N~l)(x,o)lU~ +o~',o<=2Ko d-s and ][O~N~l)(x,o)l[oo< 2Ko d-~ 

Also 
u v (0)  1 +~u  o IIx OzN~ (x,0)112 , < 2  and IIr3~N~°)(x,0)[l~__<2. 

(b) For lul _-< 2 and v < 2 with lu[ + 2v <4,  O~IIe(k, z) is analytic in D~(O) with 

la~ ~Ue(k,  z)t <= 6., oO(d- 1) + O(d- 5/2) 

uniformly in z and z E D~(O). 

Proof of Corollary 4.2. (a) For  6 = 0  P2 is satisfied, and hence by Theorem 4.1 P2 
holds for 0 ~ [0, r J .  This proves the inequalities involving N~ 1). The inequalities 
involving N~ °) then follow from the fact that N~°)(x, 0)= 6~, o + N~I)( x, 0). 

(b) The desired bound on the derivatives of H e follows from part (a) and (2.12), 
where in the sum over N the L ~ norm is always associated with factors having no 
k-derivatives. The factor z in the right side of (2.12) is bounded because 1 - 6  
- H~(0, 6) => 0 for 6 --< re by definition of r~, and therefore by (2.12) 6 - 1 =< 6 const d-  t. 
It follows that 0 --< 1 + O(d- ~). 

The proof of Theorem 4.1 (b) begins by using (2.12) to convert the assumed 
bounds P4 into bounds on d~O~IIe(k, 6). These bounds are then used to show that 
there is a constant c such that 1 - oD(k)- II~(k, 0) >= c(1 - D(k)). The x-space norms 
of x"~N~l)(x, Q) are bounded by k-space norms of O~O~N~(k,~), which are in turn 
bounded by corresponding simple random walk norms using the above inequality. 
The simple random walk norms were controlled in Sect. 3. Any contributions 
coming from a~IIe(k,o) are multiplied by an inverse power of d which 
compensates for any coefficients 4K o which arose in applying (2.12). 

The constant K o comes from estimates on simple random walk and is defined to 
be the sum of the various universal constants cl, c2, ... occurring in the proof. We 
use K~ to denote constants which are larger than K o. In different occurrences K 1 
may be different constants. 

Proof of Theorem 4.1. (a) For  fixed -c there are only finitely many x c2g d for which 

x"O~ ~ Ne(x, T)6 T is nonzero. Hence the L 2 norm is the square root of the 
T = I  

absolute value of a polynomial in 0, while the L ~ norm is the maximum of a finite 
family of functions, each of which is continuous in 0. Thus both norms are 
continuous in 6- 

(b) It suffices to consider 0 ~ (1, r J  because N~(x, T) < No(x , T) and for • = 0 and 
6 < 1 Pz holds by Lemmas 3.2 and 3.4, for some universal constant Ko. We first 
obtain the lower bound on Fe(k, 0) mentioned above. Suppose that P4 holds. By 
definition [Eq. (1.7)], 

L(k ,  o) = 1 - 0O(k ) -  He(k, 6) 

=1-O-U~(O,o)+O(1-D(k) )+He(O,o ) -H~(k ,o  ). (4.1) 

By definition of r~, 
F~(0, ~o) = 1 - 6 - H~(0, Q) ~ 0 (4.2) 

for 0 ~ [0, r J  with equality only for 0 = r,. 
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Now by (2.13) and assumption, 

[n~(k, ~) - H,(0, 0)1 < K~d- 2 (4.3) 

The bound (4.3) is however not adequate for our present needs and we proceed to 
obtain a k dependent bound. By (2.12) and assumption, the dominant behaviour of 
tak2k~II~(k, ~)[ is bounded by 

(1) clIxixjN~ 112 IIN~I)I]® ]]N~I)]Iz +cllx~N~ml12 ]lxjN~X)l] 2 IIN~I)]} ~ 

By (2.6), 11~(k,p)=lI~(-k,p), and hence ~J/~(0,0)=0.  Therefore by Taylor's 
Theorem 

d 2 
[II~(k, 0)-17~(0, 0)1 = ! dt(1 - t ) ~ F l ~ ( t k ,  O) 

O-<t-<l ~ 2 / /  <½ sup i,j%l Ok~k~ ~(tk, q)kik j 

< g I i~=1 d-  5/2k~ + i~,j d-  3[kJ~j[ 

<-_ga[d-5/~k2+d-3~= 11k,kjla 1 
< K l[d-  5/Zk2 + d-  3(2d)~;2 k 2] = K l d -  5/2k~, 

using the Schwarz inequality in the last step. Using (3.8) and the above inequalities, 
and allowing c to represent different constants in different occurrences, we have 
from (4.1) and (4.2) 

F~(k, O) > e(l - D ( k ) ) -  g ~ d- 5/2k2 >= (cd- ~ - K ~d- 5/2)k2 ~ cd - lk2 >~ C(I - -  D(k)). 
(4.4) 

Here d may have to be taken larger; this remark will be left implicit in the sequel. 
There are three conclusions to be checked: 

Case 1: [l~3~N~)(x, o)[I oo <= 2Ko d - l ,  

Case 2: II0~N~)(x, 0)[122 =<2Kod- 1, 

Case 3: Ilx"0z~N~l)(x, ~)112 < 2Ko d-`,  

We consider these cases in turn. 

v=0 ,1 ,2 ,  

v=0,  l ,  

lul=l ,2,  v=0 ,1 .  

Case 1. By differentiating N~l)(x, ~)= ~ N,(x, T)Q r, it is seen that 
T=I 

N~)( x, O) < 0 6~N~I)( x, O) <= oN~(x, T = i) + ~2 ~2N~,)(x ' 0). 

Since N,(x, T = 1) < 2~' it suffices to show that O~N~l)(x, 0) < (universal const) d -  1 
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[As in the proof of Corollary 4.2 (b), ¢ = 1 + O(d- 1).] Now 

0 _~=~,~ <_ ~2 ~,r(~)t.~ t~, ~) <= ~2NJ x , Q) = (2~z) - a ~ dke - ~k,~ O2Njk, ~) 

ke-ik~ a21I~(k,~) 2(D(k)+~fll,(k,~)) 2] 
=(2~)-a~d [ F~(k,P) 2 + F~(k,p)3 J 

=(2rc)_a~dke_i~FO~lI, 2D 2 4DO:II~ 2(0:H~)2] L-~-~-2 + ~ + - - F 3  + F3 j . (4.5) 

We examine each term on the right side, working from right to left. By 
assumption and (2.12), IO=II,[ NK~d-~, and hence the fourth term is bounded by 
K l d -  2, using (4.4) and (3.12). The third term is bounded using (4.4) and (3.12), the 
Schwarz inequality and Lemma 3.2 (b) as follows 

where the middle factor is readied for application of Lemma 3.2 (b) as follows: 

-~( 2 <C ~ 2 --:C''O=N°(k'I)H2=C c~zh ~1N°(x 'T)zT  2" 

The second term on the right-hand side of (4.5) is bounded by 

2D 2 
e ~ l=ct32No(x=O,z=l)<Cad-1 

by Lemma 3.2 (b). 
The first term on the right side of (4.5) is more subtle. Write He(k, ~) = ll~)(k, ~) 

+//~> a)(k, ~), where II~)(k, ~) is the contribution to the right side of (2.6) from walks 
of the form G~, i.e., from the lace consisting of a single bond. Evidently 

~2 n(~a. ~) = ~ n~)(0, ~) < o, 

because [I U~t = - 1 when L=0T.  Therefore 
s t a L  

(270-a ¢ dke-'k~ O2H~ 1)(k, Q) = t32H~)(0, ¢) (27z) - a ~ dke-'k~N¢(k, ~)2 < 0, 

since the integral on the right side is the convolution in x-space of Nix,  Q) with 
itself and hence is positive. But the lace expansion can be used to bound 
1O2H(~ > X)(k, ~)I by K i d -  2, since the first term on the right side of(2. t 2) will be absent. 
Putting it all together gives 

0 < O2zN~(x, o~) < C~d- ~ + O(d- 3/2). 

Case 2. As noted in Case 1, N~)(x, ~)<~O=N~)(x, ~), and it suffices to consider 
v = t. Now 

]l g=N~ ~)(x, e)[I ~ <= H t3~Njx, ~)[122 = l] O=N,(k, e)1[ 

= (2~)- d I dk (D(k) + Ozn~(k, e)) 2 
Fjk, e) 4 

a D 2 + 2D O=H~ + (t3z//~) 2 
= (2re)- ~ dk V 4 
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By (4.4) and Lemma 3.2 (b) the first term is bounded by 

C = CI[ BzNo(k, 1)[] ~ =< C2d- 1 

By assumption and (2.12) [BflI~(k,o)[<=Kld -1, so the third term is O(d-2). The 
second term is less than 

K~ D 4 <K1 ~ 1 
d ~ 1--- d ( I - D )  2 ~ 2  2<=Kid-3/2 

by Lemma 3.2(b) and (3.12). Therefore 

IE OzN~ l )(x, ~ ) I122 _-< C 2d- 1 .4_ O( d "- 3/2). 

Case 3. Since [xil<x 2, it suffices to take [u[=2, and as in the previous case it 
suffices to take v = 1. Now 

]]xiXjOzN~X)(x,o)l]2 < i]xiXj~zNr(x,O)it2 2 = = II~k,k~B~N~( k, 0)]] z- 

Using the obvious abbreviations, 

2Fi~Fj 2FjzFi 2FzF¢j 6FzF¢Fj 
Ok2kjO~N,(k,p)= -- + ~ + ~ + F3 F4 , (4.6) 

with 
Fi= dsinki-H~, Fz= --D--Us,  

F i j :  d5i jcoski-Hij ,  F~i= ~sin.~i--Hzi , 

1 
Fuz = ~ 6u cosk~-//u~ • 

We number the terms on the right side of (4.6) as I-5 and look at their L 2 norms, 
working from left to right. We show that these terms behave like the corresponding 
terms on the right side of (3.13). To begin, 

1 2 [11112-<C ~ 2+C{[//iJzH~ ~ 2 <-C3bifl-l-kKld-5/2'  

where IHuz [ is bounded as IHijl was bounded under (4.3). The terms 2 and 3 are 
bounded the same way: 

.~ I[ (Di + II~¢) (QD 3 + II j) 
112[12<c ( i-~D~ 2 

C D~DJ3 D~i 3 Di 

1 3 +CllnZ  [lnjll  2 

< C4 d- 2 ~_ O(d- 7/2), 
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since lDij<d -1, I1(1-0)-3112~C by (3.12), and I/-/=eI and I/Tsl are O(d -5/2) by the 
same argument used to bound lH~szt above. Similarly, 

114112--<c (O+O(d-1))(oO~s+O(d-5/2))(1 --0)  3 2 

<__ C56isd- 1 + O(d- 5/2) -t- 3ijO(d- 2) + O(d- 7/2). 

Finally, 

C (D + O(d- 1)) (o~D i + O(d- 5/z)) (oDI + O(d- 5/2)) 2 3). 
HSIh< i i - D P  ~C6d-2+O(d- 

This completes the proof of Theorem 4.1. 
We now increase the domain of analyticity of H~(k, z) to z e D,(½)= {z:lzl 

<r~(l +½z -1 tnz)} at the expense of one z-derivative in the estimates. 

Theorem 4.3. There is a positive integer d o such that for d>d o 11,(k,z) and 
O~H~(k, z), tul < 2, are analytic in z ~ D~(½) with IO~H~(k, z)l < const d-  1, v = 0,1, and 
I O~,IL(k, z)l < constd-5/2 lul = 1, 2, with the constants independent of z and z ~ D~(½). 

Proof. For Izl<r~(1 +½z -1 lnz), 

[N~')(x, z)[ = r~ l= N~(x, T)z r < ~ N~(x, T) [-r~(1 + ½ z-a lnz)] T 
T=I 

=r~ ~, N~(x,T)TrT-1T-1(l+½z-llnz)  r. 
T=I 

It is easy to check that T-t(1 +½z -1 lnz) r is bounded uniformly in z and T for 
1 <_ T<_z. Since r:= 1-II~(0, r~) is also uniformly bounded we have 

Similarly 

[N~l)(x, z)l =< cc3~N~l)(x, r~). 

and 

(4.7) 

10zN~)(x, z) I <= c g2N~)(x, r~) + N~(x, T = 1) (4.8) 

]~?~N~°)(x,z)l<6x, o6,,o+CO;+~N~)(x,r~)+6,,~N~(x,T=l), v=0 ,1 .  (4.9) 

Now we use (2.12) and (4.7-9) to estimate the derivatives of H~ occurring in the 
statement of the theorem. For example, 

la~n~(x, z)l_-< clf~zN~ ~(x, lzt)tl 

x [ 1 +  N=2 ~ (2N-1)],N~a)(x,,zl)l[2 u [IN~°)(x, lzl)llN2 -2] 

~C[l]~2g~l)(x,r,c),[c~@~] [1-]- N=2~ (2N--I)c2N-2 N ozNr(l,(X'r~)'] 2N 

× (1 + II8zN~)(x,r~)FI2) N-2] <O(d -1) 

by Corollary 4.2. The estimates for [H~(k, z)l and I~,II~(k, z)l are similar. 
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5. P r o o f  o f  T he or e m 1.1 

In this section we prove  Theo rem 1.1 using the results of  the preceding sections. 
The  approach  is similar to that  used in 133. The  first observat ion  is the following 
lemma, in the s ta tement  of which c is a universal constant .  

Lemma 5.1. For k 2 < cdz - 1 lnz and d > do, Ne(k, z) has a simple pole at r,(k) e De(l/4) 
and is otherwise analytic in De(l/2 ). The pole re(k ) is twice differentiabIe in k. 

Proof. Singularities of  N~ cor respond to zeroes of F~. Zeroes of  F,  occur  in 
complex conjugate  pairs since Fe(k, z) = F~(k, ~) [ the right side of(2.6) is unchanged  
by the replacement  of  k by - k]. Suppose z 1 and z 2 are two zeroes of F,(k, z). Then  

1 

(z 2 -- Zx) D(k) = He(k, z l ) -  lie(k, z2) = - (z 2 - zl)  ~ ~flle(k, tz 2 + (1 - t)zl)  dt.  
0 

(5.1) 

F o r  small k 2, D(k)-~ 1 while for large d, IGH~I <=Kd-1  so (5.1) is only possible if 
z 1 = z 2. Thus  for small k 2, F~(k, z) has at mos t  one zero in De(i/2), which must  be 
real. 

F o r  k = 0, r, is a simple zero of Fe(0, z). In fact 

Fe(0, z) = F,(0, z) - F,(0, G) = - [(z - G) + He(0, z ) -  He(0, re) 3 

= - ( z -  G) 1 + ~ ~zH~(O, tz  + (1 - t)G) dt  , 
0 

and the second factor  is nonzero  in D~(1/2) by Theo rem 4.3. By the implicit 
function theorem, for small k 2, F,(k, z) has a simple zero re(k ) with r,(k)e De(l/2 ). 
Derivatives of r~(k) are obta ined by differentiating the equat ion Fe(k, re(k)) = 0. The 
first derivative is 

G(k) d -  1 sin k i - Oil]e(k, re(k)) G(k) 
0~r~(k) = D(k) + g~H~(k, r~(k)) ~, ~ -  k~ (5.2) 

for small k 2, using Theorem 4.3, Taylor 's  theorem, and the fact that  IIe(k, z) is even 
in k i to see that  ctilI~(k,G(k))=O(d-5/a)ki . The  formula  (5.2) is valid as long as 
re(k ) e De(l/2 ). N o w  re(tk ) is increasing in t > 0 since 

d d 
G(tk) = ~ ctiG(tk)k ~ ~ G(tk)d-  lk2 > O. 

i = 1  

Therefore  

and so 

l d  
re(k) = G + f re(tk) dt <= G + c'G(k)d- lk2,  

b 

re(k ) <= re(l - c'd-  l k 2 ) 1  < re(1 + c"d- lk2) ~ re(1 + ¼ z -  1 lnz),  

provided k 2 <_ cdz -  1 In z. 
The  second derivatives of  r;(k) are obta ined from 

Fij + F~zr j + F jzr i + Fzrij + Fzzrir j = O. (5.3) 
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Theorem l.1. There is a constant d o > 5  such that for d>do, (og(T)2)=DT 
+ O(T 1/2 In T) as T ~  oo, with D > 1. 

Proof. Let C be the circle of radius 1/2 centred at the origin, or iented 
counterclockwise.  Then  for k2<cdz-~lnz  it follows from L e m m a  5.1 and the 
Residue Theorem that  

1 dz 
Se(k, T) = ~ini ~c Ne(k, z) Z T +  1 

1 [1 Ne(k,z) d z  = - Res Ne(k,z)z-(r+l)+ 2~nioo. /2) T + I  
z = r~(k) Z 

1  +lq 
(5.4) 

Since 8,,F e and 8k,re both vanish at k = O, applying V~ to (5.4) and evaluating at 
k = 0 gives 

Vff N,(O, T) = - V~, loEre(k)- T -  1] ~3zF~(O, r,:)- i 

- r ?  (T + 1> Vfflo [a~Fe(k, re(k)- 13 

1 
+ 2~ni I V2N,(O,z ) dz (5.5) 

7~1 8D,~(1/2) z T  + 1 " 

N o w  

V2lore(k)- T - 1  : - (  T + l ) r [  T- 2 Vffre(O), (5.6) 

and 

V~lo[SzF,(k, G(k))] - 1 = _ [8~Fe(0, re)] - 2 [ Vk2 ~ Fe(0 ' G) + 8z 2Fe(0, G) 172re(0)]. 

(5.7) 

By Corol la ry4 .2 ,  8 ~Fe( O, re) = - 1 +  0( d-1), and 8~ Fe( O, G) and V2 ~? ~Fe( O, re) are 
bounded  uniformly in z. Setting k = 0  in (5.3) gives 

V~G(O ) = - [0~F~(0, re) ] -1 V~Fe(O ' re), (5.8) 

which is similarly bounded  uniformly in z. 
Put t ing z = T and using (1.5), (5.4-5) and the preceding paragraph  leads to 

8D~(½) 

where De-- r~- 1V2re(0). 
To  estimate the integrals occurring on the right side of(5.9) we first observe that  

for z ~ ODT(1/2), 
T + I  

~_ =(I+½T-11nT)- (T+~)<cT-~"  
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Therefore 

S O~,,NT(O, z) dz < c T  --~ f [O~,NT(O, z)[ [dz[. (5.10) 
ODT(1/2) C~DT(1/2) 

It follows from the equation above (5.2) that for some constant c 

INT(0, z)l < clz-- r r t -  1 (5.11) 

and hence for u = 0  the right side of (5.10) is b~unded by c T - ~ l n T .  For u = 2  we 
have 

2 
C32,NT(O, Z) = -- Ok' f  T(O' Z) 

FT(O ' z) z (5.12) 

By (5.11) and Theorem 4.3 the right side of(5.12) is bounded by cd-  t l z -  rT1- Z and 
so the right side of (5.10) is bounded by C T - ~ d - a ( T  -~ lnT) -1 < c d - ~ T  ~, when 
U = 2 .  

Substituting these estimates into (5.9) gives 

(co(T)2>T =< DTT(1 + O ( T -  ½ In T)). (5.13) 

To complete the proof we show that D r = D + O ( T - ~ ) ,  with D >  i. Consider 
two different memories a < z. From the fact that F~(k, r~(k)) = 0 and Fe(k, re(k)) = 0, it 
follows that 

(r~(k)- r~(k)) D(k) = - [He(k, re(k))-  H~(k, r~(k ))] . (5.14) 

Setting k = 0 gives 

r e -  r~ = - [//~(0, re) -  He(O, r~)] -- [He(O, r~)-- H~(O, r~)]. 

This implies that 

(1 + 0 j L ( 0 ,  r*)) ( r e -  r~) = - ~r/(0, r~), 

where r* ~(r,, re) and 6 1 1 = H e - - H , .  By Theorem 4.3 the coefficient of r e - r  ~ is 
bounded below by a positive constant. The absolute value of the right side is 
bounded using (2.14), where in (2.14) the L °~ norm is coordinated with the fiN. 
Each term on the right side of (2.14) has a factor 

11fiN(x, r~)II ~ _-< T--~/6 N,(x ,  T)r  T ~ Z 6a-1 r f;/6 N~(x, T) Tr  T-a ~ r~ 

< 6r~a- l[[8~N~(x, r~)]] ® < const a -  t ,  

since ][0~N,(x, r,)[[ o0 is bounded by the argument used in Case i of the proof of 
Theorem 4.1 (b). Therefore 

re-r~<=ca - I  (5.15) 

uniformly in z and so 

r ~ - r r < c T  -1 . (5.16) 
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The Laplacian is treated similarly. Differentiation of Eq. (5.14) gives 

Vlr (O)- re-- lYrE(O, 
- -  [0=He(0, r~) VZr¢(O)-- O~H~(O, r~) V~r~(0)]. (5.17) 

Using Taylor's Theorem as above, 

VZH~(0, r¢)- VZH~(O, r~) = O=V2H¢(O, r*)(r¢--r~) + V~ 6H(O, ra), 

where r* e (r~, r3. The first factor of the first term on the right side is uniformly 
bounded by Corollary 4.2 (b), and hence the first term is bounded by ca-1,  by 
(5.15). The second term on the right side is bounded in the same manner that 
6H(0, r~) was bounded, apart from the fact that an L 2 norm is associated with any 
subwalk involving an x"' with u~ # 0, because in Corollary 4.2 (a) it was the L 2 norm 
of k derivatives that was bounded. The final term on the right side of (5.17) can be 
analyzed in a similar fashion with the result that 

I vZr (o)- v MO)I < 

uniformly in z. Putting a =  T and Jetting T ~  gives 

I VZro~(O)- V2rr(O)l <= cT -1 , 

which together with (5.16) implies 

DT V2rr(O) V2r~(O) + O(T- 1) 
= r ~  - ro~+O(r -1) =D+O(T-a ) '  

where D = r~ 1V2r~(O). 
We now complete the proof of Theorem 1.1 by showing that D > 1. It suffices to 

show that D, > fi where fl > 1, for all r. By (5.8), 

VZF,(O,r~) 1 - - r ;  1 V~H,(O,r,) (5.18) 
D~ = -- r~--10=F~(0, r~) -- 1 + OzH~(O, r 0 

For large d the dominant contribution to 0=H~(0,r~) comes from the G~ 
diagrams in the lace expansion. These diagrams evidently give a negative 
contribution which is bounded away from zero uniformly in r. In fact the 
contribution from these diagrams is less than - r f l - ~ ,  which is the T =  2 term in 
the derivative with respect to z of (2.6), corresponding to walks which take one step 
away from the origin and then immediately return to the origin. Using the lace 
expansion to bound the difference between ~H~(0, r~) and the G~ diagrams gives 
the bound (2.12) without the first term. By Corollary 4.2 this difference is O(d-2), 
and hence for large d and some ae(0,  1), 

1 + O~H~(O, r O = 1 - IO(d -  1)1 < a < 1. (5.19) 

Similarly the dominant contribution to V~II~(O, rO comes from the lace 
corresponding to the diagrams G 2. This contribution is evidently 

negative and less than d times the T = 3 term with the lace ~ (i.e., the 
( r , ~ 3 0  1 2 3  

three step walks of the form O ) ,  i.e., less than - 2 d  2 \~-~j < - ( 1 / 4 ) d -  1. We now 
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argue that  the contr ibut ion due to all o ther  laces is O(d-5/2). In  fact apar t  f rom 
f ~ ~ " ~ ,  which corresponds to walks with co(T)= 0 and hence does not  
contr ibute  to k-derivatives, all other  laces correspond to walks which can be 
b roken  up into subwalks with at least five of  the subwalks consisting of  at least one 
step. Est imating the difference between Vk2H~(O, r3 and its d o m i n a n t  cont r ibut ion  
as in (2.12) gives the b o u n d  O(d-5/2), since by Corol lary  4.2 two subwalks can be 
bounded  by O(d- 2) and the remainder  are O(d- 1/2), while there are d terms in the 
Laplacian.  Therefore for some b > 0 ,  VkZ//~(0,r3<-lO(d-1)l  < - b < 0  uniformly 
in z. 

F r o m  this and  (5.18-t9) it follows that  

l + b  
De> > 1 ,  a 

since a <  1 and  b > 0 .  This completes the p roof  of  Theorem t.1. 
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