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Abstract. In this note we consider a family of statistical solutions of the Navier- 
Stokes equations (i.e. time dependent solutions of the Hopf equation) which 
seem to constitute the rigorous mathematical framework for the theory of 
homogeneous turbulence [1], [13]. The main feature of these solutions is that 
they are the transforms under suitable scalings of the s tat ionary statistical 
solutions of a new system of equations (the Eq. (2) below). 

O. Introduction 

The theory of fully developed turbulence is nearly universally believed to be 
essentially that of the evolution of statistical distributions of flows governed by the 
Navier-Stokes equations: 

0u 
- -  - vAu + (u-V)u + Vp = 0, V-u = 0. (1) 
3t 

Although significant progress has been made in the last 15 years in the rigorous 
mathematical approach to this theory [2, 4, 6, 9, 12, 21 .... ], no concrete family of 
homogeneous statistical solutions of the Navier-Stokes equations was found, nor is 
there as yet a consistent way of connecting these solutions with the Kolmogorov 
spectral estimates. In this paper we show that there exists a natural family of 
homogeneous statistical solutions of the Navier-Stokes equations enjoying some 
properties of self similarity and universality (Sect. 3). These solutions are obtained by 
suitable scalings of the s tat ionary homogeneous statistical solutions of the equations 

~u 
- - - ~ u - ½ ( x . V ) u - A u + ( u . V ) u + V q  0, V.u=0,  (2) 
(~t 2 = 

(see Sect. 5 below). Note that the stationary form of Eqs. (2) differs only slightly from 
the (still not well understood) equations 

½u + ½(x.V)u - Au + (u.V)u + Vq = 0, V .u  = 0, (3) 



188 C .  F o i a s  a n d  R .  T e m a m  

introduced long ago by J. Leray [14] in connection with the problem of the 
spontaneous development of singularities for the solutions to the time dependent 
(deterministic) Navier-Stokes equations (see the comments in Sect. 3 below). 
Although we have not as yet proved an existence theorem for the type of solutions 
we need for (2), our results seem to be consistent with the conjecture that such 
solutions exist (see Sects. 6 and 8). As a byproduct it turns out that the Leray 
equations (3) do not have such solutions (i.e. stationary statistical solutions with 
some regularity properties, see the Remark in Sect. 6). The connection with the 
Kolmogorov spectrum is briefly discussed in Sect. 7 and Sect. 8.3, while in Sect. 8 we 
comment on the physical meaning of our present approach. 

It seems to us that our present note constitutes a basis for a rigorous approach to 
the theory of fully developed turbulence as treated in the classical monographs G. K. 
Batchelor [1] and L. D. Landau-E. M. Lifshitz [13] or in A. J. Chorin [4]. Since this 
approach is essentially based on the Hopf equation [1 I], as considered in [9], it has 
no significant connection to the turbulence modelling theories, as for instance those 
presented in [4]. Further developments will appear elsewhere and in [7]. 

I. Preliminary 

1.1. Let L2(~ a) denote the space of (classes of) real functions which are square 
integrable on ~3 with respect to the Lebesgue measure. For an integer rn ~ 1, let 
Hm(~ 3) denote the Sobolev space of functions which, together with their derivatives 
of order < m, belong to L2(~3). Endowed with the scalar products, 

(u,v) = ~ u(x)v(x)dx for u,v~L2(~ 3) 
R3 

(u,v),, = ~ (D~u,D~v) for u,v~H"(~  3) (m = 1,2,...). 
I~t <rn 

Here L2(R3), and H"(R 3) respectively, are Hilbert spaces. In the above 

D ~  _ ~1 ~2 ~3 - D 1 D z  D 3 , Di=O/~x J (j=1,2,3), 
=(~I,~2,~X3)EIN 3 and tel = e l  +e2 +e3. 

We let also 

and 

lu l  = (u,  u) I/z, Iv l~  = (v,/))1/2 for uffL2([R3), v~Hm(~3), 

3 

((wl, w2) ) = ~ (Djwl, Djw2), [p w l1 = ((w, w)) I/z for w, w 1, wzeHl(~3). 
j = l  

The scalar products and the norms in L2(~3) 3 or H"(~3) 3 are defined by 

3 3 

(u, v) = ~ (u j, vi), respectively (u, v),, = ~ (u j, vj)m, 
j = l  j = l  

where u = (ul . . . . .  u,), v = (vl , . . . ,  v,), etc . . . .  Endowed with these scalar products, 
L2(~) 3 and Hm([~3) 3 will be denoted by 0_2(R 3) and H"(~ 3) respectively. 
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We denote by [1_~o¢([R3), respectively [l-]~o¢(N3), the space of functions which locally 
(i.e. on any bounded measurable subset of l~ 3) belong to k2(N3), respectively to 
H re(N3). For any bounded measurable subset Q of R 3 such that IQI = measure of 
Q > 0, we set 

/ 1 \1/2 
] u l Q = ~ - ~ [ ~ l u ( x ) 1 2 d x )  for ue [L2o¢(R3), 

Ilvllq-- ~ [Dj'u[~ = ~ l  [Vu(x)12dx f°rveHl(R3) '  
j = l  

3 
where V = (D 1, Dz, D3) and [ Vu(x)[ 2 = ~ [ Vuj(x) lZ, x~ A 3. 

j = l  
Obviously, 11_~o~(1t~ 3) and H ~(R 3) are Frechet spaces with respect to the families of 

semi-norms 

and 

{tuIQ:Q = (a,b) 3, - oe < a < b < + oe}, 

{([u[~ + ]l u ]]~)l/2 :Q = (a,b) 3, - Go < a < b <  or}, 

respectively. 
A basic role will be played by the subspaces 

= Go(R ), V - u  = 0}, 

Vlo c = {V~ 0-~to¢(~3), V 'D = 0},  

which are also Frechet spaces when endowed with the corresponding systems of 
semi-norms. 

1.2. For aeR 3, we denote by G the translation operator 

('c~u)(x) = u(x - a), x e R 3 

on H~o c and V~o c. A homogeneous measure on H~o c is, by definition, a Borel measure 
o n  Hlo c such that 

%(#) = #  for all aeR 3. 

In the sequel all homogeneous measures on H~o c will be probability measures, i.e. 
positive and of total mass 1. In this case the homogeneity of # means that 

• (~ou)d~(u) = ~ ~(,,)d~,(u) 

for all ae E3 and c/) belonging to the space B(Hlo~) of the real bounded continuous 
functions on H~o ¢. 

For a homogeneous measures # on H~o c, the integrals 

½S]u ]~d/~(u) and i]l u ]] ~dp(u) 

are independent of Q, and they will be denoted by e(/~) and E(#), respectively. 



190 C. Foias and R. Temam 

2. Homogeneous Statistical Solution 

2.1. By a Homooeneous Statistical Sotution of the Navier-Stokes equations we mean 
a family (#z)0 _<t < o~ of homogeneous  (probability) measures on H~o ~, such that  

t~-~ @(u)d#t(u) is measurable (for all cP~B(H1o~)), (2.1) 

t 

e(#~) + v~E(p~)ds ~ e(/~0) for all 0 < t < co, (2.2) 
0 

and finally 

• (.)d.,(u) + i + ((u'V)u. e'(u))] d  (u)ds 
0 

= 

for all ~ - , ~ ' -  being the class of all functions on Hlo ~ of  the form 

(2.3) 

~(u) = q~((u, 91) . . . .  , (u, 9k)) for ueH~o o, (2.4) 

function on Rk(k = 1,2 . . . .  ) bounded  together  with its first where q~ is a cgl 
derivatives, while 

9jeV c for all j =  1,2 . . . . .  k. (2.5) 

Here Vc denotes the subset of elements of 1/1o ¢ (respectively Hloc) with compact  
support  (in R"); and 4 '  denotes the differential of ~b in Hlo~, i.e. <b'(u,v)= 
(d/dcOqS(u + ev),= 0 for all veH~. 

Let us recall that  in (2.3), the coefficient v > 0 is the (kinematic) viscosity of the 
fluid. Also let us recall the following fundamental  fact related to the previous 
definition (see [9];  see also [22, 23]): 

Theorem. For every homogeneous (probability) measure # on Hto ~ such that e(l~) < co, 
there exists a homogeneous statistical solutions of the Navier-Stokes equations 

(#t)o<=t<~ such that #o =#. 
Obviously this theorem shows that  the initial value problem for the homo-  

geneous statistical solutions of the Navier -Stokes  equations is solvable. 

2.2. Finally let us agree that  a s tat ionary homogeneous  statistical solution of Eqs. 
(2) is a homogeneous  (probability) measure/~ on Hlo c such that  

E(#) < co, (2.6) 

and 

S [( - ½u - ½(x' V)u, ~b'(u)) + ((u, ~'(u))) + ((u.V)u, cb'(u))] dp(u) = 0 (2.7) 

for all functions q~sy-1. 

1 By virtue of the homogeneity of / l ,  Eq. (2.7) is translation invariant (although the deterministic 
equations (2) are not translation invariant). Since for any aER 3 and ~beY-, we have 

y(a'Vu, ~'(u))d#(u) = + y(a.V(%u), cb'(%p))dp(u) 

d 
= - ~ f  ~(~o~)ds~u) ~=~ = 0 
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2.3. Comments.  J. Leray has introduced Eqs. (3) in [ 14] in relation with the problem 
of the spontaneous development of singularities for the solutions to the time 
dependent deterministic Navier-Stokes equations when the dimension of space is 3. 
Indeed if Ue 1/lo ~ c~ HI(N 3) is a weak solution of the Leray equations (3) and t o > 0, 
then 

u ( x , t ) = ~ ( t o - t ) - ' / 2 U ( x ( t o - t ) - i / 2 )  for O K t  < t  o 
(2.8) (o f o r t > t  o . 

is a weak solution (in Leray's sense, nowadays in a classical sense) of the Navier-  
Stokes equations, such that 

II u(', t) II 2 --(to - -  t ) - 1 / 2  NUII 2 for 0 < t < t 0. 

Therefore if such an U 4 ~ 0 exists, one has a weak solution which is not globally 
regular (see [14] ). The existence of such an U is still an open problem, i.e. it has not 
yet been proved nor disproved. More generally the problem of the spontaneous 
appearance of singularities for the solutions to the time dependent Navier-Stokes 
equations in dimension 3 is still open; the reader is referred to the work of V. Scheffer 
[17-20], L. Cafarelli-R. K o h n - L  Nirenberg [3], and C. Foias R. Temam [8], for 
the recent developments in this direction. 

Similarly if V~V~o c c~H 1(~,) is a weak stationary solution of our Eqs. (2) and 
t o > 0, then 

0 for 0 < t __< to 
It(X, t) 

t (t - to)-1/2 V(x(t  - to)- 1/2) for t > t o 
(2.9) 

is again a weak solution of the Navier-Stokes equations. If V=p 0, (2.9) is a 
nonregular weak solution which invalidates the uniqueness of the initial value 
problem for the weak solutions of the Navier-Stokes equations. No such a V is 
known, and more generally we recall that the problem of the uniqueness of the 
Hopf-Leray  weak solutions to the time dependent deterministic Navier-Stokes 
equations in dimension 3 is still open. 

3. Self-Similar Universal Statistical Solutions 

3.1. First let us make some simple remarks concerning the changes of scale. For  
ueHlo c and ~,2e]0, ov[ we set 

(% ~u)(x) = ~u(2x) (V x ~ R3). (3.1) 

Let moreover (l~t),~=o be a homogeneous statistical solution of the Navier-Stokes 
equations, let ~ e J -  and 0 > 0. Then 

= ~2e(/~,/o) , (3.2) 
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and  

E(% ~(/~/o)) = ~ II u II ~d%~(#~/o)(u) 

= ~222~ I/u Ir Qd#,o(u) = (3.3) 

M o r e o v e r  we a lso  have  for  a n y  q ~ -  2 

d ~ (bda ,,~(14/o) = d ~ cb(a ,,;~u)d#,/o(u) 

= - ~.t" [v((u, v,, I- ,~(%~u)])) 

+ ((u'V)u, V.[q~(ae,~u)])]dl.q/o(u) 

1 1 , 

+ (a¢, 4((u "V)u), ~b'(a¢, au) ) j  d#t/o (u) 

1 v 

= - ~  f f  -~((~r,,~u, ~'(a,,~u))) 

1 + (a¢.u))]d#,/0(u) 
- -  U t 1 f [ -v~((U,  , ' ( U ) ) ) +  ( ( . V ) u , , ( u ) ) ] d a c z ( l ~ / o ) ( u ) .  (3.4) 

T h u s  we can  n o w  conc lude  wi th  the  fo l lowing 

L e m m a  I .  I f  (pt)o~t<o o is a homogeneous statistical solution of the Navier-Stokes 
equations (with the viscosity = v), then the formula 

/~ = rr~,~(N¢~) for  t > 0 (3.5) 

defines a homogeneous statistical solution of the Navier-Stokes equations with 
viscosity 

~, = v¢/2, (3.6) 

2 V~ = ¢b' represents the Frechet differential of a function ~; V~I- ] represents the Frechet differential 
with respect to a of the function of a written between the brackets [ ] (a = some independent variable) 
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e(fit) = ~ ~ e(p~e~) 
E(fit ) = ~222E(#tea). for all t > 0 (3.7) 

3.2. We can now state the main definitions of  our  discussion: 

Definition 1. By a universal homogeneous statistical solution of  the Navier-Stokes  
equations we mean a family {#~'~} of homogeneous (probability) measures on Hlo c 
depending on two real parameters v, ~ > O, such that 

e(# ~'~) < oo, e = vE(l#~'~), (3.8) 

and for any # = l,t ~'~° there exists a homogeneous statistical solution (#t)o <__~ < o0 of  the 
Navier-Stokes  equations, with viscosity v, satisfying #o = #~'~ and 

/4E{l#~"~:0 < e < oo} for  all t > O. (3.9) 

We shall moreover assume that this solution satisfies a strongerjbrm of(2.2), namely 
the energy equation 

t 

e(#t) + v ~ E(#~)ds = e(#o) for all t > O. (3.10) 
o 

Definition 2. A universal homogeneous statistical solution of  the Navier-Stokes  
equations is called selj2similar if  a¢, z takes (for all ~,2 > O) all the homogeneous 
statistical solutions considered in Definition I into solutions of  the same kind. 

A more precise content of this definition is given by the following 

~'~ be a se~-similar universal statistical solution of  the Proposition 1. Let  ( # ) ~ , ,  > o 
Navier-Stokes  equations. Then 

a¢~(l# ~'~) = l,t ~/~'¢~ (3.11) 

for  all ~, 2, v, ~ > O, 

Proof. If (#,)t> o is any homogeneous statistical solution of the type considered in 
Definition 1, then, by (2.8) and (3.9) we have 

/4 = l,t ,'~(t), where e(t) = vE(#t) (3.12) 

for all t > 0. By Lemma 1, (fit)t >_ o is a homogeneous statistical solution of the Navier -  
Stokes equations with viscosity ~ = v~/2. By Definition 2, we have 

/~ = l# ~'~"), where g(t) = ~E(fit) (3.13) 

for all t > 0. By (3.12), (3.6), (3.7) and (3.13) we have 

~(t) = ~-~22ZE(/4~) = ~22~(t~2) for all t > 0, 

and in particular ~(0) = ¢32eo. 
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Remark. We conjecture that "most" homogeneous statistical solutions of the 
Navier-Stokes equations eventually "approach" a superposition of solutions of the 
type considered in Definition 1. This is the reason for the terminology introduced in 
this definition. 

4. The Correlation and the Energy Decay 

4.1. Let us recall that for a homogeneous (probability) measure satisfying e(#) < o% 
the correlation matrix R(y) = [R~k(y)]j,k=3 ~ is defined by 

1 R~(y) = I ~ ! uj(x + y)u~(~)dx dl,(u), 

where j, k = 1,2, 3, ye  ~3 and Q is any cube (a, b) 3. Obviously 

e(/z) = ½TrR(0) = ½(R 11 (0) + R22 (0) + R 33 (0)), (4,1) 

and, if moreover E~) < ~ ,  then R~k( j, k = 1,2, 3) is of class C 2 and 

E(#) = - d TrR(Y) Iy = o. (4.2) 

4.2. From now on until the end of this Sect. 4, (/:'9~,,>o will be a fixed self-similar 
universal homogeneous statistical solution of the Navier-Stokes equations. We 
denote by R(y;v,a) the correlation matrix o f / ' ~  (for all v,e > 0). 

Proposition 2. Settin9 

we have 
2/3 2/3 Y R(y;v,e)=e l R ( ~ ; I , 1 )  

for all v,e > 0 and yeN3. Consequently 

e(W'9 = ~:(~v) ~/~, 

where 
7 = e(#1"1) • 

Proof. By Proposition 1, we have 

R(y;V~f ,(a2e)=[S~Q,l~uj(x + y)uk(X)dxd@,~(/'~(u))]jlk 

= 3 

I~dIQ dj,k=l 

= ~2["[~I-~I:Q1 uj(x + 2y)uk(x)dx d#~'"(u) ] a.j~,~= 1 

= ~2R(2y; v, ~) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
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for all ye ~3. Replacing y by y/2 and choosing 

= (V~3)- 1/4, )~ = V31413- 1/4 

we obtain (4.4). Taking y = 0 in (4.4), by (4.1), we obtain readily (4.5). 

Corollary. Let t,,*,~(o~ be any homogeneous statistical solution considered in ~t ~ jt>=O 
Definition 1. Then for all t > 0 

Co(1 t~1/2 \ - 2  
~(t) 

and consequently 

+ ~o (4.9) e(I ~'~(t)) = e(# ~'~° ) ( 1 tell2 \ - 1 ,v l /2)  =e(P~'~°)( 1 +te(#~'~°~ -1 
~)2V / " 

Proof. Obviously (4.8) is a direct corollary of (4.7) and (4.5). Also, because of (4.5), 
(3.8) and (3.10), we have 

d(v~(t))l/2~ 
+ e(t) = 0 (for t > 0) and e(0) = e o, (4.10) 

dt 

from where by an elementary computation we obtain (4.8). 

Remark. (by O. P. Manley). Formula (4.9) implies 

te(#~'~(t))--~v7 2 for t ~  ~ ,  

which represents a universal law of decay (i.e. a law independent of the initial date 
/;,~o). 

5. Connection with Equations (2) 

5.1 In this paragraph we establish the connection between the self-similar universal 
homogeneous statistical solution of the Navier-Stokes equations and the stationary 
homogeneous statistical solutions of Eqs. (2). Namely we have the following 

~'~ self-similar universal homogeneous statistical solution of  the Theorem. ( # )  . . . .  0 is a 
Navier-Stokes equations if  and only if it is of the form (see (4.3.)) 

. . . .  ~/~/~-3/~(#)(for all v,e > 0) (5.1) - -  ( ~  - 1 / 2 8 1 / 4 V 1 / 4 .  / - 

for some stationary homogeneous statistical solution # of  Eqs. (2) satisfying 

e(#) = E(#)( = 72). (5.2) 

The next two Sects, 5.2 and 5.3, will be devoted to the proof of this Theorem. 
5.2. Let (/~'')~,~ > o be a self-similar universal homogeneous statistical solution of the 
Navier-Stokes equations. We set 

/~ =/~1,~, (5.3) 

where 7 was introduced in (4.6). Then (5.1) is satisfied by virtue of Proposition 1, 
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while (5.2) follows directly from (3.8) and (4.5). So it remains to prove that/2 l 'v2 is a 
stat ionary homogeneous  solution of Eqs. (2). To this aim, set 

r = ~vll2~ - 1/2, (5.4) 

and observe that  

~, . . . .  , ,(~), (5.5) - -  ~7( vt,:)~ I:q (v~) - 

so that  if(#~'~(°),__> o is the homogeneous  statistical solution considered in Sect. 4, then 
for z ( t )=  7vlf2~(t) - 1/2, we have 

dz(t) 
- - - ~ - I  

dt 

(see (4.10)). Therefore (giving to z(t) the role of  t!) 

(oh ~lt)'/~, o,o - ,i~ ( # ) ) t  _>_ o ( 5 . 6 )  

will satisfy Eq. (2.3) for any c / ,~y.  But 

d d 
~ I (~ d(~(vit)ii2,(v,)- ' 12(fl) = --d~ ~ (~(O'(v/t)l/2 (vo- ,12u d]A(u) 

1 
= - -  ~ttI(a(vlt) i lZ,(vt)-, I2U "~- (x 'V) iT(vl t ) l l2(vt)-  112U, 

@'(a(,itW~,(,t )- ,i,u) )d#(u) = - ~tJ (u + (x" V)u, @'(u) )da(,io,i~.(,t ) ,/,(#)(u), 

(5.7) 
so that  from (2.3) taking v = 1, t = l we obtain Eq, (2.7). 

5.3. Conversely, let us assume that  /~ is a s tat ionary homogeneous  statistical 
solution of Eqs. (2) such that  e(#) = E(#). We take y2 = e(#) and define the family 
(#~'~)v,~ >o by (5.1). We shall show that  this family is indeed a self-similar universal 
homogeneous  statistical solution of the Navier -Stokes  equations. 

To this end, first we note that, by (3.7), (3.8) is satisfied. Also, using (3.4) and (5.7) 
we obtain (for v, e > 0) 

J [v((u, ~'(u))) + ((u. V)u, a~'(u))] d~ ~1~), ,~, ~ ) - , , 2  (~)(u) 

+ ((u.V)u, V. [~(a~ ~/,,,2, ~ - .~ u)] ))] du(u) 

1 ' d = ~J(%.w~,~,,.-',~(u + (x.V)u), ~ (a~,,i.,..~,,~)_.~u)) ,u(u) 
1 . r N -- ~-j(u + (x V)u, ¢' (u))da(~#W2 (v~)- ~t2(p)( ) 

d • 
= - r~7  j d%~,.~ ~ - , ~ ( ~ ) .  (5.8) 

For  v, e o > 0 fixed, we define 

t = r - z o, where c o =~v~lZeo~12 
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and z > z o. Then if e(t) is given by formula (4.8), we have 

z = yvl/2e(t)- 1/2, (5.9) 

and therefore 

#~,~(t) = ac~m~/~,(,~)_ ,~(#) for all z > z o. 

By (5.8) it follows that (#"~(°)t~o satisfies (2.3) for any ~sS- .  Moreover since, by (3.7) 
and (5.9) 

e/,,v,e(t)• _ et,. ~ ,r~ , - w(,/,v/~,(~)-,/~(#)) = Ve(#) = 7zv/z = ~(ve(t)) l/z, 

it follows that/4 = #~'~(°( t => 0) satisfies also (3.10). Since this family (/4)t~o obviously 
satisfies (2.1), we conclude that (#"~tt)),~0 is the homogeneous statistical solution 
which satisfies the conditions of Definition 1. So (#~'~) . . . .  o is a universal 
homogeneous statistical solution of the Navier-Stokes equations. Since, by its very 
definition, this solution satisfies (3.11), the proof is finished. 

5.4. We supplement the preceding theorem with the following remark. Let 
(#~'~) . . . .  o be a self-similar universal homogeneous statistical solution of the Navier- 
Stokes equations and let #=#1,~2 (where y =e(#1'1)) be the stationary homo- 
geneous statistical solution of Eqs. (2) considered in the preceding theorem. Let 
moreover R(y) be the correlation matrix of #. Then 

R(y ; v, e) = 7-  l e2/312 /3 R(yT-  1/21-1) (5.10) 

for all v ,e> 0 and yE~3; here I is given by (4.3), i.e. l=(e/v3) -1/4. Also 

#~'~= a~ ~/2~z-1,~ ~/2~-~(#) (for all v, e > 0). (5.11) 

Indeed, (5.11) is obvious and (5.10) follows at once from (4.4) and its version for 
R(y; 1,7 2). 

6. Supplementary Properties 

6.1. As shown in [10], the proof of the existence theorem of Sect. 1, given in [9], 
implies also the basic property that 

i.e. 

~ud/4 = ~ud#o for all t > 0, (6.1) 

1 1 
~ - ~  ~ udx d/4(u) = ~ ~_2__ ~ udx d#o(U ) for all t > 0, (6.2) 

, ~ , Q  1(21~ - 

where, as in Sect. 1, Q is any bounded measurable subset of ~3 such that I Q [ > 0. 

Proposition 3. The homogeneous statistical solution of  the Navier-Stokes  equations 
occurring in Definition 1 enjoys the property (6.1) if and only if 

ud# "'~ = 0 for all v, e > 0. (6.3) 
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I f  # is the stationary homogeneous statistical solution of Eqs. (2) considered in the 
theorem of Sect. 5, then (6.3)is equivalent to 

Sudl~ =0.  (6.4) 

Proof. If(6.3) holds, so does (6.4) since/2 = p1,~2. Also, by (5.1) and the homogeneity 
of #, 

S ~Q j ~ Udx dl~'~ = ~ l-~ ~ a~ ~u dx d# 
IQIQ " 

= ~ l ~ - ~ [ ] Q u ( x ) d x d / ~ = ~ # ( u ) d x d #  (6.5) 

for any Q as in (6.2), where 

= .);- 1 /2~1/4V1/4  ' ~, ~___ •-- 1/2/~114t/-- 3 / 4  (6.6) 

Thus, conversely, (6.4) implies (6.3). Finally if for some v,e o > 0, (#~'~{°)o~,< ~ 
is the homogeneous statistical solution of the Navier-Stokes equations considered 
in Definition 1, then by (6.5), (6.6), 

Sudl 2v'"tt) = ~-1/2e(t)l/gvl/4Sudjx(u) for all t > 0. 

By virtue of (4.8) this quantity is independent of t if and only if (6.4) holds. 
6.2. Concerning the relation (5.2) we have the following 

Proposition 4. Let It be a stationary homogeneous statistical solution of Eqs. (2) 
satisfying the following regularity property 

~lAu [~d#(u) < oo (6.7) 

for some cube Q (thus also for any bounded measurable subset Q of ~", [ Q I > 0), and the 
following growth condition 

S ~Q[ ! tu(x)14dx d#(u) < ~ .  (6.8) 

Then # satisfies Eqs. (5.2) and (6.4). 
Proof. We consider first a ~b6Y- of the form 

@(u)= (P(j=~I (u'g))2) ' (6.9) 

where g~, 9z,..., gk ~ V~ and ~o is a real cg~ function on ~ bounded together with its 
derivative, for which (2.7) becomes 

J ~o' (u, gj)~ ( - ~ ,  - ½(x.V)u + (u.V)u - Au, g~)(u, gj)du(u) = O. 
d 

(6.10) 

We can easily choose a sequence {q~j]~= ~ of functions (p as in (6.9) such that 

sup~0j(p) < oo,~o~(p)~ 1 for all pE~, 
j , x  
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Then by virtue of (2.6), (6.7) and (6.8), we obtain from (6.10) (written for ~0 = ~oj) the 
following relation 

k 

S Z ( - ½u -- ½(x-V)u + (u-V)u - Au, gj)(u, gj)dti(u) = 0. (6.11) 
j = l  

Moreover we can choose a sequence {gj}~: 1 c V c (with sup gj c Q, V j) which should 
be an orthonormal basis in LE(Q). Then again by virtue of (2.6), (6.7) and (6.8), we 
obtain from (6.10) (by letting k--+ oo) 

t S ( -- ½u -- ½(x'V)u - A u).u dx d#(u) = 0. (6.12) 
Q 

In (6.12) we used that fact that 

~ ~ [ (u.V)u].ud#(u)dx i=1 ~" ~ Di ~ u ~ d # ( u )  dx = O, 

because of the homogeneity of #. Thus dividing by [Q] we obtain (see Sect. 4.1) 

1 
E(#) - e(#) = ½ ~ ! (x- V)u-udx d#(u) 

= ½~Q] ~(x.V)½,u(x)I2dxd#(u)= ½~-Q]~(x.V)e(#)dx = O. 

Also if we consider a ~ 9 -  of the form 

• (u)= q~( ~=~1 (u'gJ)(gJ'g)) ' 

where g, gl .... ,gk~Vc and ~0 is as in (6.9), (2.7) becomes 

Iq" 2 (u,g?%,g) (-½u-½(x.V)u-Au 
l=l  i=i 

+ (u.V)u, g~)(gj, g)d~(u) = 0. (6.13) 

Proceeding with (6.13) as with (6.10) we obtain, instead of (6.12), the relation 

. ( (  - ½u - ½ ( x - V ) u  - ~ u  + (u.V)u).gdx au(u) = o, 
Q 

from which we infer 

½~ ud#.j gdx = - ½ j' (x'V)'jud#(u)gdx 
Q Q 

- ~ A j" ud#(u)'gdx + j ~ (u'V)u'gdx d#(u) 
O Q 

= J ~ (u'V)u-gdx a#(u), (6.14) 
Q 

since S ud#(u) is independent of x. But 
3 

I (~v)~gax d#(u) = y, i i uiDiu~g~dx a#(u) 
Q j ,k=l  Q 
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3 

= ~" ~Dj(ujuk)'gkdxd#(u)= 
j , k = l  Q 

so that (6.14) yields 

3 

~ (Dj(R)k(O)))gkdX = O, 
j , k = l  Q 

(. udw (. gdx = 0 (6.15) 
o 

for all g~ V c. Taking g = curl h, where heC~(~3) 3 is arbitrary, we easily verify that 

so that (6.15) implies (6.1). 

Remark. The preceding proof shows that if instead of our Eqs. (2) one considers the 
time dependent form of the Leray equations (3), then one obtains E(#) + e(#) = 0, 
instead of E(#) - e(#) = 0. Obviously the first relation implies that # is carried by the 
null flow, i.e. # is a trivial solution. Thus we can conclude that the Leray equations (3) 
have no nontrivial stationary homogeneous statistical solutions satisfying the 
regularity property (6.7) and the growth condition (6.8). 

7. Remarks on the Energy Spectrum 

7.1. Let # be a homogeneous (probability) measure on Hlo ¢ such that its correlation 
matrix R(y) exists and TrR(y) is the Fourier transform 

TrR(y) = ~ eik'yQ(k)dk (for all ye E3) (7.1) 
~3 

of a function Q e L t (E3). Since TrR(y) is the Fourier transform of a positive measure 
(see 13 I), Q > 0. The energy spectrum of # is the function defined for all x > 0, by 

S(~)= S Q(k)dX(k), (7.2) 
IkJ =• 

where dZ(k) denotes the area element of the sphere (in ~3) of radius 1¢. Obviously 
co 

e(#) --- ½ S S(K)d~. (7.3) 
0 

If moreover E(#) < oo, then (using (4.2)) it is easy to check that 

E(#) = ~ K2S(x)dtc. (7.4) 
0 

7.2. Proposition. Let # be a stationary homogeneous statistical solution of Eqs. (2) 
satisfying (5.2.)and let (p~'~)~,~ > o be the self similar universal homogeneous statistical 
solutions of  the Navier-Stokes equations corresponding to # according to the theorem 
in Sect. 5.1. I f #  has an energy spectrum S(~), then for all v,e > O, #~'~ has an energy 
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spectrum S(x; v,/3) 9iven by 

S(/¢; v, ~) = ~ - 1/2/32/3/¢a- 5/3S()~112l¢/l¢d), 

where 

Proof. 

/3 ~1/4 
• 

By virtue of the remark made in Sect. 5.4, we have 

TrR(y; v,/3) = y-  1/32t3K 2 2t3Tr R(~- llZ%y) 

= 7-1~213Kd213 I elv-1t~"y'kQ(k)dk 
R3 

= 7112/32t3/~- 11t3 .( eiy.kQ(71t2k/lca)dk 
R3 

hence, by (7.2) 

i.e. (7.5). 

S ( K ; v , ~ ) =  ~ yl/2/32/31£dll/3Q(~l/2k/Kd)d~(k ) 
Ikl =~ 

= ?- l12ez13K2 513 ~ Q(k)dZ(k). 
y1121( 

]kl = - -  

201 

(7.5) 

(7.6) 

7.3. Remark. If we define 

F(I¢) = ")'- Uztcsi3S(71t2K)(for K > 0), (7.7) 

then (7.5) takes the form 

S(t¢; v, e) =/32ta~c- 513F(x/Xa) (for x > 0). (7.8) 

Comparing (7.8) with [15t Sect. 3.1, we see that this is the usual form of the energy 
spectrum of turbulence. However our formula (7.7) gives a new mathematical 
interpretation of the function F(x). In particular, since 

CJO 

½ 1 S(~c)d~c = e(#) = ?2 = E(#) = 7 KZs(K) d~, 
o 

the function F(~:) satisfies the following two conditions 

½ f F(tC)K-5t3dt¢ = 7, S F(Ic)Iclt3dK = 1. (7.9) 
o o 

8. Connection to Conventional Turbulence Theory 

We give now some comments of physical nature, some of those in Sect. 8.3 being 
purely speculative ones. 

8.1. Let (/xv'~)~,~>o be a fixed self-similar universal homogeneous statistical solution 
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of  the Navie r -S tokes  equat ions satisfying (6.1). Here #~'~ concerns an incom- 
pressible fluid in which: 

kinematic viscosity = v cm2/s, (8.1) 

and (by virtue of (4.5)), 

mean energy per g = 7(v~)l/2cm2/s 2, (8.2) 

(where gr denotes the unit  of mass = gram) and 

mean energy dissipation per g = e cm2/s 3. (8.3) 

Obviously the mean energy dissipation time should be 

mean energy per gr 
S~ 

mean energy dissipation per g 

so that  by (8.2), (8.3), we obtain 

mean energy dissipation time = 7(v/e)ll2s. (8.4) 

Taking into account  (4.9) we deduce that  the mean energy dissipation time is equal to 
the half life time of the mean energy per g. 

8.2. Since (#v,~) . . . .  0 satisfies (6.1), Proposi t ion 3 and (5.1) imply 

Sud# ~'~ = 0  (for all v,e> 0). (8.5) 

Therefore we have that  the mean velocity is 

(2 mean energy per g)1/2 

that  is (by (8.2)) 

mean velocity = (27)~/2(w)l/4cm/s. (8.6) 

For  the natural  mean length, given by mean velocity, mean energy dissipation time, 
we have (see (8.8) and (8.4)) 

mean length = (27) l /2(ve)1/47(v/g) l /Zcm 

= 21/2~3/2(v3/~)l/4cm. (8.7) 

It is obvious that  by introducing Kolmogorov ' s  

dissipation length: (v3/e)l/4cm, (8.8) 

we can write 

mean length = 21/273/2.dissipation length. (8.9) 

On the other  hand the Reynolds number  of the flow is given by 

mean veloci ty.mean length 
R - - - -  

v 

1/2 1/4 1/2 3/2 3 1/4 (27) (re) 2 7 (v /e) 
---- - -  ---- 272. (8.10) 

V 
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Thus the Reynolds number is time invariant, and (8.9) becomes 

mean length - 21/4R 3/4. (8.11) 
dissipation length 

It follows that Landau's number of degrees of freedom, which is the cube of the left 
hand side of(8.11), is 23/4R9/4. For a reader familiar with [1, 15, 13, Sects. 31 and 32], 
all the relations are in agreement with the corresponding ones in the conventional 
turbulence theory. However our approach is more rigorous than the usual empirical 
one, based on purely dimensional arguments, i.e. the approach in the conventional 
turbulence theory. 

In particular, let us notice that according to (4.8) and (8.10), 5 = 5(# ~'~')) satisfies the 
differential equation 

de (25)3/2 for t > 0. 
dt (Rv) t/2 

Therefore for an approximative equilibrium (i.e. e ~ const ~ 1 cm2/s 3 as long as t 
,,~ 1 s.), we must have R >> 1, since for most interesting fluids v < 1 cm2/s. 

8.3. We shall now discuss briefly the consistence of our formula (7.5-9) and (8.7-1 l) 
with Kolmogorov's energy spectrum theory. The basic conclusions of this theory 
can be summarized as follows (see [12] Sects. 3.1-3, Sect. 2.9 or [4], Chap. II, Sect. 
4): Set ~L ~ R-3/41(,d, where ~c a = (e/v3) 1/4 is the reciprocal of the dissipation length 
(8.8) and the Reynolds number R is assumed to be >> 1. Then 

S(K; v,e)dtc ~ S S(tc; v,e)d~c, (8.12) 
0 

i~ oo 

t /£2S(~;  •, e)dK ~ I K2S(K; v, e)d~c, (8.13) 
0 0 

and, for K in the initial range (i.e. KL < ~ < ~:a), the energy spectrum S(~c;v,e) is 
approximately equal to 

Ce 2/3 to- 5r3 (~cltcL)- h (8.14) 

where the term (X/XL)-h accounts for the intermittency phenomena, and h, C > 0 are 
dimensionless constants. Experiments suggest that h ~ 1 and C ~ 1. 

We start by proving that in our case, the relations (8.12-13) are satisfied for 
R >> 1. Indeed by virtue of (7.5), (7.7-8), (7.3), (4.5) and (8.10) we have 

oo Go 
s (~;  v, 5)d~c = 5 2/3 ~ ~ -  S'F(~/~cd)& 

K d gd 

7 = 52/3K'd2/3 S K-s/af(x)dtc < 52/3/¢d-2/3 K 1 / 3 F ( K ) d K  

1 1 

N 52/3Kd 2/3 = (5!2) 1/2 ~- e( ,  u~'~) 

1 
-- (2/~) 1/2" ! S(~;  v, g)dg, 
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i.e. 

• S(x;v,e)dx < 1 ~ S(~<;v,e)&<. (8.15) 
-d = (2R) I/2 o 

Concerning relation (8.13) we first notice that by virtue of (8.11) an acceptable 
value for x L is 

1 
K L - -  - -  2-1/4R - 3 / 4 ~ d r ,  

mean length 

and that, by virtue of (7.5), (7.7-8), (8.10), (7.4) and (3.12), we have 

K K 

~c2S0¢; v, e)d~¢ = e 2/3 ~ K a/3 F(tc/xa)dt ¢ 
o o 

K / !  2 - 1 / 4  R - 3 / 4  

= 82/31£ 2 ~ t¢-  5/3F(tc/xa)dx = e2/SX~XL 2/3 ) 
o o 

< e2/3~c2~<~_ z/32 = ~z/3x4131 = e_ l  
- a R vR  

i.e. 

1 ~ tc2S(~c; v, e)dx, 
R o  

(8.16) 

- 5/3F(x)d~ 

K 

iZtczs(tc;v,g)dt¢ < 1 lczs(t¢;v,e)dl¢. (8.17) 
0 ~ e o  

Clearly, (8.14) and (8.17) show that (8.12-13) hold i fR  >> 1. 
In a speculative mode  we can assume that  for R >> 1 we have the following 

stronger version of (8.12-13) 

K d o(3 

S S(tc;v,e)d~ ~ ~ S(~c;v,8)&c ( =  (2wR)~/2), (8.18) 
~¢L 0 

- 

~c2S(~c;v,e)d~c ~ K2S(K;V,e)dK = ~  , (8.19) 
K L 0 

and that, indeed S(~c;v,e) has the form (8.14) for ~c L < ~ < ~a with a constant  C 
depending only on the Reynolds number  R. Experimental  data  as well as theoretical 
deduction suggest that  h ~ 4/30. 3 Then  (8:18) yields 

C(R) (21/3~vR) '/z C(R)eZ/3 ( 1 ) 
8 "~ (~ + h)lc~/3 21/6R1/2 21/4R 3/4 

Kc~ 

= S S(~c; v, e)d~c ,.~ (2wR) 1/2, 

hence 
C(R) ~ .8 x 21/3 ~ 1. (8.20) 

3 See C. Foias, O. P. Manley and R. Temam [7] 
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so that 

On the other hand, (8.19) yields 

C(R) e_( ~ ' ] l  C(R) e2/a ~XL ']h 1 l 
1.2 "¢lk21/3e / ' ~ " ( . ~ 3  ~ d J  21/3R I 

Ka /~ 

= I ~c2S( ~;v,e~/~ ~ - ,  
F KL 

C(R) ,,~ 1.2 x (21/3R)'1. (8.21) 

Obviously (8.21) shows that C(R) seemingly depends on R but that this dependence 
is so mild that (8.20) and (8.21 ) are actually compatible for 10 - 4 < R < 104. So (8.15) 
might be an acceptable approximation to the energy spectra occurring in our 
approach. 
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