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Abstract. It is demonstrated that initial data sufficiently close to De-Sitter data 
develop into solutions of Einstein's equations Ric[g]=Ag with positive 
cosmological constant A, which are asymptotically simple in the past as well as 
in the future, whence null geodesically complete. Furthermore it is shown that 
hyperboloidal initial data (describing hypersurfaces which intersect future null 
infinity in a space-like two-sphere), which are sufficiently close to Minkow- 
skian hyperboloidal data, develop into future asymptotically simple whence 
null geodesically future complete solutions of Einstein's equations Ric [g] = O, 
for which future null infinity forms a regular cone with vertex i + that represents 
future time-like infinity. 

1. Introduction 

In this paper previous investigations [6, 93 of the existence of asymptotically 
simple solutions of Einstein's equations Ric [#'-J = A~ with cosmological constant 
A ~ 0  [ s ign=( - ,  +,  +,  +)] will be extended. We will first discuss the case of 
positive cosmological constant, since there the results are of a certain completeness 
nOW. 

In [9] the constraint equations implied by the "regular conformal field 
equations" [4] on past conformal infinity J -  have been analysed, which in the 
case A ~ 0  is space-like. It turned out that there is no need to consider an analogue 
of the Lichnerowicz equation if one wants to provide solutions of the constraint 
equations. Let S be an arbitrary orientable compact 3-dimensional manifold 
endowed with a Riemannian metric h~, A a positive number, and d~ a symmetric 
trace-free tensor field on S satisfying the equation D~d~ = O, where D denotes the 
covariant Levi-Civita derivative operator for h~p. Then from these fields a 
complete "asymptotic initialdata set" for the regular conformalfield equations can 
be derived by differentiation and algebra such that S together with these data 
describes the geometry of a past conformal infinity J - .  Moreover, alt these 
(sufficiently smooth) initial data sets determine unique past asymptotically simple 
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solutions of the equations Ric[9 ~] =A~, for which S together with the data 
represents indeed the fields on past conformal infinity. These solutions are 
"semiglobar' in the sense that they are null geodesically complete in the past. It 
may be mentioned here that the freedom to specify initial data is essentially the 
same as in the standard Cauchy problem: if O is a positive function on S, the fields 
obtained by the rescalings h~a~O2h~a, d,a~O-ld,a determine the same physical 
situation as the original fields. Thus one arrives at a rather complete character- 
ization of all past asymptotically simple solutions with compact Cauchy 
surface. Though the compactness condition is not necessary for the construc- 
tion of solutions, it appears to be a natural requirement. 

Of course, if data of such a generality are admitted, it will be difficult to tell 
whether the behaviour of the solutions in the far future will be similar as in the case 
of the conformally flat, geodesically complete De-Sitter space-time, which is 
asymptotically simple in the future as well. However, it will be shown in Theorem 
(3.3) that asymptotic initial data sets on the 3-dimensional sphere S 3 sufficiently 
close to an asymptotic De-Sitter data set develop into solutions to Ric [9"] = A~, 
which are "global" in the sense that they are null geodesically complete, and which 
moreover are asymptotically simple in the future as well as in the past. Instead of 
starting from asymptotic initial data one could also consider standard Cauchy 
data on S 3 which are in a suitable sense sufficiently close to De-Sitter data and 
obtain asymptotically simple solutions. Furthermore the techniques used to derive 
these results may also be used to show the existence of (weakly) asymptotically 
simple solutions in suitable "neighbourhoods" of other given (weakly) asymptoti- 
cally simple solutions of Ric [g'] = A~, A>-0. 

It has become increasingly clear that the requirement of (weak) asymptotic 
simplicity is reasonable for solutions of Einstein's equations, if it is to be satisfied 
either in the past or in the future. In [-5, 9] the conditions have been met by taking 
them into account right in the formulation of the initial value problems from which 
the solution space-times have been constructed. Here it is seen now that due to the 
particular propagative properties of Einstein's equations initial data, which are 
completely arbitrary up to "smallness" and smoothness requirements, evolve into 
space-times with the expected asymptotic behaviour. Furthermore it follows that 
asymptotic simplicity is a rather stable property of solutions of Einstein's equa- 
tions with positive cosmological constant. 

Of prime interest in the investigations indicated above were the specific 
properties of the field equations which allow us to derive the global existence 
result. For a discussion of the early time behaviour of solutions of Einstein's 
equations with positive cosmological constant, oriented to particular physical 
applications, the reader might consult for example [14]. 

The analysis of the case of Einstein's vacuum field equations Ric [g~] = 0 is 
considerably complicated by the fact that in general there will not exist conformal 
extensions of asymptotically simple solutions of these equations in which to 
"spatial infinity" can be assigned a structure to which the non-physical fields would 
extend in a smooth way. However, the techniques used in the case considered 
above, equally apply to the "hyperboloidal initial value problem," for which the 
existence of "local" solutions under general assumptions on the data has been 
discussed in [6]. Here "hyperboloidal initial data" for Einstein's equations 
Ric [-g~] = 0 are given on a 3-dimensional manifold, which represent the geometry of 
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a hypersurface which intersects future null infinity in a space-like 2-dimensional 
sphere, the boundary of the initial surface. It will be shown in Theorem (3.5) that 
hyperboloidal initial data, which are sufficiently close to Minkowskian hyperbo- 
loidal data, develop into a solution of Einstein's vacuum field equations, which is 
null geodesically complete in the future and has in fact a smooth asymptotic 
structure. The conformal extension of this solution can be chosen in such a way 
that the null generators of the surface J +, future null infinity, converge to form the 
regular past null cone of a point i ÷, which represents future time-like infinity of the 
solution. 

This result appears to reduce the problem of showing the existence of non- 
trivial "purely radiative solutions" [8] of Einstein's vacuum field equations to the 
problem of showing the existence of solutions of the standard Cauchy problem, 
which possess a "piece" of future and past null infinity "near" spatial infinity. 

The statements on the existence of solutions as indicated above are obtained by 
a straightforward application of PDE techniques available in the literature to the 
initial value problems formulated in Chap. 2. In [11, 12] Kato introduced 
techniques to deal with linear evolution equations, which he used in [13] to derive 
existence results for solutions of Cauchy problems for quasi-linear symmetric 
hyperbolic systems. His methods apply with only a few modifications to Cauchy 
problems for the symmetric hyperbolic system of reduced conformal field 
equations considered here. 

The regular conformal field equations, from which the reduced equations are 
extracted, are equivalent to Einstein's equations where the conformal factor is 
positive. However, they are also regular and meaningful where the conformal 
factor vanishes or becomes negative. It will be shown in Chap. 3 that solutions to 
the reduced equations will extend, under suitable "smallness" conditions on the 
data, into regions, where the conformal factor becomes negative. Moreover, it will 
be seen that the regular conformal field equations take care that the set of points 
where the conformal factor vanishes, which will represent conformal infinity for 
the corresponding "physical" field, has the desired smooth structure. Thus the 
(semi-) global existence result and the statements about the asymptotic 
structure are obtained at the same stroke. Decisive for this is the possibility, 
discussed in [71 to control the evolution of the gauge dependent quantities, the 
conformal factor, the frame field, and the coordinate system, by a suitable 
specification of the gauge source fields. 

The following exposition is meant to illustrate the essential argument, not to 
provide the most general results possible. Therefore use will be made freely of some 
specific properties of the Einstein cosmos, which are not necessarily available in 
more general situations and whose absence would require a higher technical 
expenditure. No attempt is made to describe any such generalization, but it may be 
pointed out that the methods used here extend to the coupled Einstein-Yang-Mills 
equations. 

2. The Initial Value Problems 

The desired space-times will be obtained from solutions 

U -~ (et*k, ~iJk, O, Si, S, Sij , dijkl ) (2.1) 



590 H. Friedrich 

of the regular conformal field equations. The unknown u comprises the following 
fields: 

- a frame field e k = ek ~X ~ .  It determines by 

g~'V=q%flek~ with ~fk=rhk=diag(1,--1,--1,--1 ) (2.2) 

the contravariant version of the "non-physical" metric gu~.. Here and in the 
following the frame indices i, j ,  k,  t, m take values 0,1, 2, 3 and the summation 
convention is understood. The same holds for the coordinate indices #, v, 2 . . . . .  All 
tensor fields will be thought of as being given with respect to the frame ek; 

- connection coefficients 7/k with respect to e k of the Levi-Civita connection V 
derived from 0, which satisfy 

? iJk~ jl  -~ ? iJl~ jk = 0 ,  (2.3) 

V~ek -- Ve,ek = ~Aei ; (2.4) 

- real valued functions O, s, where Q is the "conformal factor" and [by Eq. 
(2.8)] s = ¼V, VUO; 

- a field Z,, which represents [by Eq. (2.7)] the differential of f2; 
- a field s~, representing the trace-free part of the Ricci-tensor R~ of g 

1 1 sij = ~ ( R i j -  ~Rrhj ) ; 

- the rescaled Weyl-tensor d,jkt=g2-~C~jk,, obtained from the Weyl-tensor 
Ci jk l  of g. 

The regular conformal field equations are given by 

v # v __ i i # e k,~e j - - e  ~,~e k - - ( ~ j k - - T k i ) e  i, (2.5) 
i I~ i g i m i ra i m ra 

~ l j ,  u e k - -~ fk  j,,u e tdV~kra~l  j - - ~ l m ~ ) k  j - - ~ m j ( ~ k  t - - ~ l  k) 

= Q d i j k l  d- 2(l~i[kSl]j - -  i 1 i ~jtkS o ) + gRrl tkrlZ~j, (2.6) 

Vfl2= X,, (2.7) 

ViZk = - OSik + Sthk, (2.8) 

V~s = - £,Jsi~- ~ R S i -  2~OV~R, (2.9) 

_ _  i 1 Vksi j -- Vlsk 3 -- ,r, id jkl --  -f-~tl jtlVkjR , (2.10) 

Vidijkt = 0. (2.11) 

Assuming that O is positive, all equations can be derived from the "conformal field 
equations," 

Ric [O- 2g] = A(O- 2g), (2.12) 

which may be understood as a condition on the metric 9 and the conformal factor 
f2. In terms of the "physical metric," 

9u~ = O -  29u~, (2.13) 
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Eq. (2.12) is just Einstein's field equation with cosmological constant A. This has 
been discussed in [4, 7, 9] and here will be mentioned only a few properties of the 
regular conformal field equations, which are important for the following. 

Obviously Eq. (2.12) is invariant under rescalings of the form 

(0, ~)~(o20, on) 
with positive functions O. Consequently the same is true for Eqs. (2.5)-(2.11) if the 
fields given by u and the Ricci-scalar R are transformed appropriately. As shown in 
[7] the real-valued function R may be given arbitrarily near some initial surface. Its 
choice determines the propagation of the conformal factor £2 uniquely. Thus R 
may be considered as the "gauge source function" for the conformal factor. 

The trace-free part of(2.12) is just Eq. (2.8). It can be shown that for a solution of 
the system (2.5)-(2.11) the quantity 

A'= 6f2s-  32Sj2fl + ¼Q2R (2.14) 

is a constant which may be identified with the cosmological constant A. Thus A is 
fixed already by the choice of initial data on some initial surface. Equation (2.14) is 
then just the trace of Eq. (2.12), and it is seen that Eqs. (2.5)-(2.11) are essentially 
equivalent to (2.12), where the conformal factor is positive. Notice, however, that 
the system (2.5)-(2.11) is regular and that the structure of its principal part is 
preserved even if the conformal factor vanishes or becomes negative. 

To solve a Cauchy problem for the regular conformal field equations, one has 
to split the system into constraint equations and propagation equations. The 
constraint equations have been given explicitly in [6, 9] and will not be reproduced 
here. The analysis of the propagation equations is done most easily in the spin 
frame formalism and has been discussed in all possible generality in I-7]. The 
unknowns are represented then by the following fields: 

- a pseudo-orthonormal frame ca,, = eU,,, 8x-- S satisfying 

o(ea,,, ebb') = eabea'b', 
which may be related to an orthonormal frame by 

eaa, = trkaa,ek , 

where the constant van der Waerden symbols ok~,, are given more explicitly by 

1 1 

eoo,= ~ ( e o + e 0 ,  e o v = - ~ ( e l + i e 2 ) ,  

1 1 
e l o , = ~ ( e l - i e 2 ) ,  e l y =  ~ ( e o - e 3 ) ,  

(2.15) 

- the spin connection coefficients Faa,bc = F~a'~bc), 
- S, £2 and the differential ~,,, of £2, 
- the Ricci-spinor qkab~, b, = ~(ab)(a'b') = ~aba'b',  
- the rescaled Weyl-spinor q)abcd = q~(abcd) ~-" ~'~- 1 ~Ilabcd, where 7J~b~d is the Weyl- 

spinor. 



592 H. Ffiedfich 

Here and in the following the conventions of [7] are used. In particular, the 
spinor indices a, b . . . . .  h, a', b', .... h' take values 0, 1 and the summation conven- 
tion holds. Use will be made freely of this notation, where the unknown is given by 

U = (eaa ,u, l"aa,be , Q, Zaa,, S, ~aba'b', ~Oabca), (2.16) 

and the notation (2.1). It is assumed that the transition between the frame fields is 
always achieved by (2.15). 

To obtain the symmetric hyperbolic reduced conformat field equations one has 
to choose beside the Ricci-scalar a "coordinate gauge source function" 

F ~' = ½ V -rs VIi,xU, (2.17) 

and a "frame gauge source function" 

F,b = ½ VYs'(9(Vsy,e,,h. , ebb')). (2.18) 

As shown in [7] the choice of these functions, which is completely arbitrary, 
determines the propagation of the coordinate system and the frame field off a 
suitable initial surface uniquely. 

To find gauge source functions which will be useful for our purpose, we 
study first two particular solutions of (2.5)-(2.11) which are related to the De-Sitter 
and the Minkowski space-time, respectively. 

In the following the 3-dimensional sphere S 3 will always be thought of as being 
given as the submanifold 

4 4 = 1 1  
J 

of •4. The restrictions of the functions x A, A = 1,2, 3, 4, on R 4 to S 3 will again be 
denoted by x A. The vector fields 

1 ~ 4 9 2 ~ 3 9 
c l = x  g x -X + x  

C2=X 1 9 3 9 4 9 2 9 
ff~x3-X ff~xl +X ~ - x  9x 4 (2.19) 

C3=X 1 9 2 9 3 9 4 9 
- x -aT r + x ?Tx  - x Ox 3 

on p 4  are tangent to ~3 and will always be considered as vector fields on S a. Let 
, 

do) 2 denote the line element obtained as pull-back of the line element Z (dxa) 2 on 
A = I  

•4 to S a. Then the fields cr (indices r, s, t will always be assumed to take values 
I, 2, 3 and the summation convention is assumed) constitute a globally defined 
frame on S 3 orthonormal with respect to &0 2. The diffeomorphism 

S 3 ~ (x 1 , x 2, x 3, x4)-~. ( x l  + ix  2 _ x  3 + ix4~ 
x3 + iX 4 X1 __ ix2J  e SU(2) 

of the sphere S 3 onto the Lie-group SU(2) maps the vector fields (2.19) onto left 
invariant vector fields. This is the reason for picking the particular frame (2.19) on 
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S 3. It finds application in the relation (2.35), which is basic for the construction of a 
certain class of maps. Another reason will become clear in the discussion of the 
proof of Theorem (3.1). 

The Einstein-cosmos is given by the manifold M ~ = ~ × S 3 together with the 

Lorentz-metric gE =dr2 _dfo2 with t ~ P,.. The vector fields Co = ~t and cr as given 

by (2.19) constitute a frame, which is defined globally on M E and satisfies 
gE(c k, ci)= r/k~. The connection coefficients of the Levi-Civita connection deter- 
mined from gE with respect to the frame Ck are given by ye/k = eOj~krf, where e~jk~ is 
the totally skew tensor with eo~z3 = 1. 

The two "conformal factors" 

g29=cost ,  respectively f 2 M = c o s t + x  ~ (2.20) 

on M z allow to determine two solutions u D, respectively u u of the regular 
conformal field equations (2.5)-(2.11), which both comprise the frame field ek [thus 
implying by (2.2) the metric gE] and the connection coefficients 7E~Jk, and are 
defined on the manifold M E. Equation (2.5) is satisfied by C"k = Ck(X u) and Y~k for 
any coordinate system x ~ on M E. From (2.6) follows 

d°iikZ = dMijk~ = 0 

R ° = R ~ = - 6 

s M 6o6o 1. s D i j  = i j  = i k - -  4 q i k "  

Equation (2.7) is solved by setting 

Sf=Ck(OD), ~M=ck(t2~), 
and Eq. (2.8) is solved by setting 

s O =  --¼cost ,  s M =  --¼(COSt-- 3Xl). 

The remaining equations will then be satisfied as well. 

by 

(2.21) 

(2.22) 

(2.23) 

Only parts of the solutions u s,  respectively u E are of physical interest. Denote 

M D = {(t, x) e R x S 3 / [ t l - ~ }  

a maximal connected domain in M e, where f2 D is positive. The manifold M D 
together with the metric 90=  (f2o)-29E is just De-Sitter space-time. Defining a 
coordinate -c, - m ~ ( z ~ ( ~ ,  on M D by setting tgt =sinhz,  the metric 9 D writes 

g D  = d z 2  _ cosh 2 vdco2. 

It satisfies the equation 

Ric [9 D] = Ao9 D 

with cosmological constant A o = - 3  [which is negative because of the sign 
convention (2.2)]. The two space-like hypersurfaces 

~ - +  = {t = + ~} 
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of M E, where ~'-2 D vanishes but NoD.0, represent future, respectively past 
conformal infinity of (M o, g°). They are Cauchy surfaces for the conformally 
extended space-time. Thus u D may be thought of as being obtained either by 
analytic continuation of the fields QD, (O,)2g, or as an extension of a solution of 
the regular conformal field equations (2.5)-(2.11) for data given on jo_+ or on some 
Cauchy surface of (M °, gO). The last point of view will be of importance in the 
following. 

A maximal connected domain in M E, where f2 M is positive is given by 

MM= {0~X-<n, X-- n-<t-<r~--)~}, 

where the function Z on S 3, respectively M ~ is defined by setting x 1 = cos Z. In terms 
of the coordinates z, r on M M, -oo<(~-<oo, O~r~oo, given by 

t+z t--Z 
z + r = t g  2 ' v - - r = t g  2 ' 

the metric gM=(y2M)--2gE writes gM=dz2-drZ-r2da2, where do -2 denotes the 
standard line element on the 2-dimensional sphere S 2. Thus (M M, gU) is just 
Minkowski space-time given here in standard polar coordinates. The surfaces 
future and past conformal infinity for this space-time are represented by the null 
surfaces 

jM_+ = {0.<Z<(Z~ ' t =  +(n--Z)},  

where t2 vanishes but dO does not. They are neither Cauchy surfaces for M E nor for 
the conformal completion of M u because of the "holes" at the three points 

i -+={z=0,t=+~},  i°={z=~,t=0) 

which represent future, respectively past time-like and space-like infinity for 
Minkowski space. At these points not only f2 M but also its differential vanishes, but 
its Hessian is non-degenerate. The intersection of the Cauchy surface {t= to}, 
where - T r < ( t o ~ ,  of the Einstein-cosmos with M u is a Cauchy surface for 
Minkowski-space only if to = 0. Fix a number to, 0 <(t0 ~ n and consider the surface 
with boundary 

S=  { 0 ~ Z ~ r c -  to, t =  to}. (2.24) 

Such a surface will be called "hyperboloidal," since in the case to= ~ the 
intersection of g with M u is a space-like unit hyperboloid. The future domain of 
dependence (for this and related causal notions see [10]) 

D+(S) = { 0 ~ X ~ r c - t ,  torture } (2.25) 

of Sin  the Einstein-cosmos comprises the part of Minkowski space in the future of 
as well as t~ and 

H + (S) = {Z = n -  t, t o ~ t ~ n } ,  (2.26) 

the Cauchy horizon of S, which is generated by segments of the past directed null 
geodesics emanating from the point i + in the Einstein-cosmos. In the hyperbo- 
loidal initial value problem dara are described on a surface, which similar to 



n-Geodesically Complete Solutions of Einstein's Equations 595 

intersects future null infinity of the prospective solution space-time in a space-like 
2-dimensional sphere. It will be seen in Theorem (3.5) that for suitable hyper- 
boloidal initial data the domain of the dependence of the solution will have a 
future boundary which forms a cone similar to H+(S) given by (2.26). 

As in these two examples, the solution of Einstein's equation we are looking for 
will be obtained by restricting suitably certain solutions of the "reduced conformal 
field equations" which represent the propagational part of the regular conformal 
field equations. These solutions will provide a metric g on a manifold which is 
diffeomorphic to M g. Equations (2.5) contain as unknowns the coefficients e"g of 
the frame within a coordinate basis. Since no global coordinate systems exist on S 3 
one would have to patch together local solutions. To avoid the lengthy technical 
discussion arising from this difficulty, one may try, as suggested by the examples 
above, to take advantage of the fact that there exist globally defined frames on M ~, 
and to express the field equations in terms of such a frame. This will result in a 
representation (2.42)(2.46) of the equations, which allows us to dispense with any 
further coordinate considerations. How this can be achieved will be discussed now. 

Let (M, g) be a Lorentz-space such that the manifold M is diffeomorphic to M g. 
A map ~b, defined on an open subset U of M, will be called a "cylinder map," if it 
maps U diffeomorphically onto a set I x S 3, I an open interval in N, such that the 
sets ~b-l({t}xS3), t e I, are space-like Cauchy surfaces and the curves 
I ~ t--*~b-l((t, x)), x e S 3, are time-like with respect to the metric 9. The cylinder 
map ~b may be used to pull back to U the function x ° = t, which takes values in I, 
and the functions x A, A = 1 ..... 4 on S 3, whose pull-back to U will again be denoted 
by the same symbol. Since the system of functions so obtained has rank four on U, 
one may take x ° together with a suitable choice of three of the functions x A, to 
obtain a coordinate system in a certain neighbourhood of a given point of U. 
Coordinates constructed in this way will be called "cylinder coordinates" and 
denoted by x ", #=0,  1,2,3 (which involves possibly a renumeration of the 
functions xa). In the following will be assumed that the manifold M can be covered 
by domains of cylinder maps. 

Given a cylinder map ~b and thus the functions x °, x A on its domain U, one can 
0 

define a frame field c~ on U with Co = ff~x 0 and cl, cz, c3 as in (2.19). The frame 

coefficients e"k, respectively e",,, with respect to a coordinate basis may now be 
replaced in the unknown u given by (2.1), respectively (2.16) by the coefficients eJk, 
respectively eia,, defined by 

ek=eJkcj,  respectively ea , ,=d , , , c j  on U. (2.27) 

(Here indices belonging to the same "family" are used in two different ways. 
However, the upper index ofeik  will, with the exception of formulae (2.29), only be 
contracted with the index of the fields c j, while indices attached to any tensor field 
will always refer to the lower index of elk, which counts the member of the frame 
{ek}k = O, I, 2, 3)" In the two examples studied above the coefficients e~,, coincide then 
with the van der Waerden symbols a~,,. 

It is obvious how Eqs. (2.6)-(2.11), if written in the spin-frame formalism, have 
to be reexpressed in terms of the coefficients d,, ,  and derivatives in the direction of 
c~. However, to obtain a suitable form for the reduced equations, Eq. (2.5), which is 
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the condition that the torsion tensor vanishes, needs further discussion. The 
torsion tensor taa?vc~, may be thought of as being given by the quantities 
ta bcc' = it2 ~ah'CC'bh', ~cac, b = 1÷2 ~ha'CC'hb', which satisfy by definition the equations 

~g'ec~,(x") = V j '  Vb)i,x u , ~,'b,ecc,(X u) = VZ(a , gb,)yX" (2.28) 

for any coordinate system x u on M, in particular for cylinder coordinates. Assume 
that for a given cylinder map ~b the field cj are defined as above and set [using (2.4)] 

• k f '  j flee' j k f '  1 ij ~b = e a ck(e by') -- Fa bf "e cc" + e a e bf,eok~d I , 
(2.29) 

SJa,V = ek Ya,ck(eJfb, ) -  F faS~'fb,e~, + ek fa,etfb,~Okilrf J . 

Then Eq. (2.28) may be w~tten in the form 

t~'e~¢,(x") = S~bC)(X" ) + e, ab G" , 
(2.30) 

tT , ; ,ec /x")  = + " ,  

with G u = ½ (17,,, V aa 'x u - d f  I ' ek i  i,Cj(Ck(XU))) , (2.31) 

which holds for any coordinate system, in particular for the cylinder coordinates 
associated with the map ~b. 

The first term on the right of Eq. (2.31) is just the coordinate gauge source 
function. Since this may be given arbitrarily in an initial value problem for Eq. 
(2.5)-(2.11), one may expect that it can be chosen such that G ~ vanishes. In the 
following it will be shown that this can be done and that the requirement G u -  0 
amounts to the construction of a particular type of cylinder map. 

Let S be a smooth space-like Cauchy surface of M, which is mapped by a 
diffeomorphism q~ onto the sphere S 3 and let, assuming a time orientation, n be the 
future directed unit normal vector field on S. Maps of the form 

m ~ U ~ p ~ ( x ° ( p ) ,  xA(p))  ~ N X R 4 (2.32) 

will now be constructed, which will be seen to define cylinder maps of the desired 
type. The functions x °, x a are obtained as solutions of the system of semi-linear 
wave equations 

VkVkx  0 .~- O, VkVkx A = -- X A V k V k , (2.33) 
1 

with [xl = (~A=I ( x a ) a )  l / 2 D a t a f ° r t h e s e e q u a t i ° n s a r e p r e s c r i b e d ° n S s u c h t h a t :  

S ~ q ~ x a ( q )  ~ S 3 describes the diffeomorphism tp, 

x° ls  = to for some to ~ IR, (2.34) 

4 
~ ,  x A n ( x A ) = o ,  n(xO)~-0 o n  S.  

A=I 

Lemma (2.1). A solut ion o f  Eqs .  (2.33) sat is fying the initial condi t ions  (2.34) defines 
by  (2.32) a cyl inder map q~, that  maps  a certain ne ighbourhood U o f  S di f feomorphi-  
cally onto a ne ighbourhood o f  {to} x S 3 in R x S a. 
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I f  G ~, given by (2.31), is defined with respect to this cylinder map and associated 
cylinder coordinates x ~, then G " - 0  on U. 

Where it is positive the function lxl calculated from a solution x a of (2.33) 
satisfies the equation, gk vk(IxD = 0, as may be verified by direct calculation, using 
the second of Eqs. (2.33). Since by (2.34) one has Ixl-  1, n(Ixl)-= 0 on S, it follows 
that Ix]- 1 in the neighbourhood U of S, where the solution of the initial value 
problem (2.33), (2.34) exists. By (2.34) the map ~ : u-~N x S a so obtained has rank 4 
on S and thus, possibly after restricting U suitably, defines a diffeomorphism onto 
the set ~(U) containing {to} x S 3 such that the surfaces {x ° = const} are space-like 
Cauchy surfaces and the curves {x a = const} are time-like, a 

Using the functions x °, x A on U to define vector fields Co = ~-6x o , and q ,  Cz, c3 as 
in (2.19) one finds by direct calculation: 

C(j(Ck)(XA)) = __ ((~jO O(~k -- l~jk)xA = __xA( ~, Cj(xB)Ck(XB)), ] 
A= 1 (2.35) 

cj(ck(x°))=o, 
whence, observing Ixl -  1, 

dSS'ekss,Cj(Ck(XA))=--xA(~ldSS'c~(xB)ekss,Ck(XB) ) 

--  B=I ~" / '\ \ IX-I~I) Vk(XB~' klXlf 
(2.36) 

- - x  A _ v~  

df f'ekf rCj(C~(X°))=O. 

Thus by (2.33) one has G" = 0 on U if G ~ is defined with respect to the cylinder map 
and related cylinder coordinates. 

Remark (2.2). i) If x ~" is an arbitrary coordinate system on U, it may locally be 
given in the form x#'= x"'(x"), where x ~ is one of the cylinder coordinate systems 
considered above. Assuming cj as above, one finds again 

Vk VkX "' = dS f'e~f f,c j( Ck( X~') ) , 

but the vector fields cj are now not necessarily related to the coordinates x "' as they 
are related to the coordinates x". Therefore, the condition G ~ =0  is in fact a 
requirement on the cylinder map which serves to define the fields cj. 

ii) Using (2.35), (2.36) one can show that the gauge condition G ~ = 0 implies that 
the cylinder map used to construct the fields cj in the definition (2.31) of G" must 
always be obtained as a solution of an initial value problem for Eqs. (2.35). For  the 
following it is sufficient to see that the condition G" = 0 can always be satisfied and 
leaves the usual freedom to specify initial conditions [notice that in (2.34) one 
could also have to = to(q) a function on S]. 

For  the function G ", which is used to single out a class of cylinder coordinates, 
thus fixing the coordinate function P ' ,  for the frame gauge source function F,b and 
for the function R, which determines the evolution of the conformal factor, we will 
now take in the general situation we want to consider the same functions as are 
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obtained in the case of the two examples discussed above. For  space-times which 
"deviate not too much" from those of these examples it may then be expected that 
the cylinder map, the frame field, and a conformal factor satisfying the appropriate 
positivity conditions will exist globally on the prospective solution space-time. 

Thus we require 

G u = O, Fab = 0, R = -- 6. (2.37) 

As shown in [7], respectively pointed out in Remark (2.2) this leaves the freedom to 
specify the conformat factor, the frame field and the coordinates as well as the 
normal derivatives of these fields on a suitable hypersurfaces. By (2.30) the first of 
conditions (2.37) implies that the vanishing of the torsion tensor then is equivalent 
t o  

sJ~b = O, ~'b' = O. (2.38) 

On the other hand, we have: 

Lemma (2.3). I f  in (2.30) holds 

} ~ ~ - ~ 'o  ' = 0  , s~ 0 + ~ '0 ' = 0  , (2.39) 

then G ~ = 0 and 

-tg '-eo% =0, 
er-eo%=0, t%+e&,=0. 

Using the definitions (2.29), (2.31) one finds the identity 

U l_ ' ' j J 
--  4 ( 4 o  + Sl"o ' - -  So l - -  do ' , ' )Cj(xu)  

(2.4o) 

which holds for any coordinate system x u. From this follows the first assertion and 
the second is then an immediate consequence of the relations (2.30). 

Remark (2.4).  The subsystem (2.42) of the following system of reduced conformal 
field equations are just Eqs. (2.39) in explicit form. Thus the system (2.42)-(2.46) 
implies the system (2.40), (2.43)-(2.46) and allows us to determine the gauge source 
function F u from G u = 0 and (2.31). The discussion of the system (2.40), (2.43)-(2.46) 
in I-7] therefore shows that a solution of the system (2.42)-(2.46), which satisfies the 
constraint equations implied by the regular conformal field equations on some 
initial surface S, will in fact be a solution of the complete system of regular 
conformal field equations in the domain of dependence of the surface S with 
respect to the metric supplied by that solution. 

With the definition 

ab 1 F e ' f ( a F '  b) ~,ab _ _ ! F ' e  f ( a F '  b) 
~ c d = 2 X ( c  ~d)e" f ~  ~ ' c ' d ' - - 2  ~t (e" ~d ' )e  f ,  

F bb' - - r  b_ b ' - ~  b' ..b (2.41) 
a' cc" - -  - aa' c'Y'c" -l- l aa' C'~5C ' 

and assuming V~a'Fbb'cd to be given by the same expression which one would obtain 
if the Fbb,ca were the components of a spinor field, the reduced conformal field 
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equations in the gauge (2.37) may be written: 

2eio o'C j(  ei l v )  --  d o l ,c  i(  ei l o,) --  e J1 o,C j( eio l , ) 

= - -  ( [ '0  f ' cc '  i f "  + F Y o : C ' y l ' ) e i c c  ' + ( e J o Y ' e k l y "  + e J f o ' e k f l ' ) e O j i k ,  

(doo, + e i, l ' ) c j (e io l  ") - -  d ~  o , c / e ~  ~ ,) - ei~ o,%(e~oo ,) 
__ [ p  f ' c c '  F f  cc" `toi [.oJ f ' o  k a J f  ,..~k "to i 
- - \ J t l  I f  " - ~ t  O" f O ' l W c c ' - - ~ ,  r' 1 ~" i f  " - v  0 'r" f O ' l t ' O j k ,  

(eJoo ' + e i l  1 ")cj(elol ')  - do1  ,cj(e'oo,) - d O  l ,c)(eil  l ,) 

= - -  (Fof'*~'of, - -  Ffr*C'yl ,)ei~, ,  + ( d o f ' e k o f ,  --  e i f  1,ekfl ,)~ojlk,  

2 d  ~ : j(e~oo ,) - d ~ o ,c j(  e~o ~ ,) - do, ~ ,c j ( e ~  o,) 

= (q:'**'o:" + rfl :':o,)ei,~,- (eJ1:'eko:, + dYl,ekyo,)eOjik, 

2Voo,rlrob_v r .b ~ r .b .b ab v01, , t lO,  - - v l O , a O 1 ,  - - ] ) 10 - -~ )1 ,0 ,  

= f2~Oabo 1 + ½~0%1b) + ~b~bo, r , 

(Voo '  "Jr" V11')/"10'ab __ V1 o 'I'1 l 'ab  __ V10 'Foo ,ab ji - ]?alb __ ]laob, o ' 

= - -  0 9 a b l  1 - -  ½ ~ l a ~ l  b "~- ~ a b o ' o ' ,  

([700 ' + ab ab [z I "~ ab ab ~_ ab Vl v)rOl, - Vovroo, - .  o 1 " -  1 1 '  - ? o o  7 -  ? l ' v  

_ _ O . - a b  - - 1 ~  a~ b . tab  
- - ~ l p  00"1 -~60  #--;0 - - ~  1 ' 1 ' ,  

2 V 1 l 'Foo 'al' - -  Vlo 'Fol  ,,b _ Vo 1,Flo,,~, + "f"o~ + 7 o ' v  ab 

= - -  ~2~oab10 - -  ½~ 1 (a~o b) - -  ~ a b l  "0",  

- -  Vfo ,~O111f  = 0 ,  

- - V f o , ~ O a b o f + V f v t p . b ~ ¢ = O  in the order ab=11,10,O0, 

V f l  ' (~O00f  ~--- O ,  

- Vo: '~b~l , : ,=  - ~Po~:Sfr, 

- Vo:'~b~o,: + V1:'~c1,: = -- ~po~:~:o, + ~p 1~c:Ur, 

V l f ' ~ b c O ' f '  : ~0 l b c f ~ f o  ' , 

(I7oo,+ Vl r ) f 2 =  Soo,  + S l r , 

(17oo, + 171 v)X~b, = - O(OObO,~, + ¢16I'~') + S(~O:O,V + ~be l '~ , )  , 

(Voo, + vl v)s = - (¢o~o,~, + ~1~1,~,)~" + ½(Zoo, + z . , ) .  

/ 
(2.42) / 
(2.43) 

(2.44) 

(2.45) 

(2.46) 

In the following it will always be assumed that in these equations the frame 
• • • • 1 j -" ,, • ,, e,~, = d~,cj is written m the form ~(ea,, + ~, , , )c j  to make the system symmetric [see 

(3.1)]. Given a solution of the system written this way, one may, following the 
discussion in [7], subtract the complex conjugates of Eqs. (2.42) (not assuming now 
that d~,  = ~ ,  necessarily holds) suitably from Eqs. (2.42) to obtain a linear 
homogeneous symmetric hyperbolic system of equations for the quantities 
do~,-~Jo,,. Since initial data for (2.42)-(2.46) will be given such that eJ~,, = ~ i ,  
holds initially, this equality will hold everywhere by the uniqueness property of 
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symmetric hyperbolic system. Thus Eqs. (2.42)-(2.46) will be satisfied with the 
frame written in the original way. 

Before initial data sets will be specified for Eqs. (2.42)-(2.46) it is convenient to 
collect a few facts, which allow us to reduce the remaining gauge freedom on the 
initial surface. Let (M, g), S, to be the Lorentz-space, the Cauchy surface and the 
diffeomorphism of S onto S 3, which have been considered in Lemma (2.1). The 
requirements listed in the following lemma restrict, for a given choice of the 
conformal factor near S, the freedom to select a cylinder map and a frame near S to 
the choice of the diffeomorphism to and the "origin of time" to. 

Lemma (2.5). There exists a cylinder map of the type considered in Lemma (2.1) 
with related cylinder coordinates x ~ and frame field cj and a g-orthonormal frame 
field ek, k = O, 1, 2, 3; both defined in some neighbourhood of S in M, such that 

i) The fields er, r= 1, 2, 3, are tangent to S, satisfy h(ea, eb) = --lab, where h is 
the interior metric implied on S by g, and have a unique expansion 

{>'00 /f s = r ,  
e,=e~c~ with eS,= if s ) -r .  

ii) eo, which coincides on S with the future directed unit normal of S, is given by 
a 

e o = ~gxo = c o on S. Furthermore x ° = t o on S, t o e IR. 

iii) The connection coefficients "hJk with respect to e k satisfy on S: 

7,t~et=D,es, where D, denotes the covariant derivative in the 
direction of e, with respect to the Levi-Civita connection defined 
on S by h, Z,~ o = - 7,.s = - 7,~o is the second fundamental form on S, 
given in the frame er, YOik= 0 on S. 

iv) The frame gauge source function of e k vanishes near S. 

Since the fields c ,  r = 1,2, 3, given together with to are tangent to S, condition i) 
is just an orthonormalization prescription to fix in a unique way an orthonormal 
basis of tangent vectors at each point of S. Denote by gk the g-orthonormal frame 
on S, where eo is the future directed unit normal vector and the ~, satisfy i). 
Assume that the frame ek is extended to a neighbourhood of S by parallel 
transport in the direction of go- Then the connection coefficients ~7/k with respect to 
ek have the properties listed in iii). Set ek =UkYj, where L~ denotes a function, 
which maps some neighbourhood of S into the Lorentz-group. As shown in [7] the 
requirement that the frame gauge source function for e k vanishes near S implies a 
system of semi-linear wave equations for the functions Uk, j, k = 0, 1, 2, 3. Solving 
these equations with the initial conditions LJk = fig, gO(IJk) = 0 on S, one obtains a 
unique frame ek near S which satisfies i), iii), iv). If in (2.34) the initial conditions are 
specified by setting n(x A) = O, n(x °) = 1 on S, the cylinder map obtained by solving 
(2.33) near S will be such that iii) holds. 

The reduced conformal field equations (2.42)-(2.46) will now be considered as 
equations on the manifold R x S 3, on which the fields c i are known, and data will 
be specified on a surface S~o = {to} x S 3, where the gauge conditions i)-iii) will be 
assumed. The further structure of the initial data sets will depend on the particular 
problem to be considered. 
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In the "De-Sitter-type initial value problem" are given "asymptotic initial 
data" on S,o, which will correspond to the (non-physical) fields implied on past 
conformal infinity of a past asymptotically simple solution of Einstein's equations 
Ric [9"] = Aog, An-<0. For easy comparison with the standard solution u D of that 
situation we take as the initial data surface S = S _~ and as the value for the 

2 
cosmological constant An = - 3 .  The asymptotic initial data may be specified by 
giving two tensor fields h and d, where 

- h is a negative definite metric on S, 
- d is a trace-free symmetric on S with vanishing divergence with respect to h: 

Drd,~=O o n S .  (2.47) 

Here it is assumed, as in the following, that er, e~r, 7~t, Dr denote the quantities 
associated to h as described in i), iii) of Lemma (2.5) (with ~p the identity), and 
tensor fields are given by their components in the frame er. Denote by 3Rrs, 3R, 3B~ t 
the Ricci-tensor, the Ricci-scalar, and the Bach tensor of h, respectively. 

With the choice A 0 = - 3 ,  R = - 6 ,  an asymptotic initial data set for the De- 
Sitter-type initial value problem, denoted in the following collectively by Uo DT, is 
given by: 

e r s s, 7r t as above, 

eJo = ~Jo, e°r = O ,  70tk  = 7iOk : 7iko : O, 

~2 = O, Xk = 6Ok, S = O, (2.48) 

Son = - ¼(3R + 3), Sot = 0, 

sr~ = 3Rr~ + ¼6r~(3R- 1), 

1 3  
drost - ~ Brst  , drown = dry. 

Remark (2.6). (i) It has been shown in [9] that by h, d and (2.48) all possible 
asymptotic initial data satisfying the constraint equations implied on past 
conformal infinity by the regular conformal field equations (2.5)-(2.11) with 
R = - 6  and (2.14) with A ' = - 3  are given. "Conformally equivalent" data 
obtained by rescalings h--*O2h, d ~ O - l d  with a positive function O on S and 
related transformations of the quantities given by (2.48), determine the same 
physical solutions. Because of the condition s = 0 these rescalings represent the 
remaining conformal freedom. 

(ii) The set of solutions of (2.47) has been described in [2]. 
(iii) The asymptotic initial data set Uo D = UD[s-~ implied on S by the solution u D 

may be obtained by choosing h to be such that the fields cr are orthonormal, i.e. 
er~-- 6r~, and that the field d,s vanishes. Although the "nearness" of an abstractly 
given initial data set on S to an asymptotic De-Sitter data set should be formulated 
more precisely in terms of the possible diffeomorphisms ~p and the remaining 
conformal freedom, it will be said in the following and will be adequate for our 
purpose that the data Uo "T are "close" to asymptotic De-Sitter data, if the fields 
e~-~r~, d~ and consequently the (componentwise) difference UoDT--Uo D are 
"sufficiently" small with respect to a suitable norm on an appropriate function 
space. A similar remark holds for hyperboloidal and Minkowskian hyperboloidal 
initial data. 
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The hyperboloidat initial value problem has been described at length in [6]. 
Here the conditions on the data will be given, which are important for the 
discussion in the next chapter. Let S be now the surface given by (2.24) and let Z 
denote its boundary 

Z = {Z = re -  to, t = to). 

The collection of fields 

UO H = ( eJkTiik, ~ ,  Zi, S, Sik, diikt ) (2.49) 

given on S will be called a hyperboloidal initial data set, if 

on Z: f2=0 ,  XiX~=O, Zoo(O, 

on S\Z: f2)-0, 

on S: e J0 = 6J0, e°~ = 0, 
(2.50) 

e~, respectively 7j~ satisfy the conditions stated in i), iii) of 
Lemma (2.2). 
The fields given by Uo H satisfy the conformal constraint 
equations implied on space-like surfaces by (2.5)-(2.11) with 
R =  - 6  and (2.14) with A ' = 0  on S. 

From Uo H will be constructed in the next chapter "extended hyperboloidal initial 
data" ~o n, which will be defined on the whole ofSto 3 ;~and will serve as initial data 
set for Eqs. (2.42)-(2.46). 

3. The Structure of the Solutions 

Before discussing the existence of solutions to the initial value problems 
formulated in Sect. 2, the reduced conformal field equations will be written in a 
slightly different way. Set v = (Re u, Im u) and let v' denote either v ° = (Re u ~, Im u o) 
or v M = (Re u M, Im uM). Setting now v = v' + w, Eqs. (2.42)-(2.46), written as a system 
of real equations for w, take the form: 

A°(w) w +  r~=lAr(w)G(w)+B(t ,x ,w) .w=O (3.1) 

for an unknown w which takes values in RN for some N ~ N. The properties of the 
system (3.1), which are important for the following, are: 

i) The entries of the matrix-valued function B = B ( t , x , z ) ,  defined for 
(t, x, z) ~ ~ x S 3 × R s, are polynomials in z of degree at most one with coefficients, 
which are real-analytic functions on R x S 3, periodic in t. 

ii) The entries of the matrix-valued function AJ(z), j = 0 ,  1,2, 3, are poly- 
nomials in z ~ R N of degree at most one with constant coefficients. The matrices are 
symmetric tAJ(z)= AJ(z), z ~ R n, and the matrix A°(0) is diagonal with diagonal 

1 
elements not smaller than - -  
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On the space C°°(S a, [IN) of smooth ~-~N-valued functions on S a define for 
m e N the norm: 

( m 1 llZ 

where the integration is over S 3 and the following notation is used: 

3 
[D°wl 2 = ]w[ 2 , IDkwl 2 = E IDrl . . .  O,k wl 2 , 

rl, . . . , r k  : 1 

with I I being the standard euclidean norm on p N, D, d# denote respectively the 
covariant Levi-Civita derivative operator and the volume element associated with 
the metric do) 2 on S a, and D, denotes the covariant derivative in the direction of the 
field c~. For m e N let now H"(S a, R N) be the Hilbert-space which is obtained as the 
completion of the space C°~(S 3, R N) in the norm (3.2). In most cases it will be 
convenient now to consider the unknown w = w(t, x) as a function of t which takes 
values in the function space Hm(S a, R ~) with "space variable" x e S a for some 
m e N ,  

For 6 e l l  m e n  with 0-<fi-< 1- ~ ,  m~2, set 
I '  

D~ = {w e H~(S a, N.N)/(z, A°(w)z)~-fi(z, z) Vz ~ l l~} , 

where ( , )  is the standard scalar product on R N. This set is well defined because 
H ' ( S  3,11 N) is embedded for m~2  continuously into C°(C a, RN), and it contains a 
neighbourhood of the origin in H~(S a, R N) by property (ii) of Eqs. (3.1). 

T h e o r e m  (3.1). Suppose m ~ 4 ,  D is a bounded open subset of H~(Sa, I1 N) with 
D C Dm~. I f  w o e D is given as initial condition for Eq. (3.1), then: 

i) There exists a T>O and a unique solution w(t) of (3.1), defined on [0, T], 
with w(O)= Wo and 

w ¢ C(0, T; D)c~CI(0, T; n m- 1(S3, RN)). 

ii) There is an r>-O such that the corresponding T can be chosen common to all 
initial conditions in the open ball Br(wo) with center w o and radius r (such that 
Br(wo) C D). 

iii) I f  r and T are chosen as in ii) and Wo"eBr(wo) with I]Wo"-Wollm~O as 
n--,oo, then for the solutions w"(t) with w"(0)=w0 n holds IIw"(t)-w(t)ll,.--*O 
uniformly in t, t ~ [0, T]. 

iv) I f  the solution w(t) in i) exists on [0, To] for some T O ~0 ,  then the solutions to 
all initial conditions in Br(wo) exist on [0, To] if r~-O is sufficiently small. 

Remark (3.2). By i) local existence of solutions is asserted for any Woe Dm~. Of 
particular interest in the following, however, is the fact that w = 0 is a solution of 
(3.1), which is defined on [0, T] for any T~-0, whence by iv) for any To>-0 there 
exists an r>-0 such that for Wo ~ B,(0) the solution w(t) exists on [0, To]. Because of 
the particular structure of (3.1) solutions to (3.1) exist in fact on intervals of the form 
[ -  T1, T2], T1, T2 >-0. Furthermore, they are of class nm(] - T1, T2[ x S 3) (with the 
obvious definition of Hm) and in particular of class C " - z ( [ _  7.1 ' T2 ] x Sa). By iii) 
one has w"(t, x)-~w(t, x) uniformly on [ -  T1, T2] x S a. 
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The results above are analogues of results obtained by Kato in 1-13] for 
solutions of symmetric hyperbolic systems for I-Iilbert-space-valued functions on 
R". The first part of his proof consists in showing certain properties, among them 
the m-accretiveness, of operators of a specific type, which are naturally associated 
with the equations, and in demonstrating that conditions (i'), (ii'), and (iii) in 
Theorem I of 1-12] are satisfied. Considering, as indicated in the beginning, S 3 as 
underlying manifold of SU(2), d# as Haar measure, the fields cr as left invariant 
vector fields and using further structures on the group such as the convolution 
product to replace corresponding structures on R", one can mimick, with only a 
few modifications due to the non-commutativity of the group SU(2), each step in 
the first part of Kato's proof in the present setting (the complete proof of the 
m-accretiveness of the operator associated with (3.1) may be given on SU(2) in 
close analogy to the exposition in [3]). The second part of Kato's proof, which 
relies on general properties of Banach spaces, and of function spaces similar to 
Hm(s 3, ~N), and in particular on the results derived in [11, 12] for linear evolution 
equations in Banach spaces, applies then in much the same way to the present 
situation. To avoid what would amount essentially to a lengthy repetition of 
known arguments, we leave out the details. 

By the choice of the frame field coefficients in the asymptotic initial data set 
UO DT, respectively VO DT =(Reuo Dr, Imuo °T) given by (2.48) one will always have 
WoDr=VoDr--VDIseD~ m if VoDr~Hm(Sa, RN), m~2, and if v '=v ° is chosen to 
derive the system (3.1). Thus Theorem (3.1) implies the existence of local solutions 
of the regular conformal field equations for all sufficiently smooth initial data sets 
as given by (2.48). This has been discussed in all generality in 1,9]. Moreover, one 
has 

Theorem (3.3). Suppose m ~ 4 .  There is a number r~-O such that initial conditions 
Vo Dr, obtained as above from (2.48), with [[voOr--v°[s]lmMr determine a unique 
solution uDr(t) of the regular conformal field equations (2.5)-(2.11) with R = - 6 and 
(2.14) with A '=  - 3 ,  which exists on [ - ~ ,  To] with To>- ~ and such that: 

i) The fields supplied by u °r, in particular the conformal factor f2 °r  and the 
frame coefficients, are of class Cm-2([-~,  To] x S 3) and the frame coefficients 
define by (2.2) a Lorentz-metric of class C m- 2. 

ii) There exists a function S 3 ~ x-~ t(x) e]R with - ~ ( t ( x ) ~ (  T O and 

~DT~o on M g r = { ( t , x ) ~ R x S 3 / - ~ - < t - < t ( x ) } ,  

Q°T=O on J n r + = ( ( t ( x ) , x ) / x ~ S 3 } ,  

~¢DT + is a hypersurface of [ -  ~, To] × S 3 of class C m-2 which is space-like with 
respect to gDT. 

In particular one has: The metric ~DT = ( ~2DT)- 2 gDT on M Dr is a solution of class 
C m- 2 (with curvature tensor of class C m- 2) of Einstein's equations Ric [g~J = Ao~, 
Ao = - 3 ,  which is asymptotically simple, thus null 9eodesically complete, and for 
which the surfaces j D T -  = {(__~, X)/X ~ S 3) and •Dr+ represent past and future 
conformal infinity. 

If v '= v D is used to obtain Eq. (3.1), Theorem (3.1) and Remark (3.2) show that 
for sufficiently small r>-0 there exists a unique solution uDT(t) of the reduced 
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conformal field equations (2.42)-(2.46) satisfying the initial conditions, defined for 
t ~ [ -  ~, To] with To = n, and such that on Mo = [ -  ~, To] x S 3 holds: 

[f2DT-- (201 ~ ½, I(eOT)ik--~ikl<e. (3.3) 

Here e>-0 is assumed small enough [see e.g. (3.6)] to ensure that det((eOT)ik)~0 

[whence the metric got defined by (2.2) from (eDr)i k is regular on Mo], that is 

time-like, and that for - ~  ~ t ~  T O the surface {t} x S ~ is space-like in M o with 
respect to the metric gOT. The smoothness properties stated in i) will hold by 
Remark (3.2). 

From OD(To, x) = -- 1 ensues by (3.3) that f2°r(To, x)~(0 for x ~ S a. The initial 
conditions f2DT(--~,x)=O, s,~T(--~, X)= I, x ~ S  3, imply therefore that the 
function t(x), and hence the sets M °T, jOT+ are well defined. Since Uo °T given by 
(2.48) satisfies the constraints on j D T -  and u °T satisfies the reduced conformal 
field equations, u DT satisfies by Remark (2.4) the regular conformal field equations 
on the domain of dependence of Y o r -  with respect to goa, which is M 0. From Eq. 
(2.14), which holds with A'= - 3 ,  and Eq. (2.7) ensues that (s°T) i, the gradient of 
D °T, is time-like where f2 °T vanishes, whence jDT+ is a hypersurface of class C m- 2, 
which is space-like and thus transverse to the t-coordinate lines. This shows the 
first statement and ii). The final remark follows from the properties of the regular 
conformal field equations discussed in Sect. 2, from the behaviour of the Weyl 
tensor under conformal rescalings and from the fact that H °T satisfies the field 
equations on M Dr. 

Remark (3.4). (i) Instead of using asymptotic initial data, one could also start from 
standard Cauchy data for Ric [g~] = Ao~, which describe the geometry of a Cauchy 
surface in the prospective solution space-time and construct from those a 
conformal initial data set. If this is close enough in the sense used above to a 
conformal De-Sitter initial data set, it follows by the arguments above that it will 
also determine an asymptotically simple solution. 

(ii) In a similar way as the existence of asymptotically simple solutions 
close to De-Sitter space-time has been shown here, one can demonstrate the 
existence of (weakly) asymptotically simple solutions close to other given 
(weakly) asymptotically simple solutions. This may, however, require more 
lengthy and more technical arguments, since in general an analogue of the 
cylinder map will not be available. 

(iii) Values ofthe cosmological constant other t h a n A o = - 3 m a y b e d e a l t  with 
by conformal rescalings with constant conformal factors. 

(iv) If required, the differentiability statements for the field ~DT and its 
curvature tensor may be strengthened somewhat and formulated in terms of 
Sobolev-spaces. 

Let now S be the surface given by (2.24). Set S = S \ Z ,  where Z is the 
boundary of S. Writing S 3 for Sto, we may consider S, S as subsets of S 3. Denote 
by F the set of RN-valued functions on S, which are obtained as restrictions to S 
of functions in C°~(S a, ~N), and let IIWlIm, s for w ~ F denote the norm defined by 
(3.2), where the integration is now over S. By Hm(S, R N) we will denote the 
Sobolev-space obtained as completion of F in the norm II • [Im, s .  
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Set Vo11= (Reuo 11, ImUOH), where Uo 11 is a "vector" as given by (2.49). Since for 
m ~ 4  the function space H"(S, F~ n) may be embedded continuously into the space 
C ~-  2(~, F,N) of functions w on S, which together with their derivatives Dry... Drkw, 
k~m- -2 ,  are bounded and uniformly continuous on S, it makes sense to say that 
the functions given by Uo 11 satisfy (2.50), if Vone H'(S, RN). We call Vo 11 then a 
hyperboloidal initial data set on S. 

To proceed as in the case of the De-Sitter type initial value problem, the 
hyperboloidal initial data sets on S will be extended to S 3. For any m ~ 0  there 
exists a linear "extension operator" E, which maps Hm(S, N N) into Hrn(S 3, ~N), 
such that for any w ~ Hm(s, R N) holds 

(Ew)(x)=w(x) a.e. in S, IlEwllm~Kilwllm,S, 

with a constant K = K(m)~O [1]. Assume m ~ 4  and make a fixed choice of such an 
extension operator. For  an hyperboloidal initial data set Vo 11 ~ H'(S, Ru), we will 
call 3o n ~ H"(S 3, •u), defined by 

o = E(vo 11- VoMIs) + VO M, 

V M with VoM= Is,o, the "extended hyperboloidal initial data set." 
It then holds 

II ~ -  vo M l{m ~ K lt vo n -  VoUlsllm, s. (3.4) 

By the structure of vo M and by (2.50) we may furthermore assume that the 
extension to n is such that: 

* i ~ko=6ko, ~°j=6°j ,  7ok=0  on Sto. (3.5) 

It will be seen later that the fact that the extension is not unique and that ~r does 
not satisfy necessarily the constraint equations on S~o\S, creates no difficulties. 

If vo11C Hm(s, ~RN), m~4,  is an hyperboloidal initial data set on S, then by (3.5) 
holds ~o 11- Vo M ~ D/". Thus Theorem (3.1) implies a local existence theorem for the 
hyperboloidal initial value problem. This has been discussed in detail in [6]. 
Moreover, we have 

Theorem (3.5). Assume m~4.  There is a number r~-O such that for any 
hyperboloidal initial data set Vo 11 on S with II v0 n -  Vo Mls II m,~ ~ r, there exists on some 
interval [to, To], with To~-n, a unique solution ~11(t) of the reduced conformal field 

*H *H equations (2.42}-(2.46) satisfying v (to)= Vo and such that 
(i) The fields supplied by v 11, in particular 011 and the frame coefficients, may be 

obtained as restrictions to Mo = [to, To] × S 3 of functions of class C"-  z defined on a 
neighbourhood of Mo in IR × S 3. The frame coefficients define by (2.2) a Lorentz 
metric ~H with the same smoothness properties. 

(ii) There exists a point i + ~ ]to, To[ × S 3 such that the causal past J- ( i  +) of i + 
and the future domain of dependence D11+(~) of S in the Lorentz-space (Mo, ~H) 
coincide. 

(iii) The restriction v 11 (respectively g 11, 011) of ~11 (respectively ~n, ~211) to 
DH+(s) is uniquely determined by the initial data set Vo 11 (i.e. independent of the 

I1 H +  chosen extension ?~ ) and v provides on D ( S-) a solution of the regular conformaI 
field equations (2.5)-(2.11) and of (2.14) with A'=0 .  
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(iv) The function O n is positive on MH=DH+(~)\HH+(S), where HH+(S) 
denotes the Cauchy horizon of S. Furthermore, O n vanishes on HH + (S), df2H =~ 0 on 
jH+ =HH+($)\{i+}, and df2n=0 but the Hessian of I2 n is non-degenerate at i +. 

In particular one has: The metric ~n=(f2H)-2gn on M n is a solution of class 
C m- 2 (with curvature tensor of class C m- 2) of  Einstein's vacuum field equations 
Ric[g~]=0, which is future asymptotically simple, thus future null geodesicalty 
complete, for which j a +  represents future null infinity and i + future time-like 
infinity. 

Assume that v '= v M has been chosen to derive Eq. (3.1). Then Theorem (3.1), 
Remark (3.2), and relation (3.4) imply that r~-0 can be chosen so small that for von 
satisfying the estimate above there exists a unique solution ~n(t) of the reduced 
field equations (2.42)-(2.46), which is defined on [ to-e ,  To + e] with To = 3~ and 
some small e~-0, satisfies ~n(to)= ~o H, and which is such that on M o holds 

6 ~ ~ (3.6) I(~H)~k-- k ~ 1 6 ,  

ISo n - 2~oMI ~ ½ sin to. (3.7) 

The functions supplied by ~u will then satisfy the smoothness conditions stated in 
(i). The same is true for the metric ~H defined by (2.2) from r,Hal ~e j k, since the latter are 
invertible by (3.6). Moreover, (3.6) implies that I((~ H)- 1)~ k -6ikl ~ ~ ,  from which 
ensues 

*n c ~N-ll ~H-lj <:i 

This in turn implies that with respect to ~n 

(t} x S 3 is space-like for t o ~ t ~ T o ,  -~ is time-like on Mo. (3.8) 

a 
We take ~ as future directed. 

Since ~n satisfies on M o the reduced conformal field equation (2.42)-(2.46) and 
its restriction to S satisfy by assumption the constraint equations, it follows from 
Remark (2.4) that (iii) is true. 

The Cauchy horizon HH+(S) is generated by null geodesic segments which 
have past endpoint on Z 1-10]. Since Z is smooth, it follows that Hn +(S) represents 
near Z a ~H-nutl hypersurface of class C '~- 2. By (2.50) the null direction tangent to 

*H HH+(S) is given on Z by S k- On Z ~n-null vectors n, 1 are defined uniquely ifn is 
*H orthogonal to Z, nklk = 1, and Ik = S k" Here and in the following components are 

given with respect to the frame ~H k. On suitable open sets U of Z the fields n, I may 
be complemented by complex vector fields m, n~ "tangent" to Z with mkff~ k = 1. The 
pseudo-orthonormal frame so obtained on U may be propagated along the null 
generators of Hn+(S) which end on U by parallel transport in the direction of I. 

On HH+(S) the regular conformal field equations (2.5)-(2.11) are satisfied. 
Transvecting, where the Cauchy-horizon is a hypersurface of class C m- 2, Eqs. (2.7), 
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(2.8) suitably with I k, m k, o n e  obtains (dropping the H's  and *'s from now on) 

1 k V kQ : lJZj ,  ! 
1  k(lJsj) = - [t (3.9) 

I k Vk(miSj)  = --  Q(S~klimk). J 

By (2.50) the functions £2, tkSk, mkSk vanish on U. Thus following from Z a null 
generator on H + (S) one will have £2 = 0 until one possibly arrives at a caustic point. 
On that part of the Cauchy horizon where £2 vanishes, Eqs. (2.8), (2.9) give, 
observing R = const, 

Z'%(miS s, ) I (3. 1 O) 
Ik VkS = -- (n~SJ) (Siklilk)" I 

Finally, one obtains from (2.8) by transvecting with m i, r~ k, where the Cauchy- 
horizon is of class C m- 2 and £2 = 0, 

s = - e(n Sk), (3.11) 

where 0 is a measure for the convergence of the null generators. From (3.10) follows 
that nJSj and s cannot vanish at the same point on a null generator, since nJSj = 1 
on Z. Equation (3.11) shows then that nkSk or equivalently d£2 vanishes at a point 
p~H+(S) if and only if p is a caustic point. 

Set Zt = ({t} × Sa)c~H+ ($ ') for t o ~ t ~  To, such that Zto = Z. Assume that dO 4=0 
on Z~ for t o~ t - ( t l ,  tl-(To. By the preceding discussion we then have £2=0, 
,Y,k,Y, k= 0 on Zt for to ~ t ~  t l. If d£24 = 0 on Zt, this implies that not all the functions 
c~(£2), r = 1,2, 3, can vanish at the same point of Z~,. Thus Z~, is of class C m- 2 and 
H + ( ~  extends through Z~ with this smoothness property. It is, however, 
impossible to have d£24~0 on Zt for to~ t~To .  Since ZoU(to, X)=-s in to ,  
SoU@Z, x) = 1, the estimate (3.7) shows that Son(to, x)~0 ,  So(3n, x))--0 for x ~ S 3, 
Therefore, on any null geodesic tangent to H÷(S) at Z, which must end on 
{ To} × S 3 by (3.8), will be a point where ~o H vanishes. Let tl < To be as above, such 
that Son 4=0 on Zt for t< t l  and that there is a point i + ~ Zt~, where Son=0 .  Then 
by Xk Sk = 0 on Zt~ we have 

d£2=0 at i +. 

Equation (2.8), which holds by continuity at i +, since it holds on H+(S) for 
t<t l ,  and (3.9), (3.11) give, since £2=0 on Zt~ 

ViSk = S~1~k, S 4:0 at i+. 

Hence i ÷ is a non-degenerate and therefore isolated critical point of the 
function £2. 

It follows that all null geodesics on the surface H+(S) must converge at the 
point i ÷ such that H ÷ (S) is the past light cone of the point i ÷. This establishes (ii) 
and (iii). The final remark of Theorem (3.5) follows by the same argument as the 
final remark of Theorem (3.3). 

Remark (3.6). The analysis of the structure of H+ (S) is based on a discussion of the 
field equations, which does not only involve the reduced equations but the 
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comple te  set o f  Eqs. (2.8), which are the trace free par t  of  (2.12) with A = 0, o f  Eqs. 
(2.9), which "replace"  Eq. (2.14), the t race of  (2.12), as well as of  (2.7). These  
equat ions ,  however ,  seem not  to be sumcSent to deduce  the occurrence  of  a critical 
po in t  of  f2, which has been forced here by  requir ing the es t imate  (3.7). One  might  
th ink to use the equa t ion  (in N.P.  nota t ion)  

D~ = Q2 + ~5 + q~oo 

conta ined  in (2.6) to show the divergence of Q. However ,  since ~o0 is ob ta ined  with 
sik as a solut ion of  (2.10), it appears  difficult to derive any  in format ion  on the 
behav iou r  of  q~oo. 
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