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Abstract: This paper considers estimation of the parameters for the fractionally integrated class of 
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1 Introduction 

This paper is concerned with the estimation of fractionally integrated I(d) time- 
series processes, which were originally introduced by Granger (1980), Granger 
and Joyeux (1980), and Hosking (1981). An I(d) process exhibits long memory 
and generates very slow, but eventual, decay in its impulse-response weights, 
or moving-average representation. Hence, one attraction of I(d) processes is 
that they avoid knife-edge choices between unit-root I(1) processes, which 
generate complete persistence, and the alternative of stationary and invertible 
ARMA models, which imply relatively rapid exponential decay in their impulse- 
response weights. There has recently been considerable interest in the possibility 
that many macroeconomic and financial time series possess long-memory prop- 
erties consistent with I(d) behavior. Studies by Shea (1989, 1991), Diebold and 
Rudebusch (1989, 1991), Sowell (1992b), Baillie, Chung, and Tieslau (1992) and 
others have applied I(d) processes to a variety of economic problems. 

Section 2 of this paper provides a brief survey of some characteristics of the 
fractional white noise process and the ARFIMA(p, d, q) model where the I(d) 
behavior is appended with ARMA behavior. Section 3 then discusses different 
estimation procedures that have been suggested for the ARFIMA process. The 
most attractive estimator currently available is a frill maximum likelihood esti- 
mator (MLE) proposed by Sowell (1992a). A recent study by Cheung and Die- 
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bold (1993) has provided further simulation evidence on the performance of 
Sowell's full MLE in estimating the fractional white noise, or ARFIMA(0, d, 0) 
model, compared to an approximate MLE of Fox and Taqqu (1986). When 
the mean of the process is known, Cheung and Diebold not surprisingly find 
Sowell's estimator to be quite satisfactory. However, when the mean of the 
process is unknown, the approximate MLE of Fox and Taqqu yields similar 
biases and mean squared errors of the parameter estimates. 

The main contribution of this paper is to provide a further study about the 
small sample performance of the estimation of the ARFIMA model based on 
the conditional sum-of-squares (CSS) estimator. With the initial observations 
fixed, the CSS estimator is asymptotically equivalent to full MLE (a brief proof 
of this is provided in the appendix). The CSS estimator has been widely used for 
ARMA models, transfer function models, ARCH and GARCH models, and has 
been suggested for I ( d )  processes by Hosking (1984) and Li and McLeod (1986). 
In section 3 of this paper we discuss some of the advantages of the C$S 
estimator. In particular, the CSS estimator can deal with quite complicated 
ARFIMA models with non-normal disturbances and innovations that exhibit 
time-dependent heteroskedasticity of the ARCH form. 

The results of a detailed simulation study are reported in section 4. Unlike pre- 
vious work in this area, this paper considers the estimation of ARFIMA(p, d, q) 
processes with p and q equal to t or 2, as opposed to the pure fractional white- 
noise case. Since the CSS estimator is asymptotically equivalent to MLE, our 
interest is in determining its performance in small samples. In particular, we find 
that when the unknown mean is estimated jointly with the fractional differenc- 
ing parameter d and the ARMA parameters, substantial bias may result in small 
sample. Interestingly, when we evaluate three different estimators of the mean, 
we find that in some cases the sample median may perform better than the more 
usual sample mean or the MLE of the mean. 

2 Fractional Integrated Processes 

Following Granger (1980, 1981), Granger and Joyeux (1980), and Hosking 
(1981), a discretely observed time-series process y~, with mean/~ is said to be 
integrated of order d, i.e., I ( d ) ,  if 

(1 - L ) a ( y ,  - # )  = u,  , (1) 

where u, is a weakly stationary I(0) process and -0.5 < d < 0.5. For 0 < d < 
0.5, the process y, exhibits long memory in the sense that its autocorrelations 
will have a hyperbolic rate of convergence. For --0.5 < d < 0, the process Yt is 
said to have intermediate memory. If u t is a stationary and invertible ARMA 
process, then y, is generated by the Autoregressive Fractionally Integrated 
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Moving Average, or ARFIMA(p, d, q) process: 

~ ( L ) ( 1  - L ) ~ ( y ,  - ~ )  = O(L)~t, (2)  

p q 

where ~b(L)= 1 - Z ~bJ Lj and O(L)= 1 + Z O~U are polynomials in the lag 
j= l  j = l  

operator of order p and q respectively and have all their roots lying outside the 
unit circle, and et is a white-noise sequence with a variance a2 Granger (1981) 
and Hosking (1981) show that the infinite autoregressive weights, the infinite 
moving-average representation weights and the autocorrelation functions all 
decline at a hyperbolic rate, as opposed to the conventional exponential rate 
associated with the stationary and invertible class of ARMA processes. For 
example, for the fractionally integrated white-noise process 

(1 - L ) ~ ( y ,  - ~ )  = 5 , ,  (3)  

provided d < 0.5, the process will be stationary and will possess the infinite 
moving-average representation, 

y, = ~, ~j~,_j,  (4) 
j=o  

where ~p~ = F( j  + d)/[F(d)F(j  + 1)]. Also, provided d > -0 .5  the process will 
be invertible and can be expressed as an infinite autoregressive representation, 

Yt = - ~ njYt-j + st , (5) 
j = l  

where ~j = F ( j -  d ) / [ F ( - d ) F ( j  + 1)]. The autocorrelation coefficients pj for 
the fractional white-noise ARFIMA(0, d, 0) process are given by: 

F( j  + d)r(1 - d) 
PJ = F( j  - d + 1)F(d) " 

Parametric expressions for the autocorrelations of the general ARFIMA 
(p, d, q) process are given by Sowell (1992a). They are complicated functions of 
the hypergeometric function. However, for large lags, hyperbolic decay takes 
place in the autoregressive representation weights, the moving-average repre- 
sentation weights and the autocorrelations of the ARFIMA(p, d, q) process. In 
particular, Granger (1980) and Hosking (1981) show that 

7~j ~ j - ( l + d )  , ~lj ~ j d - 1  and pj -~ j ( 2 d - 1 )  . 

3 Estimation of Fractionally Integrated Processes 

We now consider estimation of the p + q + 3 dimensional vector of parameters 
2 = (d, #, ~bl . . . .  q~p, 01,...0q, a2). Several different approaches have been sug- 
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gested for parameter estimation. First, Geweke and Porter-Hudak (1983) sug- 
gested a two-step estimator that allowed d to be estimated from a regression of 
ordinates of the periodogram of Yt on a trigonometric function. Although the 
estimator is straightforward to apply and is potentially robust to non-Gaussian 
disturbances, Agiakoglou, Newbold and Wohar (1992) have recently shown this 
estimator to be severely biased in the presence of strong autocorrelation in the 
u, process. There is the additional disadvantage that it is a two-step estimator, 
and the ARMA parameters would have to be estimated from a series with the 
I (d )  component removed by filtering. 

An approximate maximum likelihood procedure in the frequency domain has 
been suggested by Fox and Taqqu (1986). The estimator assumes unconditional 
normality and numerically minimizes the quantity 

--2re az f_~ f(~)l r~lt=o ytelt~' 2 dco , 

~2 0(e~o~)O(e-i~,) 1 
where f(co)= 2= ~b(ei~')~b(e-i~ [ 1 -e-~'~ 2a is the spectral density evaluated at 

frequency m. 
In a seminal paper, Sowell (1992a) was able to derive the full maximum 

likelihood estimator (MLE) for the ARFIMA(p, d, q) process with normally 
distributed innovations. Following Sowell (1992a), and under normality, the 
logarithm of the likelihood can be expressed in the time domain as 

T 12log t L(2) = - ~ l o g  2re - lSI - ~(y - /~ ) 'Z ' - ' ( y -  #) , 

where y is the T dimensional vector of Yr and Z" is the corresponding T x T 
autocovariance matrix, where each element is a non-linear function of hyper- 
geometric functions. Sowell (1992b) has also provided a detailed example of the 
application of his estimator to US real GNP data. 

In this paper we consider the properties of an alternative conditional sum-of- 
squares (CSS) estimator which minimizes 

S(2) = ~ log ~r z + 2~a z g~ 
t = l  

11 1 r = og ~r 2 + ~ [O(L)O(L) - I (1  - L)d(y ,  -- #)32 �9 
t--~ 

If the initial observations Y0, Y-l, Y-2 . . . .  are assumed fixed, then minimizing the 
conditional sum-of-squares function will be asymptotically equivalent to MLE. 
The minimum CSS procedure in the context of ARFIMA processes was origi- 
nally suggested by Hosking (1984). It is worth noting that similar estimation 
methods have been implemented in the stationary and invertible class of ARMA 
models. Box and Jenkins (1976) used the minimum CSS estimator, while New- 
bold (1974) considered the full MLE with the initial observations treated as 
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stochastic. For  an infinite number of observations the CSS estimator will be 
equivalent to MLE. In the appendix we show that the effect of initial observa- 
tions is negligible asymptotically. Similar results for ARMA processes are pro- 
vided by Pierce (1971). 

There are several reasons for considering the CSS estimator of potential inter- 
est for practical applications. First, it is readily extendable to situations where 
the innovations possess time-dependent heteroskedasticity of the ARCH form. 
It is well known that even for relatively simple non-linear dynamic models, e.g., 
Engel's (1982) ARCH process, full MLE is intractable and a type of CSS estima- 
tor has to be used. Indeed, in a study on the variability of inflation, Baillie, 
Chung and Tieslau (1992) use the CSS approach to estimate the parameters of 
an ARFIMA(0, d, 1)-GARCH(1, 1) process with a conditional density of stu- 
dent t. While it is beyond the range of the present study to examine the proper- 
ties of the CSS estimator in such a complex setting, it is desirable to look at the 
CSS estimator for at least some simple ARFIMA models. 

Secondly, although Sowell's (1992a) work provides an elegant approach for 
computing the full MLEs of the "vanilla" ARFIMA model with unconditional 
normality and no ARCH effects, it is nevertheless computationally demanding, 
with every iteration of the likelihood requiring inversion of a T-dimensional 
covariance matrix and having each element a non-linear function of hypergeo- 
metric functions. 

A third reason for being interested in the CSS estimator is that it does share 
many features with the the approximate MLE 2 of Fox and Taqqu (1986) when 
the basic vanilla ARFIMA model is being estimated; and in many cases the 
Fox-Taqqu estimator has at least as desirable characteristics as the full MLE of 
Sowell. Some simulation evidence on the relative performance of Sowell's full 
MLE and the approximate MLE of Fox and Taqqu (1986) has been provided 
by Cheung and Diebold (1993). In the case of the mean p being known, Cheung 
and Diebold document the excellent performance of Sowell's (1992a) full MLE. 
However, when/~ is unknown and has to be estimated, they found the Fox- 
Taqqu estimator to perform as well as the full MLE. The simulation study of 
Cheung and Diebold is confined to the ARFIMA(0, d, 0), case. It is of interest to 
see whether the CSS estimator shares similar properties with the Fox-Taqqu 
estimator. By extending the range of our investigation to include ARFIMA 
(p, d, q) models instead of just the fractional white-noise ARFIMA(0, d, 0) 
model, we hope to gain further insight into this problem. It is possible that the 
inclusion of ARMA parameters will exacerbate the bias problems caused by 
estimation of the unknown mean estimator. One of the purposes of our simula- 
tion study is to assess this issue on both the parameter estimates and their 
standard errors. 

z While it is not the purpose of this study to compare the CSS estimator with the full MLE of 
Sowell (1992a), it should be noted that we have some preliminary work on this issue and which is 
available from us on request. Initial work with a relatively small number of replications suggests the 
CSS estimator performs about the same as the full MLE in sample sizes of T = 100. 
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Li and McLeod (1986) have shown that with # equal to zero, the estimates of 
the remaining parameters are T 1/2 consistent and have conjectured that they are 
also asymptotically normal. Taqqu (1975) has considered the sample mean of 
fractional white noise, while Yajima (1988) has considered the properties of OLS 
and GLS estimates in the regression model with I(d) disturbances. A corollary 
of these results is that the sample mean is convergent at a rate of T m-d  to its 
limiting distribution. Due to the unusually slow (when d is greater than 0) 
convergence rate of the estimator of #, an important issue concerns the per- 
formance of the estimation with ~ being jointly estimated. As previously de- 
scribed, the study by Cheung and Diebold (1993) noted the unexpected perfor- 
mance of Sowell's full MLE of the fractional-differencing parameter d when # is 
unknown in an ARFIMA(0, d, 0) model. Our simulation study goes one step 
further to examine the effect of  the estimation of ~ on all parameters in an 
ARFIMA(p, d, q) model. 

4 Simulation Results 

In this section we report the results of the simulation of the small sample prop- 
erties of the CSS estimator with all the parameters estimated simultaneously. 
We consider different values of p and q as 0, 1 or 2. Hence our study is the first 
to consider the estimation of the l(d) process in the presence of ARMA parame- 
ters and an unknown mean. 

Unless stated to the contrary all the simulations were based on 500 replica- 
tions of a sample size of 100. For each replication 100 values were generated 
from the standard normal random variable and assigned into a column vector 
denoted by e. We then computed the analytic autocovariance matrix S together 
with its Cholesky decomposition matrix 3 denoted by C, i.e., ~ = CC'. AS men- 
tioned earlier, the autocovariance matrix _r was first derived by Sowell (1992a) 
who presented complete formulas that involve combinations of hypergeometric 
functions. The vector y of 100 realized values is then constructed as: 

y = t ~  + Ce , 

where ~ is the mean of the process. 4 The Monte Carlo results are independent 
of the mean and variance and for convenience both/~ and 0 -2 were set as one 

3 All our computations are conducted using the personal computer programming language 
GAUSS, including Cholesky decomposition, which is also available in many other software 
packages. 
4 It has been suggested in the literature that, in order for the long-memory ARFIMA series y not 
to be affected by "the initial values," it is advisable to simulate longer series and drop the first subset 
of values. We find that such a practice is unnecessary if y is simulated using our method. 



Small Sample Bias in Conditional Sum-of-Squares Estimators 797 

throughout the study. For each configuration of parameter values the CSS 
estimator is computed for each realization. Apart from the CSS estimator of # 
we also report the median, since this may be more robust to "outliers" caused 
by the persistence of the autocovariances of an ARFIMA process. 

As usual, the estimator of the asymptotic covariance matrix of the parameter 
estimates is based on the numerically computed Hessian. Part of the interest in 
our simulation study is to assess the accuracy of the estimated standard errors 
with the theoretical standard errors. 

The simulation results 5 are summarized in Tables 1A through 1C. In each 
block on the extreme left, the true parameter values used in the data-generating 
process are given. For the ARFIMA(1, d, 0) process, values of ~b corresponding 
to 0.7, 0.2, -0.3 and -0.8 are used. For the ARFIMA(0, d, l) process values of 
0 corresponding to 0.9, 0.5, -0.3 and -0.8 are used. For ARFIMA(1, d, 1) 
processes the assigned values for the ARMA parameters are the four different 
combinations of +0.2 and +0.5. For each data-generating process, the next 
three blocks in Tables 1A-1C, under the headings CSS, Mean, Median, contain 
the estimation biases, as well as the square roots of the mean square errors 
(SRMSE) in the parentheses, based on 500 replications. For each replication # 
is estimated by the CSS, the sample mean, and the sample median, respectively. 
The CSS method estimates all the parameters simultaneously while the other 
methods estimate p by the sample mean or median before estimating the other 
parameters. The simulation results for the estimates of a 2 are omitted to save 
space. Since we are especially interested in the estimates of the fractional differ- 
ence parameter d, the least bias in estimating d among the three estimation 
procedures is underlined in each row. 

The main conclusion resulting from these tables is that, with a sample size of 
100, the bias in estimating the ARFIMA model by CSS can be quite substantial 
when the mean/t is also estimated. A closer examination of the Monte Carlo 
results shows the following patterns: (a) when the true values of d, ~b, and 0 are 
all positive, the CSS estimator contains relatively small biases; (b) when the true 
values of d, ~b, and 0 are all negative, estimation based on the sample mean 
produces the least bias; (c) for all other cases, estimation based on sample me- 
dians generally produces the least bias, which may be due to the median being 
robust to outliers. 

One interesting aspect of the study concerns the degree to which the parame- 
ter estimation bias is due to the intercept # being estimated. Before examining 
this issue, we first note that Table 1C for the model ARFIMA(1, 0.3, 1) contains 
some of the most substantial Nases. When the values of the ARMA parameters 
~b and 0 are both positive, the best estimator (based on the MLE of/0 of d gives 
a downward bias that is greater than 0.2. Moderate bias is also observed when 
the ARMA parameters have negative values. These typical results based on the 

5 Simulations based on ARFIMA(2, d, 0) and ARFIMA(0, d, 2) processes have also been con- 
ducted. The results are similar to those reported in this paper. 
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Table 2. Simulation of the ARFIMA (1, 0.3, 1) model with known mean 

80t 

True CSS 

d ~ 0 d ~ 0 

0.3 0.5 0.2 -0.063 -0.035 0.081 
(0.268) (0.332) (0.189) 

0.3 0.2 0.5 - 0.085 0.047 0.021 
(0.255) (0.310) (0.142) 

0.3 - 0.2 - 0.5 - 0.003 - 0.061 0.066 
(0.255) (0.188) (0.330) 

0.3 - 0.5 - 0.2 0.029 - 0.009 - 0.016 
(0.198) (0.143) (0.294) 

All simulations were based on 500 replications. 

ARFIMA( t ,  0.3, 1) process are a useful starting point for the investigation of the 
impact of estimating p. 

Table 2 presents results for the same model, conditional on # being known 
and with a sample size of 100. The magnitude of the bias drops to an order that 
is quite similar to those reported in Sowell's (1992a) Monte Carlo study. The 
contrast between Tables 2 and 1C offers the strongest evidence yet for the 
argument  that estimating # substantially increases the degree of bias in the other 
parameter  estimates. 

Table 3 gives Monte Carlo results based on a larger sample size of 300; # is 
again assumed unknown and is estimated. Comparing Tables 3 and 1C indi- 
cates a considerable reduction in the bias. Clearly, the small sample bias is 
substantially reduced as the sample size increases. In particular, the estimate of 
the fractional differencing parameter  d experiences more than a 40 percent re- 
duction in the bias. In three out of the four cases the reduction is more than 50 
percent. 

In contrast to the large bias in estimating d and the ARMA parameters, the 
bias of the estimates of p is reasonably small. When d > 0, the SRMSE of the # 
estimates are usually quite large due to the slower convergence rate of T ta-a as 
mentioned earlier. It is surprising that large SRMSE do not necessarily imply a 
large bias in the estimates of #. These results confirm the assertion of Yajima 
(1988) and Samarov and Taqqu (1988) that the efficiency of the sample mean 
and the MLE o f #  is about  the same when d > -0 .3 .  

5 Conclusion 

The estimation of AR F IM A processes is likely to be an important  activity for 
economists and area of research for econometricians for some time to come. As 
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indicated in our results, the assumption of.u being known is far from innocuous. 
The estimation of/t in small sample sizes corrupts the CSS estimates of the other 
parameters. One corollary of our results is that estimation of ARFIMA models 
for small samples, e.g., T less than 150, should only be attempted with extreme 
caution. The resulting bias will be sufficiently large to make inference extremely 
unreliable. A useful check of the specification of the ARFIMA model in small 
sample cases would be to use all three estimates of/~ (the CSS, the sample mean, 
as well as the sample median). Radically different estimates of the other parame- 
ters are likely to suggest a specification problem. 

The CSS estimator appears to be a useful technique for quite general 
ARFIMA models in moderate to large samples but can possess substantial 
small-sample bias. The CSS estimator is of interest since it can be extended to 
more complicated models with non-normal conditional densities and time- 
dependent heteroskedasticity of the ARCH type. Some applications in this con- 
text are reported in Baillie, Chung and Tieslau (1992). 

Appendix 

In this appendix we show that setting the initial values Yo, Y-I, Y-2, ... to zero 
is immaterial in examining the asymptotic distribution of the CSS estimator in 
the simple fractionally integrated white-noise ARFIMA(0, d, 0) model. Similar 
results for ARMA processes and univariate random walks are given by Pierce 
(1971) and Phillips (1987), respectively. 

As indicated in the text, the ARFIMA(0, d, 0) model 

(1 -- L ) d y t  = 8 t , 

has the infinite moving average and autoregressive representations, respectively, 

y ,  = ( u ( L ) e ,  and n ( L ) y  t = e,  , 

where 

el3 

~ ( L ) -  ~ ~jL ~ and ~ (L) -  E ~J L i"  
j = O  j = O  

If we assume Yo = Y-1 = Y - 2  . . . .  = O, then these infinite-series representations 
will be truncated as follows: 

Yt = 0*(L)et and r c ( L ) * y  t = a t , 

where 

~*(L)-~ ~ ~iL j and n*(L)-= ~ ~jL ~ , 
j = O  j = O  
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since n*(L)tp*(L) = 1, which is the truncated version of the fact n(L)~(L) = !. 

Note that n*(L)q~*(L) = 1 is due to the equalities ~ njG_ j = 0, for all t > 0, 
j=O 

which are in turn due to the equality n(L)qJ(L) = 1. Furthermore, if we compare 
the derivatives of ~, with respect to d that are based on the three alternative 
forms (1 - B)ny,, n(B)y, and r t of ~, we find 

k aG i k a~k ,, 
k=o ~d  -~j-k j k=o ~ - ~ ' j - k  , for j = 1, 2 . . . .  (A1) 

The computation of the CSS estimator of d is based on minimizing the CSS 
function S(d) or, equivalently, by solving the first-order condition 

aS(d) 1 ~ &, 
c~d - ~2 t= ~2. et ~ = 0 . (A2) 

With the initial conditions Yo = Y-1 = Y-2 = " ' "  = 0 ,  the derivative of e~ with 
respect to d in (A2) is 

Oe, an*(L) a ~ ( L )  
a d -  ad y , -  _ _  r r(L)a t , 

and, by (A1), we have 

3 ,  (L) , , , ,  ~-1 j ank . 2 '-26,,L 2 _ J  

j=l k=l 

t-I I 2t-2 

=-Z LJ+ Z 6Jr Lj 
j=l j j = t  ' 

where 

bit --- ,=j~r ~d- ~0j-k ' for j = t, . . . ,  2(t - 1) . 

Now, given that the expectation of the first-order condition (AI) is zero: 

EFaS(d)l 1 ItS= 1 aetl 1 L E[aj(B)a,] = O 
L- -j = = 

then the CSS estimator d converges almost surely to the true value of d under 
standard regularity conditions. We now show the asymptotic variance of a ~s the 
same as that of the MLE, which is 6In z. Consider the expectation of the second- 
order derivative of S(d): 

eL~ j ~ ,=~ \3d )  + L = E 

= ~ E[z(B)&] z = E -- _BSe, + ~ 6j, Bie, 
t=1 ~ J j=t t=1 L i = I  
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j j=, t=l LJ=I 

t=l Ej=l~ -[- j=IE ~j2 t = l  (T  t -~- o (T)  . 

So lim T L " t3d2 J " = L ~ = ~ - ,  which is the inverse of the asymptotic 
T ~ o o  A t = l  

variance of d. 
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