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Using Buchberger's Grhbner basis theory, we obtain explicit algorithms for computing Stanley 
decompositions, Rees decompositions and Hironaka decompositions of commutative Noetherian 
rings. These decompositions are of considerable importance in combinatorics, in particular in the 
theory of Cohen-Macaulay complexes. We discuss several applications of our methods, including a 
new algorithm for finding primary and secondary invariants of finite group actions on polynomial 
rings. 

1. I n t r o d u c t i o n  

This article deals with a topic on the borderline of computer algebra, combi- 
natorics and commutative ring theory. We study canonical decompositions of com- 
mutative Noetherian rings. These techniques are based on earlier results of Rees 
[27], Stanley [31], and Baclawski and Garsia [2], and they generalize the well-known 
Hironaka criterion for Cohen-Macaulay rings. Here it is our main objective to give 
explicit algorithms for computing these decompositions. 

Classes of rings for which such decompositions have been studied include coordi- 
nate rings of Grassmann varieties and Schubert varieties [1], Stanley-Reisner rings of 
simplicial polytopes [24], [33], partition rings [16], and the letter-place algebra of in- 
variant theory [14]. An axiomatic theory generalizing these important  examples has 
been developed by Baclawski [1], deConcini, Eisenbud, and Procesi [12],[15]. These 
authors define a Hodge algebra or an algebra with straightening law to be an algebra 
together with a specified normal form mapping, called the straightening algorithm. 
Given such a straightening law, then many structural questions about the ring can 
be reduced to easier problems about monomial ideals. 

This raises a natural  question. Given an arbitrary k-algebra R, does there exist 
a straightening algorithm for R, and, if so, how can we find one? The answer is 
simple and encouraging. There is a well-known and rather efficient algorithm for 
computing straightening laws which is implemented in all major computer algebra 
systems, namely B. Buchberger's Grgbner basis algorithm. 

In Sections 2 and 3 we will briefly summarize some basic concepts of Grhbner 
basis theory and its applications. For details we refer to [7],[8],[9],[28],[34] and 
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the references given there. The connection between Buchberger's method and the 
classical straightening algorithm has been worked out in detail in our earlier paper 
[35]. See Hibi [17] for an alternative proof of the fact that every graded algebra 
admits a Hodge algebra structure. 

We now outline the new results of the present paper. As a first application of the 
interplay of GrSbner bases theory and combinatorics we give a constructive proof for 
the existence of Stanley decompositions of k-algebras. This result provides a general 
algorithmic solution to a problem of Cushman related to normal forms of nilpotent 
vector fields [10], generalizing the specific results in [6] and [11]. 

As has been pointed out by Billera, Cushman and Sanders [6], Stanley decompo- 
sition are closely related to the well-known Hironaka criterion for Cohen-Macaulay- 
ness. Yet, Stanley decompositions (as defined below) are not a generalization of 
Hironaka decompositions because they are not invariant under linear changes of 
variables. The existence of an invariant decomposition generalizing the Hironaka 
decomposition of Cohen-Macaulay rings to arbitrary rings has been first proved by 
Rees [27]. The resulting Rees decompositions have been recently extended and ap- 
plied to combinatorics by Baclawski and Garsia [2]. 

As a main result of this paper we give an explicit algorithm for computing a 
Rees decomposition of an arbitrary graded k-algebra. This algorithm generalizes to 
modules over polynomial rings. In Section 5 we exploit the fact that our Rees de- 
composition algorithm yields a decision procedure for Cohen-Macaulayness. Indeed, 
the given input ring is Cohen-Macaulay if and only if the output is a Hironaka de- 
composition. We also consider an extension of the algorithm in which the ring is 
divided by a regular sequence with generic coefficients. This method can be used to 
compute sufficient algebraic conditions for a sequence of linear forms to be regular. 

In Section 6 we apply our methods to obtain Hironaka decompositions for a very 
important class of Cohen-Macaulay rings, namely, invariant rings of finite group 
actions. More precisely, we give algorithms based on Buchberger's GrSbner bases 
method for 
(a) computing a finite set { I1 , . . . ,  Ik} of fundamental invariants for the action of a 

finite group on a polynomial ring ('~qrst fundamental theorem"), 
(b) computing an ideal basis for the syzygies among the Ij ("second fundamental 

theorem"), and 
(c) expressing an arbitrary invariant I as polynomial function in the Ij. 
The method for (a) uses classical ideas as well as modern results of Kempf [22],[23], 
Hochster, Eagon and Roberts [20],[19], and it generalizes to infinite reductive alge- 
braic groups provided the Reynolds operator and the nullcone are given effectively. 

2. S t a n l e y  d e c o m p o s i t i o n s  a n d  G r i i b n e r  bases 

Throughout this paper k will denote a field of characteristic 0. By a k-algebra 
we mean a commutative ring with unit which is finitely generated as an algebra over 
k. Given such a k-algebra R, then we can write R = k[x]/I where I is an ideal in the 
polynomial algebra k[x] freely generated by n indeterminates x := (Xl, x2, . . . ,  Xn). 
If I is generated by homogeneous polynomials then R is a graded k-algebra (with 
respect to the usual grading induced from k[x]). 



COMBINATORIAL DECOMPOSITIONS OF RINGS 277 

At this point we need to interject a word of caution. While the above statement 
"then we can w r i t e . . . "  is trivially true from a nonconstructive point of view, things 
can be rather difficult computationally when R is not represented in terms of ideal 
generators for I. For example, if R is a finitely generated subring of k[x], then we 
need the syzygy computation in Algorithm 3.7 to obtain generators for I. In the 
case of invariant rings in Section 6 we have even less a priori information and it is 
the first job to find ring generators. Throughout this section we shall assume that 
ideal generators f l , . . . ,  fm for I are explicitly given. 

The set of non-negative integers is abbreviated N, and, by standard abuse of 
notation, xi denotes the image of the variable xi in the residue ring R as well. The 
elements of N n are identified with the monomials x a in the polynomial ring k[x] via 

x a : = x l l . x 2 2 . . . . . x n  ~n for c~=(al,c~2,. . . ,C~n) 6 N " .  

A Stanley decomposition of the k-algebra R is a representation as the direct sum of 
k-vector spaces 

(I) R = ( ~  xC~k[X~] 
a6F 

where F is a finite subset of N n and where each X~ is a subset of the variables 
{Xl, x2,.. �9 Xn }. As a first motivation let us note how certain fundamental invariants 
of graded k-algebras can be read off from the representation (1). 

Proposition 2.1. Let R be a graded k-algebra with Stanley decomposition (1), and 
let d be the maximum of the numbers [Xal, a 6 F. Then 
(1) d is the Kru11 dimension of R, and 
(2) the Hilbert series of R is given by 

n 

H(R;A) = Z [ A l a ] / ( 1  - A)lx~[], where [ a [ -  ZO~i. 
a6F i = 1  

Proposition 2.1 follows from the results in Stanley [32]. 

Example 2.2. Let R be the quotient of the polynomial ring k[Xl,X2,X3,X4] by the 
ideal (XlX3, x2x4), i.e., R is the Stanley-Reisner ring [33] of a quadrangle. A Stanley 
decomposition of R is given by 

R -- k[xl,x2l �9 x3k[x2,x3] O x4k[x3,x4] �9 XlX4k[Xl,X4]. 

Hence R is a 2-dimensional ring with Hilbert series H(R, A) = ~ Another ( 1 - ~ ) "  " 

Stanley decomposition of R is 

R -- k �9 Xlk[Xl] �9 x2k[x2] �9 x3k[x3] �9 x4k[x4] 
e z l  z2k[xl, x2] �9 z2x3k[x2, za] | x3z4k[x3, x4] �9 ZlZ4k[Zl, x4]. 

This example shows that Stanley decompositions are far from being unique. It is the 
main goal of this section to give an algorithmic proof for the existence of Stanley 
decompositions. 



278 BERND STURMFELS, NEIL WHITE 

Theorem 2.3. Every finitely generated k-algebra admits a Stanley decomposition. 

Our proof of Theorem 2.3 consists of two steps. First, we will assume that  the 
ideal I is generated by monomials. In that  case the problem is purely combinatorial, 
and we give a recursive algorithm for computing Stanley decompositions. In the 
second step we apply GrSbner bases theory to reduce the general case to the previous 
one. 

Lemma 2.4. Let R = k[x]/I where I is a monomial ideal. Then R has a Stanley 
decomposition. 

dl d2 dl Proof. Let I = (mlxn ,m2Xn , . . . , m l X n )  where ml ,  m2, . . . ,  ml 6 k[x l , . . . ,Xn-1]  
and dl <_ d2 <_ .. .  <_ dl. Then we define a Stanley decomposition SD(R)  inductively 
on the number of indeterminates. If n = 1, then 

SO(R)  : = k @ x n . k @ x 2 " k e . . . @ x d l - l ' k .  

If n _> 2, then we define 

dl-1 
(2) SO(R)  := ~ x3n �9 SD(k[x l , . . .  , xn-1] / (mi:  di <_ j)) 

j=O 

x all" k[xn]" SD(k[Xl , . . . ,  ~ - 1 ] / < m 1 , ' ~ 2 , . . . ,  mr>) 

In this recursive formula it is assumed that  multiplication by monomials or by k[xn] 

dz kiln] k[x ] is distributive over direct sums and that  xn . . . . .  
for ~f = (~fl,~f2 . . . .  ,~n_ l ,0 )  E Nn and subsets X.~ of {x l , x  2 . . . .  ,xn-1}-  

We now verify that  (2) is a Stanley decomposition by induction on n. For n = 1 
dl this is obvious since I = (xn) .  Let n >_ 2, and let x a = x~ 1 . . . x n _  la~-lx~'~ be a 

non-zero monomial in R. We need to show that  x a occurs in exactly one summand 
o~n--1 of (2). By induction hypothesis, x ~ l . . . X n _  1 occurs in a unique direct summand 

of SD(k[xl , . . . ,Xn-1] /<mi  : di <_ an)). If an >_ dl, then x~ n occurs uniquely as a 

�9 dz. k[xn]. Combining these two facts, the proof of Lemma 2.4 follows.I monomial m xn 

Example 2.5. Let R = k[xl ,x2]/(x2x2,xlx3).  Then 

SD(R)  = 1. SD(k[xl]) @ x2" SD(k[xl]/(x~)) 

@ x2~. SD(k[xl]/(x2)) @ x 3" k[x2] �9 SD(k[xl]/(x21, x2)) 

= k [ x l ] e x 2 . k e x l x 2 . k  

We now describe how Theorem 2.3 is derived from Lemma 2.4. First we introduce 
GrSbner bases. A total  order "-<" on N n is admissible if the zero vector is the 
infimum, and if a --< B implies a + 7 "</3 + 7 for all a,/3, 7 E N n. Note that  every 
admissible order "-<" refines the divisibility partial order. 
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In the following we fix an admissible order "-~" on the set N n of monomials in 
k[x]. Given any polynomial p �9 k[x], we write lead(p) for the maximal monomial 
with non-zero coefficient in p, called the leading monomial of p (with respect to "-~"). 

Let I C k[x] be any ideal. The initial ideal Init(I) associated with I is the 
monomial ideal generated by {lead(f)l f �9 I}. A subset G = {gl ,g2, . . .  ,gk} of I is 
said to be a Gr6bner basis for I (w.r.t "-~") if the initial ideal Init(I) is generated by 
{lead(gl), lead(g2),..., lead(gk) }. Gordan's lemma, stating that divisibility partial 
order has no infinite antichains [25, Lemma 6.6], implies both the existence of a finite 
Grbbner basis G and the fact that G generates I as an ideal. 

An important property of Grbbner bases is that they provide a simple normal 
form (= choice of representative) algorithm for the residue classes modulo I. As 
shown in [35], this normal form algorithm generalizes the classical straightening 
algorithm for bracket rings. 

In the language of Hodge algebras [12], the monomials in the initial ideal init(I) 
are non-standard in R = k[x]/I, while the monomials not in init(I) are called 
standard. Every non-standard monomial x a is thus expressible modulo I as a unique 
k-linear combination ~ cal3xZ of standard monomials. 

The cornerstone of Grbbner bases theory is B. Buchberger's algorithm for com- 
puting the reduced Grbbner basis of I 

{x a - ~.~ ca~x ;3 [ x a minimally (under divisibility) non-standard } 

x~ standard 

with respect to a given order "-<" from an arbitrary generating set of an ideal I in 
k[x]. Buchberger's original procedure from 1965 (see [7]) has been improved many 
times and today quite efficient implementations are available in many computer 
algebra systems such as MACSYMA, SCRATCHPAD or MAPLE [9]. 

We now complete the proof of Theorem 2.3 by showing the following easy lemma. 

Lemma 2.6. Let 
k[x]/ ini t(I)  = E]~ x~k[X~] 

~ 6 F  

be a Stanley decomposition o[ the residue ring modulo the monomial ideM init(I). 
Then we have the same Stanley decomposition 

k[x]/I = G x k[ x-] 
~EF 

for the residue ring modulo the ideal I. 

Proof. By a well-known result of Gr6bner bases theory [8], the normal form procedure 
versus a Gr6bner basis of [ defines an isomorphism from k[x]/I onto the k-vector 
space freely generated by the standard monomials {x~lx~ 6 init(I)}. In other words, 
we have an explicit k-vector space isomorphism between the residues algebras k[x]/I 
and k[x]/init(I). Since Stanley decompositions are invariant under this isomorphism, 
Lemma 2.6 and hence Theorem 2.3 follows. Note that k[x]/I and k[x]/init(I) are, 
in general, not isomorphic as k-algebras (see Example 5.1). | 

Observe that the k-vector space isomorphism promised by Theorem 2.3 is realized 
by the normal form (straightening) map versus the Gr6bner basis of I. This section 
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.will be  closed with an example illustrating the above results. An explicit Stanley 
decomposition of rank 2 bracket algebras has recently been obtained by Cushman, 
Sanders and White [11]. We use Gr6bner bases and circular straightening [25, Section 
6.2] to give an alternative Stanley decomposition for [11, Example 2]. 

Example 2.7. (A Stanley decomposition of a rank 2 bracket algebra) 
Let k[[12],. . . ,  [45]] be the polynomial algebra freely generated by ten indetermi- 

hates [12], [13], [14], [15], [23], [24], [25], [34], [35], [45], called brackets. The bracket ring 
is the quotient B := k[[12],. . . ,  [45]]/I by the ideal I generated by the polynomials 

[13][24]- [12][34]- [14][23], [13][25]- [12][35]- [15][23], 
[14][25]- [12][45]- [15][24], [14][35]- [13][45]- [15][34], 

(3) [24] [35] - [23] [45] - [25] [34]. 

It follows from the results in [34] that  the polynomials in (3) form a Gr6bner basis 
for I with respect to the cyclic tableaux order [25, Section 6.2] on the monomials in 
k[[12],. . . ,  [45]]. From this we can derive a Stanley decomposition for B as follows. 
The initial ideal init(I) is generated by the underlined leading monomials 

(4) [13][24], [13][25], [14][25], [14][35], [24][35], 

called the (cyclic) non-standard monomials in B. By Lemma 2.6 it is sufficient to 
find a Stanley decomposition of the simpler ring B0 := k[[12],. . . ,  [45]]/init(I). To 
simplify things further, we divide B0 by the brackets not occurring in (4), that  is, we 
first compute a Stanley decomposition for B~ := B0/([12], [23], [34], [45], [15]). We 
observe that  B~ is the Stanley-Reisner ring of a pentagon. Generalizing the first 
decomposition of the quadrangle ring in Example 2.2, we get B~ = 

k[[13], [14]] ~ [24]k[[14], [24]] @ [25]k[[24], [25]] @ [35]k[[25], [35]] @ [35][13]k[[35], [13]] 

Hence the bracket algebra has the Stanley decomposition B = 

k[[13J, [14], [12], [23], [34], [45], [15]] �9 
[24]k[[14], [24], [12], [23], [34], [45], [15]] @ 
[25]k[[24], [25], [12], [23], [34], [45], [15]] | 
[35]k[[25], [35], [12], [23], [34], [45], [15]] E) 

[35][131k[[351, [131, [121, [23], [34], [45], [1511. 

3. Some commutative algebra subroutines using GrSbner bases 

In the following we summarize nine commutative algebra "subroutines" based on 
Buchberger's method which will be applied in the following sections. Most of these 

a lgor i thms are well-known in Gr6bner basis theory, and appropriate references are 
given. Whenever the monomial order is unspecified, any admissible order will work 
for the Gr6bner bases computation. 

Two of the most frequently used admissible orders are the purely lexicographical 
order ">pl" and the reverse lexicographical order ">rl". In order to define these, we 
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assume tha t  an order is given on the variables, Xl > x2 > . . .  > Xn. We then put  
xa  >pl x ~ if there exists i, 1 < i < n such that  a j  = /3j for all j < i, and ai  >/~/. In 
contrast  t o  ">p l ' ,  the reverse lexicographic order " > r / "  is a linear extension of the 

natural  grading on k[x]. We define x a >r/  xZ if E ai > E ~i, or if E a i  = E /3 /  
and there exists i, 1 < i < n, such that  O~j = 133" for all j > i, and a i </3 i. 

Subrout ine  3.1. (Ideal intersection [9]) 

Input: f l ,  f2 , . .  �9 fm,  gl,  g2, . . - ,  gk E k[x]. 

Problem:  Let I :=  ( f l , - . . ,  fro) be the ideal generated by the f i 's ,  and let J :=  
( g l , . . .  ,gk) be the ideal generated by the gi's. Find generators for the ideal I N J.  

Solution: Let G be a Gr5bner basis of 

<flz, f2z  . . . .  , f m z ,  gl (1 - z), g2(1 - z ) , . . . ,  gk(1 - z)), 

where z is a new variable, and we use purely lexicographical order induced from 
z > x I > x2 > �9 �9 . > Xn. Then G'  :=  G M k [ x l , . . . ,  Xn] is a GrSbner basis of I N J .  

Subrout ine 3.2. (Ideal quotient by a principal ideal [9]) 

Input: f l ,  f 2 , . . . ,  fm,g E k[x]. 

Problem: Let I :=  ( f l , . . . ,  fro) be the ideal generated by the fi 's.  Find I : g, which 
by definition is {h E k[x] :gh  E I} .  

Solution: Since 9( I  : g) = I N (9), we use Subroutine 3.1 to find a GrSbner basis G 
of I M (9). Then G'  :=  {h /g  : h E G} is a GrSbner basis of I : g. 

Subrout ine 3.3. (Ideal quotient by a principal ideal, al ternate version [3]) 

Input: Homogeneous polynomials f l ,  f 2 , . . . ,  fro, 9 E k[x]. 

Problem:  Let I :=  ( f l , . . . ,  fro) be the ideal generated by the f i 's .  Find I : g. 

Solution: Let G be a GrSbner basis of ( f l ,  f2, �9 �9 �9 fro, g - z ) ,  where z is a new variable, 
and we use reverse lexicographical order induced from xl  > x2 > . . .  > xn > z. Let 
G I = { h / z  : h E G, h is a multiple of z}. Replace any remaining occurrences of z in 
elements of G I by g. Then  G ~ is a Gr6bner basis of I : g. 

Subroutine 3.4. (Ideal quotient [9]) 

Input: f l ,  f 2 , . . . ,  fro, gl, g2,- . - ,  gk E k[x]. 

Problem: Let I :=  ( f l , . - - , f m ) ,  and let J :=  (91 , . . . , gk ) .  Find the ideal I : J ,  
which is {h E k[x] :  h J  C I} .  

Solution: I : J = ( I  : 91) M. . .  M ( I  : 9k). Use Subroutines 3.1 and 3.2. 

Subrout ine  3.5. (Radical containment  [9, Theorem 2.5.1]) 

Input: fl, f2, . . . ,  fro, g E k[x]. 

Question: Let I :=  ( f l , . . . ,  fro). Is g E Rad( I )  (the radical of I ) ?  

Solution: Let G be a GrSbner basis of ( f l ,  f 2 , . . - ,  f m , g z  - 1), where z is a new 
variable, g E Rad( I )  if and only if 1 E G. 
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Subroutine 3.6. (Solvability of homogeneous equations [8, Method 6.9]) 

Input: Homogenous polynomials f l ,  f 2 , . . . ,  fm E k[x]. 

Question: Is there a non-zero vector x E ~n such that  f l ( x )  = f2(x) . . . . .  fro(x) = 
0. Here k denotes the algebraic closure of k. 

Solution: Compute a Grbbner basis G of the ideal I := ( f l , f 2 , - . . , f m ) .  We have 
Rad(I)  = (Xl, x 2 , . . . ,  Xn) (i.e., there is no non-zero solution) if and only if a mono- 

mial of the form ~ i  occurs among the leading terms in G for every i, for 1 < i < n. 

Subroutine 3.7. (Algebraic Dependence [8],[34]) 

Input: F :-- {f l ,  f 2 , . . . ,  fro} C k[x], where m < n, considered as subset of the field 
k(x). 
Questions: Is F algebraically dependent over k? If so, find an m-variate polynomial 
P such that  P ( f l ,  f 2 , . . . ,  fro) = 0 in k(x). 

Solution: Introduce m new "slack" variables y := (Yl , . . . ,Ym),  and compute a 
Grbbner basis G of {fl  - Yl, f2 - Y2,. .- ,  f m -  Ym} with respect to purely lexico- 
graphical order induced from Xl > . . .  > xn > Yl • . . .  > Ym. Let G r := G M k[y]. F 
is algebraically independent if and only of G I = 0. On the other hand, if P (y )  E G I, 
then P ( f l , . . . ,  fro) = 0 in k[x]. 

Subroutine 3.8. (Containment in subrings [28],[34]) 

Input: f l ,  f 2 , . . . ,  fm ,g  E k[x]. 

Question: Is g contained in the subring k [ f l , . .  �9 fro] of k[x]? If so, find an m-variate 
polynomial Q such that  g = Q( f l ,  f 2 , . . . ,  fro) in k[x]. 

Solution: Compute the Grbbner basis G as in Subroutine 3.7. Let Q E k[x, y] be the 
unique normal form of g with respect to G, i.e., Q is the expansion of g in terms of 
standard monomials. Then g E k i l l , . . . ,  fm] if and only if Q is contained in k[y]. In 
that  case we have the identity g = Q(f l ,  f 2 , . . . ,  fro) in k[x]. 

While the Subroutines 3.1 to 3.8 are well known in Grbbner basis theory, we 
will close this section with a subroutine which has not yet been considered in the 
literature. It  is a generalization of Subroutine 3.3. 

Subroutine 3.9. (Free module over a subring of variables) 

Input: Homogeneous polynomials f l ,  f 2 , . . . ,  fm E k [ x l , . . . ,  xn, Z l , . . . ,  Zd] =: k[x, z]. 

Question: Let I := ( f l , . . . ,  fro), and consider the graded k-algebra R := k[x ,z ] / I .  
Is R a free module over the subring k[z] generated by the zi? 

Solution: Let G be a reduced Grbbner basis for I with respect to reverse lexico- 
graphical order induced from Xl > . . .  > xn > Zl > . . .  > Zd. Then R i s  a free 
k[z]-module if and only if the leading monomials of all elements of G are contained 
in k[x]. If so, then the subset of standard monomials in k[x] forms a free basis for R 
as a k[z]-module. 

For completeness we include a proof of correctness for Subroutine 3.9. The 
monomials in k[x, z] will be identified with the elements of N n • N d. Let Std  C 
N n • N d denote the set of standard monomials versus G, and let Stdx C N n denote 
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the subset of standard monomials only containing x l , . . . ,  xn. The above criterion 
that  the leading monomials of all polynomials in G are in k[x] is equivalent to the 
condition Std = Stdx x N d. 

If this condition is satisfied, then we have the k-vector space decomposition 

R = k = x " k I . , l ,  

(cr,~)EStd c~EStd~ 

and hence Stdx is a free k[z]-module basis for R. 
Conversely, let R be a free k[z]-module, and let g E G. We need to show that 

leadrl(g) E k[x]. We assume the contrary, namely leadrl(g ) = xaz/~ with/3 ~ 0. By 
the properties of the reverse lexicographic order, this implies that every monomial 
in g contains some zi, and we can write 

g = E c': ~x'rz$ E G 
"r,6 

where c~:~ E k and where the sum ranges only over non-zero 5. Consider the above 
sum as an identity in the k[z]-module R. By the cancellation property for free 
modules over graded algebras [2, Prop. 2.3 (6)], there exists an index ~ such that 
x'~ = )-~,~r ~ x ' r z  $ in R. Let [ / := x'~ - ~ , ~ . ~  &y~x'Yz $ be the corresponding ele- 

ment in I. Clearly lead(i/) ~--rl X:/, and, by the properties of the reverse lexicographic 
order, this implies lead([~) = x~ for some x'rz ~, ~ ~ 0, occurring in the expansion of 
g. Thus the non-standard monomial x "r properly divides a monomial in g. This is a 
contradiction to the assumption that g is contained in the reduced Gr6bner basis G. 
This completes the proof of correctness for Subroutine 3.9. | 

4. Rees  decompositions 

Let R = k[x]/I be a k-algebra where I is a homogeneous ideal with respect to 
the usual grading. Then R is a graded k-algebra which is generated by homogeneous 
elements of degree one. Let d be the Krull dimension of R. A Rees decomposition 
of R consists of a d-tuple of homogeneous elements of R, (01,02,. . . ,  8d), which form 
a homogeneous system of parameters for R, a finite sequence 0/1,~/2,...,7/N ) of 
homogeneous elements of R, and an index function f : [1, N] --+ [0, a~ such that: 
(1) every element of R may be uniquely expressed in the form 

N 

o2,..., of(j)), 
j=l 

where pj is a polynomial in f ( j )  variables, 
(2) for every j ,  ~Tj(0I(j)+l,... , 0d) C_ (01, . . . ,  0](j)). 
Rees decompositions were first studied by Rees [27] in the more general case of non- 
graded k-algebras. They were studied extensively in the graded case and related to 
the Stanley-Reisner ring of the chain complex of a poset by Baclawski and Garsia [2], 
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who assumed only that each xi has positive degree. We need the stronger assumption 
that  R is generated by homogeneous elements of degree one in order to prove the 
following stronger version of a lemma of Baclawski and Garsia. Let R+ denote the 
set o f  elements of R of positive degree and A(r) the annihilator of r in R for any 
r E R. Given any subset S of R, we write H S  for the set of homogeneous elements 
of S and Si for the set of homogeneous elements of degree i in S. 

Lemma 4.1. Assume that for every homogeneous ~ in HR+, A(~) ~ R+. Then there 
exists a non zero-divisor in R1. Furthermore, if  R1 is identified with kq as a vector 
space, then the non zero-divisors contain a non-empty Zariski-open subset of k q. 

Proof  of LemmA 4.1. We proceed as in Baclawski and Garsia [2, Lemma 2.2] to see 
that the set Z(R)  of zero-divisors in R is contained in 

A(~I) U A(~2) U . . .  U A(~?p) 

for some finite number of elements 71, ~2,. �9 ~p of HR+. Thus 

Z(R)I  C_ A(rh)l U A(*/2)l U . . .  A(~p)l, 

but  each A(~/i)I is a proper vector subspace of the vector space R1. Since we are 
working over an infinite field, the Lemma follows. | 

We now describe an algorithm to compute a Rees decomposition of R. 

Algorithm 4.2. 

Input: Homogeneous polynomials f l ,  f 2 , , . . - ,  fm E k[x]. 

Problem: Find a Rees decomposition of R = k[x]/I where I = (f l ,  f 2 , . . . ,  fro). 
1. Initialize j := 1, h := 0. 
2. I f / =  (X l , . . . ,Xn) ,  then set N :=j,~?j := 1 C k,d := h and EXIT. 
3. Using Subroutine 3.4, with M = (Xl, x 2 , . . . ,  Xn}, compute J = I:M. Note that 

J is homogeneous and its elements annihilate R+. Use the Grhbner basis normal 
form subroutine to determine whether any of the computed generators of J is 
not an element of I. If so, GO TO 4. If not, GO TO 5. 

4. Set ~j equal to the element of J \ I found in 3. Set f ( j )  := h, I := I + (~j), and 
j : = j + l .  GO TO 2. 

5. Set h := h + 1. Randomly pick a homogeneous element of degree 1, 0 h = 
al,hXl ~ . . .  T an,hXn. In particular, al ,h , . . . ,  an, h may be picked by random 
number generation in the interval [0, 1] in the rationals. Determine whether 
I : O h = I, or equivalently, whether A(Oh) = (I : Oh)/I is zero. 
This will be true with probability 1 by Lemma 4.1, but if not, repick Oh until it 
is true. Set I := I + (Oh). GO TO 2. 

The proof that Algorithm 4.2 terminates with a Rees decomposition of R (with 
probability 1) is the constructive analogue to the proof provided in Baclawski and 
Garsia [2, Theorem 2.1]. Moreover, our algorithm gives the extra condition that the 
0h'S are of degree 1. The common length of all R-sequences in the graded algebra R 
is called the depth of R. Our algorithm computes the depth of R as the number of 
O's found before the first ~ is found. This fact follows from Lemma 4.1 inductively. 

Example 4.3. We apply Algorithm 4.2 to the ideal I = (x 4, x2z, y2) c_ k[x, y, z]. In 
Step 4, we find the annihilator r h -- xay, the unique choice of an element from the 
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computed GrSbner basis of J which is not in I. Updating I t o  (x  4, x3y, x2z, y2), we 
similarly find successively ~72 = x2y, ~3 = x3, ?74 = X2, with f(1) . . . . .  f(4)  = 0. I 
is now <x 2, y2), and we now find I : M = I. 

In Step 5, suppose we now pick the non zero-divisor 01 = x + y + z. We now 
cycle through Step 4 some more, finding ~5 = xy, ~6 = x, ~7 = Y, and finally ~8 = 1, 
with f(5)  . . . . .  f(8)  = 1. We conclude that a Rees decomposition of R is 

R = x2k Q x3k @ x2yk @ x3yk | lk[01] @ xk[01] ~) yk[O1] | xyk[01]. 

We can now immediately read off the Hilbert series for R, namely, 

I + 2 A + A  2 
H(R; A) -- A 2 -4- 2A 3 + A 4 -4- i - A | 

The above algorithm for Rees decompositions can be done just as easily for the 
more general case of a finitely generated graded module over k[x]. We chose not to 
present it that way in order to make our exposition easier to read for non-algebraists. 
If M is such a module, then Lemma 4.1 now says that if for every homogeneous ~ in 
HM+, A(~7) ~ R+, then there exists an element of R1 which is a non zero-divisor on 
M. The algorithm proceeds as above, updating M by M/(~?} if A(T]) = R+, and by 
M/OM if 0 is a non zero-divisor. Gr6bner basis routines for computing with modules 
over polynomial rings are straightforward generalizations of the ones for polynomial 
rings themselves, and are implemented in some systems, such as MACAULAY [4]. 

5. Hironaka decompositions of Cohen-Macaulay rings 

In this section we discuss decompositions of a special class of rings which is of 
particular interest in combinatorics. A graded k-algebra R = k[x]/I is said to be 
Cohen-Macaulay if depth(R) = dim(R). In other words, R is Cohen-Macaulay if the 
index function f generated by our Rees decomposition Algorithm 4.2 is constant 
and hence equal to the Krull dimension d := dim(R) of the ring in question. 
The equivalence of this algorithmic definition to other characterizations of Cohen- 
Macaulayness is the well-known Hironalm criterion. We continue to assume that R 
is generated by a finite number of homogeneous elements of degree 1. 

Let us look more closely at the performance of Algorithm 4.2 when applied to a 
Cohen-Macaulay ring. In the first d iterations only Step 5 is executed, and a regular 
sequence (01,02,. . .  ,0d) of homogeneous elements of degree 1 is found. Then the 
algorithm proceeds with the zero-dimensional graded ring R' := R/{O1,02,. . . ,  Od), 
and from now on only Step 4 is executed, finding N successive annihilators 711 , . . . ,  ~?N. 
The resulting Rees decomposition expresses R as a free k[O1,02,..., 0d]-module with 
basis {~1, . . . ,  ~g}. Note that at this point the set {Th, . . . ,  ~N} can be replaced by 
any other k-vector space basis for R'. In particular, we may pick a vector space basis 
consisting of monomials. It is the objective of this section to study this specific type 
of Rees decompositions for Cohen-Macaulay rings. 

A Hironaka decomposition of a graded k-algebra R is a representation as the 
direct sum of k-vector spaces 

(5) R = E]~ x~k[01, 02 , . . . ,  0d] 
~EF 
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where F is a finite subset of N n and where each 8i is homogeneous of positive 
degree. This means that  R admits a Hironaka decomposition if and only if R is 
Cohen-Macaulay. 

Example 5.1. Consider the ideal I := ((x + y)2,x2 - y 2 , x z )  in k[x,y,z]. The 
quotient ring is Cohen-Macaulay, and using Algorithm 4.2 we could find the Hironaka 
decomposition 

k[x, y, z]/I  = k[y + z] �9 xk[y + z] �9 zk[y + z]. 
�9 The initial ideal of I with respect to purely lexicographic order from x > y > z is 

given by init(I)  = (x 2, xy, xz, zyZ). We see that  x annihilates all variables in the one- 
dimensional ring k[x, y, z]/ init( I). Hence k[x, y, z]/ init( I) is not Cohen-Macaulay 
although k[x, y, z] /I  is Cohen-Macaulay. A similar example in four variables is given 
in [17, Section 4]. 
, We now describe a procedure for testing Cohen-Macaulayness and computing 
Hironaka decompositions which performs better  than the general purpose algorithm 
in the previous section. In a preprocessing step we may compute the Krull dimension 
d of R. Using any GrSbner basis for I ,  we find d to be the cardinality of the 
largest subset of variables with the property that  all monomials in these variables 
are standard. 

Algorithm 5.2. 

Input: Homogeneous polynomials f l ,  f 2 , . . . ,  fm E k[x], generating an ideal I .  

Problem: Decide whether R = k[x]/I is a d-dimensional Cohen-Macaulay ring, and, 
if so, construct a Hironaka decomposition. 

1. Pick a generic n x d matrix (aij)l<i<n,l<j<d over k, and abbreviate 

(6) 81 := ~n=lailxi, 82 := ~n=lai2xi, . . . ,  8d := ~n=laidxi. 

2. Introduce d new variables z := (Z l , . . . ,  Zd). Compute a reduced GrSbner basis 
with respect to reverse lexicographic order induced from Zl < z2 < . . .  < Zd < 

Xl < x2 < .. .  < xn for the ideal 

J := I + (81 - Zl, 82 - z2 , . . . ,  8d - Zd) in k[x, z]. 

3. Does the leading monomial of some element in �9 contain a new variable zi? If 
so; STOP: R is not a free k[81, . . . ,  8d]-module. Otherwise, proceed with Step 4. 

4. Let F be the set of a E N n such that  x a is s tandard (i.e. not a multiple of 
the leading monomial of some element in $). If F is infinite (i.e. 3iVsVg E 

: x s # lead(g)), then STOP: R is an infinite-dimensional free k[01,. . . ,0d]- 
module. If F is finite, then R is a d-dimensional Cohen-Macaulay ring with 
Hironalm decomposition (5). 

The correctness of Algorithm 5.2 follows from the our correctness proof of Subroutine 
3.9.  The GrSbner basis ~ computed by Algorithm 5.2 can be used to find the 
Hironaka representation of any given polynomial in R. The normal form of any 
:P e k[x] versus $ is an expression of the fo rm ~-~aEF xaPa(Zl ' "  " " ' Zd) E k[X, Z]. This 
gives us the desired identity 

P (x )  = Z x a P a ( 0 1 ' 0 2 ' ' ' " 0 d )  in k[x]/I. 
CtEF 
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The following variant of Algorithm 5.2 provides even more information. Suppose 
that the coefficients aij of the parameters Oi are not in k but algebraically indepen- 
dent transcendentals over k. Let k I := k ( a l l , . . . ,  and)  denote the corresponding field 
extension of transcendence degree nd over k. Now execute Step 1 and Step 2 of 
Algorithm 5.2 with respect to the ring kr[x, z]. Let ~ denote the resulting reduced 
Gr6bner basis. Recall that in a reduced Gr5bner basis all leading monomials have 
coefficient 1. During this computation we have to divide through several polynomials 
d(all ,  �9 �9 and) in the transcendentals aij. We keep track of these denominators, and 
we let D ( a l l , . . . , a n d )  denote their product. The following observation is straight- 
forward. 

Proposition 5.3. Suppose that R is a ring of depth >_ d. Then (6) defines a regular 
sequence for all ( a l l , . . . ,  and) E k nd with D(a11, . . . ,  and) ~ O. 

The method of Proposition 5.3 for computing genericity conditions is particularly 
useful in studying Stanley-Reisner rings of simplicial complexes. In that case the 
indeterminant coefficients aij represent the vertex coordinates of an embedding of 
the simplicial complex in question, and the condition D r 0 guarantees the genericity 
of that embedding with respect to certain algebraic questions. Possible applications 
of this computation include the rigidity theory of triangulated manifolds [36] and 
Billera's homology theory of smooth splines [5]. We close this section with an example 
which illustrates both Algorithm 5.2 and Proposition 5.3. 

Example 5.4. 
Consider the ideals I1 := (XlX2) and I2 = (xlx~, x21x2} in k[xl, x21. The correspond- 
ing quotient rings Rj := k[xb x2]/Ij, j = 1, 2, are both one-dimensional. In order 
to apply Algorithm 5.2 to these rings, we introduce a new variable z and two alge- 
braically independent transcendentais al and a2 over k. We are working over the ring 
k(al, a2)[Xl, x2, z] with the reverse lexicographic order induced from Xl > x2 > z. 

The reduced GrSbner basis for the ideal I1 + {alxl + a2x2 - z) equals 

{ a2 l x~ l x 2 z ~  x 1 + - - X  2 -- - - Z ,  -- 
a l  a l  a2 

Hence R1 is a Cohen-Macaulay ring having the Hironaka decomposition 

R1 = k[alxl + a2x2] �9 x 2 k [ a l X l  § a2x2] 

for all al ,  a2 E k with D(al ,  a2) := ala2 ~ O. 
On the other hand, the reduced GrSbner basis for 12 + (alXl + a2x2 - z) equals 

a2 1 3 _ l x 2 z 2 , x 2 z 2 a 2 x ~ z } "  Xl + - - x  2 - __ a l  a l  z, x 2 u2 

The ring R2 is fails to be Cohen-Macaulay because the leading term of the third 
polynomial contains the slack variable z. Note that by Lemma 4.1, a one-dimensionai 
k-algebra is not Cohen-Macaulay if and only if it contains an element which anihilates 
the irrelevant ideal. Here xlx2 E R 2 has this property. 
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6. H i r o n a k a  d e c o m p o s i t i o n s  of  inva r i an t  r ings  of  f ini te  g r o u p s  

In this section we give a practical algorithm using GrSbner bases for finding 
a fundamental set of invariants for the action of a finite group F on k[x]. As a 
byproduct, our algorithm will generate an explicit Hironaka decomposition for the 
invariant ring k[x] r .  

Let F be a finite group acting linearly on the polynomial ring k[x], and let k[x] r 
be the subring of invariant polynomials. The invariant ring k[x] r is the image of k[x] 
under the Reynolds operator 

* : k[x]  - ~  k [ x ] r  

(7) f ~ f ,  1 

aEF 

Note that * is an k[x]r-module homomorphism and that the restriction of * to k[x] r 
is the identity. (Recall that k was assumed to have characteristic zero.) 

By Hilbert's classical finiteness theorem [18], there exists a finite set ~ C k[x] of 
fundamental invariants, i.e., the invariant subring k[x] r = k[Y] is finitely generated. 
Another classical result due to E. Noether [26] states that the elements of :~ may be 
chosen of degree less than or equal to the group order IFh which implies the existence 
of a finite yet impractical algorithm for computing such a set :~. It has been shown 
by W.C. Huffman and N.J.A. Sloane [21] that the Noether bound is optimal in the 
worst case. 

In a recent article G.R. Kempf summarizes the state of the art concerning the 
computation of invariants [23]. Classical ideas are combined with a recent theorem 
of Hochster, Eagon and Roberts [19],[20] to yield an algorithm for computing a fun- 
damental system of primary and secondary invariants. A very nice and elementary 
exposition on the invariant theory of finite groups and its applications to coding 
theory is found in N.J.A. Sloane [29]. 

Most algebraic results used in this section are well known in invariant theory; 
see Dieudonn@ and Carrell [13], Kempf [22],[23], Sloane [29], Stanley [30], and the 
references given there. In order to prove the correctness of the proposed algorithm 
we shall summarize the algebraic results needed for the special case of a finite group. 

We mention parenthetically that the computation generalizes in a straightfor- 
ward manner to infinite reductive algebraic groups provided the Reynolds operator 
* and the ideal of the nullcone are given effectively. Recall that the nullcone is de- 
fined as the set of common zeros of all invariants. Its vanishing ideal, the radical 
of the ideal generated by the (fundamental) invariants, is generally much easier to 
compute than the invariants themselves. In the finite case, the Reynolds operator 
* is computed using formula (7), and the ideal of the nullcone equals the irrelavant 
ideal M :---- ( X l , X 2 , . . . , X n ) .  This fact is proved in Lemma 6.3. Fix an admissible 
order 1 < ml < m2 < m3 < m4 < . . .  which refines the total degree ordering on the 
set N n of monomials in k[x]. 

Algorithm 6.1. 

I n p u t :  A subroutine realizing the Reynolds operator * : k[x] --* k[x] r of a finite 
subgroup F of GL(kn). 



C O M B I N A T O R I A L  D E C O M P O S I T I O N S  O F  R I N G S  289 

Problem- Find a Hironaka decomposition for the invariant ring k[x] r .  
0. Let t := 0 and.~ := 0. 
1. Repeat t := t + 1 until m~ r 0 and m~ r Rad((,~l) (using Subroutine 3.5). 
2. Let .~ := .~ U {m~}. If Rad((.~)) ~ M then go to Step 1 (using Subroutine 3.6). 
3. If ~ is algebraically independent over k (using Subroutine 3.7). 

3.1. then ~ := ~; 
3.2. else modify the set .~ to an algebraically independent set ~) of invariants with 

Rad( (2)) = M (see below). 
4. Write ~ = {P1, P2 , - - . ,  Pn}, let be := {1}, t := 0, 

n and set bound := ~ i = l  degree(Pi) - n. 
5. Let t := t + 1. If degree(mr) > bound then STOP. In that case 2 and be are 

primary and secondary invariants respectively, and their union generates k[x] r 
as a ring. 

6. Ifrn~ r k[hD Ube] (using Subroutine 3.8) then let be :=beU {m~}. Go to 5. 

In the following we outline a proof of correctness for Algorithm 6.1. 

Proposition 6.2. Algorithm 6.1 terminates with finite sets ~ = { P 1 , P 2 . . . , P n }  
(the primary invariants) and be = {S1, $ 2 . . . ,  St} (the secondary invariants, where 
St = 1) such that k[x] r is a free k[2]-module with basis be. In other words, for any 
f E k[x] P, there exist unique polynomials fi E k[x] such that 

T 

f = Z f i (P1 , . . . ,Pn)  . Si. 
i =1  

Since the invariant ring k[x] r is generated by ~ U be, we can consider k[x] r as 
the quotient of the free polynomial ring k[~ U be] modulo an ideal of syzygies. With 
respect to this new set of variables 2 U be, the output  of Algorithm 6.1 is a Hironaka 
decomposition k[x] r = (~ir___l Sik[2] of the invariant ring. 

Lemma 6.3. Let I r denote the ideal in k[x] generated by all homogeneous invariants 
of degree >_ 1. Then Rad( I r)  = M. 

Proof of LemmA 6.3. Note that I r is generated by the (infinite) set 

m3,* m4,* .}, 
that is, I F is a subset of the irrelevant ideal M. Let k denote the algebraic closure 
of the field k. By Hilbert's Nullstellensatz, it is sufficient to show that the zero set 
~ ( i r )  of I r in k" is contained in ?~(M) = {0). More precisely, we shall prove that 
x ~ 0 implies x ~ # ( i t )  for any x E ~n 

Suppose x r 0. The underlying representation of F over k n maps every a E F 
onto an invertible matrix, and we have 0 ~ Fx = {ax E knla E F}. The set Fx  is 
Zariski closed in ~n because the group F is assumed to be finite. Hence there exists 
a polynomial function f E k[x] such that f (0)  = 0 and f ( a x )  -- 1 for all a E F. 

Symmetrizing the polynomial f ,  we obtain an invariant f* which is contained 
in I P because f*(0) = 0. On the 0ther hand we have f*(x)  = ~T ~ a e s  f ( a x )  = i, 

and thus x r ~ ( I r ) .  ~ I 
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Lemma 6.3 shows that the termination condition in step 2 will eventually be 
satisfied. If ~ is algebraically independent, then it contains precisely n elements. If 
this is not the case, we can perform step 3.2 as follows. First delete successively 
elements p E 2 with p E R a d ( ( ~  \ {p})) (using Subroutine 3.5). Only if the resulting 
set ~ has still more than n elements, (which will rarely be the case), then we can 
proceed as suggested in [23, Theorem 3]: We replace the elements o f ~  by appropriate 
powers in order for all invariants in 3 ~ to have the same degree. Pick randomly n.  12I 
rational coefficients to form n linear combinations of the Pi E 2,  and replace the old 
by these. By the normalization theorem cited above [23] these will be algebraically 
independent with probability 1. To make sure, go to step 3. A somewhat more 
efficient version of Algorithm 6.1 would be to not set t -- 0 in Step 4, to keep 
the deleted elements of ~ to process for inclusion in be, and then to proceed with 
processing m~ as before. 

The correctness of the remaining steps and thus the proof of Proposition 6.2 
follows now from the next theorem which combines the the Hochster-Eagon-Roberts  
theorem on the Cohen-Macauleyness of k[x] F with a degree bound given by G. Kempf 
[23]. For more details see Kempf's exposition in [22]. 

Theorem 6.4. [Kempf, Hochster, Eagon, Roberts] Let  ~ = {P1, P 2 . . - ,  Pn} be a set 
of  algebraically independent  invariant generators of I F. Then there exists a finite set 
of  invariants b e of  degree bounded by ~ i n l  degree(Pi) - n such that k[x] r is a free 
k[:P]-module with basis be. 

In a simple example we show how Algorithm 6.1 works and why the distinction 
between primary and secondary invariants yields the desired Hironaka decomposition. 

Example {}.5. Consider the action of the cyclic group F = {1, 5, 5 2, 5 3 } of order 4 on 
k[x, y] which is given by 5 : x ~-~ y, y ~-~ - x .  An admissible total degree order on the 
monomials is given by 

x ~ y ~ x 2 <: xy  <~ y2 <= x 3 ~ x2y ~ xy2 ~ y3 ~ x 4 ~ x3y ~ . . . .  

Clearly x* -- y* -- 0. (The underlying linear representation of F is irreducible, hence 
: 1 tx2~y2~ there is no invariant 1-form!). For degree 2 we have P1 := (x2) * = (y2), ~ J 

and (xy)* = O. There are no invariants of degree 3 since (xa) * = (x2y) * -- (xy2) * = 
(y3), = 0. Next, we have P2 = (x4) * = �89  4) := P2, and the condition in step 2 
is satisfied: Rad((P1,  P2)) = (x, y), and bound := 4 in step 4. Clearly, 2 = {P1, P2} 
is algebraically independent. 

Let S1 := 1 and consider the next monomial x3y. We have $2 := (x3y) * = 
�89 - xy3),  and we check that  $2 • k[P1, P2, S1], i.e., $2 cannot be written as a 
polynomial in P1, P2, S1. For the next monomial x2y 2 we have (x2y2) * -- x2y 2 = 
- P 2  § 2P12. The identities (xy3) * = - (x3y)  *, (y4), = (x4), E k[P1, P2, S1] will be 
discovered next. Next, in step 5, the bound is exceeded, and the program comes to a 
STOP. Hence we obtain the Hironaka decomposition k[x] r = k[P1, P2] �9 S2k[P1, P2]. 
Using Subroutine 3.7, we find that the syzygy ideal of relations among P1, P2 and $2 

2 2 4 2 is generated by - S  2 + 3Pi P2 -2P~ - P ~ .  Geometrically speaking, we have imbedded 
the orbit space k2 /F  into affine 3-space k 3 as the hypersurface z 2 = 3x2y - 2x 4 - y2. 

We finally remark that Algorithm 6.1 can be speeded up by precomputing 
the Hilbert series H(k[x]r;  A) of the invariant ring k[x] r .  Molien's theorem states 
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that the Hilbert series of the invariant ring equals the average over the inverted 
characteristic polynomials of all matrices in the group r [29], [30], i.e. 

1 1 
H(k[x]r;  A) = ~-~ ~ d e t ( i d -  A. a) " 

The knowledge of H(k[x]r;  A) allows us to jump in step 1 directly to the lowest 
degree of a non-trivial invariant. During the execution of step 5 we may keep track 
of the Hilbert function H(k[~P t.J be]; A) of the current subring, and in step 6 we 
can jump directly to the degree level of the first term in the formal power series 
H(k[x]r;  A) - H(k[~ t3 be]; A). If this power series is zero, then the computation can 
be stopped, even if the weaker termination condition "degree (mr) > bouna~' is not 
yet satisfied. 
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