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Abstract. The renormalization group technique is used to study rigorously the 
2(VqS) 4 perturbation of the massless lattice field q5 in dimensions d>2. 
Asymptoticity of the perturbation expansion in powers of 2 is established for 
the free energy density. This is achieved by using Kadanoff's block spin 
transformation successively to integrate out high momentum degrees of 
freedom and by applying ideas previously used by Gallavotti and Balaban in 
the context of the ultraviolet problems. The method works for arbitrary 
semibounded polynomials in V~b and A~b. 

1. Introduction 

During the last fifteen years renormalization group (RG) has become one of the 
main tools in both quantum field theory and statistical mechanics. Still, compared 
to the numerous works devoted to a variety of heuristic applications of this 
method, see e.g. the articles [1] and references therein, the rigorous results 
concerning RG are rather few, dealing with very simple models or attempting a 
rigorous formulation of the problems [2]. Here an exceptional position is 
occupied by the work of Gallavotti and collaborators [3, 4], where RG ideas were 
employed as a tool to prove ultraviolet stability of q5 4 quantum field theory. This 
allowed to turn RG into a powerful method in rigorous study of more complicated 
superrenormalizable field theory models, see [5] for an announcement of results 
concerning gauge theories. 

In this paper we modify the technique developed by Gallavotti et al. and apply 
it to an infrared problem, namely the lattice model with hamiltonian density 
½(17q5)2 + 2(V~) 4, in dimensions d > 2. The method works for arbitrary "irrelevant" 
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(with respect to the Gaussian fixed point) polynomials involving V~ and A~b. For 
simplicity we consider only the least irrelevant case. Our modification goes along 
the lines suggested by Balaban [5] who proposed to use Kadanoff's block spin 
transformation version of RG in the context of the ultraviolet problem. The main 
result of the present paper is establishing of asymptoticity of the perturbation 
series in powers of 2 for the free energy of the model mentioned above. We hope to 
be able to obtain also information about correlations and their decay using similar 
ideas and to extend the results to more complicated models, such as the dipole gas, 
in the future. 

To understand why the standard techniques which would work if we added a 
mass t e r m  ½m2(b 2 to the hamiltonian fail here, write the free energy in unit volume 
(pressure) p(2) as 

p(2) = lim log~ exp - 2 2 (VqSx) ]d#o(~b), 
A t  2~a x e A  ] 

where d#G is the lattice Gaussian measure with covariance G = ( - A )  -1 (which 
makes perfect sense in d > 3). We may generate the perturbation expansion for p(2), 
together with the remainder, by writing (formally) 

p(2)= A~lim ~ 1  o i dt dlog~exp[_2 x~ (V~b~)~] d/~G(q~) 

1 

= ~ dt( -)o(V¢~o)4)~, (1.1) 
0 

where 

and subsequently integrating by parts using the formula 

~ F¢~oF(V~)dt~(¢)= ~ (VVGxo~,) I ~ !  d#G(¢). (1.3) 
-r" x 1  

Performing (1.3) sufficiently many times we can generate from (1.1) the per- 
turbation series to arbitrary order z together with the remainder, which is a sum of 
terms of the form (we suppress indices in V~) 

 (0o }, C~ ~+1 E H (VVGx,=xj~) dt (VO~i) ni (1.4) 
x a  . . . . .  x n  ( i~ , j~)  0 i 2 

with lines (i~,j~) forming a connected graph joining all points x 0, x 1 . . . . .  x n. Then, 
assuming one could bound the expectations in (1.4) (e.g. using superstability of the 
interaction), summability of the propagators 

~,lVVGxox~l< ~ (1.S) 
x1 

would imply finiteness of the remainder and hence asymptoticity of the per- 
turbation expansion for the pressure. The problem, however, is that (1.5), which is 
obvious in the case of massive free propagator decaying exponentially fails for 
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massless G where, although ~ VVG~o~  exists it does not converge absolutely since 
Xl 

IV VG . . . .  1 = O(Ix o - x 1 l -  d) for large jxo - x 11. It should be remarked that this gives 
rise to no infrared divergences in the perturbation series which is finite as one 
easily infers through momentum space analysis, but invalidates the above 
argument which provided an estimate for the remainder. 

The idea we will follow in this paper is to save the argument by applying it to 
the integral over the high momentum degrees of freedom (rather than to the total 
integration at once) and then repeating the procedure many times. The re- 
normalization group transformation we use here is Kadanoff's block spin 
transformation and it consists of two steps: integration over fluctuations within 
square blocks of 3 d spins, keeping the average spins in the blocks fixed, and 
rescaling the distance by 1/3 and the spin variables according to their canonical 
dimension, i.e. by the factor 3 (d-2~/2. Hence, the first block spin transformation 
may be written as 

~6(4 '  - C 4 ) e  - ~ ~z ~ v , ~  d#o(4) ) =_ e v ~  ' )dt.tG~(~ ' ) ,  (1.6) 

where 

a-2 1 
(Cq5),=3 z 52 Z q)3,+r (1.7) 

ru=O, +- 1 

gives the (rescaled) block spins. Vl(qb' ) is the effective interaction for the new 
distance scale (the old one multiplied by three), and G 1 is the new covariance 
(defined as the one which would appear if 2 = 0). 

(1.6) is now iterated yielding effective hamiltonians V,, describing the system in 
scale 3", and covariances G,. The point is that formally the transformation drives 
our measure to a Gaussian fixed point. Namely, the canonical dimension of our 
coupling (in units of length) is d. Thus, heuristically one expects the effective 
coupling for distance scale 3" to be ~ 3-"a2 and thus V, to go to zero. This is not 
quite, but almost, what happens. In fact, V, will approximately have the form 

V,(~b)~((b-independent term)-O(2) ~ (V~bx) z 
x ~ 3 - n A  

-3 - "e2  ~ (V~bx)4+"smaller'terms 
xsB ' °nA 

(~.8) 

and the covariances G, tend to a massless Gaussian fixed point 

(G~)x,= S d2  ~ d y ( - A ~ ) - x ( Y c ,  y ) ,  (1.9) 
~l(x) A(y) 

where A(x)  is the unit cube centered at x e 2 U  and A C is the continuum Laplace 
operator. G~ has long distance behavior identical to that of ( -  A)- 1. Note that 
(V~b) 4 in (1.8) has the expected 3 -"d factor (thus being "irrelevant") but we also 
obtained a quadratic ("marginal") term which does not disappear as n-* oo. This 
corresponds to the fact that there is a continuum of Gaussian fixed points for 
Kadanoffs transformation, namely #G® # >0, and the one corresponding to our 
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interaction with 2 # 0  is difl?rent from the 2--0 case. The transtbrmation thus 
generates terms which take us to the correct fixed point, (1 + 0(2))G~. 

In practice it is convenient to perform the block spin transformation by 
realizing the Gaussian measure d#G ~ as a product of two measures, one corre- 
sponding to the block spin degrees of freedom and the other to the fluctuations 
within the blocks. Then the block spin transformation consists simply of in- 
tegration with respect to the second measure. This brings our formulation quite 
close to the setting of [3]. 

The problem with implementing the above procedure is, of course, that 
formally V n is an infinite series of arbitrary many body interactions and in order to 
obtain the perturbation series for p(2) up to order 2 ~ we want to retain at least all 
the terms of order less than or equal to z, and preferably to be able to ignore the 
rest. However, it is not obvious that we can do that since the spins q6 are 
unbounded. Here we apply the ideas of Gallavotti et al. which allow to eliminate 
large gradients due to their small probability assured by positivity properties of 
the effective hamiltonians. Now we can compute V~ perturbatively to order -c by 
integrating by parts with respect to the fluctuation measure as in (1.1)-(1.4). The 
remainder can be estimated since the fluctuation covariance has exponential falloff 
(the high momentum cutoff provides an effective mass) uniformly in n and the 
external fields (block spins) are bounded. The bound for the remainder will be 
O(3-nd2~+ 1), 3-nd coming from contraction of interaction volume in subsequent 
effective hamiltonians. Summing over n would then give the 0(2 ~+1) bound for 
difference between p(2) and its perturbation expansion up to order ~, thus proving 
asymptoticity of the latter. 

Actually slight problems arise from the marginal terms in V,. Namely those of 
order higher than 2 eventually pick log(cutoff)~n contributions due to mainly 
technical reasons. These would eventually spoil the positivity properties of V n and 
we have to stop the iteration when n22~2 i.e. n-l-.~,~. However, then our 
interaction lives in the volume 3-"ejAJ ~ 3-d/XJAJ and it turns out that a brute force 
argument suffices to complete the estimation. 

The paper is organized as follows : After Introduction, Chap. 2 gives a detailed 
description of the model and of the block spin transformations and states the main 
results. Chapter 3 establishes a lower (easier) bound for the difference between p(2) 
and its perturbation expansion to order -c and Chap. 4 the (more involved) upper 
bound they are separated because the arguments used to eliminate large spin 
variables are different in both cases. Detailed properties of effective hamiltonians 
used in the estimation are proven in Chap. 5. Finally, Chap. 6 contains proofs of 
probability estimates used to eliminate large spins. We would like to stress the fact 
that the technical core of our estimates is based on combining integration by parts 
with Ruelle's superstability estimates [6]. This distinguishes it from the technical 
part of [3] which dealt with continuum fields and used in an essential way the 
Markov property of the measures, lacking here, and hard results of the theory of 
elliptic boundary value problems [4]. 

After this work was finished we obtained a paper by J. Bricmont, J. Fontaine, J. 
Lebowitz, and T. Spencer proving asymptoticity of the perturbation expansion for 
pressure and also for correlation functions in the same model by a different 
method. 



Rigorous Block Spins 35 

2. Block Spin Transformation 

In this chapter we define our model, formulate more precisely the main result and 
discuss some properties of the block spin transformation. 

We work with periodic boundary conditions. Let A denote the set of integral 
[ 3N 3Nld 

points in the periodic box - 2 ' 2 ] '  d>=2. This will be our initial lattice. We 

shall also use lattices A,  consisting of integral points in the periodic boxes 

l 3N_, 3N-,]d -- 2 ' 2 - I  ' n = 0 ' l  . . . .  ' N ' a n d A ' : = 3 - " A ' N ° t i c e t h a t A = A ° = A ° ' P ° i n t s i n  
d 

A, will be denoted by letters x, y, u, v . . . .  , and those in A" by z. For any two points 
in one of these lattices the magnitude of their difference with subscript p will 
denote their periodic distance. 

Let A denote the lattice laplacean on A, i.e. (~b,- A¢)= ~ (~bx_ ¢y)2. A 
x , y ~ A  

Ix-  ylp : 1 
has a zero mode and we shall define the massless Gaussian process q~ on A as that 
with covariance G o inverting - A  on the subspace orthogonal to the zero mode. 
More precisely, 

1 
#(p) - ~ e 'p(~- r) , (2.1) 

(G° )x ' - IA I  o ,p  2~ ~ 

where 

~(p) = 2 Z (1 - cosp~). 
K 

Let dgG ° denote the measure of the process. It is concentrated on qS's orthogonal to 
the zero mode. Denote the lattice gradient by V and consider the random process 

we shorthand notation   ep   odic ree 

energy density (pressure) p(2) in volume A is defined for 2 > 0 by 

p(2)" = I-~l°gSexp[ - 2  x~A2 (V~)x)41dl~6o(~). (2.2) 

Our main result consists of showing that the perturbation expansion for p(2) in 
powers of 2 is asymptotic, uniformly in A. This yields asymptoticity of the 
perturbation expansion for the infinite volume free energy density in the thermo- 
dynamic limit• Throughout the paper we shall always assume 2 to be bounded 
from above. 

It is convenient to define for D C A 

Vo ° :  = - ~  Z (v~x) 4 -  
( - ; 2  

xeO k = 1 k T 2 * X l , . . . , x k ~ D  

• ( ( f ~ x , )  ~; ; v  ~ ~ "'" (q~xk) )~o, (2.3) 

where (...)Gro denotes the truncated expectations with respect to d#G o. The 
truncated expectations on the right hand side of (2.3) give the first z orders of 
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perturbation expansion for the free energy in volume D. Now our main result may 
be restated as 

Theorem 2.1. For each z and for small 2 

1 
~-A~tog~ exp V~ d#~ ° = O(,~, ~+ 1) (2.4) 

uniformly in A. 

Remark. (2.4) will be deduced from two bounds 

e -°(z'+*/2)lal <~ exp VoAd#ao <= e °(~+ 1/Z)lAI (2.5) 

proven to hold uniformly in IAI in Chaps. 3 and 4. Of course (2.5) yields 
immediately (2.4) with " =  0(2 ~+ 1),, replaced by " <  O(2 ~+ t/z),,. However, the latter 
with z higher by one implies (2.4) in its original form. From now on we shall 
consider z fixed. 

As stressed in the Introduction, in the proof of (2.4) a critical role is played by 
KadanotTs block spin transformation [7]. We shall describe it in detail now. 

The block spin variables are defined exactly as in the Introduction and the first 
block spin transformation consists of integration (4 = S °) 

6(4 ~ - C4 °) exp [ vA(40)] d~LGo(4 °) (2.6) 

with C given by (1.7) but now transforming finite dimensional spaces 1RA~IR A~. In 
the case when 2 = 0 (2.6) is easily computable yielding 

Lemma 2.1. 

where 

d ~  ~,~(4 ~ - c 4 ° ) d ~ o ( 4 )  = d#G,(4 ' ) ,  (2.7) 

G 1 : = CGo CT (2.8) 

(C r denotes the transposed operation mapping IR AI-~IRA). 

Proof. Immediate, since 

e i(*~' a)d41 ~ ~(41 - C4°)dPao(4°) = ~ e i(c~°" h)d#oo(4°) 

=exp[ -½(h ,  CGoCTh)], (2.9) 

where (.,.) denotes the scalar product. []  
Denote by E the projection on the constant sequences in IR A". Explicit 

computation, see (A.1), shows that EIR A' is the zero eigen-subspace for G 1 and that 
G~ is invertible on ( I -E) ]R A1. With a slight abuse of notation define G[  ~ to be the 
inverse of G~ on ( I - E ) I R  al and to annihilate EIR At. Notice that 

G1Gi -1 = I - E .  (2.10) 

We shall compute (2.6) by perturbation expansion around the 2 = 0  case (2.7). To 
this end it is convenient to realize the Gaussian process 4 as a sum of two 
independent ones, corresponding to block spin variables and fluctuations inside 
blocks respectively. 
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Let q5 i be the Gaussian process indexed by the points of A~ with covariance 
G r Let us also consider another process, 4 °, living on 71 :=A-3A1,  that is on 
points of A which are not centers of the 3 x ... x3 blocks. ~0 will have the 
covariance 

F o : = R(G o -  G oC r Gi ~ CGo)R r , (2.11) 

where 

R : IRA-+IR~ (2.12) 

is the restriction. 
It is shown in Appendix (see Proposition A.3) that F o is a strictly positive 

operator on IRa. Let now A o :IRa=~IR A be given by 

A 0 : = Go CT G~- 1 (2.13) 

and Q :IRA~IR by 

(Q4)x=[ 4 x if xeA 

- ~ 4x+, if x e A \ 7 1 .  
r :  

r ~ = 0 ,  +_1 

We have 

Lemma 2.2. The process ~o 

processes ~1 and 4 ° as 

may be written in terms o f  

(2.14) 

the two independent 

~bo = Aoq$i +Q~O. (2.15) 

Proof .  We have to show that the covariance of Ao~b 1 +Q~O, which is AoG1A T 
+QFoQ r, equals G o. By (2.10) and (2.13) 

AoGi  AT = GoCr(1 - E)G;  1CGo = GoC T G-~ 1CG o . (2.16) 

On the other hand by (2.1t) 

QFoQ T = QR(G o -  GoCT G; 1CGo)R T QT. (2.17) 

Now G O - G o C T G ~  iCGo maps on sequences in IR A with vanishing averages over 
the blocks since by (2.8) and (2.10) 

C(G o - G o C r G-[ 1CGo) = CG ° _ (I - E)CG o = ECG o = CEG o = 0 (2.18) 

as E is the zero mode projection of G 0. But on sequences with zero-block-averages 
QR acts as identity. Hence 

QFoQ T = (Go - GoCTG1 i CGo)RrQT = Go _ GoCTG~ 1CGo. (2.I9) 

(2.16) and (2.19) prove our assertion. [] 
To see that the decomposition (2.1 5) realizes the splitting of the process q5 o into 

the block-spin and the fluctuation parts insert it to (2.6). This gives 

(2.6) = j'b(~bl _ C(Aoq~i + Q~O))exp[VA(Ao~l +Q~O)]dpGl(~l)d#ro(~o) 

= ~6(q$1 - (I - E)q~ 1) exp [VA(Aoff9 i + Q~°)]d#a~(~l)d#ro(~ ° ) 

= d#G~(q$1) ~ exp [ VA(A o ( °1 + Q 4°)] d#ro(4°), (2.20) 
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where we have used 

C A o = I - E ,  CQ=O (2.21) 

and the fact that dpG,(~ ~) is concentrated on q51 such that E~ 1 =0  since E is the 
zero eigen-projection of G1. Thus in the language of realization (2.15) of 4 ° the 
block spin transformation consists of integrating out ~o. Let F~LI(d#~o). Define 
T 1 :Ll(d,%o)~Ll(dpG,) by 

(T1F)(41) = ~F(A041 + Q~°)d#ro(~° ) . (2.22) 

We have an obvious formula 

y Vd#~;o= Y T1Fdpa ' . (2.23) 

T 1 gives the first block: spin transformation. The next ones will be defined similarly 
by induction. Put 

4 m I=A,~_~4,n+Q~,,, 2, (2.24) 

where 

Am_I=G~_ICrGm 1 

with G~, the covariance of 4 m, being 

G~ = CG~_ 1C r = C~Go(Cr) ~ 

and 

Cm has covariance 

(2.25) 

(2.26) 

I'm- 1 =R(Gm- 1 - Gin- ~Cr G~, ~CGm- 1) Rr • (2.28) 

4"  is indexed by the points of A m and ~m by those of Jm-Am-3Am+ 1" We get 
analogues of (2.22) and (2.23) 

(T, flO (4") =~f(Am_ 14" + Q~m- ~)d#r~. - ~(~,,- 1), (2.29) 

~ Fd#a,._~ = ~ TmFdpa, . (2.30) 

Certain F's are reproduced in their form under "I~,. Introduce a kernel sdm,y for 
zEA m and yeAm (see the beginning of this chapter for the notation) 

(d-2]m 
~4,,~y'=3' 2 J (AAl. . .Am_l)3mz, y " (2.31) 

Put 

tPm: = din4" ,  ~m: = dmQ~m (2.32) 

so that the random processes tp" and ~" are indexed by the points of Am. As we 
shall show in Appendix relations (2.32) are "almost local". With 

= ~,~/)z + 3 -  ~ej, - -  l~ m) (2 .33)  

GroGS, ~ = I -  E. (2.27) 
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and ~ dz denoting the Riemann sum 3- ma ~ for D C A", consider the general local 
D z E D  

Wick monomials of degree M in V~p" : 

M 

P" "= ~ : [ I  V~,,~r :a~dz" (2.34) 
/Zl,., #M 

A m i = i  

Lemma 2.3 

m , f f ~ l  . . . f L M - -  

Proof. By (2.24), (2.31), and (2.32) 

~ m  1 = 3  

and consequently 

(2.35) 

d - 2  

2 ~&~3 + ~7 -~ (2.36) 

d 
- ' 2  m m -  V~p~ 1=3 V~=/3 + V~ ~ 1 

Since the Gaussian processes Vflp~ and V ~ - 1  are independent, we have 

M d 

"l-[ V [~ I 

i - 1  I ( { 1  . . . . .  M }  i q : I  i e I  

Under the d#rm_ ~ expectation all terms but the one with I = 0 vanish. Hence 

rmP22.~,=fp~r.T.~d~,. . . . .  ( ¢ , , - 1 )  

M d 

~" I~ (3 -2  " - e (~@ e "  . [] = " Vu,~&/3) : ~ d z  = 3 u~...u~ 
A m 1 i - 1  

(2.37) 

(2.38) 

Corollary 2.4 

TnTn-l"'" T1 pO 1 . . .~  = 3-a( M-  1) npt~...uM. (2.39) 

If the terms of the type P° 1...uM appear in the initial hamiltonian then in the first 
order approximation the block spin transformations reproduce their form, as 
(2.35) and (2.39) show, except for an overall factor 3 -d(M/2-1)". This is driven to 
zero for M > 2  (in'elevant hamiltonians) and stays constant if M = 2 (marginal 
ones). Thus it is natural to write our hamiltonian in volume D given by (2.3) in 
Wick ordered form 

vg:- ZM  f " o o • Vfl& V~p z :6odz-  2 f :(V~p°) 4 :aodz 
ILv D D 

+field-independent polynomial in 2 of order z 
starting with a 22 term, (2.40) 

M ~  = 26~,~ Z ~ V~4 )° V~c~°dl~o + 4 ~ Vu4) ° V~c~°d#Go 
K 

= 26u~(1 - [ A [ -  1) + 4 ~ Vu(o° V~O°d#ao . (2.41) 

The first term on the right hand side of (2.40) is marginal, the second irrelevant 
according to the above analysis. However, the information about  how the 
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hamiltonian behaves under the linearized renormalization group transformation is 
not sufficient. We shall have to trace the effect of the transformation beyond the 
first order of perturbation expansion, in fact up to order z. To this end define 
inductively for D C A m 

2k d k [ 
~o log T m exp V_? D (2.42) = . = m - - l "  

Iterating (2.42) gives 

.~k d k r 
V? = Z y? 5~1 log T , T , _ i . . .  T1 exp V 3"D . (2.43) 

k=O tO. ax ]a=o 

Notice that V~ = 0, where N defines the volume A. 
By (2.29) 

. . .  A n (T,T,_ i T 1 exp V03'~D)(~")=~exp [Vo3"D(A0 ... ,_ lq5 

A , - i +  + A o  ... , - 2 Q ~  ... +Q~O)]d# r ,(~,-i)...d#ro(~0). (2.44) 

Thus by cumulant expansions formula 

1 
(2.45) 

where ( . .  r • >erm denotes the truncated expectations with respect to 
d#r,-l(~"- 1).... .  d#r0(~o). To compute the right hand side of (2.45) it is convenient 
to use the random fields ~p" and ~"- i , . . . ,  ~o [see (2.32)]. Iteration of (2.37) gives 

d d d 
r7 ~ , , 0  -2 --  ~ ' n 1 7  ~, ,n  ~ . 2 - - ~ ( n - - 1 ) r 7 y n - 1  , ,w~- - '  , , ~ - r . ,  v,s ~ + ... + 3 - ~ V , ( L + L ~  °. (2.46) 

3 n 3 n -  1 3 

Notice that the fields on the right hand side are independent. Together with (2.40) 
and (2.45), (2.46) allows an effective computation of Vf by use of Wick's theorem. 
The results, after the change of variables z--+3"z, may be expressed in terms of 
(generally non-local) Wick-ordered polynomials in random variables VtpT. We 
shall divide these polynomials into three groups writing 

V, D = V~0 + vD1 + vD2. (2.47) 

V~o includes the terms that are of the first order in 2: 

VDO = -- 2 Z Mu~ ~ : Vutp~ Vjp"~ : a d z -  3 -  d"2t ~ : (V~p"~) 4 :G dz.  (2.48) 
#, v D D 

Note that (2.48) is identical in form with the first two terms of the initial 
hamiltonian (2.40) except for the factor 3 -a" at the quartic term. This is in 
agreement with the previous analysis of the linearized renormalization group 
transformation given in Corollary 2.4. 

V~t groups all contributions to V D -  VD0 which are Wick-ordered monomials 
of non-zero order in g~p's and V~2 all 17~-independent terms. A diagramatic 
analysis gives the following result: 
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Proposition 2.5. V~I + vD2 may be written as a finite sum of  terms 
a~ 

~.. .  S I(~t)...(~)(z 1 ... . .  z~): fi H V~IPn% :G~dZl "'" dz~ (2.49) 
D D 0 = t  a = l  

with 2 < r < z ,  0 < a o < 3  and D-independent I's satisfying for each l <oo <r the 
bound 

I .-. J [I(ua)...(,a)(zl, ...,z,)l H dzo<2~C( 1 +nC) - (2.50) 
A n  A n  Q :~ frO 

Moreover, for I's corresponding to terms contributing to V~t, i.e. such that ~ % >0, 
~o=l  

(2.50) holds also with I. . .  (zl, . . . ,  z,) replaced by I . . .  (z 1 . . . .  , z~) exp [sd(zl, ..., z~)] for 
small e >0, where d(za .. . .  , z~) is the length of the shortest connected graph joining the 
points (Zx, ..., z,) in the periodic lattice Am. 

In Proposition 2.5 as throughout the whole paper C and e denote various 
constants which are independent of 4, A, and n. They do not have to stand for the 
same constants even when they appear several times in the same formula. 

The proof of Proposition 2.5 will be deferred until Chap. 5. Here let us mention 
that the main input are the estimates giving a uniform exponential decay of F,,~, 

"1 " "V mv " "  (exponential and poly- and resulting decays for <V[ z V[~,>r,, and q ~p~ tP~,2G, 
nomial ones respectively) proven in Appendix, Proposition A.7 and A.8. 

3. The Lower Bound 

In this chapter we shall prove the first (lower) bound of (2.5). This will be done 
inductively by inserting suitable characteristic functions under the integral and 
integrating out the fluctuation rid& The characteristic functions will cut off large 
values of the fields V~" and [7(" in a 2 dependent way: the smaller 4 the higher the 
cut-off. Let 

B = b  log( t + 4-  1), (3.1) 

where b, independent of n, 2, and A, will be chosen later. Denote 

z~(V¢) -  H z(lt v,e~[I <B).  
z~A n 

Let for n =0, 1, ..., N -  1 

Z,  = J xB(V~ n) exp V,a"d#~ 

Z" = S )(s( Vtp")d#G" (3.2) 

Z~¢ = Z} = 1 (N defines the volume A). 

We shall prove 

Proposition3.1. There exists 6 > 0  such that for 4 small enough and 
n = 0, 1 ..... rain ([4- ~] - 1, N -  1) 

Z,  >exp [ - 3-a"C2 ~+ ~/21AI]Z, + 1. (3.3) 

(3.3) holds for all n =0, 1,..., N - 1  if Z is replaced by Z'. 
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Given Proposition 3.1, we can prove the lower bound easily. Iteration of (3.3) 
gives 

Z o >exp [ -  C2 ~+ 1/2lml]z,(~,a) + 1, (3.4) 

where n(2, A): = min ([2 -~] - 1, N - 1). If n(2, A) = N - 1 we are done since Z N = 1. 
Suppose that n(2, A)= [2 -~] - 1 .  Using (2.47)-(2.50) of Proposition 2.5 we obtain 
the bound 

IV.a°l<-_C2(l+nC)BClA"l if ][V~ll <B (3.5) 

V,17 . -  (the Wick-ordering of the Vtp" monomiats causes no trouble since ( ~p~ ~P~')G,~ is 
uniformly bounded, see Proposition A.8). Thus, 

IvA"I,=tx-,~ < C,~(I +([2-~]- I)C)BC3-az-O[AI< C2~+ ~/21AI. (3.6) 

Now we may replace Z,(~,A)+~ on the right hand side of (3.4) by Z',().,A)+ ~ 
increasing C and continue iterating (3.3) in the Z' version until n = N -  1 when it 
yields the lower bound (2.5). 

Proof of Proposition 3.1. First let us notice that in order to get rid of large values of 
II V~"]t it is enough to restrict both tl V~"+ 1t1 and ]l V~]I. Namely (2.37) gives 

ZB(V~p') > ZB( V~p" + ~)Xz .(V~") (3.7) 
3 

in the obvious notation. 
Moreover, since by (2.32) 

and the kernels s¢,~ have a uniform (in A and n) exponential decay, as shown in 
Proposition A.6, in order to restrict V~" it is enough to bound ~': 

Z~_~(V~") >__ Z~(~"), (3.8) 
3 

where/3 = 7B with 7 independent of 2, A, n. (2.37), (3.7), and (3.8) together with (3.2) 
allow to write 

Z,  > ~ zB(V¥, "+ ~) (~ Z~(~") exp ~"dpr)d~G°+ ~ . (3.9) 

To extract from the dpr" integral the desired exp v,A"; ~ term, the integration-by- 
parts argument sketched in Introduction is applied. We write 

~ z,  exp V, A~dpr =exp [i d t d  log ~ z,  exp(tP.A")d#r.].~ z,d#r ~ 

a,, (3.10) = exp dt(V,, )t 

where 

(t~)d~r°. (3.11) 
The integration by parts is performed according to the formula 

n 8 8V~ 8 l°gz~ F ~ 
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where the 31ogz~ term should be understood as replacing the characteristic 

function Z([~[ --< /3) in the numerator of ( . ) t  by the sum of b-functions ~x(l~l </3) 
Since V, A" is a polynomial in the ~" field we may apply (3.12) to (v,A")t or to any 

polynomial-like term produced by the earlier integrations by parts. The 
. .  6 log)/~ . .  

~'-independent terms, the terms wlm ~ or me ones with the overall power of 

2 larger than ~ will not be transformed further. After a finite number of steps all 
terms are of this form. Then we may write 

1 

log S X~ exp V~Adl~r. - log S xf~d#r. =- ~ dr(  V A ) t  = V,a+"~ ' + t dt ( R , ( t ) )  t , (3.13) 
0 

where V,a~ ' groups all ~"-independent terms of order < ,  in 2 and R,( t )  all terms 

either of order > ~ in 2 or with 3 log)~ contributions. That the ~'-independent 

terms reproduce exactly V,a+~; ~ is easily seen from the inductive definition (2.42). 
The structure of R. follows from Proposition 2.5 and the method to generate it. 

First write the ~" dependent part of Vf as a combination of terms 

2" ~ j (x  1 . . . . .  x~; Vp "+l) f l  ~ (3.14) 
XI~ . . . ,  XSEZ~ n 0 ~ -  1 

undoing the Wick ordering in (2.48), (2.49) and using (2.37) and (2.32). Due to the 
uniform exponential clustering of Vd,~, see Proposition A.6, and Proposition 2.5 
f s  satisfy 

[[L~)" (3.15) ~(xl .. . . .  x~; Vtp,,+ l ) l < C ( l  +nC)( l  + l[g~p, ~ l c 
x a ~ Z J n  
(r :# o-0 

Now the integration by parts either 
A) contracts ~ .  with ¢'~, replacing it by F . . . . . .  within one or between two 

expressions (3.14) or 
5 log Z~ 

B) contracts ~ of (3.14) to 6 ~  

In case A) we produce either another term of the type (3.14) or a 
~"-independent term 

)fj(Vtp,+ l) (3.16) 

with 

t](W; "+ ~)1 < C(1 + n C) (I + II V~; "+ ~ IIc~)lA,I (3.17) 

as easily follows from the uniform exponential decay of F,'s. In case B we obtain a 
term 

s - - 1  

x " V~ ,+l ,  ¢, 61ogz~ (3.18) 
x l ,  , . . , x s e A n  a =  1 

again with j satisfying (3.15). 



44 K. Gawedzki and A. Kupiainen 

Summarizing, R,(t) is a combination of terms (3.14) and (3.16) with r >  ~ + 1 
and of terms (3.18). Since on the support of zB(V~ "+ 1)ZB(~") 

we obtain finally using the bounds (3.15) and (3.17) 

( ( >) dt<Rn(t)> t < C(1 + nC)BClA,I 2 ~+ 1 (~ log Z~ +sup ~ , (3.19) = ~ 

where "sup" on the right hand side is over gtp "+~ with II V~v "+l IlL= _--<B, x e A ,  and 
tel0,1] .  

To complete the proof of Proposition 3.1 we need the following estimates 
which express the fact that probability of large values of the ~" fields is small. They 
will be proven in Chap. 6 together with their counterparts used in the proof of the 
upper bound. 

Lemma 3.2. Provided that b in (3.1) is large enough and 2 is small enough 

and 

3 log)(B 
s u p / ~  \ <_e -c"~ 

\ ~ / , -  (3.20) 

)~dl~r, > e - Ce - c B z l f f l . [ .  (3.21) 

Using (3.20) together with e-C~2< C2 ~+ 1 we get from (3.19) 

1 

! dt(Rn(t))  ~ < 3 -d"C(1 + nC)BC)j + 1 I11 < 3-dnC2~+ 1/21A I (3.22) 

for n < 2  -° if6 is chosen so that 21/2(1 +2-OC)BC< 1. Now (3.9), (3.10), (3.13), (3.21), 
and (3.22) give 

Z n > Z,  + 1 exp [ - 3 - d"C2~ + 1/2lAl]e- Ce C~al~ 1 

=>Z,+ 1 exp [ -  3-a"C2 ~+ 1/21A[] 

[] 
which is (3.3). 

The version of (3.3) with Z replaced by Z' follows from (3.21) above. 

4. The Upper Bound 

In proving the second inequality of (2.5) (the upper bound) we shall use a slightly 
different argument, also borrowed from [3], to eliminate the large values of the 
fields. Namely, we shall exclude the interaction from the regions where the fields 
are large. To this end define 

d 

D.z={zeA":ltV~"~ll>B}, D'.:={zeA":llVtp~l[>½3 ZB}, (4.1) 

where B is the 2-dependent constant given by (3.1) with b large enough. 
The manipulations with the interaction region will be based on the following 

estimates using the positivity of the leading terms of the interaction hamiltonians. 
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Lemma 4.1. Let b of(3.1) be large enough. 

A) Vo a < V a\D° . (4.2) 

Moreover, there exists 5 > 0 such that for small 2, n = 0, 1 ... . .  min ([2-~], N -  1) and 
B.CD ~ . 

B) V.B"<Vf "\c" if C, CD',. (4.3) 

C) I V f ' -  Vf"\c"l < C2B4IB,~C,I for any C, CA". (4.4) 

Proof A) First notice that the difference of the field-independent terms in (2.40) for 
D = A and D = A\D o is by virtue of Proposition 2.5 a combination of the terms 

S. . .S i S ... I I(z~ ..... z,)dz~...dz~ 
A A Do A\Do A\Do 

and, as a result of (2.50), is bounded by ~2CtD 0[. However, the difference of the first 
two terms in (2.40) for D = A  and D=A\D o is easily seen to be less than 
-2CB4IDol if only b in (3.1) is chosen large enough so that the negative quartic 
term dominates. 

B) Similarly as :in A)(vB'i + V~"2)-(V~]\c"+ V~"2 \c') is a combination of the 
terms 

~ "." f S S "" ~ I(z, .... ,z~)" ( I  (Vlp:y~:adz, ...dz, 
Bn Bn Bnc~Cn Bn\Cn Bn\Cn 0 = 1 

[where we suppressed the # subscripts of (2.49)] and is bounded by 
C2Z(1 + nC)BClB, c~C,, 1 because of (2.50) and the bound II v~'ll < B  holding on D, ~. 

Now in V~3-  V~"£ 'c" the quartic term is negative ifb in (3.1) is large enough but 
it is suppressed by the 3 -a" factor. However, the quadratic factor is also negative 
[M,v is positive definite, see (2.41)] and is bounded above by - C2B2IB, c~C,I for b 
large. This dominates C2z(1 +nC)BCIB,~C,] if n > 2  -~ for small 3 and if 2 is small 
enough. 

C) This is proven as B except for the term V f - -  Vfl "\c" whose magnitude is n,O tl, 0 
bounded by C2(B 2 + 3-~"B4)IB, c~C,I which dominates again the 
C22(1 +nC)BClB, nC,I contribution yielding (4.4). [] 

Remark 4.2. For proving (4.3) we have used the negativity of the marginal 
quadratic term of Vf to dominate the other irrelevant terms. In other (V~0) 2~ 
models the quadratic term coming from the Wick ordering does not have to be 
negative. However, we may extract a small negative 0(2) quadratic term from d#G o 
and use it to the same end. 

Define now 

for n = 0, 1 . . . .  , N -  1 and 

Z": = S exp V~"\°"d#G. (4.5) 

Here is the upper-bound counterpart of Proposition 3.1. 

Z N" = 1. (4.6) 
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enough and 

(4.7) 

We have 

Given if, define 

R,= ~ { z~A ' : t z -  Xlp<b'BZlog(1 +tP~[)- 
x~An 

Z" = Z ~ (5 Z~ exp V~"\D'd#r.)d#G,,~ 

< Z ~ (~ Z~ exp V,A"\(V"~R")d#r.)d#~, + ~ exp [CLB*IR,[], (4.12) 
/5 

where we have used Lemma 4.1C. 
The purpose of the elimination of the interaction from R,, becomes clear 

because of the following 

Lemma 4.4. If7 in the definition of B is small enough and b' in (4.11) is large enough 
then 

][ V(znI[ =-<~3-1/2B for z in R~, . (4.13) 

Proof. By virtue of (2.32) and of the uniform exponential decay of V~,~, see 
Proposition A.3, 

live711--< Z CBe-'t~-xl~(l+lP~l) +C~. (4.14) 
x:pxeFO 

(4.11) 

Proposition 4.3. For 6 > 0 small enough, )o small 
n=0,  1 ... . .  min ([2-~3 - 1 , N -  1) 

Z" <exp [3-a"C)J + 1/2[Al]Zn+ 1. 

Now, since by Lemma 4.1A 

exp VAd#~o < Z ° 

the iteration of (4.7) gives 

exp VoAd#Go < exp [C2 ~ + 1/21A1] Z "0'' A) + 1 (4.8) 

similarly as in the proof of the lower bound, compare (3.4). If n(2, A) = N -  1 we are 
done again. In the other case 

Z tx- °1 __< ~ exp [ V 2"\D"I. = ta- ~] d#~, 

_-< exp [C2B4IA"\D,I] [, = t~ °1 --< exp [C2B43 - az- ~IAI] 

_-_exp [C2 ~+ 1/21All, (4.9) 

where we have used Lemma 4.1C,(4.8) and (4.9) give the upper bound (2.5). 

Proof of Proposition 4.3. We start by inserting a partition of unity to Z" in order to 
control the range of the values of ~" at each point. Denote by p a collection of even 
integers {Px}~,- Let Zp~((~) be the following characteristic functions 

Zp~( ~): Z(¢xe [(p~- t)/3, (px + 1)/~)), (4.10) 

where/3--yB and 7 will be specified in a moment, We denote also 

z~(~ ")= [!_ z~(~). 
x~A n 
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But if p~=~0 then, since z~R~,, I z - x lp>b 'B21og(1  +IP~]). Hence 

e-~l~-~b(l+[p~D<~exp -~:lz-xlp+ b ~ l z - x l  ~ <C (4.15) 
x :  p x  4= 0 x 

if b' in (4.1 t) is large enough. (4.14) and (4.15) yield (4.13) if ~ is small enough. []  
The next step in estimation of Z" will be to remove the interaction on the right 

hand side of (4.12) from the region 3D,+ 1. Notice that on W,c~3D,+ i 

d d d d 
n - - 2 -  n + l  - - - -  IlVW~ll~3 IIVw~/3 1[-I[17(71[>3 2 B - ½ 3 - ~ B = ½ 3 - ~ B  

by virtue of (2.37) and Lemma 4.4, so that R~n3D,,+iCD',,. Hence we may use 
Lemma 4.1B in order to replace in (4.12) V A"\~°'~R') by V,, a"\a~"~a° . . . .  g,) 

Moreover 

D . C R . w 3 D . ÷  i (4.16) 

or equivalently 

RC c~ 2 D c r nc 
tt ~ n +  i " - ~ n  

again by (2.37) and Lemma 4.4. Hence we obtain 

Z" N Z~(~zpexp V/, '"\(3D . . . .  R")d#r.)d#o.+ ' exp[C2B4lR.f].  (4, t7) 

Notice that the interaction region A"\(3D.+ 1 u R . ) - z ] "  in (4.17) does not depend 
any more on ~'s over which we integrate :in the n'th step of the block spin 
transformation. As in the proof of Proposition 3.1 we compute this integral using 
integration by parts. Write 

compare (3.10). As in Chap. 3 

I 1 

V~+ i + ~dt(R,(O)~, , ,  (4.19) 
0 0 

where R,(t) is again a combination of the terms (3.14), (3.16) with n > z + l  and 
(3.18) (with logz~ replacing logz~ ). Now j's satisfy a modified version of (3.15) and 

(3.17). The modification replacesj in (3.15)byjexp[e ~=1 ~ d(x~,z]")] and H V~p"+illL~ 

in (3.15) and (3.17) by II "+~ v~p IlL~(a.)- This is clearly possible since ~" enters V, A~' 
only via V(" [~, to which it is connected by an exponentially decaying kernel, and 
V~p,+ 1 only via V~p "+ ~ ~,.  Notice that since large values of I~"~1 may appear only for 
x far from A., 

< e-  ~d(~' R~)/3( 1 + [P~t) 
__< e-~b,8~ ~o.(~ + I~1)(1 + IpJ) 

< c  
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if b' in (4.11) is large enough. Also 

Hence, 

1 !dt<R°(t)>,,, <c(1+ n )BClA°I(;+' . . . .  

(4.20) 

compare (3.19). 
We need the following probability estimate which will be proven in Chap. 6: 

Lemma 4.5. Provided that b in (3.1) and b' in (4.11) are large enough and 2 is small 
enough, 

s u p e ~ a c ' , - ' i " ) / l ~  \ <_e -ck~ (4.21) 
\1 aG /~,,- 

and 

(4.20) and (4.21) give 

SZ~(~")d#r. ~expI -CBZ ~P~ I. (4.22) 

i <3_a~CU+ dt<R,,(t))~,~ = 1/2IAI, (4.23) 

compare (3.22). (4.17)-(4.19) and (4.23) yield in turn 

V3 - ,~i. d Z"N ~,~exp .+1 #a.+,'Sz~d#r.'exp[2B4IR.I+3-a"C2~+I/ZIA[]" 

Now 3-1fl"=A"+X\(D.+lw3-XR.) and we may restore the interaction in 
(A n+ I\D.+ 1)c~3-1R. in order to obtain Z "+ 1 using again Lemma 4.1C. The sum 
over fi is controlled with help of (4.22) which shows that non-zero values of ~ have 
very small probability. Thus, 

Z" < Z" + 1 ~ S zpd#r..exp [ C2B4IR.] + 3- a"CU + ~/2 IA]] 

__< z "+1 ~ exp[ Z ('~B4( 2b'B= log(1 + [P~I))"- C/~aP~)] 
P kx~zi~ 

• exp[3-a"C2 ~+ I/ZTAI] 

<-Zn+1~expI-~xCBZp:]exp[3-a"C2~+l/2[A.l ] 
< Z.+ 1 exp [e-  c~=lA.[ + 3-a"C2"+ 1/21A1] 

< Z.+ 1 exp[3-a"C2'+ 1/2[A[], 

where we have used the estimate [R.I < ~ (2b'B 2 log (1 + [G[)) a and have assumed 2 
XEII rt 

to be small. This completes the proof of Proposition 4.3. []  
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5. Effective Interactions 

In this chapter the graphical representation of the effective potential V~ is derived, 
which allows us to prove Proposition 2.5. We recall here the basic formulae for Vf: 

V:= k=l ~ I <V°3"D;'" ; V°3"D>r-,@; r- - -  V~° + V"v'l + : (2.45), (2.47), 

where 

V~o: -2M,v  f : Vu~p"~V:p ~ :dx-A3-"a ~ : (V~pZ) 4 :dx (2.48) 
D D 

and thus by (2.3) and (2,40) 

v3,D_ 1/,3,o_ ~, 1 ... .  " V, 3"D\r (5.t) 
- o , o  ° , o , o : o o .  

k = 2  

We also defined V~I such that <V~l>a =0. Thus by (2.45), (2.47), and (5.1) 

° i ;  v,o :<v;  \ _ , , : , o .  .vy : 
~ r O ,  O / ( g P m / G n  k ' 0 , 0  ~ ' ' ' ~  0 , 0 / G o d  

k = l  " 

and (5.2) 

V- D _ ~ 1 :v3"o. . v3"v\r - V~o-constant.  (5.3) 
n, 1 - -  ~ \ ' 0 , 0  ~'":''O,O/(gr~ 

k = l  

We can now easily write down the "Feynman rules" for V~I and V~2 using (2.48), 
(5.2), and (5.3) together with the decomposition of VW ° given in (2.46). 

Namely consider vertices %, carrying indices #Q,...~{1,...,d} and zeeA" 
(which for brevity we suppress): 

VQ = ve .... z%f./Z e 

o r  

z~ 

where M is defined in (2.41). Build connected graphs 7 by joining pairs of legs of 
v o s, each element in the pair coming from a different vertex, to form lines of either 
of the following two types: 

(1) hard lines 
t l - -1  

HILv(Z , Z ) = 2 --d . . . .  ' 3 (%[3---~ V~f3--,~'>r, (5.4) 
m = O  

coming from integrations with respect to dper , ,  
(2) soft lines 

Z t - - d n  n17 " n Suv(z, )=3 (V.~ ~Wz,>~, (5.5) 

arising during Wick ordering with respect to d#G" of the result of integration. 
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Denote the subgraph composed of all vertices of 7 together with all hard (soft) 
lines by H(7)(S(7)), and the end points of a line I by z~ and z~, For a vertex v~ let a~ 
be the number of legs which are not contracted. 

Given now such a graph 7, we assign to it the interaction V. D 

( -  1K(~) r(~) 
~".,~ ""  .,,"! 3~"~('i ..i II ~o 1-[ I4(z.,z,+) [1 S(z,_,z.) 

r w :  D D e = 1 l~H(y) l~S(y) 

_ d n  

• " ]-] (3 TV~p~)"O:Gdzl...dz~(, ) 
~o:ae>O 

- S . . .  11 , ( z , ,  ... , ~ ( 0  ' I-[ ( v ~ L r  ~° :~, d ~  ... dz~(,, 
D D ae>O 

(5.6) 

where for simplicity we have not written explicitly summations over indices of the 
gradients #o, %, " "  

V~I and V~z can be now described in terms of K" ,,~ as summarized in the 
following 

Lemma 5.1. Let ~ i  ={7 "H(v) is connected and ~a~=>2} and c~2= ~)':H(7) is not 
connected, ~ a ~ = 0 } .  Then t 

v?= °,~ Z c(~)v~,, i = 1 , 2 ,  (5.7) 
7E~i 

where C(7) are combinatorical coefficients. 

Proof. Because of truncation, the first term on the right hand side of(5.3) produces 
connected graphs of hard lines. Wick ordering does not produce new vertices, so 
H(7)'s will be connected. The resulting vacuum graphs will cancel the constant in 
(5.3) so ~aQ>2. This settles i=  1. Similarly, in (5.2) the first term of the summand 
involves only 7's with H(7) connected which are cancelled by the second term since 

n--1 /m) 
upon expanding Go=G,@\m.~=o it involves all 7's. The factor 3 e"~('l arises from 

the change of variables used in (2.46) z - ,  3"z. [] 
Proposition 2.5 follows now from (5.6), (5.7) and the following claim: 

Lemma 5.2. A) Let ) '~f2.  Then Jbr all 1 _<¢oNr(7) 

"'" ~ JI~(zl . . . .  ,zm,))l 1~ dzo~<2r(y)C( 1 +nC) 
An An Q~-Qo 

for C independent of  n, A, 2. 
B) Let yEN 1. Then (5.8) holds also with I v replaced by 

(5.8) 

I~(z 1 . . . .  , z~(~)) 1~ expelz~_ - z~+ ]p 
fell(y) 

for some ~ > O. 
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To prove Lemma 5.2 we shall need estimates for the falloff of the hard and soft 
lines : 

1 
t(Vuv~V~p~>~m t < C 1 + [z -  z'[~' (5.9) 

m m -~Iz-z'Ip I<VSz V ~ ( z , > r j < C e  . (5.10) 

(5.9) and (5.10) are proved in Propositions A.7 and A.8. Proposition 5.2B follows 
now easily. We replace every soft line (5.5) by 3-a"C, every hard line (5.4) by 

rI--1 

C ~ 3 - a~exp [ -3" - '%lz t  -zz+tp] 
m l = O  

and every vertex by C2 obtaining 

[I,I <C)5~'~3a~'('~-a~s-~/2a~ ~ FI 3-a"e -3  ..... ~l~_-z,÷lp, (5.11) 
(mr) l s H ( ? )  

where S is the number of soft lines, E that of external ones. By taking smaller e we 
can extract the extra convergence claimed in Proposition 5B. Since (recall D C A") 

3 -din ~ dze -3" "~izl~=<C3-a, 
A n 

and H(7 ) is connected one easily gets from (5.11) 

... ~ lI(z~, ...,zr(,))l [7[ dzo <C)?( ' )3e° -"s - I /2a"E Z 1. 
A n A n @~-~0 (;'nl) 

But E = ~ a a > 2  and ~ 1 = n  c which imply the claim. 
(m0 

Remark.  Notice that for 7 with E > 4  we get much better bound CZ(1 + nC)3 -a~. 
The worst behaving terms are the marginal ones producing gaussian corrections to 
the measure. 

In Proposition 5A we cannot use the exponential falloff which made 5B easy. 
However, 7~(~ 2 are vacuum graphs and thus one particle irreducible. We proceed 
as follows. First replace hard lines by 

n--1 
3-mzae- ~3'~- ~lzz -z~+l, 

tn~=O 

soft ones by (5.9) and vertices by 2C. Fix m z for each hard line and proceed with the 
following three steps: 

1. Use the bounds 
dz '3-ame-  3~-"~/~-z'lp3-am'e- 3 ..... "elz'-z"lp < C3 -a"3-a~'e- 3"-'~'e'lz-z"lp 

A ~ < , ( r e = m ,  e'<e),  

3 -a, C3-a" 
dz ,3-ame-  3'~ ~ l z - z ' l  -- Z"l a-= <_3-a, 

a.  1 + Iz' -- 1 + I z -  z"t d- ~ ' 

3 -a,, 3 -a,, C3-an 
dz' < 3 - a, 

A~ 1 +]Z--Z'I a-~ 1 + IZ'-- Z"I a - ~ :  1 + l z - z " l  a-~' 
(~' > ~) 

to get rid of two leg vertices vo, ~ 4: Qo, obtaining a new graph with only four leg 
vertices and lines decaying slightly slower. 
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2. For four leg vertices without self contractions (these may arise in the first 
step) we use Schwartz inequality 

2 ~1/2 [ 4 \1/2 

together with the estimates 

[j, dz,(3-a,,e- 3,-m4z -z'13-am'e- 3 . . . .  ~l~'-z",)zlt/2 

d n + m  
<3 2 C3-drn'e-3 . . . .  e'lz- ~"l (m<m'), 

[~AdZJ(N-dme -3n-'r'eb-zt] N-'dn 1211/2 <3-dn+m N-an 
1+ [z~z'ia-i] ] T C l + l ~ z _ z , f - ~ "  

1/2 

l+lz_z' l  a-~ l+]z,-Zz,,la-~ j ] <3-a"C l+lz-z"la ~. 

We can represent this pictorically by 

Zl ~ / /  Z3 --~ 

Z 2 / ~ Z 4 

Z1 f Z3 

Z 2 Z 4 

(5.12) 

We pair z~ in (5.12) so, that the graph remains connected. This is always possible 
for a connected vacuum graph. 

3. For four leg vertices with self contractions, i.e. :~, the loop is easily bound, 
giving C or 3-"aC depending on whether it is hard or soft. The resulting two leg 
vertex is treated as in 1. 

After these operations we end up with oo or o depending on whether ~o is a 
0o ~'o 

two or four leg vertex. Now apply 3 again and the result is the estimate 

A n  A n  0 + Qo 

where x is the number of soft lines disposed of in step 3. We started with at least 
two soft lines and at least one of them enters step 3. Hence x>__ 1 and (5.13) gives 
the claim since ~ l = n  c. [] 

(rot) 

6. Probability Estimates 

We will prove in this chapter the probability estimates for the fluctuation integral 
stated in Lemmas 3.2 and 4.5. The proofs are simple adaptations of the super- 
stability estimates of Ruelle [6]. Our situation is, however, slightly different from 
that of [6] ; this chapter will hence be self-contained. 

Note that the characteristic functions Z~ in (3.8) are a special case of Z~ in (4.10), 
namely Z~ = Zp= o- We can now treat Lemmas 3.2 and 4.5 on the same footing by 
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considering 

( ~ l°gZp ' (~) l \  E ~e°E6(~ - m ~ )  1-I )~p~(~:)l-[d~: ~_~-1 
m=py+_ x 

=-S+(pr, E)+S-(py,  E), 
where 

(6.1) 

- E  n __ E - d / 2  n+l 
U ( 4 )  - -  t V n  (3 V ~ ) I / 3 .  + V~".)- 1/2(~", F~- ~¢") (6.2) 

and in the case of Lemma4.5 E=f I"=A" \ (3D,+lwR, )  whereas for Lemma 3.2 
E = A" and in both cases the V~p "+ 1 occuring in (6.2) satisfies t1V~P "+ ~ ]IL~(~) < B. Now 
(3.20) and (4.21) of the lemmas follow from 

Proposition 6.1. A) Let E = A "  or ~1". Then for b large, 2 small S+-(O,E)<_e -c~ .  
B) Let b and b' be large enough and 2 be small. Then 

sup e- ~d(y, &)S +- (py, A") < e-  c~ .  
if, t, y:py 4= 0 

We shall perform a translation in the integral (6.1) so that all the characteristic 
functions are centered at the origin i.e. ~ +/3~. Denoting (we suppress n) 

where 

we obtain 

V~(¢) = 0~(~ + / ~ ) -  O~(/~)- (4, u~), (6.3) 

S+-(py, E) = e + Zuf Z - 1 ~ e,E(e)#(d~&\y). (6.5) 

In (6.5), to coincide with the notation of [6], we have defined 

#(d{a) = 1-I X~({x)eex"~d{x (6.6) 
x~A 

and { in UE({) is restricted to be equal +__/~ at y. Denote also by ~a the configuration 
with {~ put to zero for x e A  c. We will need the following properties of Ue: 

Lemma 6.2. Let U denote U E with E either of  the sets in Proposition 6.t and let 2 be 
sufficiently small. 
A) There exist constants At, A2>0 such that 

- A 2  Z ~z-<--U(~/~) --< - A ~  Z 4 2 (6.7) 
xeB x6B 

for all B C 71,. 
B) Let A, B C ~1, and define 

W(~A, ~B) = U(~A~,)-- U(~A)-- U(~,). (6.8) 

Then for some C, e > 0 

IW(~A'~B)I <=C Z e-el:'-Yl"(~ 2+~f)" (6.9) 
xeA,  y~B 

Remark. (6.7) and (6.9) are the standard conditions for superstability and regularity 
[6]. The case of E = A" ~ = 0 in Lemma 6.2 would now follow from the estimates of 

uE= 6(7~ (6.4) 
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[6]. For the other cases however we must slightly modify the arguments in [6] due 
to the fact that for some x u~ in the single spin measure (6.6) can be very large. 

Proof The change of variables ~-~ ~ +/~fi induces 

v~-~v~ + v~;- v~ + v(dg_~L. 

Now V, ~" involves only ~ for zeR~ (in case of V A", f i=0 and so ~' =0). Thus for 

p,, 4= 0 I z -  Ylv > b'B2 log (1 + IP, I) 

and as previously we get for b' large [I V~'[I --< 1. Absorbing V~' to Vtp it thus suffices to 
prove the lemma for 

UE(4)-[TE(~)-[7~(0) - ( ~ -  ¢=0, ~) (6.10) 

when Ib Vq~ II x.~(~) ---- e + 1 and IJ ~ II ~ </~. The "free" part of U ~, - 1/2(4, F -  14), satisfies 
A) and B) since A > F -  ~ > A' > 0 and has exponential falloff(see Proposition A.3). It 
is easy to infer from Proposition 2.5 that U +  1/2(4, F-1~) is a sum of terms 

~_ J(x i . . . .  ,x~) ~ 4~, (6.11) 
x i ~ A  n i = 1 

where for n < ).- o with 6 small enough ]Je ~e( ...... . . .  )] <-_ 2CB c. Since ]~[ __</~ and s > 2 
because of the subtraction in (6.10), we can bound (6.11) by 

2CBC Z e-~l~-Yl4x4,. (6.12) 
X,  y ~ l  n 

Thus (6.10) is regular and for 2 small enough does not change the superstabitity 
when added to -1/2(4,F-1~).  [] 

Let us now prove Proposition 6.1B: From (6.5) we get using (6.6) and (6.8) ;1 
- - -° d4e¢,~ °+ v(¢) Z -  1 S+-(py, A") = e + B"¢ e v(¢') re,= + ~ 

• e W ( ¢ , ,  ¢~o\ , ) -  w(¢~, ¢~,\,) ~¢, = +_ ~ ( 6 . 1 3 )  

Since l]~ll~ </~, we can use Lemma 6.2A and B to estimate 

eV(¢,) + w(¢,, ¢~,,\,)- w(¢;,, ¢~,,\y) N e c;~" (6.14) 

Thus by (6.13), (6.7), and (6.14) 

A,, cf~ z S+(p,,ft")<eCB~e+-~"~°[~d@¢@]-l<[l+luy lie . (6.15) 

A" using (6.4) and (6.2) as We write u~ 
~ 

1 6vA"t 
A " - - B ( F -  ~ ) y + t ~ - .  (6.16) 

As in the proof of Lemma 6.2 II t7~ P¢=~II is small since z~R;  and the second term in 
(6.16) can be bounded by one (say). Hence, to obtain the claim we have to prove 

sup e-~e(Y'&)[1 + I/~(F- ~fi)yl]e c~ < e - c ~ .  (6.17) 
y : p y  ~ 0 
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Using the exponential falloff of F -  ~ we get 
e-~a(Y'&)[1 + [/3(F- a/5),[] 

~ 

~ e - e b ' B 2 1 ° g ( l  +lpYD ( l  -l- Bx:p~r~o e-ed(x ,  An ) [px l e - e ' x -Y 'p  ) 

< CBe -b'B~ (6.18) 

choosing b' large enough (6.17) follows from (6.18). [] 

Proof  o f  Proposition 6.tA, Following [6] we insert a partition of unity in the integral 
of (6.5). For this purpose, let 0 < ~o < ~c,~ < ... < ~pp and let V o C Vj C ... ( Vp = A, be 
cubes in A, centered at y such that ~Vo] V0[ =/~2, ~v v- 1 </~2 and ~pp >/~2. Consider the 
sets 

Rq={~: ~ ~: >tpqll~[, ~v, ~+~ 2 V k>0}.  (6.19) 

{Rq}q<p- 1 forms a partition of unity since ]~r[ =/~ and 1[ ~11 oo --<B. Thus (we denote Vq 
by q for brevity) 

Z -1 ~ eV(¢~°)#(d~&\~) 
p--1 

= ~ Z -  ~ 5 eV(¢") + v(~,\,)+ w(~a. ~\,)eW(¢,. ~,\,)- w(¢'~. ~,\~)#(d{p\y) 
q = l  Rq- 1 

+ Z - 1 ~ eV(~p_ ~) + v(¢,\, _ ~) + w(¢~_~, ~ %w(¢~_~, ~\~_ 1)- w(¢~_1, ~\~ O#(d~v\~) 
Rp-  1 

p--1 
< ~ e(q)Z -~ ~ eU(¢'~)#(d~'q) ~ e v(¢'\") + w(¢'~, ¢,\~)#(d~p\q) 

q= 1 v q 

+e'(p)Z -~ ~ eV(¢~-@(d~'~_O~eV(~'\~-°+w(¢~-l'¢~\~-@(d~p\p_O, (6.20) 
Zp - x 

where Xq is {¢q:[~,[_<_1} and 

e(q)= ~ ea'llcdl~#(dCq)(~ eV(~,)#(dCq)) -~ sup e 21W(¢.'~,\~)1 
I I~q- 111~ >= wq- ~vq- 1 \xq ~sAqwRq 

(6.21) 

e'(p)= S e-Al[l~P-lll~#(d~p-1)( ~ eV(¢v 1)#(d~p-1))-t 
tl~v- llt~>=t~v- l v p -  1 \ x p -  I 

sup e21rv(~,_1,~,\p_ t) (6.22) 
~eAp - 1 w Rp - 1 

We denoted by Aq the set {~:l[~qll ~ _-< 1 and II~q+~ll~ <~+kVq+k}" It will be shown 
below that for b sufficiently large we can choose {~pq, Vq} such that 

e(q) < 2 ~e - c ~ ,  (6.23) 

e'(p) < 2-Pe - c ~ ,  (6.24) 

and thus from (6.5) and (6.20) 

S+-(0, E) =< e +- B"fe- c~ .  (6.25) 

Let first E = ¢]', As in the previous proof we only need to consider the contribution 
to u E from 1/2 (4, F -  1~) i.e. - / ~ ( F -  ~ff)y. Again, sincey~ R~ lY- x[ >_ b'B 2 log (1 + tP~I) 
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and by the exponential falloff of F -  1 for b' large I/~(F- 1~)y I < 1. So 

S+-(O, fl")<__e - c ~  

which is the claim. In case o f E = A  ~, ~ = 0  and only V A" in (6.2) contributes to U~. 
Again, for 2 small lust < 1 and 

S+-(O,A,)<__e - c ~  

completing the proof. Finally let us prove (6.23) and (6.24). Note that by (6.6) and 
(6.7) 

1 

eV(¢")#(d~,) >= CIV"t 1-[ ~ e¢"~d~ > ClVql 
Zq x~q - 1 

2 

since ~ e~¢d~ > 1. Hence from (6.21) and (6.22) 
- 2  

e(q) <= cIg~le - c~_,r~_~ sup e 2tw~-~' ¢~',~)I ~ #(d~q), (6.26) 
~ A q u R q  

e'(p)<=CIV~-~le -c~,-~v~-* sup eZlW(¢p-~,~,\,-°l ~ l~(d~p_~).(6.27 ) 
~ A p  - 1 ~ R p  - 

By (6.9) and II~]l~ ~/~ we also get 

tw%_ 1, ~ \ , -  2)I-<- CB~I~V~- ~1 (6.28) 

and 

IW(~,~\)l~C ~ e-~l~-'l(~+~) 
x~q 

Y~P\q 

L Y~P\q 
=wl+w2+w~. 

XeCl\q- 2 xeq 
y~p\q yEp\q 

(6.29) 

Let us now choose ~pq's and Vq's. We set ipq=(q 0 +q)2, 

Vq = 31 + [ - r o - qrl,  r o + qrl] d 

and p as the largest integer such that q 0 + p - l < / ~ .  Also, qo=/3 -2/2 and 
r o = 1/2(/~) 1/d and thus ~o[ Vo[ =/~2 as required, r I will be chosen in a/3 independent 
way below. Let ~ R q _  2 (the other case ( ~ A q _  1 is similar). Noting that 

dist (q, q + k\q + k -  1) = r~(k- 1) 

for k > 1 we estimate the W~ in (6.29): 

W 1 < CtpqlVqle -~rl , (6.30) 

W2 < C(~pql Vql- ~Pq-1 [Vq_ 11), (6.31) 
p - - q - - 1  

_ e g y  

k = l  y ~ q + k \ q + k - 1  

+ Clc~Vql~2e - mr~(V- a - 1) (6.32) 
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Denoting ~ ¢~ by Eq+ k we get ( q < p - 2 )  
x~q + k 

p - q - 1  p - q - 1  
Z Z e-""(k-1)¢~ = Z e - e r l ( k - l ' ( E q + k - - E q + k - 1 )  

k = l  ysq+k\q+k--1  k = l  
p - q - 2  p - q - 2  

-<-E~+I-Eq+ Z e-~kF'~q+k+l<W~ -l[Vq-l[ Z e-e"~k/Pq+k+l[Vq+k+Jtl 
~=~ ~=1 ~o~_~l~_~l 

+ (t;~ + xl~+ al-~,~- ~1~-~t)+ (t;~l~l- ~ _  11~- xl). (6.33) 
From the definitions of ~pq and V~ we obtain 

~+~+~+~+~, (1÷ ~+~)~( ~+~ , t  ~ ~q-~t~-xt = q o + q - 1  1+ ro+(q_l)r-~- ] , (6.34) 

~+,~+~ ~ ~ ~ =~ ~ ~,i(1 + ~o+~1 1 + '  )~(1+ ; , ~  , ~ + ' ~ r '  ~ ] 
(6.35) 

Inserting (6.34) and (6.35) to (6.30)-(6.33) we deduce for q < p - 2 :  

IW(~,¢,~)l<C ~ - ~ + - - +  ~-~1~-11 
qo 

+ C(ro + qrl)a- 1~2 e- ~(p-q- t) (6.36) 

The second term in (6.36) is bounded easily by (recall that qo +P>B) 

Ctsq_xl~_ll 1 (P+q°-2)Ze-~(P-q-~)<__CB-~/2tpq_llVo_ll. (6.37) 
ro + qrl (qo + q -  1) 2 

Recalling that qo=B 1/2 and % =  1/2(B) lie (6.36) and (6.37) inserted to (6.26) give 
for r 1 large enough 

e(q) <= e-C~"-~lv" -,I ~ #(d~q). (6.38) 

Similarly, from (6.28) 

I W(~p_ ~, Cp\p_x)! < CB2p- 11Vp_l I ~ C B -  11])p - 1  l i p  - 11 

and thus 

Now 

e,(p) N e-Cvp- dv,- ~1 ~ #(d~p_ ~). (6.39) 

S#(d~q_l)NCBIVq-ll sup exp EIB@IIV~_ll]. 
x~q-  1 

Now recall that by the choice of p, max I x -  Yl < C/~. On the other hand, for any u, 
xEp-  1 

]y-u] ~ b'B 2 log (1 + IP, I). Thus as before, for b' large enough lu~l is small for all 
x ~ p -  1 and 

#(d~q _ 1) < CeC~tVq- ~ t q < p . (6.40) 

(6.38)-(6.40) imply now (6.23) and (6.24). 
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In above we have assumed, that the boxes Vo,..., V;_ ~ are entirely inside A,. 
The case when it does not happen is even simpler and necessary modifications are 
left to the reader. [] 

Finally, we wish to prove (3.21) and (4.22) of the lemmas. To this end notice 
that 

~ Z~(~)dpr~=exp [- i dfi ~--~ ln ~ z(l~' <_fi)dl~r,~ 1 

I i ~ 2Ia(::-/~)H z(l~;l=</~)dn~ - y ~ x  

= e x p  - _ d f i  _ j.HX(ig~lNfi)d/xr" 
y 

= e x p - !  dfl 2 2Z-l ~ 8(:~,-fl)eV° !i [ z([~;l <=fl) I-I d~ l, (6.41) 
- x~ft~ ) @x y 3 

where U o is superstable and regular. Similarly, 

y:py ~ 0 y:py # 0 y:py # 0 

=l H zv,(/3,)d~,z-i FI ~" ~,o . 6(%- fly)e I] d~,,. (6.42) 
y:py 4- 0 y:p.~ 4- 0 y 

By [6] we can find C > 0  and 6 such that 

n Uo n ] Z -~ o( H 5(~,-- fiy)e I~ d~y < exp [ 2 ( -  z Cfiy + 5) J yeY [ye?~" 

and the same holds if the domain of integration over ~'s is restricted to an interval. 
Now (3.21) and (4.22) follow easily from (6.41) and (6.42). []  

Appendix 

We shall prove in this Appendix the various properties of the covariances Gm and 
F,, and the operators d , ,  and Vd,, needed in the text. 

Let us start with Gm. A straightforward computation using (2.1), (1.7), and 
(2.26) yields 

t sin2 p-" 
2 

- -  2 eiP(X- ") ~, 1~ + 27rAl, 
lp~[ ~ IM~t < 3m/2 32rosin 2pu 2.3 ~ 

[~2,, [P+2~M~] -1 1 ~ dm(p)ei;(x_y), 
l "t (A.l) 

d - 1  

where we recall that #(p)=2 ~, ( 1 - c o s p , )  [(A.1) is easiest to derive by first 
i t=0  

computing it in infinite volume and then periodizing]. We will consider GIn(P) as 
defined on the periodic box [ - re ,  ~z] d. Notice that it is non-vanishing and finite 
except for p = 0. This shows invertibility of G m on the subspace (I-E)IR Am (i.e. on 
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sequences with vanishing means) and allows us to define G,~ 1 as the inverse of G,, 
on this subspace: 

1 ~ Gin(p)- aeip(x-r). (1.2) 

IP.I =<~ 

We gather in the following Lemma some properties of G,, needed later. 

Lemma A.1. The functions d m have the following properties: 

~ Pu + 27rqu \2 

a) G,,+l(p)= ~ 3-2Gm,P+3~zqj~ !+zc°s3  -3- 2 t ] } 
q : q u =  0 '  - + 1  - - - -  - . (A.3) 

b) d m has a unique continuation to a meromorphic function of complex pofor any 
P-=(Pl . . . .  ,pa_l)e[-~,rc] a-1 with two simple poles at the Po'S satisfying 

[ _ 1 l \  

R e p o = 0 ,  I m p o = 3 " s h  1 (±Vu.~0s in2~/~- )  • (1.4) 

c) There exists an e>0,  independent on m, such that for l Impol<e and all 
p e [ - T r , ~ ]  a-1 

Cll32~f~(3-mp) 1-1 <= IGm(p)l < C2132"#(3- ~p)t - 1, (A.5) 

where C t >0. 

Proof. (a) follows from translating the infinite volume version of the first equality 
of (2.26) to momentum space. (b) follows by inspection from (A.1), the zeros of p 
providing the poles. (c). Consider the function 

f(p) = #(p)G,,(p) = ~ ~-32,, sin2 sin2 1/2p~ #(p) 
M ~  1/2 3-"(pu + 2rcm~) 32 m [p + 2~zm\" 

f(p) is analytic in P0 for (Repo, p)~ [-~z,~z]! 
3" 

Let now IIm Pol < ch-1(1/2). Then for M + 0 ,  IM, I < -  
= 2  

32 m {p+2rcM~l p + 2rcM \ 
- c o s  u 3m " ) + 1  

Repo + 2~zM o , .  1 
- c o s  ~ cnlm~Po)>=C(l+M 2) 

and 

sin ~" 

3" sin p" + 2rcMu 
2.3" 

sin 2 R~2 p~ +sh2 I 2  p" C 

.2m[ • Reps,+2rcMu ~t.2Imp~'~ = l + M 2 "  
" Ism--- 2.3 m + ~  -2~d-) 
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Thus, 

lf(p)l<=C for lImpot<ch-~l/2 

and hence by Cauchy's formula 

d~o __< C' for ~1/2. (A.6) IImpo[< 1/2ch 

Since f(p) is strictly positive for p real (A.6) implies that If(p)l > C~ >0 for [Impo[ 
small enough, [] 

We can now turn to study the decay properties of the various kernels. We start 
with 

Proposition A.2. There exist C and ~ such that for all m and A 

I(62, 1)x,[ < Ce-,lx- ,I , .  (A.7) 

Proof. By Lemma A.l(b) and (c) G,,(p) -1 is analytic in P0 for llmpol<e and 
bounded uniformly in m, Re pe [ - n ,  hie and A. Thus 

j' eip(~-,)d~(p)-ldp= ~ e~p(:~-~,)e-~l~°-Y°l~G m p+_z~e o dp 

which establishes exponential falloff of this kernel in zero direction, by symmetry 
in all coordinate directions and by Ix-yjp < C max Ix~,-Y.lv in all directions. But 

(G~,l)~y = ~ (2n) -a ~ e"(x-Y-L)d,,(p)-~dp 
L e 3  N - m T l a  [p.] _< 

and (A.7) follows. [] 
Let us next consider the fluctuation covariances Fm. Their main properties are 

gathered in 

Proposition A.3. A) F~, 1 can be written as 

F7,1= Qr G~, IQ, (A.8) 

where Q is given by (2.14). 
B) F~, 1 and F m are strictly positive and satisfy 

I(F~, 1)x,I ~ < Ce_~lx_yl. (A.9) 
I(rm)x,I J -  

Proof First note that R r :IR~m~IR A= and Qr :IRa=~IR~,, are given by 

(R r~) = { ~  if x~A,, 
if x~Ar~\71,, 

(A.10) 

y being the point in Am\71 m nearest to x~A,,. Thus by the definition of F m (2.28) 

QrG~IQF m QrG~tQR(G m C r -1 C r = -Gin G,,+I Gm)R . (A.11) 
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As in the argument following (2.17) we can dispose of QR in (A. 11) thus producing 
together with (A.10) 

QTG21QF,, = QT(I--  E)R T - QT (I--  E) Cr Gr~+ 1CGmR r . 

Now, it is obvious from (A.10) that 

Q r R T = I  and Q r E = Q r C T = O .  

Thus 

Qr Gf, 1Qi. m = I 

proving (A) since F m is self adjoint. 
(B) The claims for I'~, ~ follow immediately from (A), the positivity of G~, ~ 

(A.7). Also, we get that F~, 1 is bounded from above and hence F m > 0. We are thus 
left with establishing (A.9) for F m. It is enough to prove the falloff for the operator 

/ - -  T - 1  
INto - -  G m - -  G m C  Gin+  1 C G m .  

Explicit computation gives the momentum space representation of F,,~r: 

Gm(p)Gm P+ 

I',,~, - i~1 .~,. ' CJ , ,~  ) eip(~- ") - ~ "  Z 
p r:rt~= O, -+ I 

where 

__ . -- t ~ - r Y e t p ( x  - y) 1-I  
"11 - ........ e 3 

(1.12) 

~'(~")p denotes the sum over 

0#pE27~3-N+"2~ d, IP~I~Tc (ps3-N+"2g e, Ip~i_--<~Z, 3p~2~Z2~d). 

Consider the functions 

[~m(P,Y): = din(p)-- ~r 3ZGm+ 1(3P) 

1 +2cos p~+ 
.]-fl l+2cosP~3 3 - 3 - ) e - i ~ - ~ ' "  (A.13) 

Lemma A.4. i'm(P, Y) are analytic in Po and uniformly bounded on 

{(Po, P)~ ¢~ × IRa- 1 :tim Pot < e, rPi[ < ~z}. 
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Proof Again, given p and y,/~"(p, y) is meromorphic in Po- To bound it uniformly 
we write 

Gin(p) [32~"+~(3p)_d"(p)iI(1 + 2 cos p~) z] 
/~m(P, Y)= ~~m~ ~(3p) ~ ~ ~" 2- ) J 

G,.(p)dm p +  .2~ l + 2 c o s p ~  l +2cos p~+ 
+ ~.0 y" 32d,~+ ~(3P) 1~ 3 3 e -~-5-~'. (A.14) 

By (A.3) 

so that 

( )2 
32d"~ 1(3p)- G,,(p) I~ 1 +2cosp~  

3 

= 2 G , . p +  1~ - 
O + r:r~: = 0, ± 1 

/~"(p, y) = y'  
r~O 

/ 

• (.1 + 2  ~ 2 ~ 

COS p~ e -  ~-5"rY -~ 

\ 3 

32dm+~(3p) 1-I 3 

3 • 
(A.15) 

(d~)~  - 

[] 
KJ".  By explicit 

1 
e ~pt~ - y) 

Ip~I<~ M:IM.I  < 3 ~" 

f T .  Pu+2rcM~[.m . Pu+2/rMt~] -1 
• l l S m  - ~J s m  - -  - 4  

2 [ 2.3" J 

1 2 fl"(P,Z) elp(~-') 
IA"I O*p " 

~ 2 M M z [ ~  l-'~ o2m /P+2rcMh] -1 
° t )] 

(A.16) 

write 
1 

-- Z eiP(X ' Y) Fm(p, Y) (FLY IA"I p~2,3-~-+m~d 
IpA=<~ 

and the exponential falloff follows from Lemma A•4 as before. 
Now we pass to the study of the operators d , ,  and 

computation 

Gm(p)C;" p +  
By Lemma A.1 G"+l(3p ) is uniformly bounded for r4:0 (poles of the 

numerator never coincide and get canceled by the zeros of the denominator)• []  
From (AA3) we note that /~,,(p,y)=G,,(p) for 04~3p~2rc;U since 

+2re 
6,, + 1(3P)- 1 = 0. Also/~m(0, y) = 0 from (A. 15) because 1 + 2 cos ~ = 0. So we can 
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and 

(Vv~/m)~ x = IAm1-1 ~, e'P(~-~) Z e2"iM~ 
pE 27z3 - N + m Z a  M :  IM~I  < 3 m  

Ip,,l_-<~ 
",2m /P + 2rcM\] -~ 2rcM,~ 

• d,.(p)'J # / ~ )  ] -I~sinP~+ 2 

P ~ + 2 ~ z M ~ l - l { e x p i P u + ? 2 M . _ l )  "3m( 3rosin 2 " ~ - - ]  \ 3 

- lB. , I -  ~ V U-~_(o zie ip(~-y) L.a /a m~t', ! 
P 

(A.17) 

A 

Lemma A.5. ~m(P, z) and VuSJm(p, Z) are analytic in Po and uniformly bounded when 
IImpo I <e, IPk[ ~rC. 

Proof. For fixed p and z ffm and Vu~ are meromorphic in Po, so it is enough to 
establish uniform bounds. Proceeding as in Lemma A.1 : 

Isf,,(p, z)l < C 3 - 2m#( 3Gm(p)-mp)-~ < C 

and similarly for Vud,,. [] 
Again, Lemma A.5 leads to 

Proposition A.6. There exist C, e > 0 such that the kernel 

(d,~)~x --IAm[-1 Z eiP(~-~)Jm(p, Z) 
p~ 27z3 N+mT/a  

satisfies 

I(N~)zxl _-< C e  - ~ - ~ "  , (A.18) 

I (Vd£, )J<Ce -~l~-zl. . [] (A.19) 

Note that in d,~ we also sum over the zero mode p = 0 whereas in dm this term 
is excluded. However, d m and d£, coincide when acting on qS" and Q~", both 
living in ( I -E)IR am. Propositions A.3 and A.6 give 

Proposition A.7. There exist C and e such that 

I(V(~V~z~}rm[ < Ce-~lz-~'l~. (A.20) 

Proof. We have by (2.32) 

( Vu(~V~, ) r~ = ( Vud~Q FmQ + V~d~)zz, 

and (A.20) is obvious by virtue of (A.9) and (A.t9). [] 
The last result concerns the decay of ( V ~ p ~ V ~ ) G .  

Proposition A.8. There exist C and e such that 

1 
I(V~'V~pz~,)~ml <C 1 + l z -  z'l~ " (A.21) 
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Proof. By iteration of (2.37) we obtain 

< w#Tv~'2,>~,, = < vCvC,>r~ + 3-~<F(N~__LvC; ,~ >~. 
3 N - 1 3 N 1 

_]_3-d(N-1)/vrNel F r N g , 1  \ 

Hence, because of (A.20), (A.22) follows from the easy estimate 

f 3-ekexp--3-ka<=C(l+ad) -1. [] 

(A.22) 
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