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I. In troduct ion  

In this paper we study the solvability of problems of the type 

(1.1) -Au=f(x,u) in O , u = 0  on 0f2, 

where f2 is some bounded domain in R 2, and the funct ionf(x ,  s) has the maximal 
growth on s which allows to treat problem (1.1) variationally in Hd(~2). More 
precisely, we treat the so-called subcritical case and also the critical case, which 
we define next. 

We say that f has subcritical growth at  +oc if for all a > 0 

(1.2) lim be(x' t)l - 0 
t---~+~ e c~t2 

and f has critical growth at +o~ if there exists C~o > 0 such that 

(1.3) lim be(x, t) I = 0 Vc~ > c~0 ; lim be(x, t)__.___.~[ = +ec V c~ < c~0. 
t--->+oo e ~ ~ t---~+c~ e at2 

Similarly we define subcritical and critical growth at - c ~ .  This notion of critical- 
ity is motivated by the so-called Trudinger-Moser inequality [12,9] which says 
that if u is a H01(O) function then the integral f e  u2 is finite. 

Problems of the above type have been studied recently by several authors, 
Atkinson-Peletier [5], Carleson-Chang [7] , Adimurthi et al. [1], [2], [3], [4]. In 
this paper we improve the existence conditions in [2], and extend the results to 
the nonsymmetrical  case and to more general nonlinearities. Also we propose a 

* These authors have been partially supported by CNPq 



140 D.G. de Figueiredo et al. 

unified approach by putting all questions in the framework of the by now classical 
Critical Point Theory as first developed in papers by Ambrosetti-Rabinowitz and 
Rabinowitz. For a complete reference of the results used here, see Rabinowitz 
[ 11; Theorems 2.2, 5.3 and 9.12]. As usual in the applications the hard points are 
the verification of conditions which allow the use of this Critical Point Theory, 
in particular the Palais-Smale condition. 

In the results for nonlinearities with critical growth (Theorems 1.3 and 1.4 
below) we give sufficient conditions for the existence of solutions. The proofs 
of these results follow the ideas introduced by H. Brezis and L. Nirenberg [6] 
in their pioneering work on the solvability of equations with critical growth in 
dimensions larger than 2. In fact, one observes that (as in their case) the functional 
under consideration satisfies the Palais-Smale condition only at certain levels. 
In order to assure that the constructed minimax levels are inside the Palais- 
Smale region we use test functions connected with the optimal Trudinger-Moser 
inequality (while Brezis- Nirenberg used test functions related to the optimal 
Sobolev imbedding). 

For easy reference we state now conditions on f that will be assumed in all 
theorems below. 

(HI) f �9 /2 x ]R ~ I~ is continuous, f ( x , 0 )  = O. 

(H2) 3 t o > 0 ,  3M > 0  such that 

O < f ( x , t ) =  f ( x , s )ds  < M~f(x,t)l , Vltj > to, Vx E /2. 

1 
(H3) 0 < F ( x , t ) <  ~ f ( x , t ) t  , V t C I ~ - { O }  , Vx ~/2 .  

Now we state the results which will be proved here. We denote by 0 < A1 < 
/~2 ~ )~3 ~ ..- the eigenvalues of (-A,Hol(/2)).  By "solution" in the theorems 
below we mean weak solution u c Ho 1(/2). 

Theorem 1.1. (The subcritical case, local minimum at 0). Assume (H1), (H2), 
(H3) and that f has subcritical growth at both +oo and -oo.  Furthermore suppose 
that 

2 F(x, t) 
(H4) lim sup - -  < Al uniformly in (x, t). 

t--.o t 2 ' 

Then, problem (1.1) has a nontrivial solution. Moreover i l l (x ,  t) is an odd func- 
tion in t, then (1.1) has infinitely many solutions. 

Theorem 1.2. (The subcritical case, saddle at 0). Assume (H1), (H2), (H3) and 
that f has subcritical growth at both +oo and -oo. Furthermore suppose that 

1 
(H5) 35 > 0 ,  3 Ak <_ # < Ak+l such that F(x , t )  <_ ~ t z t  2 , 

Vx ~ /2 ,V l t l  <_ ,~. 
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1 
(H6) F(x, t) > ~ /~kt 2 VX C #2 , V t C ~. 

Then, problem (1.1) has a nontrivial solution. Moreover, if instead of (H6) we 
assume that f (x , t) is an odd function in t, then (1.1) has infinitely many solutions. 

For the problem with critical growth, Adimurthi [2] showed that (1.1) has a 
solution provided f satisfies (among other conditions) the asymptotic hypothesis 
l i m t ~ f ( x ,  t)te -~~ = +oo. The next two theorems improve and generalize this 
result. In order to state these theorems we introduce the following notations: for 
0 < e < l  

Mz = lim f l  nen[(1-e)2?-tldt 
n -'--~ O(3 J 0  

= lim Me 
e---+0 

Numerical calculations indicate that M0 = 2 and ~t = 1. We recall the concept 
of  inner radius of  a set ~2: 

d =: radius of the largest open ball C #2. 

Theorem 1.3. (The critical case, local minimum at 0). Assume (H 1), (H2), (H3) 
and that f has critical growth at both + ~  and - ~ .  Furthermore assume (H4) 
and 

4 
(H7) lim f(x,t)e-C~~ >/3 , /3 > 

t-~+~ (1 + Mo)ozod 2 

Then, problem (1.1) has a nontrivial solution. 

Theorem 1.4. (The critical case, saddle point at 0). Assume (H 1), (H2), (H3) 
and that f has critical growth at both +cr and -cr  Furthermore assume 
(H5), (H6) and 

4 
(H8) l imf(x , t )e-~~ >/3 ,  /3 > ^ , 

M~od 2 

(H9) 36 > 0 and C > 0 such that If(x, t)l _< c It I, Vx ~ s2, Vlt I _< 6 .  

Then problem (1.1) has a nontrivial solution. 

Remarks on the conditions above. Conditions (H1) and (H2) imply an exponential 
growth in t for both f ( x ,  t) and F(x, t), see relation (2.2) later on. 
Condition (H3) is satisfied if we assume as in [2] tha t f  is C 1 and thatf~(x, t) > 
f ( x , t ) t  -1, for all t 5 / 0. Indeed, such a condition implies t ha t f ( x , t ) t  -1 is a 
nondecreasing function of  t, and from this fact (H3) follows readily. Condition 
(H5) is satisfied if one assumes as in [2] that f is C 1 and 

Sk < inf f ' (x ,O) < sup f ' (x ,O) < ~k+l 
x ~  x C ~  

In order to see this one uses the mean value theorem and the continuity of  f~ 
at s = 0. If  one assumes in addition, t ha t f ' ( x ,  t) > f ( x ,  t)t -1, for all t =/0, then 
condition (H6) follows. Finally condition (H9) is satisfied i f f  is C 1 . 



142 D.G. de Figueiredo et aL 

2. The variational formulation 

We assume (HI) ,  (H2) and the existence of positive constants C and/3 such that 

(2.1) [f(x,t) l  < C e/~t2 Vx  c g2 , V t  E ~.  

(In particular, this is the case i f f  has subcritical or critical growth). Then 

I / Ivu,2 f F(x,u) �9 (u)  = -~ 

is a C t functional ~b : HJ(J2) ~ I~, and 

Vv E Hd(J'2), 

where < .,.  > denotes the inner product in H d (we also write I1.11 for the corre- 

sponding Hot-norm). These statements follow from the fact that e v2 is L 1 (a"2) for 
all v E Hd(f2), see [12,9]. So in view of (2.1) we conclude thatf(x,u(x)) is in 
Lq(f2), for all q > 1, when u 6 Hd(S'2). 

It follows easily from (H1) and (H2) that 
(i) there is a constant C > 0 such that 

(2.2) f (x , t )>_Ce ~ltl V [tl >_ t0; 

(ii) given e > 0 there is t~ > 0 such that 

(2.3) F(x,t) <_ ef(x,t)t Vx E S?, vlt  I >_ t~. 

Proposition 2.1. Assume (HI), (H2), (H3) and (2.1). Then the functional �9 sat- 
2~r isfies (PS)c for all e < 7" 

Corollary 2.1. Assume (H1), (H2) and (H3). If f has subcritical growth at both 
+oo and -(x~ then �9 satisfies (PS)c for all c 6 I~. If f has critical growth at both 
+oc and -oo with the same cto , then �9 satisfies (PS)c for all c 6 (-o% ~).27 

Proof of Proposition 2.1. Let (un) C H01(g2) be a Palais-Smale sequence, i.e. 

(2.4) ~ IVu,,I 2 - f ( x ,u . )  --+ c 

/ VunVv --f(x,  un)v <_ en Ilvll, vv  < H d (O), (2.5) 

where en --+ 0. It follows from (2.4) using (2.3) that, for any e > O, 

1 [,Un 112 ~ 

and using (2.5) we obtain 
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~ 11.,,112 <_ c~ + d . , , l l  ~ + ~,,llu.ll, 

which implies that 

(2.6) II".ll <- c , ff(x,u.).n <_ c /F(x,un) <_ C. 

Observe that from (H3) the two integrals above are nonnegative. Now we take 
a subsequence denoted again by (u.) such that, for some u E H~, we have 

un -~ u in H 1 ; u~ ~ u in Lq(~Q), V q >__ 1 ; U,~(X) ~ U(X) a.e. in g?. 

Next we assume the following result, which will be proved later. 

L e m m a  2.1. f(x,  u,) ~ f(x,  u) in LI(s2). 

It follows from (H2) and Lemma  2.1, using the generalized Lebesgue dominated 
convergence theorem, that F(x, u,) ~ F(x, u) in Ll(g2). From (2.4) and (2.5) 
we obtain 

(2.7) limllu.ll2 = 2(c + f F(x,u)) ; lim f f(x,u.)u. = 2(c + f F(x,u)). 

Using (H3) and (2.7) we conclude that c > 0. So any Palais-Smate sequence 
approaches a nonnegative level. It follows from Lemma 2.1 and relation (2.5) 
that 

f V u V O = / f ( x , u ) ~ b  V ~b E D(f2). 

S i n c e f ( x ,  u) E L2(~2) we conclude that u E H2(y2) and - A u  = f ( x ,  u) in the 
strong sense. Hence 

/IVul2= f f(x,u)u>_2 f F(x,u). 
So O(u) > 0. Now we separate the proof into three cases. 

Case 1. c = 0. I f  this is the case we have using (2.7) 

0 < O ( u ) <  l i m i n f O ( u n ) = / F ( x , u ) - / F ( x , u ) = O .  

So Ilu.II ~ llull and then u, ---+ u in H01. The proof is finished in this case. 

Case 2. c 7{ 0, u = 0. We show that this cannot happen for a Palais-Smale 
sequence. First we claim that, for some q > 1, we have 

(2.8) / If(X, Un)l q ~ const. 

Assume that (2.8) has been proved. Then Using (2.5) with v = u~ we have 
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(2.9) f l V u , ]  2 -  f f ( x ,u . )u .  < e. llu. l I <_ C c ~ .  

We estimate the second integral above using HOlder's inequality. And then from 
(2.8) and the fact that u, ~ 0 in Lq', we conclude that Hun[] --+ 0. This 
contradicts (2.7), which says, in this case ,  that Nun [[2 ~ 2c 5/0. So it remains to 
prove (2.8). Since u = 0, it follows form (2.7) that, given e > 0 , IlUn II 2 <_ 2e+e , 
for large n. So we estimate the integral in (2.8) using (2.1) 

u 2 Un 2.  
(2.10) f [ f ( x ,un) l  q <c/eq~U2"=c/eq~l["l l( l l"nll  ) 

By the sharpened form of Trudinger's inequality proved by Moser [9], the integral 
in (2.10) is bounded, independently of n, if q/311u. 112 < 4~r. But this will be indeed 
the case for c < ~ ,  if we choose q > 1 sufficiently close to 1 and e sufficiently 
small. 

Case 3. c 7! 0 ,  u 7! O. In this case we claim that 

(2.11) ~5(u) = c. 

If  this is the case, it follows from (2.7) that Ilu~tl --, Ilull and the proof is also 
finished in this case. So it remains to prove (2.11). Assume by contradiction that 
~ ( u )  < c .  

Then 
P 

(2.12) Ilull 2 < 2(e + I F ( x ,  u)) 

v, = u,/I]u, ll and v = U/v/2(c + f F(x,u)). Since v, ~ v ,  Ilvn]l = 1 , Let and 

]lvll < 1, it follows by a result of  Lions [8] that 

/ (2.13) sup  e 4rcpv• < oo , V p  < 1--1[vll 2 

Now we estimate the Lq-norm o f f ( x ,  un) using (2.1) 

f [f(x,bln)l q <_C f eqZllunll2~" 

and this will be bounded if q and p can be chosen such that 

q/311un II 2 _ 4rrp < 47r c + f F ( x ,  u) = 47r 1 

This will be the case for large n if 

e - ~ ( u )  1 - Ilvfl 2 

/3 1 
- -  < 

27r c - ~5(u) 

which is actually so, since ~/i(u) _> 0 and c < ~ .  
Finally, using the fact just proved that f (x ,  un) is bounded in s o m e  L q, we 

see as in case 2 that un ~ u in H01 (Y2). This is impossible in view of (2.7) and 
(2.12). Thus, the proof of  Proposition 2.1 is complete. [] 

Now we give the complete statement of  lemma 2.1 and its respective proof. 
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L e m m a  2.1. Let (un) be a sequence of functions in Ll((2) converging to u in 
LI(f2). Assume that f (x, u~(x)) and f (x, u(x)) are also L 1 functions. I f  

f v( x <- C1 Un(X))Un(X) I 

then f ( x ,  un) converges in L 1 to f ( x ,  u). 

Proof. It suffices to prove f [f(x,u,)l --+ f V(x,u)l, cf. [10, p. 89]. Since 
f ( x ,  u(x)) c LI(f2) it follows that given e > 0 there is a 6 > 0 such that 

(2.14) fa ~(X'U(X)I <- e if IA[ < 

for all measurable subsets A of f2. We use I �9 [ to denote the Lebesgue measure. 
Next using the fact that u G LI(O) we find Ml > 0 such that 

(2.15) I{x ~ S? : ]u(x)l > M~}I _< 6. 

Let M = max{Ml, Cl /e}.  We write 

/ ' (x ,un) l  -- f [f(x,u)ll <_11+12+13 

and estimate each integral separately. 

l l _ f l u  [ f ( x ,un ) l= f l  " f(X, Un)Un 
.l>_g ~ lU, I 

By the choices made above we have 

13 ~ [ [f(X,U)l <- 
JI, I>_g 

Next we claim that 

< --C1 ~ .  
- M 

12 =-- flUnl<M V(X'Un)I -- f~uI<M [f(x'u)l ---+ O as n --* ~176 

Indeed, gn(x) = ~f(x, Un(X))tXlu, I<M -- El(x, u(x))IXI,I< M tends to 0 a.e. in O. 
Moreover [gn(x) I < [((x,u(x))l , if lu,[ > M and [g,(x) I < C + 7(x,u(x))[ , 
if lu,(x)l < M, where C = sup{t)C(x,t)l : x  c f2, Itl < M }  So, the claim 
follows from the Lebesgue dominated convergence theorem. [] 

The next proposition concerns the behaviour of �9 at c~. 

Proposition 2.2. Assume (H1) and (H2). Let Z be a finite dimensional subspace 
of  lid ( f2) spanned by L ~ functions. Then ~5 is bounded above in Z, and moreover, 
given M > 0 there is an R > 0 such that 

~(u) < -M,  V Ilul[ ~ e u ~ Z. 
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Proof Given uo E Z with IluollL~ = 1 , let us define 

~(t) = ~(tuo) = ~ IVu012 - F(x, tuo)  V t E R. 

It follows from (2.2) that, for p > 2, there is a constant C > 0 such that 
F ( x , t )  > c l t l  p - C for all x and t. So 

t2 f ((t)  < y l lu0112-  Cltl  p lu01 p - f l t?[ .  

By the equivalence of norms in Z, we obtain 

t 2 
~(t) _< ~lfu0[I  2 - c l t l P l l u o l l  p - c 

which implies that ~(t) ~ - o c  as t --* oe. The result follows by compactness. 
[] 

Next we study the behavior of the functional �9 near u = 0. 

Proposi t ion 2.3. Assume (H1), (H2), (H4) and condition (2.1). Then there exist 
a > O and p > O such that 

�9 (u) > a if Ilull = p 

Proof From (H4) we have that there exist # < 3,1 and 6 > 0 such that 

1 tz F ( x , t )  <_ ~ # , i f  It[_<6. 

On the other hand, from (2.1) we obtain for q > 2 

F ( x , t )  < Ce~t2ltl q , if It[ > 6, 

Putting these two estimates together we obtain 

1 te F ( x , t )  <_ ~ # + Ce~3?[t[ q V t e l l ,  

which implies 

1 /  1 / f 4~(u) > ~ IVul 2 - -~# u 2 -  C e;J"=lul q 

_ ~(1-1  ~')l lull  2 _  e r ~\~/p a/p' 

Next we observe that 

= e ~pllu[I (I-i-~) < const 

if tlull < 6 ,  where tip6 < 47r. So 

1 1 ~ ) l lu l l  2 ~(u)  > ~( - Cllull  q 

Now choose p > 0 as the point where the function 9(s) = �89 - ~ ) s  2 - Csq 
assumes its maximum. Take a = 9(P). [] 
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The above proposition will be used in the proofs of Theorems 1.1 and 1.3. For 
the proofs of the other theorems we shall need the next result. Let us denote by 
V the subspace of Hd(f2) generated by the eigenfunctions ~pj of ( - A ,  Hal(g2)) 
corresponding to the eigenvalues Aj for j = 1 , . . . ,  k. Let W = V• 

Proposition 2.4. Assume (H 1), (H2), (H5) and condition (2.1). Then, there 
exist a > 0 and p > 0 such that 

~/i(u) >_ a if Ilull -- o and u E W 

Proof The proof is completely analogous to the previous one; here we use the 
variational characterization of A~+I. 

3. Proof  of  Theorems 1.1 and 1.2. 

It follows from the hypotheses in both theorems that q~ satisfies (PS)c for all 
c E I~, cf. Corollary 2.1. To finish the proof of Theorem 1.1 we use Propositions 
2.2 and 2.3, and apply the Mountain Pass Theorem. To prove theorem 1.2 we 
apply the Generalized Mountain Pass Theorem. Proposition 2.4 and the following 
argument are used. Let R > p and such that q~(u) <_ 0 for Ilull ___ R and u E 
V @II~qok+l, see Proposition 2.2. Let Q = {v+s~k+l : Ilvl[ _ R, 0 < s < R} and 
o a  its relative boundary in VO11~k+1. Clearly ~(u) _ 0 in OON{u : Ilull > e } .  
For u E OQ f3 V, we use (H6) to see that ~(u) <_ 0. If the function f ( x ,  t) is 
odd in t, then we apply Theorem 9.12 of [11] in order to conclude the existence 
of infinitely many solutions. [] 

4. Proof of  Theorem 1.3. 

It follows from the assumptions that ~ satisfies (PS)c for all c < z~ see Corollary 
2.1. From (H4) we see that ~ has a local minimum at 0, see Proposition 2.3. 
To conclude via the Mountain Pass Theorem it suffices to show that there is a 

27r 
~o E H0 ~, ILwll = 1, such max {~ ( t~ )  : t >_ 0} < - - ,  For  that matter we start by 

oz0 
introducing the following functions 

1 
~ . ( x )  = 

(logn) /2, 0 < Ixl _< 1 
n 

1 

l o g ~  _1 < I x  I <  1 
(log n)l/2'  n - - 

0 Ixl >_ 1 

We see that ~n E H d (BI(0)) and I I~n 11 = 1 for all n = 1 ,2 , . . .  Here B1 (0) denotes 
the ball of radius 1 centered at the origin of R 2. Next let d be the inner radius 
of f2 and x0 E g2 such that Bd(xo) C g?. We then define the functions 
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which are in H01(t2), I1 o.tl = 1 and suppw, c Bd(Xo). 
We claim that there exists n such that 

2~r 
max{~(tw,)  �9 t >_ 0} < - - .  

OZo 

Suppose by contradiction that this is not the case. So, for all n, this maximum 
2Ir 

(it is indeed a maximum, in view of  Proposition 2.2) is larger or equal to - - .  
(Yo 

Let tn > 0 be such that 

2~r 
(4.1) max{~(twn) : t _> 0} = ~(tnw,) >_ - - .  

(2 o 

It follows readily from (4.1) and (H3) that 

(4.2) 4 >- 47r. 
oz o 

d 
Also at t = &, we have =-~b(twn) = 0, i.e. 

a t  

which implies that 

(4.3) 

tn -- i f ( x ,  tnWn)W~ = 0 , 

F 
t 2 > [ f ( x ,  tnwn)tnwn. 

JB d(Xo) 

Now, it follows from (H 7) that given e > 0 there exists s~ > 0 such that 

f ( x ,  s)s > (fl - e)e a~ Vs > se. 

So from (4.3) we obtain, for large n 

d 2 _ ,2 
(4.4) t2~ ~ ( f l - -e )Tr-~e~~176 

cv 2 

= ( f l  --  c ) T r d 2 e 2 1 o g n ( ~  -1 )  

which implies readily that tn is bounded. And moreover (4.4) together with (4.2) 
gives that t ff --~ 47r/ao. 

Next let us estimate (4.3) more precisely. Let 

A, = {x e Bd(XO) : tnWn(X) ~ re} , On = Bd(Xo)\a, , 

and break the integral in (4.3) into a sum of the integrals over A, and Bn. Using 
(H7) we estimate (4.3): 

(4.5) _> L 
d(xo) . 
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Since tnw,(x) < t~ for x E Bn, we see that the characteristic functions XB, --+ 0 
a.e. in Bd(xo) as n -~ cx). Hence, the two last integrals in (4.5) go to 0 as n ~ oo, 
in view of  the Lebesgue Dominated Convergence Theorem. Passing to the limit 
in (4.5) we obtain 

(4.6) 47r >_ ( f l - e ) l i m f  e ~~ >_ (3 - e) lim f e 4~2" 
0/.0 d Bd (XO) "J Bd (xo) 

The last integral in (4.6), denote it by In, is evaluated as follows: 

fB ( f l  1 (t"gl)2 } (4.7) In = dZ ,(0) e47rw2" = d2 ~71" e4rr • logn + 27r e 47r~!~ ~ rdr 
/n 

variables in the integral in (4.7), s = l o g ( ~ ) / l o g n ,  we obtain Changing 

l~ = d2 {zc + 27r togn fol ez~21~176 } 

So finally from (4.6) we get 

47r >_( /3 -e )dZTr( l+Mo)  , V e > 0 ,  
O~0 

which implies/3 _< 4/c~od2(1 +Mo), a contradiction to (H7). [] 

5. Proof of Theorem 1.4. 

271" 
It follows from the assumptions that �9 satisfies (PS)c for all c < - - ,  see 

O~0 
Corollary 2.1. The proof is accomplished by the use of the Generalized Mountain 
Pass Theorem. For that matter we have to select a co E W, Ilwll = 1, such that 
for some R > p, [the p of  Proposition 2.4], one has the set 

Q = {v+sw" Ilvll ~ R ,  v ~ V, 0 < s  < R }  

27r, 
with the properties: (Pl) ~lOQ <_ 0 and (P2) ~(u) < - -  Vu E Q. Property (pl) 

Og0 
follows easily from (H6) and Proposition 2.2; in fact this part is true no matter 
which co we choose in W. However, in order to get (P2) we choose a sequence 
con like in the proof of Theorem 1.3. We then need to show that there is n > p 
such that 

2Ir 
max{<_b(v+scon): Ilvll _<n, 0 < s  < n )  < - - .  

O~ o 
Assume, by contradiction, that this is not the case. So for all n this maximum is 

27r 
_> - - .  Let Un = v, + tncon be the point where this maximum is achieved. So 

Ot0 

27r 
(5.1) ~(Un) > - -  

O~0 
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( 5 . 2 )  Ilunll  2 - i f ( x ,  u.)un = 0 

where we have used the fact that the derivative of ~, restricted to V | I~con, 
is zero at un. A contradiction will be obtained after the proof of the following 
assertions. 

Assert ion 1. (vn), (tn) are bounded sequences. See proof later. 

So we may assume that Vn --+ Vo and tn ~ to. 

Assertion 2. vo = 0 and t 2 = --.47: See proof later. 
oz o 

In view of  Assertion 2, the part of the integral in (5.2) over Y2 \ Be(xo) goes 
to 0. 

So 

(5.3) lim l iun II 2 = lim Js fj(x, un)un 

The integral in (5.3), denote it by In, can be estimated as in the previous theorem 

(5.4) In >_ ( / 3 - e ) f B  e~~ + f 8  f (X,  U n ) U n - ( / 3 - e ) f ~  e ~176 
d(Xo) , 

Again the characteristic functions of Bn go to zero a.e, and consequently the 
last two integrals in (5.4) go to 0. Now given e > 0, there is c(e) such that 
Un2 __> (1 - -  e)t,za; n2 _ c(e)v 2. Since t~ ---+ 47r/C~o, we get for large n 

2 47r 2 
2 _ > ( 1  ~) --~n c(c)[Ivnll 2~ U n - -  _ _  

O ~0  

So the first integral in (5.4) is estimated from below by 

(5.5) (/3 - e)e -c(~)l Iv~ I1~oo ~d(xo) e(1 -e)247rc~ 

The integral in (5.5), denote it by Jn, can be evaluated as follows 

d 2 [ e(l-e)247r~2~ = d2~Tre(1-e) 2 logn (5.6) J ,  
J8 ~(0) [ n2 

f' + 27r e(l-e)22(log t)2(logn)-Ir dr 

Using a change of variables as before we prove that the second integral in (5.6) 
goes to 7rM. So Jn -* 7r]14. Hence 

(5.7) limJn > (/3 - e)d27r~l 

On the other hand, for any ~, 

lim Itunl] 2 < (1 + e)l im tn 2 = (1 +e )  47r 
oLo 
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So it follows from (5.3) and (5.7) that 

e) 47r (1+  - -  > ( / 3 - r  , M e > 0  
o~0 

which implies/3 < 4 / a0d2M,  a contradiction to (HS). [] 

Proof of Assertion 1. Given (tn) and (vn) as above, one of the following two 
possibilities has to hold: 
(i) either there exists a constant Co > 0 such that t./llv.II >_ Co, or 
(ii) there are subsequences, denoted again by (t,) and (v,), such that 

t./llv.II 4 0 .  
First, let us assume that (i) holds. Then there is a constant C > 0 such that 

Ilu.II <_ IIv.II + t .  < Ctn , 

which applied to (5.2) gives 

(5.8) z z ~ ~ 2 C t, ~ ][Un[[2 ~ f (X,Un)Un~(/35E) e c~~ , 
Bd/n (xo) d/n (Xo) 

1 
where (H8) was used. Let  m, = ~ ( l o g n ) V 2 .  So 

(v.(x) x ) 
+ 1 Vx E Bd/, (Xo). Un(X)=tnm . \  tn mn 

Hence, given e c (0, 1), we have u.(x) > (1 - e)t.mn for large n and x E 
Bd/.(xo). Going on with the estimate in (5.8) we obtain 

2 2  71" 2 2 2  
C tg _> (/3 - e)~-2e ~~ t.m., 

which can be written as 

(5.9) C 2 tg2 >_ ( /3_  e)Trd 2 e 2 1 ~ 1 7 6  . 

It follows readily that tn is bounded. Consequently I lVn II is also bounded in case 
(i). 

Next, we assume that (ii) holds. Then, for large n, we have & _< fly.It, which 
implies I lu. II < 21 Iv. II. Suppose by contradiction that I Iv. II ~ oo. As before, let 
s~ > 0 be such that 

f (x , s )s  >_ ( /3-  e)e ~~ ,Vs >_ &. 

It follows then from (5.2) 

fu f (X, Un)U, /3 - e fu, ea~ 
(5.10) 1 ~ 12 > 

.>_.,. Ilu.I - 4 _>.,.llv, II ~ 

Now in order to estimate the exponent in the last integral above we observe that 
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l'tn Vn tn ttn 

Ilv.[I xu~ = IIv.I----/+ ~ n  - iiv.llXU.<,c 

converges a.e. to ~ E V where ~ is the limit of v./llv.II in HJ ,  and I1~11 = 1. So 
using Fatou 's  lemma in (5.10) and recalling that we have assumed I lVn[[ ~ ~ ,  
we come to a contradiction. So IIv.l[ _< const, and, consequently, also t, is 
bounded. 

Before proving Assertion 2 we show the folllowing auxiliary result. 

Lemma 5.1. t 2 _> 47r/c~o. 

Proof First observe that wn converges weakly to zero in H d. So Ilunll 2 
to 2 + I[vo[I 2. On the other hand, we observe that un --~ Co in L1(~)  and the 
other hypotheses of  Lemma 2.1 are satisfied. So f f ( x , u , )  --, f f (x ,vo) ,  and 
consequently f F(x,u,)  ---, f F(x,vo). Using these informations in (5.1) we 
obtain 

2___~s0 -< l ( t 2 +  I Iv~ f F(x,vo) 

Using (H6) we get 

27r < 1(t2+[ivol12) - 1~ f 1 2 
~ o - 2  ~ ~ v~ t~ 

where we have used the variational characterization of Ak. 

Remark 5.1. We may assume that in every neighbourhood of t = 0, F(x, t) 
�89 2. Since otherwise f ( x ,  t) =- Akt in some neighbourhood of t = 0, and this 
would imply that e~k would be a solution of (L1) for small e > 0 and ~Pk an 
eigenfunction of - -A corresponding to the eigenvalue Ak. Hence if v0 -7' 0 then 
we actually would have t 2 > 47r/c~0. 

Proof of Assertion 2. We work again with the alternative set in the Proof of 
Assertion 1. We first observe that in view of lemma 5.1 the alternative (ii) cannot 
hold. So let us assume (i). We conclude readily from (5.9) that 

47r 4~r 
t~ ~o(I - e) 2 ~ t~ -< --s0 

This, in conjunction with Lemma 5.1, implies t 2 = 47r/c~0.Finally, as a conse- 
quence of Remark 5.1 we conclude that v0 = 0. [] 
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