Integral Equations 0378-620X/84/010001-09$01.50+0.20/0
and Operator Theory € 1984 Birkh&user Verlag, Basel
Vol.7 (1984)

HYPERINVARIANT SUBSPACES FOR BILATERAL WEIGHTED SHIFTS
Constantin Apostol (%)

Let H be a complex Hilbert space with the orthonormal

basis {en} and let U be an invertible bilateral weighted

neZz
shift defined by

The main result of this paper (Theorem 1) is a reduction of the
hyperinvariant subspace problem (see [4], Question 23, p. 109)

to the case when the sequences {(po...pk_l)l_k}w
)l/k}°o

k-1 °2

{Cp_yvvo k=1 are both convergent to either lUlSP or

]U—II;; . Note that if U is not invertible then by [4#], Corol-

lary (a), p. 91, U has a proper hyperinvariant subspace. The
technique we shall use, bears some similarity with a part of
Scott Brown's technique [11, but its essence is an analysis of
real sequences. A byproduct of this technique will be a new
proof of Theorem 6.2, [2].

(n)

( .
Let 6 = {Gkn)}keZ be defined by 6£n) =0, k ¥ n,

a(n)

o © 1 and put Ozy = lm{d(n)}nez. If 2Y(Z) denotes the

Banach space of all summable complex sequences endowed with the
norm

[1s]. = = J|s.|, s = {s.} e 21 (),
1 keZ k k' keZ

then obviously 20(2) is a linear manifold in ll(Z).

*
( )The author is grateful to the Mathematics Department of the

University of Michigan for its kind hospitality during the
summers of 1981 and 1982, when this paper was written.
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Further a = {an}nez will denote a sequence of posi-
tive numbers such that

. a
aniIUn]l > 1, sup §+n <w ., ne 7.

keZ k

For every f, g ¢ H define the sequence of complex numbers

L3(f,g)

a a
{Ln (f,g;)}neZ , L

o (f,g) = a_ <U"f,g>

Since we have

La(f,g) 0 <==> <Unf,g> =0, nel@
and by [4], Corollary (8), p. 91, rationally invariant subspaces

of U are hyperinvariant, if L%(f,g) = 0, £ $ 0, g % 0 then

czm{Unf}nez is a proper hyperinvariant subspace of U.

Let us put H' = Zm{en}nez . It is plain that whenever

f,g ¢ H', £ 4 0, g 4% 0 we have L%(f,g) # 0 but L*(f,g) « 22z
and in particular L(f,g) « ez,

Let n e Z, 0 < n < 1 be given. Because anl|Un]l > 1,
the set {k ¢ Z : ||La(ek, €1 rm> ‘ll > n} will be non-empty and
we may define

a .
I ln,n = 1nf{||La(e0,ek)||l + I[La(ek,eo)lll:

[lLa(ek,ek+n)I|l > n}

Consider the following two possibile properties for Le.
The (*) - property: For every f, g ¢ H', m 20, ¢ > 0

there exist u,v € H' sueh that

IA

Hull? = vl < e, ], L3 Er,ern ] < e,

<u,e = <v,ek> =0, -m< k < m.

k>

The (*%) - property: |LZ|
0 <n < 1.

PROPOSITION 1. If L® has the (%) - property then U has
a proper hyperinvariant subsgpace.

PROOF. Suppose that L® has the (%) - property and let

0 < e <1 be given. Since L% is linear in its first argument we

n,n 0 for every n e Z,
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can find fy, gy ¢ H', £} $ o0, gé $ 0 such that
[lLa(fD,gD){(l < 2. Because L? has the (%) =~ property we can

find by induction two orthogonal sequences {fk};zl c H' ,
o
13
{gk}k=l ¢ H' such that

2 2 k+1
[y 112 = g 112 < X4,
k k
ez £,z gl < 25 s o,
j=0 1" 32077
co o
If we put x = I f., y = I g. then x $# 0 and for every n ¢ Z
s _ ] - J
3=0 1=0
a a k k a k k
Lo Ge,yd | o= 2im]L2C 2 £., T go)] < tim L ¢z £, 2 g) 11y = 0.
ko 3=0 ] i=0 J ko0 j=0 J j=0 J
It follows La(x,y) = 0 and as we observed before U will have a
proper hyperinvariant subspace.
PROPOSITION 2. *%) -~ property implies (%) - property.

PROOF. Suppose that L% has the (%#) - property and let
f,g e H', m 2 0, € > 0, 0 < n < 1 be given. Since La(f,g) € ZO(Z)

we may suppose that we have Li(f,g) 0, ]k| > m. Let u, v be of

m m
z s V T ~ L o a, e , Where
k k=-m kT tk

the form u =

2 -1
@, = N Li(f,g)(Li(enk,enk+k)) and ny ¢ [~-m,m], ny +k ¢ [-m,m],

ny 4 nys ny * k 4 ny + i, k # j. If we put

k=1 k-1

u_p = f, Vo T 8 4y S f + LI a. e 4, v. T g - X

O.e .
j=-m g je-m JP5T

k ¢ [-m+l,ml, then an easy computation shows that we have
m

La(f+u, gtv) = (1-m) La(f,g) + :fm ak(La(enk, vk) - La(uk’enk+k

).

Let f', g' ¢ H' be given. The assumption |L2 = 0 easil
p n,n y



4 Apostol

implies that the set Sn.n = {i ez ||L%e, ’ej+n || = n} is
infinite and
. a
1im (|]L (eo,ej)lll + I]La(ej,eo)lll) = 0,
jeo,
Since we have
a3 4k -1, ~
sup =K < =, [[UTH T < b, < (U]
3 J )
we can check the relations
a
| L (e ,e3+n)|[l |12 (e;,e )I]l
sup < ® sup < ®, P, qQ € Z.
| L2 (eo,e]+n)||l |12 (eyse Y

This implies

lim ([ILa(eP,e
Jeon n
and because f' and g' are finite combinations of vectors in the

a
j+n)|]1 + | |L (ej,eq)]|l) =0

basis we also infer

}im (|| (F'es, D []La(ej,g')lll) =0

Jeo |
These obsepvations allow us to determine successively D_pseesesD
such that

a a a
| |L (enk,enk+k)||l >n, ||L (enk,vk)||l + ||L (uk,enk+k)[]1 < 1-m,
X € [-m,m], consequently
2 2 o 2
Hull® = [Ivl]® = 2 fo] IL (£,2)] = [, 1],

k=-m k-—
Because 1 -~ n can be made arbitrarily small the proof is

concluded.
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Let us put
. 1/k —— 1/k
r, = lim (pr...p ) R,= 1im (p,...p )
LR S (A 5 R S et (A S R
_ . 1/k B 1/k
r_ = lim (p_k...p_l) , R = 1im (p_k...p_l) s

oo T koo

- -1,-1 -
N L e » R = [Ulg,

By [4], Theorem 9, p. 67, we know that we have
o(U) = {A e C : r < |A] £ R} and obviously
[r_, R_Ju [r+,R+] c [r,R]
-n
LEMMA 1. Suppose r, < R, a, = R, ">
n < 0 and for every m 2 1, 0 < n < 1 put

_ .=n
n =0, a, = r,

k+ k
o = {k21: ||La(e0,e m, ||La(e0,ek)||l < "},

e [ 21

+ . . . .
If r, < R+ then am,n ig infinite.

PROOF. Assume r, <n R, . Using the relations
r (perepy_q)/E 1/%
+ . 0 k-1 . a
F ¢ lim R = 1lim ||L (eo,ek)Hl <
+ ko + koo
. + a ky -
we derive that the set ap ={k21: ||L (eo,ek)ll:L < n} is
infinite., If a; n is finite we can find k0 > 1 such that
b

L mi e a; s J 2 0. Because every k = k0 is of the form

k = k0 + mjk + Py» jk 2 0, 0 < P sm - 1 we deduce

k-
e )I] (llgll)Pk < Pk(llgll)Pk
0? k-pk 1 R R,

][La(eo,ek)||l < ||L%Ce °

and this implies

(o 0 )l/k
1= Tim —2 Rk—l = Iim ]|La(e0,ek)[|i/k < 7.
] + k3
This contradiction concludes the proof.
LEMMA 2. If r, <R, and a = R;n , n =20, a, = r;n,

n < 0, then L% has the (#%)-property.
PROOF. Let m = 1l, 0 < n < 1 be given and let 0 < ¢ < 1
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n < ™. By Lemma 1 we know that u; o is

b

such that r, < cR+,

3

k+ U k
T < ‘lLa(eank+m)l[1 = ]ILa(eO,ek)lll(ll§£l)m < c (ll%£l)m

+
k € a and
m,c

[[¥Cegoed 1L e ) = (g 5 k2 1,
we derive

1/k_ T+

1 R, <7

. 1/k .
2im llLa(eO,ek)IIl/ = ¢ <1, Lim ||La(ek,e0)[l

+ +
kea kea
m

o, + T

and in particular
liT (IILa(eO,ek)Hl + |lLa(ek,e0)l[1) = 0.

kea
m,c

Since we also have

o
L (eo’ek+m)||l

[|La(e0,ek)||l

a
L%(e +
N zc , k € a , we deduce
m,c

x>’ |11 2

lLalm n = 0 . But because obviously |L%| < ]Lalm m® W€

m,Mn ,C

proved that we have |L%| = 0.
m,n
Let V be the bilateral weighted shift defined by
Ve, = pil €47 » kK € Z and let b = {bk}keZ be defined by

K, k=0, D =R

b, = r X o

k
Mb(f,g) by

kX < 0. For every f, g ¢ H define

k

b b b
M (f,g) {Mk(f,g)}keZ > MP(f,g) = by <VT f,g>.

Then it is easy to check the relation |Mb] = | a|
m,n -m, "N

the first part of the proof, |LY] ooy -0 Since obviously
-m,

and by

, we deduce |[L%] = 0, for all n ¢ Z and this

a a
L%y = 117 -

m,n
concludes the proof.

LEMMA 3. If r_=R_=7p7, =R =1, v <t<R,
-Nn

a, =R "7, nz 0, a, = ™ n < 0 then L® has the (%%)-property.
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PROOF. Letm > 1, 0 < n < 1 be given and let ‘U denote

the image of U in the Calkin algebra. Using the obvious rela-

tions N .
_ _ m = m
R = [Ulg, = [Ulg, » [IUT] = |iTToL|U e |l s
we derive
| [u™e, || o
BT = k LuZll
im ||1%Ce_,e, . )], = %im = > 1.
|k|+w k?>“ktm 1 [k|+m R R

Since by our assumptions we can easily check that we have
- a a —_
‘kfig (L (eo,ek)H:L + ||L (ek,e0)||1) =0,

we duduce [La[m n = 0. The rest of the proof imitates the last
3

part of the proof of Lemma 2.

The reduction of the hyperinvariant subspace problem
for U, mentioned at the beginning, will appear as a consequence
of the following:

THEOREM 1. Suppose that [r_,R_1 v [r ,R ] Zs not a
stngleton set included in {r}u{R}. Then U has a proper hyper-
invariant subspace.

PROOF. If r, < R, we apply Lemma 2, Proposition 2 and
Proposition 1. If r_ < R_ we reduce to the preceeding case by a
unitary equivalence. If r_ = R_ ¥ r_ = R_ , then by [4J,
Theorem 9, p. 71, we have OP(U) U GP(U*) $ ¢ , and this obvi-
ously implies that U has a proper hyperinvariant subspace. The
leftover possibility is r_ = R_ = r, =R, =t, r <t <Rand
then we apply Lemma 3, Proposition 2 and Proposition J.

A positive result on hyperinvariant subspaces for U
is presented in [2], §6. We end this note with a new proof of
[2], Theorem 6.2.

THEOREM 2 (Chevreau - Pearcy - Shields). If
o(U) = {X ¢ C : ||U'_ll]-:L < |Aa] < ||U||} then U has a proper
hyperinvariant subspace.

PROOF. Applying Theorem 1 we can reduce to the
following nontrivial case

r_=R_=r =R =pr<R=[]U]] =1.
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If we put H = clm{ek}kzo’ H_ = ckm{ek}k<0, then the decomposi-

tion H = H_ + H_ determines the matrix representation

U %
U = . Since obviously max{|U
0 U

Weps 10_1p0 = 1,

making a unitary equivalence and passing to the adjoint, if

necessary, we shall assume |U

+|SP =1. Puta =1, n 20,
a, = r 2 », n < 0. For every n ¢ Z we have, as in the proof of
-y a _ . .
Lemma 3, iiﬁ | L ey, ek+n)||l = 1. But using the relations
a a rk
I|L (eo,ek)[|l + ||L (ek,eo)lll = Pger Py + PP ?
0 k-1
kz21l, r < P < 1, 1im P = 1, lim (pQ...pk l)l/k = r, we
ke Teroo HT
deduce ILa[n , = 0, for every 0 < n < 1. To conclude the proof
>

we apply Proposition 2 and Proposition 1.
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