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HYPERINVARIANT SUBSPACES FOR BILATERAL WEIGHTED SHIFTS 

Constantin Apostol(*) 

Let H be a complex Hilbert space with the orthonormal 

basis {en}ne Z and let U be an invertible bilateral weighted 

shift defined by 

= Pn Pn > 0 n e Z Ue n en+ I , �9 

The main result of this paper (Theorem i) is a reduction of the 

hyperinvariant subspace problem (see [4], Question 23, p. 109) 

�9 )l-k%~ 
to the case when the sequences {(P0"" Pk-I ~ k-I ' 

{(p_k...p_l)i/k}~k= I are both convergent to either IU}s p or 

IU-iI -I Note that if U is not invertible then by [4] Corol- 
sp 

lary (a), p. 91, U has a proper hyperinvariant subspace. The 

technique we shall use, bears some similarity with a part of 

Scott Brown's technique [i], but its essence is an analysis of 

real sequences�9 A byproduct of this technique will be a new 

proof of Theorem 6.2, [2]. 

Let 6(n) ~(n) k ( = 0, k # n, = t~ }keZ be defined by ~ n) 

(n) = i and put ~O(Z) s (n) ~i 6n = }ncZ" If (Z) denotes the 

Banach space of all summable complex sequences endowed with the 

norm 

llsill : Iskl, s - {sk}k  z 
keZ 

then obviously s is a linear manifold in s 

(~)The author is grateful to the Mathematics Department of the 
University of Michigan for its kind hospitality during the 
summers of 1981 and 1982, when this paper was written. 
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Further a = {an}n�9 Z will denote a sequence of posi- 

tive numbers such that 

a 

anllUnll--..., a l ,  sup k+n < = , n �9 Z. 
k�9 a k  

For every f, g �9 H define the sequence of complex numbers 

L a (f,g) = a La(f,g) = {L~ (f'g)}n�9 ' n n 

Since we have 

<unf~g> 

La(f,g) = 0 <==> <unf,g> = 0, n �9 Z 

and by [4], Corollary (6), p. 91, rationally invariant subspaees 

of U are hyperinvariant, if La(f,g) = 0, f # 0, g # 0 then 

es149 is a proper hyperinvariant subspace of U. 

Let us put H' = s149 Z It is plain that whenever 

s 
f,g �9 H', f # 0, g # 0 we have La(f,g) # 0 but La(f,g) �9 (Z) 

and in particular La(f,g) �9 s 

Let n e Z, 0 < q < i be given. Beeause anllUnll z i, 

the set {k �9 Z : llLa(ek , ek+m, II 1 ~ ~} will be non-empty and 

we may define 

ILaln,q = inf{llLa(eo,ek) ill+ IILa(ek,eO)111 : 

IILa(ek,ek+n)lll ~ q} 

Consider the following two possibile properties for La. 

The (*) - property: For every f, g ~ H', m ~0, ~ > 0 

there exist u,v �9 H' such that 

II II 2 = llvll 2 _< llLacf,g)lll , llLa(f+u,g+v)lll < 

<u,ek> = <v,ek> = 0 , -m -< k -< m. 

The (**) - property: ILaln,q = 0 for every n ~ Z, 

O<q<l. 

PROPOSITION I. ~ L a has the (*) - property then U has 

a proper hyperinvariant subspace. 

PROOF. Suppose that L a has the (*) - property and let 

0 < E < I be given. Since L a is linear in its first argument we 
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' ~ 0 such that can find f0' go e H', f6 ~ 0, g0 

I ILa(f0,go)I Ii < e 2. Because h a has the (*) - property we can 
co 

find by induction two orthogonal sequences {fk}k=l c H' , 

{gk}k= 1 c H' such that 

l lfk+lll 2 : l lgk+ifJ2 < k+l , 

k k 
IILa( Z fj, __z0gj)II 1 < e 2(k+l) , k ~ 0, 

j--O j 

cO oo 

If we put x = j~:O fJ' Y =j:O ~ gj then x ~ 0 and for every n �9 Z 

k k k k 

k§ 3= j 0 g ); -< s IIL a ,j II 1 = 0. 

It follows La(x~y) = 0 and as we observed before U will have a 

proper hyperinvariant subspace. 

PROPOSITION 2. (**) - property implies (*) - property. 

PROOF. Suppose that L a has the (**) - property and let 

f,g ~ H', m >- 0, g > O, 0 < D < I be given. Since La(f,g) �9 Z0(Z) 

we may suppose that we have Lk(f,g) = 0, Ikl > m. Let u, v be of 

m m 

the form u = k=-mZ ~k en k' v = - k---mZ ~k enk+k' where 

ek2 : n Lk(f,g)(Lk(enk,enk+k))-I and n k ~ [-m,m], nk+k % [-m,m], 

n k # nj, n k + k # nj + j, k # j. If we put 

k:-i k-I 
= f, v = g, u k : f + Z ~. e v k - Z ~.e 

U-m -m j=-m 3 nj' = g j=-m 3 nj+j, 

k �9 [-m+l,m], then an easy computation shows that we have 

La(f+u, g+v) = (l-n) La(f,g) + 
m 

ak(La(enk, v k) - La(uk,enk+k)). 
k-- -m 

Let f', g' e H' be given. The assumption ILal = 0 easily 
n~n 
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implies that the set n}q 

infinite and 

lim (l]La(eo,ej)ll2 

Je~ n 

Since we have 

aj+k 
s u p  < ~ a .  

j 
w e  c a n  c h e c k  t h e  r e l a t i o n s  

: {j ~ z ; IIL~Cej,ej+n) ll e n} is 

+ llLa(ej,eo)[ll ) : 0. 

llu-111 -m ~ Pj s IIuII 

sup llLa(ep 'ej+n) l[l < ~ sup IILa(ej'eq) II 

J llLa(eo'ej+n)lll J llLa(ej'eo) I1 

This implies 

< ~, p, q e Z. 

lim (llLa(ep,ej+n) lll+ llLa(ej,eq)l 1 ) = 0 

n~n 

and beeause f' and g' are finite combinations of vectorr in the 

basis we also infer 

l i m  ( l l L a ( f ' , e j + n )  l l  I + I I L a ( e j , g ' ) l l l  ) : 0 
j co  

n~n 

These observations allow us to determine successively n_m , .... ,nm 

such that 

llLa(enk,enk+k) lll ~ ~, l]La(enk,Vk) lll+ llLa(uk,enk+k) l]l< l-q, 

k e [-m,m], consequently 

i l u l l 2  = i l v l l 2  = m= I~kl 2 ~ mz Ink~( f ,g) l  = I I L a ( f , g ) l l m  
k=-m k=-m 

Because 1 - D can be made arbitrarily small the proof is 

concluded. 



Apostol 5 

Let us put 

= . , = )i/k 
r+ lim (P0"" Pk-I )I/k R+ ~ (p0...Pk_l , 

k§ k§ 

r_ = lim (p_k...D_l)I/k, R_ = ~ (p_k...p_l)I/k, 
k§ k§ 

r = IU-II -I R : IUIs p 
sp 

By [4], Theorem 9, p. 67, we know that we have 

o(U) = {l r C : r ~ Ill ~ R} and obviously 

[r_, R_] u [r+,R+] c [r,R] 

LEMMA i. Suppose r+ < R+, a n = R~ n, n a 0, a n = r~ n, 

n < 0 and for every m ~ i, 0 < ~ < i put 

+ k+m 
~m,N : {k a 1 : IILa(e0,ek+m) IIk ~ , llLa(e0,ek)IIl s ~k}. 

+ 
If r+ < n R+ then am, ~ is infinite. 

PROOF. Assume r+ < n R+ . Using the relations 

r+ (P0...Pk_I)I/k I/k 
--R+ = k+~lim R+ : lim IILa(e0,ek)lll < n 

+ ={k > 1 : IILa(e0,ek)IIl s n k} is we derive that the set a 
+ 

infinite. If am, ~ is finite we can find k 0 a 1 such that 

k 0 + mj e a~ , j ~ 0. Because every k ~ k 0 is of the form 

k = k 0 + mJk + Pk' 3k z 0, 0 s Pk s m - 1 we deduce 

[ lLa(e0,ek) lll s I ILa(e0,ek_Pk)I Ii (~U~) pk~+ S n k-Pk( ) 

and this implies 

(P0 "Pk-i )I/k "" i/k 
1 : ~ = ~ I ILa(e0,ek) Ill s ~. 

k+~ R+ k§ 

This contradiction concludes the proof. 

LEMMA 2. If r+ < R+ and a n = R$ n , n ~ 0, a n = r~n, 

n < O, then L a has the (**)-property. 

PROOF. Let m ~ i, 0 < n < i be given and let 0 < c < i 
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+ is such that r+  < oR+,  ~ ~ c m. By Lenuna 1 we know t h a t  ~m,c  

infinite and using the obvious relations 

k+m L a < llLa(e0~ek) l Ii(U~_~) m ~ ck(~+ ) m , c ~ II (eo,ek+m) l[ 1 - ~+ 

+ 
k e ~ and 

m~c 

IILa(eo'ek) IIlIILa(ek'eO)Ill : (~)k k > l 9 -- ) 

we derive 

i/k 
tim llLa(e0'ek )I 1 = c < I, Jim 

+ 
k ~  c ke~ D 

and in particular 

Jim (I ILa(e0,ek) l I 1 + I ILa(ek,e0)II1 ) = 0. 
+ 

ke~ m,c 

Since we also have 

i/k r+ 
I ILa(ek,eO)lll : ~ < 1 

IILa(eo,ek+m) l Ii 
: + 

c m, k ~ I ILa(ek'ek+m) l II I ILa(eo,ek) l Ii m,c 

�9 s m' we = 0 But because obviously ILalm,N ILalm,c 
ILalm,c m 

proved that we have ILalm~ : 8. 

Let V be the bilateral weighted shift defined by 

Ve k : p~l ek+l , k e Z and let b = {bk}ke Z be defined by 

= k b k r~, k a 0, b k : R+, k < 0. For every f, g ~ H define 

Mb(f,g) by 

Mb(f,g) : {~(f'g)}k~z ' M~(f,g) : b k <v ~ f,g>. 

= Then it is easy to check the relation IMblm,N ILal_m,~ and by 

the first part of the proof, ILaI_m~n = O. Since obviously 

In~10,n < Inalm,n' we deduce ILaln,~ = 0, for all n e Z and this 

aoncludes the proof. 

LEMMA 3. If r_ = R = r+ = R+ = t, r < t < R, 

= R -n n > O, a = r -n n < 0 then L a has the (**)-property. 
an ' - n ' 

, we deduce 
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PROOF. Let m ~ i, 0 < n < I be given and let U denote 

the image of U in the Calkin algebra. Using the obvious rela- 

tions 

R = IUl s  p = IUIs  p , I l u m l ]  = z - T { I I u  m e k l i  , 
Ikl§ 

we d e r i v e  

IILa(ek , II : ~-~ I I u ~ % l l  IumII 
I k l + ~  ek+m) l Ikl+~ R m R m 

-> i. 

Since by our assumptions we can easily check that we have 

~m (I ILa(e0,ek) l Ii + I ILa(ek,e0)l Ii ) = 0, 
Ikl+" 

we duduce [Lalm,n 0. The rest of the proof imitates the last 

part of the proof of Lemma 2. 

The reduction of the hyperinvariant subspace problem 

for U, mentioned at the beginning, will appear as a consequence 

of the following: 

THEOREM i. Suppose that [r ,R ] u [r+,R+] is not a 

singleton set inoluded in {r}w{R}. Then U has a proper hyper- 

invariant subspace. 

PROOF. If r+ < R+ we apply Lemma 2, Proposition 2 and 

Proposition i. If r_ < R_ we reduce to the preeeeding case by a 

unitary equivalence. If r_ = R_ # r+ = R+ , then by [4], 

Theorem 9, p. 71, we have o (U) u o (U*) # ~ , and this obvi- 
P P 

ously implies that U has a proper hyperinvariant subspace. The 

leftover possibility is r_ : R_ = r+ = R+ = t, r < t < R and 

then we apply Lemma 3, Proposition 2 and Proposition ]. 

A positive result on hyperinvariant subspaces for U 

is presented in [2], w We end this note with a new proof of 

[2], Theorem 6.2. 

THEOREM 2 (Chevreau - Pearcy - Shields). If 

o ( u )  : {m ~ c : I I u - l l 1 - 1  ~ Iml ~ I I u l l }  then U h a s  a proper 

hyperinvariant subspace. 

PROOF. Applying Theorem i we can reduce to the 

following nontrivial case 

r_ = R_ = r+ = R+ : r < R = IIUII = I. 
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If we put H+ = cZm{ek}km0, H_ = cs then the decomposi- 

tion H : H+ + H_ determines the matrix representation 

U+ * 

U = Since obviously max{IU+Isp , IU_Is p} = i, 

0 U 

making a unitary equivalence and passing to the adjoint, if 

IU I = i, n > 0, necessary, we shall assume + sp = I. Put a n 

-n 
a n = r , n < 0. For every n e Z we have, as in the proof of 

Lemma 3, ~ llLa(ek , ek+n) ll I = i. But using the relations 
k§ 

k 
,,,,llLa(eo,ek) Ill+ ,,,,LILa(ek,eO)lll = PO'''Pk-I + r , 

Po..-Pk_l 

k ~ I, r ~ Pk ~ i, i--~ Pk = i, lim (p0...Pk_l)I/k = r, we 
k§ k§ 

deduce ILaln,n = 0, for every 0 < ~ < i. To conclude the proof 

we apply Proposition 2 and Proposition i. 

i. 

2. 

3. 
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