
The Journal of Supercomputing, 8, 263-294 (1994)
�9 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Incomplete Hypercubes: Algorithms and Embeddings
ALFRED J. BOALS, AJAY K. GUPTA, AND NAVEED A. SHERWANI*
Department of Computer Science, Western Michigan University, Kalamazoo, MI 49008-5021

(Received June 1992; final version accepted June 1994.)

Abstract. The hypercube, though a popular and versatile architecture, has a major drawback in that its size must
be a power of two. In order to alleviate this drawback, Katseff [1988] defined the incomplete hypercube, which
allows a hypercube-like architecture to be defined for any number of nodes. In this paper we generalize this defini-
tion and introduce the name composite hypercube. The main result of our work shows that these incomplete archi-
tectures can be used effectively and without the size penalty. In particular, we show how to efficiently implement
Fully Normal Algorithms on composite hypercubes. Development of these types of algorithms on composite hyper-
cubes allows us to efficiently execute several algorithms concurrently on a complete hypercube. We also show
that many host architectures, such as binary trees, arrays and butterflies, can be optimally embedded into com-
posite hypercubes. These results imply that algorithms originally designed for any such host can be optimally
mapped to composite hypercubes. Finally, we show that composite hypercubes exhibit many graph theoretic proper-
ties that are common with complete hypercubes. We also present results on efficient representations of composite
hypercubes within a complete hypercube. These results are crucial in task allocation and job scheduling problems.

Keywords. Hypercube, algorithms, incomplete hypercubes, graph embeddings.

1. Introduction

The hypercube has emerged as a popular topology for parallel machines, and several hyper-
cube machines (e.g., Intel iPSC and N C U B E) are commercia l ly available. The popular i ty
of this architecture is due to its regular structure and its rich interconnection topology. These

propert ies allow for the development of s imple and efficient algori thms for node- to-node
communicat ion and broadcasting, which are the building blocks for other parallel algorithms.

However, the hypercube requires the n u m b e r of nodes to be a power of two. In addit ion,
to take advantage of the symmetry in the hypercube topology, it is usual ly assumed that
the hypercube is complete. In practice, due to budgetary constraints or node failures, it
may not always be possible to have a complete architecture. This frequently happens while
upgrading an existing architecture to the next dimension. For example, if a f ive-dimensional
32-node hypercube is upgraded, an addit ional 32 nodes are needed before any algori thm
requir ing nodes in the range of 33 to 64 may be run.

In order to address this unrealistic node requirement, two architectures have been presented
[Chen and Tzeng 1989; Katseff 1988; Tien and Yang 1991; Tzeng et al. 1990]. Katseff [1988]
descr ibed an incomplete hypercube IH(m) consist ing of nodes labeled 0, 1 , m - 1

*This research was supported in part by the National Science Foundation under grant USE-90-52346. A preliminary
version of this work appeared in the 5th International Parallel Processing Symnposium, May 1991.

264 A�9 BOALS, A.K. GUPTA, AND N.A. SHERWANI

of an n-node complete hypercube Qn along with their interconnections in Qn. He showed
that routing and broadcasting algorithms may be performed on IH(m) in a manner analogous
to that of a complete hypercube. Tzeng et al. [1990] described a more restricted definition
of IH(m) by considering only those situations when m = 2 d-1 + 2 d-2 if n = 2d; hence
this architecture may be viewed as a composition of two complete hypercubes Qn/2 and

Qn/4.
We generalize the notion of a composition of several smaller sized hypercubes to obtain

an arbitrary-sized architecture, which we will call a composite hypercube CH(m). A com-
posite hypercube can be defined for any arbitrary m and can be easily upgraded to a com-
plete hypercube. We show that this concept allows the algorithms to work efficiently even
if the hypercubes are incomplete. Recall that a d-dimensional hypercube Qd has 2 a nodes
and every node in Qd is labeled as bd_lbd_2 . . . bo where b s ~ {0, 1} for 0 < s < d - 1.
A node with label b~-i . �9 �9 b0 is connected to d nodes having labels bd-1 �9 �9 �9 bs+lDsbs-1

� 9 b 0, for 0 < s < d - 1. Equivalently, if n = 26 then the nodes of Qa can also be
identified with integers 0, 1, . . . , (n - 1) so that if a pair of nodes i and j are connected,
then i - j = __+2 p for some p > 0. We proceed by giving a recursive definition of a com-
posite set that we will use to define composite hypercubes.

Definition 1. A set o f nodes S in a hypercube Qa is called a composite set i f

1) ISI = 2r for some O <- r < d or
2) there exists a positive integer k <_ d such that 2 k-1 < I S I < 2k, and a k-dimensional

hypercube Q~ in Qa containing S as a subset o f its nodes with the property that Q~ con-
tains two disjoint (k - 1)-dimensional hypercubes Q~ 1, Q~-I such that the node set
V ~ o f Q ~ 1 is a subset o f S and S - V ~ is a composite set in Q~-I"

Note that in the above definition of a composite set the hypercube Qk is unique, but
the hypercubes Q ~ 1, Q~-l are not necessarily unique. However, as will be shown by
Lemma 1 the hypercube Qa can be relabeled so that the vertices of a composite set have
consecutive labels.

A composite hypercube is defined to be a subgraph of a hypercube that is induced
by some composite set S. (Note that an induced graph on a set S of nodes in a graph
G is the graph whose node set is S and whose edge set consists of those edges in G
having both ends in S.) Figure 1 shows an example of a composite hypercube with 13
nodes. Note that composite hypercubes are a generalization of hypercubes as they are
defined for any number of nodes. It is easy to see that the architecture defined by the
schemes in [Katseff 1988], [Tien and Yang 1991], and [Tzeng et al. 1990] are specific
cases of composite hypercubes.

In order to evaluate the effectiveness of a new architecture, one needs to at least inves-
tigate the underlying graph theoretic properties, graph embeddings and the programma-
bility of the architecture. Several graph theoretic properties, such as diameter, connectiv-
ity and maximum degree, influence the maximum routing distance, stability under node
failure and ease of fabrication due to a limited number of I/O ports per processor. Graph
embeddings indicate various simulation capabilities of the architecture.

INCOMPLETE HYPERCUBES: ALGORITHMS AND EMBEDDINGS 265

t __ - - !

t t

t.. t

Figure 1. A composite hypercube of 13 nodes. Complete hypercubes forming the composite hypercube are
shown in dashed boxes.

In this paper we first investigate several graph theoretic properties of composite hyper-
cubes. We show that with respect to these properties composite hypercubes compare
very well with hypercubes. We also describe an efficient algorithm to recognize a com-
posite hypercube in a hypercube. This algorithm is critical in task allocation and sched-
uling algorithms using composite hypercubes, which are crucial for the development
of efficient algorithms on the composite hypercubes.

We then investigate algorithmic properties of composite hypercubes. In particular,
we show how to efficiently implement fully normal algorithms (FNA) on composite
hypercubes. We also investigate the size/performance tradeoff for composite hypercubes.
Empirical evidence is presented to show that the number of extra processors needed
by a composite hypercube to effectively compete with a complete hypercube decreases
logarithmically, as we increase the size of the hypercube.

We finally investigate efficient embeddings of various popular architectures into com-
posite hypercubes. We present optimal embeddings of complete binary trees, meshes,
butterflies and cube-connected cycles into composite hypercubes. These results, for the
most part, are similar to the results on embeddings into complete hypercubes and hence
show that composite hypercubes compete very well with complete hypercubes.

For some related results and previous work the reader may refer to [Chan and Lee
1993; Chen and Shin 1988; Chen and Tzeng 1989; Graham et al. 1993; Gordon and
Stout 1988; Hastad et al. 1987, 1989; Kandlur and Shin 1988; Katseff 1988; Lee and
Hayes 1988; Tien and Yang 1991; Tzeng 1990; Tzeng et al. 1990]. In [Hastad et al. 1987]
we are shown how to reconfigure a hypercube in case some nodes are faulty. This is
accomplished by the embedding of a complete hypercube into the one with faults. The
problem of routing in the presence of faults has been investigated in [Hastad et al. 1989].
Since faults are considered with some probability, the algorithms are probabilistic. Several
other papers consider routing, allocation and broadcasting problems on a faulty or "in-
jured" hypercube [Chan and Lee 1993; Chen and Shin 1988; Gordon and Stout 1988;
Kandlur and Shin 1988; Lee and Hayes 1988].

266 A.J. BOALS, A.K. GUPTA, AND N.A. SHERWANI

2. Properties and Recognition of Composite Hypercubes

In this section we investigate the graph properties of composite hypercubes, in particular,
graph theoretic properties that are crucial in evaluating a parallel architecture. Graph
theoretic properties of hypercubes have been extensively studied [Harary et al. 1988].

Let CH(m) be a composite hypercube of m nodes, 2 k-I < m _< 2 k. Let IH(m) be an
incomplete hypercube as defined in [Katseff 1988]; that is, let V and E be the sets of
nodes and edges in IH(m). Then IH(m) is an induced subgraph of a complete hypercube
Qk with V = {0, 1 m - 1}. Recall that the node set of Qk is {0, 1, . . . , 2 k - 1}.
We next show that CH(m) and IH(m) are isomorphic. Because of this result, throughout
the rest of this paper we refer to composite hypercubes as incomplete hypercubes and
vice versa.

L e m m a 1. An m-node composite hypercube CH(m) is isomorphic to an m-node incom-
plete hypercube IH(m) for m > O.

Proof. Let 2 d-1 < m < 2 d for some d > 0. Since CH(m) and IH(m) both are sub-
graphs of a complete hypercube Qd, it is sufficient to show that the nodes of CH(m) can
be labeled (and relabeled) so that they are sequentially numbered from 0 to m - 1. Note
that by the definition of composite hypercubes, CH(m) consists of several smaller com-
plete hypercubes of dimensions dl, d2 dk, where, m = 2 dl + 2 d2 -t- . . . + 2 ak

a n d d l > d2 > . . . > dk.
We prove the lemma by using induction on k. For the base case, note that m = 2dk;

then clearly CH(m) is isomorphic to IH(m). Now let us assume by induction hypothesis
that nodes of CH(m - 2 dl) can be labeled from 0 to m - 2 dl - 1. We need to show
that nodes of CH(m) can be labeled from 0 to m - 1 to form an IH(m). In particular,
we need to label the nodes of the dl-dimensional hypercube (which is not yet labeled)
and relabel the nodes of CH(m - 2dl).

To find a valid labeling for the nodes of the dl-dimensional hypercube, we project the
labels of CH(m - 2 al) onto the nodes of the dvdimensional hypercube. That is, every
node of the dl-dimensional hypercube that is adjacent to a node v in CH(m - 2d0 is
given the label v. Since this partial labeling of the dl-dimensional hypercube is sequen-
tial (i.e., m - 2 al out of the 2 dl nodes are labeled from 0 through m - 2 dl - 1), we
can easily complete it to label all the nodes in the dl-dimensional hypercube. Thus all
the nodes of the dl-dimensional hypercube are labeled from 0 to 2 a~. The labels of the
nodes in CH(m - 2 dl) are changed by adding 2 d~ to their labels. That is, all the nodes
in CH(m - 2 al) are now relabeled from 2 dl to m - 1. Therefore, all nodes of CH(m)
have now been labeled from 0 to m - 1. This completes the proof. �9

We now compute some of the graph theoretic properties of CH(m). These properties
include diameter, node and edge connectivity, chromatic number, node and edge clique
number, and so on. We briefly define these properties in the appendix, and a reader
may refer to any standard graph theory text book such as [Behzad et al. 1979] and [Bondy
and Murthy 1976] for detailed definitions. Observe that when m is a power of two, CH(m)
is equivalent to a hypercube a l o g m . Furthermore, i f m = 2 k~ + 2 ~2 + . . . + 2 kr with

INCOMPLETE HYPERCUBES: ALGORITHMS AND EMBEDDINGS 267

kl > k2 > �9 > kr and [_log m[> r ___ 0, then CH(m) contains r disjoint complete
hypercubes where the i-th hypercube has dimensions k i. Let k be the smallest integer
such that Qk contains CH(m) as a subgraph and let m = bk-1 bk-2 �9 �9 �9 bo with bk-1 = 1.
We thus have k = Flog mq.

I .emma 2. The number of edges e in a composite hypercube CH(m) is

j bj2 .
j=0 i =0

Proof. The number of edges in CH(m) is the maximum number of edges in an induced sub-
graph of Qk having m nodes. The first term in the formula counts the number of edges in
the disjoint hypercubes Qjs that are contained in CH(m). The second term counts the num-
ber of edges that connect a hypercube Qj with a hypercube Qi, for all possible pairs j and
i. An induction argument easily proves the formula for e and hence we omit it. �9

Lemma 3. Let [u, v] be a diametrical pair of CH(m). Then there exists a partition of Qk
into 0~ and 01-1 such that

1. node u is a node of Q ~ 1 and node v is a node of Q~_j, and
2. the distance between u and v is k.

In other words, the diameter d of CH(m) is k = [-log m] .

Proof. This lemma follows by a routine induction on k and the following two observations
about hypercubes Qk: (1) The diameter of Qk is k, and (2) for every node x of Qk, there
exists a unique node y such that [x, y] is a diametrical pair of Qk. �9

It is well known that a hypercube Qk contains a Hamiltonian cycle. We can easily show
that the composite hypercube CH(m) contains a Hamiltonian cycle when m is an even in-
teger and it contains a Hamiltonian path when m is an odd number. Combining this with
the observation that the CH(m) is a bipartite graph, all the other properties of CH(m) follow
immediately. We tabulate these properties in Table 1. In order to compare these properties
with the ones of the hypercube, we also list the properties of the hypercube Q 0og m7 in
the same table. As we can see from the table, composite hypercubes retain almost all prop-
erties of a hypercube. However, we must note that the drawbacks with composite hyper-
cubes are their lack of symmetry and regularity. Experience has shown that these drawbacks
can be overcome, and many algorithms designed for hypercubes can be easily modified
to run on composite hypercubes [Katseff 1988; Prabhalla and Sherwani 1990; Saad and
Schultz 1988].

We conclude this section by briefly considering the problem of efficiently recognizing
a free composite hypercube in a complete hypercube. Given a complete hypercube Qn of
dimension n and a description of the nodes that have already been allocated to perform
certain tasks, the composite hypercube recognition problem is to find m free nodes forming

268 A.J. BOALS, A.K. GUPTA, AND N.A. SHERWANI

Table 1. Comparison of composite hypercubes and hypercubes.

Parameter Composite Hypercube CH(m) Hypercube Q flog mq

Diameter [-log m 7 [-log m7

Min. node degree ~k-I j=0 bj + i - 1 [-log m]

(i is smallest integer such that b i = 1)

Max. node degree [-log mJ [-log mq

Node connectivity K 1 _< K _< [-log mq Flog m~

Edge connectivity k 1 _< X _ [-log m~ I-log m7

Max. clique size 2 2

Node chromatic number 2 2

Edge chromatic number [-log mq I-log mq

 ove ingnum r

Independence number [2 1 2 [l~ mq-I

Girth 4 (for m > 3) 4

Circumference 2 L 2 j 2 Fl~ m]

I n] 2 [lOg m] -1 Node clique number ~

Edge clique number e = no. of edges no. of edges

a composite hypercube CH(m) in Qn, for any given m < 2 n. This problem is of critical
importance in task allocation and scheduling algorithms and is similar to hypercube recogni-
tion problems [Chen and Shin 1987]. The exponential number of subcubes in a hypercube
makes this problem computationally difficult. Furthermore, the dynamic nature of allocating
and deallocating tasks to nodes in a hypercube algorithm leads to the fragmentation of the
hypercube; that is, a total of m free nodes may be available but they may not form a com-
posite hypercube. An allocation strategy minimizing fragmentation depends on an efficient
recognition algorithm. We simply note here that the buddy tree strategy for the hypercube
recognition problems [Chen and Shin 1987] can be extended to efficiently solve the com-
posite hypercube recognition problem as well. For further details we refer the interested
reader to [Boals et al. 1992].

INCOMPLETE HYPERCUBES: ALGORITHMS AND EMBEDDINGS 269

3. Algorithms for Composite Hypercubes

Composite hypercubes are subgraphs of complete hypercubes, and it may initially appear
that many algorithms for complete hypercubes should carry over directly to composite hyper-
cubes. However, since the number of processors in a composite hypercube is arbitrary (not
necessarily a power of two) and the degrees of the processors may not be equal, some of
the structural symmetry of the hypercube is lost. Many known algorithms for hypercubes
depend on the regularity or symmetry of complete hypercubes; in general, these algorithms
cannot be used for composite hypercubes. Therefore, new algorithmic techniques need to
be developed for composite hypercubes.

In this section we present algorithmic results for composite hypercubes by presenting
a class of algorithms called fully normal algorithms (FNA). First we describe FNAs and
their implementation on complete hypercubes. Next we develop FNAs for composite hyper-
cubes. This is based on a mapping scheme that allocates subproblems to processors such
that data flow is maintained and no processor is deadlocked. We prove that fully normal
algorithms on composite hypercubes can achieve a performance that is very close to the
theoretical optimum for a wide range of composite hypercube sizes. Finally, we investigate
the size/performance tradeoff for composite hypercubes and empirically show that the num-
ber of extra processors needed by a composite hypercube to effectively compete with a
complete hypercube decreases logarithmically, as we increase the size of the hypercube.

3.1. Fully Normal Algori thms

In this section we give a brief overview of an FNA for complete hypercubes, which will
serve as a basis for the development of an FNA for composite hypercubes.

FNAs are based on dimension collapsing. The idea is to transfer data from one-half of
the hypercube to the other half across a dimension. The given problem is partitioned into
several subproblems that are assigned to the processors. In a computation cycle the proc-
essors solve their assigned subproblems and then send their results across a dimension
and the processors that become free are assigned new subproblems.

In a hypercube Qa, we say that dimension t, 0 < t < d - 1 is collapsed if each proc-
essor P i with address ad_lad_ 2 . . . at+ 11 at_ 1 . . . ao sends its results to processor P j with
address ad-laa-2 �9 �9 at+lOat-1 �9 �9 �9 ao. Processor Pi is referred to as the t-th dimensional
neighbor of processor Pj. For a hypercube Qd, a sequence of d steps in which successive
dimensions 0, 1 d - 1 are collapsed is called a computation cycle. For example,
in Q3, when dimension 0 is collapsed, processors l, 3, 5, 7 send their data to processors
0, 2, 4, 6, respectively. Next we collapse dimension 1 and processors 2 and 6 send their
data to processors 0 and 4, respectively. Finally, processor 4 sends its data to 0, thus com-
pleting the computation cycle. An example of this data flow is shown in Figure 2.

However, if the number of problems is greater than the number of processors in the hyper-
cube, then we need to assign new problems to processors 1, 3, 5, 7 when they are released
after the first step. A processor is considered released if it completes its computation, com-
municates its result to its dimensional neighbor, and is free to accept another problem for
computation. In assigning new problems to released processors, we must make sure that

270 A.J. BOALS, A.K. GUPTA, AND N.A. SHERWANI

101 A101

(2 1 U 0 I I o U - 001 (2,3 001

010 000 310 000
(a) (b)

A1o1

U - ~ 0 . 0 1 0 000-13)U 001 ~ / / ~ l . 1 7 U 0 1 0 000 -001

(c) (d)

Figure 2. Data flow, when the number of problems is less than or equal to the total number of processors.

new problems also converge and no processor is deadlocked waiting for data. Reassignment
schemes were developed for complete hypercubes in [Roy et al. 1989]. Here we just outline
the algorithm and state the results. Informally, the algorithm works by partitioning a prob-
lem P into several subproblems and allocating the subproblems to the available processors
on a dynamic basis. Any processor terminates its repeat-until loop if it does not have a sub-
problem to solve and it does not receive a partial solution from its dimensional neighbor.
These two conditions basically reflect each processor's role as a sender or a receiver of sub-
problems, respectively. The important point is that the direction of the process flow must be
maintained. An example of the allocation process is shown in Figure 3. It is shown in [Roy
et al. 1989] that the algorithm presented above is optimal and produces correct results.

A fully normal algorithm consists of a sequence of computational cycles and halts when
the final solution is in node 0. Fully normal algorithms represent a general class of algorithms
used in parallel computation to solve several types of problems on hypercubes. For exam-
ple, several graph problems like bipartiteness, fundamental cycles, bridges, connected com-
ponents, and minimum cost spanning forests [Das et al. 1990] use fully normal algorithms.
Fully normal algorithms have also been used in other areas, such as routing and compac-
tion in VLSI design and computational geometry [Roy et al. 1989].

It is easy to see that an FNA for K subproblems running on a d-dimensional hypercube
would terminate in d steps if K _< 2 d. Since half of the processors are reassigned new
subproblems in each step, the number of steps required for K > 2 d is simple d + FK -
2 d / 2 d - l ~ .

INCOMPLETE HYPERCUBES: ALGORITHMS AND EMBEDDINGS 271

) 01 >)101

I / O i l [/ OOI I / 0 1 1 [/ 001

'~
(a) (b)

 10,

~ 0 0 1] / /~011 [j ,~O01

2 ,+2o00 "-'010 '-'010 "-'000

(c) (d)

Figure 3. Data flow, when the number of problems is greater than the number of processors.

3. 2. Fully Normal Algorithms for Composite Hypercubes

There are two fundamental problems that need to be resolved for the development of a
fully normal algorithm for composite hypercubes.

1. The number of available processors: The first problem is the determination of the number
of released processors in a given step i of the computation cycle. In the case of fully nor-
mal algorithms on a complete hypercube Qd, 2a-1 processors are released in each compu-
tation step. However, in the case of CH(m), 2 dl < m < 2 al +1, the number of proces-
sors released can vary from 0 to 2 dl - 1, depending on the dimension being collapsed.
Let L be the list of addresses of processors in CH(m) and let SUM(i) = Zjmol bij where
b(d_l)) b(d_2) j . . . boj is the address of a processor in L. The number of released proc-
essors in the i-th step of the algorithm can be computed by counting processors with
the i-th bit in address set to 1, because in the i-th step, the processors that have their
i-th bit = 1 send their computed subsolution to their dimensional neighbors. So these
processors, after sending, become free and are thus released.

Lemma 4. Let RN[i] be the number of processors released in the i-th step of the computa-
tion cycle; then RN[i] = SUM(i), 0 <_ i <_ d - 1.

272 A.J. BOALS, A.K. GUPTA, AND N.A. SHERWANI

2. The relative ordering o f the processors: The second problem concerns the relative order-
ing of the released processors in a computation step. By relative ordering, we mean
the order or sequence in which the processors are assigned new processes. The basic
idea here is to reorder (or renumber) the processors so that they can easily be assigned
to the next set of problems. This relative ordering is a function of the computation step
and the processor number.

We solve these two problems in algorithm ALLOCATE, which allocates a problem to
a released processor. Let us assume that we have an m-processor composite hypercube,
CH(m) and m = 2 dl + 2 d2 + . . . + 2 d~ with d 1 > d 2 > . . . > dk. ALLOCATE with
input CH(m) initializes two arrays: RELEASED_NODES(RN[step-no]) and DIMEN-
SIONAL NEIGHBOR(DN[step-no][processor-no]). The largest number assigned to a
processor (i.e., m - 1) is broadcasted to all the processors of CH(m) at the beginning
of the algorithm.

We need two functions, rotate and complement, to compute the array entries. Let a =
an-1 an-2 �9 �9 �9 ao. We define ROTATE(a, j) to be the right rotation function that rotates a
to the right b y j bits; that is, ROTATE(a, j) = aj_ 1 . . . alaoan_l . . . aj+la j. The rotation
of a graph is accomplished by applying the same rotation function to the addresses of each
of its processors. It can easily be seen that all adjacencies are preserved under rotation.
We also define COMP(a, j) as the number obtained by complementing the j-th bit of a;
that is, COMP(a, j) = an_lan_ 2 . . s ala O.

As stated earlier, the second problem that arises in allocation is to determine the relative
ordering of the processors that form a composite hypercube. In the case of a complete
hypercube, it can be done by rotating the current address right by i bits and complementing
the (d - 1)-th bit. However, due to a variable number of released processors in each cycle
caused by several missing processors, this procedure cannot be used in a composite hyper-
cube. Our main observation here is that for a composite hypercube, the renumbering of
processors (for each dimension) can be done a priori, as explained below. Suppose CH(m)
has been extended to a dl + 1-dimensional hypercube. Let RN(i) be the list of processors
released in step i. Our algorithm first reorders all the processors in RN(i) as if all the proc-
essors in the dl + 1-dimensional hypercube are present. We then remove all the "nonex-
istent" processors from this list and refer to the resulting order among the remaining proc-
essors as the allocation order. If a processors occupies the i-th position in this list, it will
be assigned the i-th subproblem from the next set of subproblems to be solved. We compute
this number for each processor released in each dimension and store it in the array DN.
Thus DN[i][j] denotes the sequence number of the j-th processor in the j-th processor
in the CH(m) released in the i-th step.

The parallel algorithm FNA_COMPOSITE is stated formally below:

Algorithm FNA_COMPOSITE:
/* This algorithm runs on each processor of the Composite Hypercube */

1. If root-processor (i.e., processor 0) then
form subproblems Pi, i = 0, K
/* Where K is the maximum number of subproblems */

2. step-no = 0.

INCOMPLETE HYPERCUBES: ALGORITHMS AND EMBEDDINGS 273

3. Pi = ALLOCATE(step-no, i)
4. Si = SOLVE(Pi)
5. Repeat

5.1. if (bstep_no = 0) then
d m = FIND-NEIGHBOR(step-no, i)
if (din ~ Null)

RECEIVE(din, Sj)/* receive Sj from dimensional neighbor */
S/ = MERGE(Si, Sj)

endif
5.2. if (bstep_no = 1) then

dm = FIND-NEIGHBOR(step-no, i)
SEND(dm, Si) /* send Si to the dimensional neighbor */
Pi = ALLOCATE(step-no, i)
Si = SOLVE(P;)

5.3. step-no = (step-no + 1) mod [log m]
6. Until (subsolution received Sj = NULL) OR

(new subproblem Pi = NULL)

ALLOCATE(step-no, processor-no)
/* P~ is the largest numbered subproblem assigned in step (step-no - 1) */

1. I f step-no = 0 then
c r

r e t u r n P(processor-no)
2. else

offset = DN[step-no][processor-no]

e~' = P(~+offseO
a = c~ + RN[step-n]
return P , ,

FIND-NEIGHBOR(step-no, processor-no)

1. dm = COMP(processor-no, step-no)
2. If (dm < m) then (return dm) else (return NULL);

The example in Figure 4 shows how the dimension collapsing and processor reallocation
works in a composite hypercube CH(m) along with the details of the two global arrays
RN[] and DN[][] that control the allocation order.

3.2.L Analysis of Algorithm FNA COMPOSITE. Assume that m is the number of proc-
essors in the composite hypercube, d = dl + 1 is the dimension of the bounding complete
hypercube, and N = 2 d is the number of processors in the bounding complete hyper-
cube. Let K b e the number of subproblems. Two cases arise in this scheme: First, K < m.
In this case the allocation is static in the sense that the subproblems are allocated only
once and the problem is solved in one computation cycle. Second, K > m. Here all the

274 A.J. BOALS, A.K. GUPTA, AND N.A. SHERWANI

~ o o 1~

1

O10 000

Dim: 0 1 2 =

Relaxed node array

N o d e numbers
0 1 2 3 4 5

0 1 2
0 1

0 1

Dimensional neighbor aray

5 8 8

3 ~" 7

2 2 , 3 / ~ 0,1 9C(0 % /

9,1 0 6,-

Figure 4. An example of the algorithm FNA_COMPOSITE.

subproblems cannot be allocated to processors and the computation proceeds in several
cycles, and in each computation cycle we must allocate the remaining subproblems to the
re, leased processors in a pipelined fashion, The allocation scheme must address the problem
of reallocation of released processors. Let us examine these two cases in detail.

Allocat ion scheme f o r K < m: In this case no reallocation is needed since the number
of processors is sufficient to solve all the subproblems after the initial allocation. Each
processor i is initially assigned subproblem Pi, which it solves using procedure SOLVE
to obtain the subsolution Si. In step 0, each processor with its 0-th bit equal to 1 sends

INCOMPLETE HYPERCUBES: ALGORITHMS AND EMBEDDINGS 275

its subsolution to its dimensional neighbor that contains the adjacent subsolution. The neigh-
bor is found by complementing the 0-th bit of/ . For example, processor 001 sends to proc-
essor 000, and processor 011 sends to processor 010. In the same step (i.e., step 0), each
receiving processor i merges its subsolution Si with its received subsolution Si+l to obtain
S(i,i+l). In the next step this result is sent to the processor that contains S(i-2,i-1).

In general, in s tepj < dl + 1, each processors = babd_l . . . bj . . . blbo with bj = 1
sends its subsolution S(p,q) to processor r = COMP(s, j) , while each processor r = bdbd_ 1
�9 bj . . b ib o with bj = 0 receives a subsolution S(p,q) from processor s = COMP(r, j)
and merges it with its subsolution S(r,p-1) to obtain S(r,q). Similarly, in step Flog m 7 - 1,
which is the last step, processor 0 receives subsolution S(N/2,N_1) from the processor N/2
and merges the received solution with its own subsolution SO, N/2_ D to obtain S(O,N-I). Be-
cause S(O,N-1) defines the solution to the entire problem, the algorithm terminates.

L e m m a 5. Let problem P be divided into K subproblems Pi, 1 <- i <- K. Then, for K < m
the algorithm FNA_COMPOSITE solves P in flog m7 steps.

Proof: The proof in this case follows from Lemma 4 for complete hypercubes since there
is no reallocation of released processors. However, since some of the processors are miss-
ing, we need to show that the subsolutions arrive in the correct sequence at any processor.
This follows from the fact that in any step all the sending processors have higher addresses
than their corresponding receiving processors and all the processors in a composite hyper-
cube are sequentially numbered from 0 to m - 1. Since there are sending processors in
all the dimensions 0 through Flog m 7 , problem P is solved in [log m~ steps. �9

Allocation scheme fo r K > m: We now consider the case when the number of processors
is less than the number of subproblems, that is, m < K. In this case, only m out of the
K subproblems can be assigned to processors in the first step, and we need to consider
reallocation of the released processors. First, we show in the case of a CH(m) that the
released processors always form a composite hypercube that has a "local zero" processor.

L e m m a 6. I f R is the set o f processors released in the i-th step o f the algorithm, then the
processors in R form a composite hypercube CH(RN(i)). Furthermore, there exists a proc-
essor r (R, such that r is adjacent to processor zero o f CH(m). We call this node r the
"'released root."

Proof: According to the definition of composite hypercube CH(m), m = ~/k=12di, we
can view it as a complete hypercube Qd I of dimension dl and a composite hypercube
CH(m - 2dl). I f the collapsing dimension is one which connects these two components,
then CH(m - 2 dl) is released. If the collapsing dimension is other than the connecting
dimension, then the complete hypercube Od I releases 2 ai-1 processors, which form a com-
plete hypercube of dimension dl - 1. All processors released by CH(m - 2 d~) have
dimensional neighbors in this (d 1 - 1)-dimensional hypercube and hence the processors
in R form a composite hypercube.

In an incomplete hypercube some addresses with b i = 1 may not be the addresses of
existing processors. However, if there exists any processor in the current collapsing dimen-

276 A.J. BOALS, A.K. GUPTA, AND N.A. SHERWANI

sion, then the processor with b i = 1 and all other bits zero must be present since it has the
least address among all processors in this dimension. This processor is adjacent to proces-
sor zero. We refer to this processor as the "released root" and denote it by rsi. �9

Next we show that in the CH(m') formed by m' released processors, the subsolutions
from the reallocated processors converge onto their "local zero" processor in [-log m'] steps.

Lenuna 7. Assume that in a reassignment step i in ALLOCATE, m' subproblems are assigned
to a released composite subcube of dimension d ' = flog m'] ; then processor rsi, the root
processor of this composite subcube, will contain the solution to this set o f subproblems
in d' steps.

Proof: The reassignment scheme in ALLOCATE results in a subcube of m' "released"
processors that can be renumbered starting from 0 using RN[i], and DN[i][O . . . m' - 1]
such that rsi is labeled as 0. According to the above lemmas this assignment will result
in the solution S(l,l+m,) being computed at processor rsi in flog m'q steps. �9

Theorem 1. Algorithm FNA_COMPOSITE for a composite hypercube terminates success-
fully with the result in processor zero.

Proof: After the initial set of assignments of problems Po, P1 Pm-1 in step 0, new
subproblems are assigned at each step and the solution to each set of these subproblems
reaches the root processor of their subcube rsi as per Lemma 7. In the next step these solu-
tions are merged with the existing solution at processor zero of CH(m). �9

Finally note that Algorithm FNA_COMPOSITE is well defined and no processor is
blocked waiting for data from an absent processor. Two important features of the algorithm
FNA_COMPOSITE guarantee this condition. First, the function FIND_NEIGHBOR re-
turns NULL in case the computed neighbor has an address greater than the m - 1. Other-
wise, it returns the processor's address. Second, the receiving processor executes only if
a neighbor in the executing dimension is present to complete the pairwise communication.
These two steps make sure that a receiving processor is never blocked expecting to receive
a subsolution from an absent processor. Sending processors are never blocked since they
always send their data to the processors with lower numbers, and it follows from the definition
of composite hypercubes that all lower numbered processors are present.

3.3. Size~Performance Tradeoffs for Composite Hypercubes

With respect to FNAs, complete hypercubes have a simple linear performance behavior.
That is, Qa+l can process twice as many subproblems as Qd in the same number of steps�9
This is due to the uniform and symmetric structure of complete hypercubes. In the case
of composite hypercubes the speedup calculation is complicated by the fact that the number
of processors released in each step may be different�9 In this section we compute the speedup
that can be obtained by a CH(m). It will be shown that over most of the range 2 a, 2 a + 1,
� 9 2 a+1 composite hypercubes exhibit performance behavior close to Qd- For example,

INCOMPLETE HYPERCUBES: ALGORITHMS AND EMBEDDINGS 277

we show that a CH(1536) can process 1.45 times as many subproblems as a complete hyper-
cube with 1024 processors. The ideal number would be 1.5. This means that CH(1536)
is only 6% less efficient than an ideal 1536-processor architecture. Therefore, the critical
parameter is the number of subproblems that can be processed by a composite hypercube
in a fixed number of steps. We refer to this parameter as PN.

With respect to fully normal algorithms, the PN may be calculated in terms of the number
of released processors in a computation cycle, since the number of subproblems solved
is equal to the number of processors released. Since we compare complete hypercubes
with composite hypercubes, we define the relative processors number (RPN) achieved by
an FNA on CH(m) to be the ratio of the number of processors released by CH(m) in a
dl + 1 step computation cycle and the number of processors released by Qd 1 in d l + 1
steps, where m = 2 dl + 2 d2 + . . . + 2 dk. The d l + 1 step computation cycle must be
considered for Qd~ since the number of steps in the computation cycle of CH(m) is one
more than that of Qd~.

In order to obtain an expression for the RPN, we need to compute the number of proces-
sors released by a complete hypercube in a computation cycle. Let R(m) be the number
of processors released by a CH(m) in a computation cycle.

Lemma 8. For a d-dimensional complete hypercube, the number of released processors
in a computation cycle is given by R(m) = d * (m/2) where m = 2 a.

Proof: The proof follows from the fact that each dimension collapse releases m/2 processors
and there are d dimensions. �9

Thus the RPN for CH(m) (namely RPN(m)) may be defined as

RPN(m) -
R(m)

R(2d0 + 2dl
2

RPN(m) =
R(m)

(d2a1-1) + 2dl
2

The second term in the denominator expresses the number of processors released in the
(dl + 1)-st step of the computation cycle of Qax. Before we compute RPN for the general
case, it is illustrative to compute RPN(m) for a CH(m) when m = 2 a + 2 d-l, that is, for
a composite hypercube consisting of two complete hypercubes of successive sizes. Let us
first compute the number of processors released by a CH(m) in this case.

Lemma 9. The number of processors released in a computation cycle of CH(m) is given
by R(m) = d * 2 d-I + (d - 1) * 2 d-2 + 2 d-1 and RPN(m) =2~3d+1 i f m = 2 d + 2 a-1.

278 A.J. BOALS, A.K. GUPTA, AND N.A. SHERWANI

Proof: We may consider CH(m) as composed of two complete hypercubes of dimensions
d and d - 1. During the collapse of the first d - 1 dimension, both hypercubes release
half of their processors independently. In the d-th step, Qa releases half of its processors;
however, Qa-1 does not have any processors in this dimension and hence releases no proc-
essors. Thus Qd releases 2 d-1 processors for d steps, while Qd-1 releases 2 a-2 processors
for d - 1 steps. The third term in the expression represents the release of all the processors
of Qd-1, while the d + 1 dimension is collapsed.

The RPN(m) in this case is computed as follows:

RPN(m) - R(m) _ 3d + 1
2 a 2d + 2

R(2a) + 7

This completes the proof.

Note that this type of hypercube is quite efficient and the efficiency is better for larger
sizes. For example, with d = 5, RPN(48) = 1.33, whereas with d = 10, RPN(1536) = 1.45.
This shows that RPN(48) (RPN(1536)) is only 11% (resp. 6%) slower than its idealized
counterpart with the same number of processors.

In order to generalize the result in the above lemma to an arbitrary m, we provide the
following theorem.

Theorem 2. The number of processors released by a composite hypercube CH(m) in a
computation cycle is given by

k ~ k -1

R(m) = Z di 2di-I q-Z i2di+l"
i=1 i=1

Proof: As per the definition of a composite hypercube, one may consider a CH(m) as con-
sisting of two components: a dl-dimensional complete hypercube and a CH(m - 2dl). Let
r be the processors in the noncomplete part of CH(m); that is, r = m - 2 '6. CH(m) has
a d 1 + 1 step computation cycle. In the first d 1 steps both components compute indepen-
dently. It is clear that a dl-dimensional complete hypercube will release 2 a~-I processors
in each cycle, thereby releasing a total of d12 d~-I processors in dl steps. On the other
hand, the number of processors released by a CH(r) is given by R(r) and may be computed
recursively. In step dl + 1, the last dimension (i.e., dl + 1) is collapsed and all the proc-
essors in CH(r) are released. Therefore, the number of processors released by CH(m) can
be expressed by the following recurrence relation:

R(m) = d12 d1-1 + R(r) + r.

Note that R(r) = d2 2d2-1 + R(r - 2 d2) + r - 2d2; substituting we get

R(m) = d l 2d1-1 + (d2 2d2-1 + R(r - 2 a2) + r - 2 a2) + 2 a2 + 2 d3 + . . . + 24.

Solving this recurrence relation we obtain the desired result. �9

I N C O M P L E T E HYPERCUBES: A L G O R I T H M S A N D E M B E D D I N G S 279

The RPN(m) for CH(m) can now be easily computed.

Corollary 1. The RPN achieved by a composite hypercube CH(m) is given by

RPN(m) = ~ki=l di2di-I + ~ki-~ i2di+1
(d l + 1)2 a/-1

Figure 5 shows the RPN of a FNA on composite hypercubes CH(m), m = 32, 33 ,128.
It may be seen from Figure 5 that not all composite hypercubes are useful. That is, some

perform worse than their own (largest) component complete hypercubes. For example,
CH(33) has an RPN of 0.844, as compared to a 32-processor complete hypercube. This
implies that the effectiveness of the architecture is degraded by the addition of a single
processor. This is due to the fact that the extra dimension does not have enough processors
to justify the cost of computation in that dimension.

In this context it is natural to consider the question of the minimum number of addi-
tional processors needed so that the resulting composite hypercube performs better than
the original complete hypercube. Consider the RPNs for the composite hypercubes CH(33)
through CH(40) listed in Table 2. It can be seen that CH(39) is the smallest composite
hypercube that performs equal to or better than a 32-processor complete hypercube. We

4 _

3 --

2 --

1 _

" Real

0
I I I I I

20 40 60 80 100 120

Number of Nodos ~-

Figure 5. RPN of an FNA on a composite hypercube.

14o

Table 2. RPNs for the composite hypercubes CH(33) through CH(40).

Processors m 32 33 34 35 36 37 38 39 40

RPN(m) 1.000 0.844 0.865 0.885 0.917 0.938 0.969 1.000 1.042

280 A.J. BOALS, A.K. GUPTA, AND N.A. SHERWANI

Table 3. Critical composite hypercubes and their respective critical number of processors.

Processors 2 a 4 8 16 32 64 128 512 1024
Crit. comp. hypercube CCH(m') 6 11 20 39 76 150 576 1143
Crit. no. ofprocs. CN(2 d) 2 3 4 7 12 22 64 119
% procs, needed 50% 37% 25% 22% 19% 17% 13% 12%

call such a composite hypercube a critical composite hypercube CCH(m') and refer to
CN(2 d) = m' - 2 d as the critical number of processors (see Table 3.) In Table 3 we also
show the number of processors (in terms of percentage) needed to reach criticality. It can
be observed that the number of processors needed decreases for larger hypercubes, show-
ing that criticality is easier to achieve for larger hypercubes.

The data in Table 3 leads us to make the empirical observation that the minimum number
of processors needed to reach the critical composite hypercube, t = m - 2 a~, decreases
logarithmically with dl, which is exhibited in Figure 6. We note that a number of experi-
ments covering larger values of the number of processors were run; however, the table
lists only a few data values that we consider to be practical.

It is worthwhile to note that the RPN of composite hypercubes is very close to the ideal
architecture, after the addition of the critical number of processors.

4. Embeddings into Composite Hypercubes

One of the main reasons for the popularity of hypercube architecture is its ability to simu-
late other architectures very efficiently. If composite hypercubes are to be competitive as
an architecture, we must demonstrate similar simulation capabilities. Graph embeddings
have been used very successfully to show simulation capabilities of a guest architecture by
another host architecture [Aleliunas and Rosenberg 1982; Bhatt and Ipsen 1985; Chan 1988;

60

50

40

~ 3o~
~ 20
8
'~ lo

z

.95351 R^2 = 0.996

I I

10 20

Dimension

30

Figure 6. The number of processors needed to reach criticality.

INCOMPLETE HYPERCUBES: ALGORITHMS AND EMBEDDINGS 281

Fishburn and Finkel 1982; Gupta 1989; Hong et al. 1983; Kosaraju and Atallah 1988].
In graph embedding techniques, host and guest architectures are viewed as graphs H and
G, respectively, and then the graph G is embedded into the graph H. In the embedding
of a graph G into H, we injectively map the set of nodes of G into the set of nodes of
H and the edges of G to paths in H that connect the image of the nodes of G. In order
to obtain efficient simulations of G by H, various cost measures of an embedding must
be optimized. Three such measures are the dilation, the congestion and the expansion of
an embedding. The dilation of an edge of G is the length of the path onto which an edge
of G is mapped. The dilation of the embedding is the maximum edge dilation of G. The
congestion of an edge in H is the number of paths passing through it, and the congestion
of the embedding is the maximum congestion of any edge in H. The expansion of the em-
bedding is the ratio of the number of nodes in H to the number of nodes in G. Ideally,
we would like to find embeddings with minimal dilation, congestion and expansion so that
efficient simulations of G by H can be obtained. If an embedding achieves the minimum
expansion, then we say that the embedding uses an optimal size H. Throughout this paper
we consider embeddings with a dilation of 1 or 2, and the resulting embeddings achieve
a congestion of 1 or 2. Hence without loss of generality we suppress the discussion of
congestion and only give our results with respect to dilation and expansion.

Embeddings of binary trees, two-dimensional meshes, butterflies and cube-connected
cycles into complete hypercubes have been studied extensively [Bhatt and Ipsen 1985; Bhatt
et al. 1986; Chan 1988; Greenberg et al. 1990; Ho and Johnsson 1990]. The main reason
for studying embeddings of these architectures is their suitability for the development of
specific types of parallel algorithms. For example, mesh architectures are well suited for
scientific and computer vision applications, whereas tree machines are well suited for divide-
and-conquer type algorithms. Complete binary trees, two-dimensional meshes and cube-
connected cycles are shown to be embeddable into complete hypercubes with a dilation
of 2 and an expansion of less than 2 [Bhatt and Ipsen 1985; Chan 1988]. In [Greenberg
et al. 1990] it is shown that butterflies are subgraphs of their optimal-sized complete hyper-
cubes (the smallest hypercube having at least as many nodes as the butterfly); that is, a
butterfly can be embedded with dilation 1. Very few results are known about the embeddings
of these architectures into incomplete or composite hypercubes. To the best of our knowl-
edge, only Tzeng et al. [1990] have investigated the embeddings of complete binary trees,
incomplete binary trees and meshes into their definition of incomplete hypercubes.

Due to the fact that composite hypercubes are subgraphs of complete hypercubes, it may
initially appear that the embedding strategies for complete hypercubes should carry over
directly to composite hypercubes. However, since the number of nodes in a composite hyper-
cube is arbitrary (not necessarily a power of two) and the degrees of the nodes need not
be equal, some of the structural symmetry is lost. Since many known embedding strategies
depend on the regularity or symmetry of complete hypercubes, in general these strategies
cannot be used for composite hypercubes. Therefore, new embedding strategies are needed.
One of the goals of this paper is to investigate new strategies for embeddings of binary trees,
two-dimensional meshes, butterflies and cube-connected cycles into composite hypercubes.

It can be easily shown that an n-node complete binary tree can be embedded into an
n-node composite hypercube with a dilation of 2 using the ideas of [Bhatt and Ipsen 1985]
since n = 2 h - 1. Several divide-and-conquer type algorithms exhibit incomplete binary

282 A.J. BOALS, A.K. GUPTA, AND N.A. SHERWANI

tree structure; thus it is interesting and natural to investigate the classes of incomplete binary
trees that can be efficiently embedded into composite hypercubes. Section 4.1 shows the
embeddings of various types of n-node incomplete binary trees into n-node or (n + 1)-node
composite hypercubes with a dilation of at most 2. We also present lower bound proofs
showing the optimality of the dilation. We also characterize the class of incomplete binary
trees that are subgraphs of composite hypercubes. Efficient embeddings of X and leap trees
are also investigated.

In Section 4.2 we present a dilation-1 embedding of a two-dimensional n-node mesh into
its optimal n-node composite hypercube, where one dimension is a power of two. When
neither dimension is a power of two, it is shown that a dilation-1 embedding is not possible,
thereby characterizing the class of two-dimensional meshes that can be embedded into com-
posite hypercubes with dilation 1. All two-dimensional meshes are shown to be embeddable
with dilation 1 if expansion greater than 1 but less than 2 is allowed. We also consider two
types of incomplete meshes and their embeddings into their optimal composite hypercubes.
Section 4.3 considers embeddings of n-node butterflies and cube-connected cycles into n-
node composite hypercubes, and the dilation of these embeddings is proved to be optimal.

4.1. Embedding Trees

In this section we consider embeddings of complete binary trees, incomplete binary trees,
X-trees and leap-trees into composite hypercubes. Researchers have previously considered
embeddings of these treelike networks into complete hypercubes. From now onward, for
reasons of clarity, we will refer to the nodes of a composite or a complete hypercube as
PEs (processing elements).

An n-node complete binary tree T h, of height h, can be embedded into a complete hyper-
cube Qh+~ of (n + 1)-PEs with dilation 2 for n = 2 h+l - 1. There are many embeddings
that achieve these bounds on embeddings. One such simple embedding is inorder embedding
[Gupta 1989], which labels the nodes of T h using an inorder traversal (the leftmost leaf of
Th is labeled as 0) and then assigns the node with label i to PE i of Qh+l, 0 <_ i < n - 1.
Observe that (n - 1)/2 edges of T h are dilated by 2 in the inorder embedding. Bhatt and
Ipsen [1985] showed that an (n + 1)-node two-rooted complete binary tree TR h is a sub-
graph of Qh+l and thus can be embedded with dilation 1 (TR h is obtained from a com-
plete binary tree T h by replacing one of the edges incident on the root r with a path of
length 2, and the additional node on the path is called the second root, say r ') . Throughout
this section we refer to this embedding as BI-embedding. This result gives an embedding
of Th into Qh+l with only one edge having dilation 2 and rest of the n - 2 edges having
dilation 1.

A natural question that arises is, How well do composite hypercubes embed binary trees?
Let us first consider a complete binary tree, that is, a binary tree in which all the leaves
are at the same level and all possible leaves exist. Since a composite hypercube CH(n)
is a subgraph of a complete hypercube Qh+l and since a complete binary tree Th cannot
be embedded into Qh+l with a dilation of 1, it is easy to see that Th cannot be embedded
into an n-PE composite hypercube CH(n) with a dilation of 1. Furthermore, by first using
the BI-embedding and then deleting the PE of Qh--1 that does not get a node of Th assigned
to it, the complete binary tree Th can be embedded into CH(n) with dilation 2.

INCOMPLETE HYPERCUBES: ALGORITHMS AND EMBEDDINGS 283

Observation 1. An n-node complete binary tree T h can be embedded into an n-PE com-
posite hypercube CH(n) with an optimal dilation of 2.

The above observation implies that the problem of embedding a complete binary tree
into a composite hypercube is not very interesting, at least theoretically. However, com-
posite hypercubes are defined for any arbitrary number of PEs; hence one needs to explore
incomplete binary tree structures that arise in many applications along with their embeddings
into composite hypercubes. We define two types of incomplete binary trees that are denoted
as Type 1 and Type 2. These types of trees arise, in general, in the applications that use
the divide-and-conquer paradigm for algorithm development, and in particular, in branch-
and-bound and heuristic search applications, parallel priority queue (heaps) implementa-
tions and parallel graph algorithms, such as the shortest path and spanning forest problems.
Our attempt here is to consider only a few types of incomplete tree structures in the hope
that they will guide us in solving the general problems when arbitrary types of incomplete
tree structures arise.

Type 1 incomplete binary trees consists of a sequence of classes of binary trees, ITlh
for every h > 0 where h denotes the height of the trees in a class. The class IT1 o consists
of a single node and IT11 consists of the two binary trees of height 1. The class ITlh , for
h > 2, is defined recursively as follows: The first tree of this class is a two-rooted com-
plete binary tree TRh_ 1 and all the other trees are obtained by appending a tree from class
ITlm with m < h - 2 to the root r' of TRh_ 1. Figure 7 shows the first four classes of
Type 1 incomplete binary trees. Observe that the number of trees] IT1 h I in the h-th class
is]ITlh_l I + I ITlh-2], for h > 2. For example, the number of trees in the first seven
classes are 1, 2, 2, 4, 6, 10, and 16. (Type 1 incomplete binary trees are interesting from
two aspects: First, tJaey characterize a whole class of binary trees that are subgraphs of
their optimal-sized composite hypercubes, and second they contain special cases of Type 2
incomplete binary trees (essentially heaps on full binary trees), as discussed later.)

IT10 O

22 T222L
Figure Z Four classes of Type 1 incomplete binary trees.

284 A.J. BOALS, A.K. GUPTA, AND N.A. SHERWANI

We next show that Type 1 incomplete binary trees are subgraphs of their optimal-sized
composite hypercubes.

T h e o r e m 3. Every Type 1 incomplete binary tree can be embedded into a composite hyper-
cube with a dilation of 1 and an expansion of 1.

P r o o f : For the sake of brevity we give only the basic ideas behind the embedding. The
reader is referred to [Boals et al. 1992] for details. We extend the ideas of Bhatt and Ipsen
[1985] and use induction to give an embedding. It is clear that all the trees in ITlo and
IT11 can be embedded into the optimal composite hypercubes with dilation 1. For every
class ITlh, for h > 1, the first tree is a two-rooted tree TRh_ 1. By using BI-embedding
this tree can be embedded into its optimal composite hypercube CH(2h), which is a com-
plete hypercube Qh, with dilation 1. In order to embed all the other trees in I T l h , observe
that an n-node tree T in ITlh is composed of a two-rooted complete binary tree TRh_ 1 and
a tree, say T', from class]Tlm, m < h - 2, such that the root of T' is connected to one
of the roots r of TRh-1. By induction we can embed T' into its optimal-sized composite
hypercube CH(n - 2 h) with dilation and expansion 1. By using BI-embedding, TRh_ 1 can
be embedded into its optimal-sized composite hypercube CH(2 h) with dilation and expan-
sion 1. Combining the embeddings of T' and TRh_ 1 and appropriately translating one of
the embeddings establishes the theorem. �9

We now consider full trees that commonly arise in applications using heaps, and we refer
to them as Type 2 incomplete binary trees. An n-node Type 2 incomplete binary tree IT2(n)
is a complete binary tree of height h with the rightmost 2 h + l - - n - 1 leaves missing,
for the smallest h such that 2 h+ l ~ n. A common way to label a complete binary tree
is to label the root as 0 and then for any node v that is labeled i, the left child of v is labeled
2i + 1 and the right child is labeled 2i + 2. It is thus easy to see that in a similar manner
the nodes of IT2(n) can be labeled from 0 to n - 1. Type 2 trees were also considered
in [Tzeng et al. 1990] and the authors showed the existence of dilation-1 embeddings for
several special cases. We note that the expansion of their embeddings is greater than 1
whereas our focus is to find embeddings into composite hypercubes with an expansion
very close to 1. We next show that IT2(n) can be embedded into CH(n + 1) with a dilation
of 2. This embedding uses only one extra PE from its optimal-sized composite hypercube.
As will be shown by Lemma 10, for n # 2/3(2 h+l - 1) + a when h is odd, or n # 4/3(2 h
- 1) + a when h is even, with a = - 1, 0, 1, this embedding is optimal with respect
to dilation. For the cases when this embedding is not optimal, it is easy to see that Type 2
incomplete binary trees are also Type 1 incomplete binary trees, which we have shown
to be embeddable into CH(n) with dilation and expansion 1.

T h e o r e m 4. An n-node Type 2 incomplete binary tree IT2(n) is embeddable in a (n + 1)-PE
composite hypercube CH(n + 1) with an optimal dilation of at most 2.

Proof: Observe that the tree IT2(n) may be viewed as a complete binary tree Th_ 1 of height
h - 1 and a set of n - 2 h + 1 nodes. The root of Th-1 is the same as the root of IT2(n)
and n - 2 h + 1 nodes are the leaves of IT2(n) such that they are the children of the

[(n - - 2 h + 1)/27 leftmost leaves of Th-l. We first embed Th-1 into a complete hypercube

INCOMPLETE HYPERCUBES: ALGORITHMS AND EMBEDDINGS 285

Qh using the inorder embedding and then embed the n - 2 h + 1 children of the leaves
of Th_ 1 into a CH(n - 2 h q- 1) SO that Qh and CH(n - 2 h + 1) together form a compo-
site hypercube CH(n + 1). We omit further details of this embedding strategy, for the sake
of brevity, and interested readers are referred to [Boals et al. 1992] for details. �9

L e m m a 10. An n-node Type 2 incomplete binary tree IT2(n) of height h cannot be embedded
into an n-PE composite hypercube CH(n) with a dilation of 1 for an arbitrary integer n.
The only values of n where IT2(n) can be embedded into CH(n) with a dilation of 1 are
n = 2/3(2 h+l - 1) + a when h is odd, and n = 4/3(2 h - 1) + a when h is even, with
a = -1, O, 1, for the smallest h such that 2 h+l > n > 2 h.

Proof : The proof relies on the following fact about bipartite graphs: The partite sets of
a connected bipartite graph are unique. We know that an n-PE composite hypercube CH(n)
is a connected bipartite graph. As a consequence, the partite sets of CH(n) are unique.
Furthermore, the number of PEs in one partite set differs by at most one from the number
of PEs in the other set (they differ by one when n is an odd integer). Any n-node Type 2
incomplete binary tree IT2(n) is a connected bipartite graph. I f the tree IT2(n) can be em-
bedded into CH(n) with a dilation of 1 (that is, IT2(n) is a subgraph of CH(n)), then the
number of nodes in the partite sets of IT2(n) must also differ by at most one. It is easy
to see that for n ~ 2/3(2 h+l - 1) + a when h is odd, and n ~ 4/3(2 h - 1) + a when
h is even, with a = -1 , 0, 1, the partite set of IT2(n) differ by at least 2. Thus for every
h there are at most three n-node trees IT2(n)s that could be subgraphs of CH(n). We next
show that each one of these trees is embeddable in CH(n) with dilation 1.

The embedding will follow from Theorem 3 and the fact that each of the three possible
trees are also Type 1 incomplete binary trees. We establish this by induction on h, the
height of IT2(n). The reader can easily verify that whenever h < 2, the lemma is satis-
fied. Let h > 3 be the height of an n-node Type 2 incomplete binary tree IT2(n) with
n = 2/3(2 h+l - 1) + a when h is odd, and n = 4/3(2 h - 1) + a when h is even, with
a = -1 , 0, 1. The subtree T rooted at the right child of the left child of the root of IT2(n)
is a Type 2 incomplete binary tree of height h - 2 and the number of nodes in T is
m = 2/3(2 h - 1) + ~ when h is odd, and m = 4/3(2 h-2 - 1) + ~ when h is even, with
~7 = -1 , 0, 1. Using the induction hypothesis, we know that Tis a Type 1 incomplete binary
tree. Since IT2(n) - T is a two-rooted complete binary tree of height h - 1 from the
definition of Type 1 incomplete binary trees, it follows that the tree IT2(n) is a Type 1
incomplete binary tree. Using Theorem 3, IT2(n) can be embedded into CH(n) with a dila-
tion of 1 and the lemma follows. �9

In [Boals et al. 1992] another type of incomplete binary tree structure is considered,
namely an n-node Type 3 incomplete binary tree IT3~(n) of height h. Tree IT3h(n) is de-
fined for n = 2 h + 2 k -- 1 and it consists of complete binary tree T k of height k and 2 ~-1
complete binary trees, each of height h - k, with their roots as the alternate leaves of
T k. Let ~ be the class of divide-and-conquer type algorithms in which every process at
a node up to level k - 1 in a complete binary tree Th of height h spawns two processes
and then only one of the two children of every node at level k - 1 spawns two processes
up to level h in Th. I f an algori thm in class ~ is abstracted as a binary tree and this

286 A.J. BOALS, A.K. GUPTA, AND N.A. SHERWANI

algorithm is simulated by composite hypercubes, then Type 3 incomplete binary trees are
of interest. Type 3 trees would also arise in situations when say m, m = 2 k-1 + 1, tasks
are to be run concurrently on a composite hypercube and one of the tasks corresponding
to the tree T k is the master task that interacts with the other m - 1 independent tasks.
We have shown that except when n = 5 (with h = 2 and k = 1) or n = 11 (with h = 3
and k = 2), a tree IT3hk(n) cannot be embedded into an n-PE composite hypercube CH(n)
with a dilation of 1. We also describe an embedding that embeds IT3h(n) for n r 5, 11
into CH(n) with a dilation of 2. Note that when n = 5 or 11, tree IT3h(n) can be easily
embedded into CH(n) with a dilation of 1.

We conclude this section by mentioning embeddings of other treelike structures that are
extensions of incomplete binary trees and that have been investigated in detail in [Boals
et al. 1992]. In particular, we have considered n-node incomplete X-trees and leap-trees
and have shown that they can be embedded into CH(n + 1) with a dilation of 2. These
embeddings are shown to be optimal with respect to dilation. We have also considered
the embedding of an n-node binomial tree B(n) into CH(n) and shown that B(n) is a subgraph
of CH(n) for say n -> 1; that is, it can be embedded with dilation 1.

4.2. Embedding Meshes

Many useful algorithms, in particular, linear algebra algorithms, can be efficiently per-
formed on meshes with two or more dimensions. Meshes have also been shown to be effec-
tive in the solution of partial differential equations. This has led to an interest in simulating
meshes on more commonly used multiprocessor architectures, such as hypercubes. Meshes
can be embedded with dilation 1 into complete hypercubes if every dimension of the mesh
is a power of two. If some of the dimensions are not powers of two, then a dilation of 2
or more is necessary. In fact, Chan [1988] showed that all two-dimensional meshes can
be embedded into optimally sized complete hypercubes with dilation 2. The main technique
for embedding meshes in complete hypercubes is based on assigning the nodes of each
dimension a binary reflected Gray code (BRGC).I For example, if a 2 p • 2 q mesh is to
be embedded into a Qp+q, then a p-bit BRGC is assigned to the dimension with length
2 p and q-bit BRGC is assigned to the other dimension. The address of a node in a hyper-
cube is obtained by concatenation of the p bits from one dimension with q bits from the
other dimension. The minimum-sized hypercube needed to embed a mesh with dilation
1 has been characterized by Havel and M6ravek [1972].

Fact 1. I f an oq • a2 • �9 �9 �9 • Olk mesh M is embedded in an n-dimensional complete
hypercube Qn with dilation 1, then n >_ E/k= 1 [-log2a/7 [Havel and M6ravek 1972].

It follows from the above fact that the expansion of the embedding of M into Qn is in
the range of 1 to 2 k. When a dilation-1 embedding is not possible, then dilation-2 and
dilation-3 embeddings have been achieved using a variety of techniques including step em-
bedding [Aleliunas and Rosenberg 1982], folding [Leiserson 1980], line compression
[Aleliunas and Rosenberg 1982], modified line compression [Chan 1988] and graph decom-
position [Ho and Johnsson 1990].

INCOMPLETE HYPERCUBES: ALGORITHMS AND EMBEDDINGS 287

In this section we investigate embeddings of two-dimensional meshes into composite hyper-
cubes. For these embeddings the main difficulty lies in the fact that the number of nodes
in a composite hypercube is not a power of two. Moreover, due to the very nature of com-
posite hypercubes, it is interesting to consider embeddings of an n-node mesh into an n-PE
composite hypercube; that is, we use exactly the same number of processors. We character-
ize the class of two-dimensional meshes that can be embedded into a composite hypercube
with dilation 1. We also investigate the embeddings of incomplete meshes and composite
meshes into composite hypercubes and present dilation-1 embeddings for these architectures.

4.2.1. Embedding Meshes with Dilation 1 and Expansion 1. I f both dimensions of a mesh
are a power of two, then clearly Gray code embedding is optimal; that is, the embedding
using BRGC achieves dilation 1. In this section we show that an n-node two-dimensional
mesh can be optimally embedded into composite hypercube CH(n) if one of the dimensions
is a power of two. In the case when both dimensions are not a power of two, we show
that no dilation-1 embedding exists.

T h e o r e m 5. Any oq x ol 2 mesh can be embedded into a CH(oq * o~2) with adjacencies
preserved i f and only i f al or a2 is a power o f two.

Proof: We start by proving the (if) part first. Without loss of generality assume that
ot 2 = 2 d and a l = 2d~ q- 2d: �9 - �9 + 2dk where dl > d2 > �9 �9 �9 > dk. We can view an
oq • a2 mesh M as a disjoint union of k different meshes M1 = 2 d~ • a2, M2 = 2 d2 •
c~ 2 M k = 2 d~ x ~2 with a2 additional edges between every consecutive pair 3'/,. and
Mi+l, for 1 _< i _< k - 1. The additional edges between 34i and/$/'+1 result from the adja-
cency between the l~st row of M/and the first row of Mi+ 1. Observe that every row in M i
has c~ 2 nodes. We call this decomposition of M a k-component decomposition. Clearly each
Mi can be embedded with dilation 1 since both dimensions of Mi are powers of two. Our
general strategy for embedding M is by assigning a d-bit binary reflected Gray code to
the c~ 2 dimension and by using the first a l elements of a (dl + 1)-bit binary reflected Gray
code for the oq dimension. An example embedding of a 3 • 4 mesh into a CH(12) is
shown in Figure 8.

We show that the above strategy yields a dilation-1 embedding by using induction on
k, the number of components of M. For the base case note that i f a l = 1 or a l -- 2 dk,
then clearly an a l • c~2 mesh is embeddable into a CH(al * or2) with dilation 1 since

O0 O1 11 10

O1

11

Figure 8. Gray code embedding of a 3 • 4 mesh.

288 A.J. BOALS, A.K. GUPTA, AND N.A. SHERWANI

both dimensions are powers of two. This part of the proof follows by simple induction on
the number of submeshes M i, if one notes that CH(0/1 * 0/2) - CH(2dk) is also a compos-
ite hypercube.

Now we conclude the proof of the theorem by establishing the fact that if an a l x o~ 2
mesh can be embedded onto a composite hypercube CH(~I * ~2) with dilation 1, then
either 0/1 or 0/2 must be a power of two. Let M be an 0/! • 0/2 mesh and let ~b: M ~ CH(0/1
�9 c~2) be an embedding of M onto CH(0/! * ~2) with dilation 1. By definition of a com-
posite hypercube, CH(0/1 * 0/2) can be written as the union of a complete cube Qd and a
composite hypercube CH(0/l * 0/2 -- 2d) , where each node of CH(0/1 * 0/2 - 2d) is adja-
cent to exactly one node in Qa and each node of Qd is adjacent to at most one node of
CH(c~I * c~2 - 2d). We shall call the nodes of r red nodes and the nodes of
~ - I (C H (a l * 0/2 - 2d)) black nodes. Because of the above-mentioned adjacencies between
the nodes of Qd and the nodes of CH(al * c~2 - 2d), the set of red nodes and the set of
black nodes must consist of stripes (that is, submeshes) with dimension r x 0/2 or o/1 X F.
Thus 2 d = k * 0/2 or 2 d = a l * k for some k. Therefore either oq or 0/2 must be a power
of two. �9

We conclude this section by observing that if an expansion of more than 1 is allowed,
then all two-dimensional meshes can be embedded with dilation 1. This can be done by
first embedding a 0/1)< 0/2 mesh M into a mesh M ' of size m' = 2 Fl~ * 0/2, and then
embedding M ' into CH(m') . Note that the expansion of this embedding is 2Vl~
which is less than 2. In order to keep the expansion minimal, if 2 Flog ~l ~ /0/1 > 2 ~1~
then instead of embedding M into M', we embed M into M", which is of size 0/1 * 2Fl~ �9
This leads to the following corollary.

Corollary 2. Any c~ x x 0/2 mesh can be embedded into a CH(m) with adjacencies pre-
served, for m = min {c~22 ~l~162 , 0/12 ~1~ }.

Note that our embedding of two-dimensional meshes has a worst-case expansion of less
than 2 whereas the embedding presented in [Tzeng et al. 1990] has a worst-case expansion
of at most 4.

4.2.2. Embedding Incomplete and Composite Meshes with Dilation I. In many applica-
tions a mesh algorithm may work on a part of the mesh, and in such cases it is interesting
to consider meshes that we call incomplete meshes. Also it is possible that several mesh-
based algorithms are working together, each on a different size of mesh. To capture this
idea, we introduce the concept of a composite mesh, that is, a mesh consisting of several,
smaller different-sized meshes. In this section we show that incomplete and composite
meshes can be embedded into composite hypercubes with dilation 1.

We define an incomplete mesh IM(c~ 1 • 0/2, c~3) to be a 0/1 x 0/2 dimensional mesh with
0/3 rightmost nodes missing in the cq-th row for c~ 3 < 0/2 (see Figure 9).

Theorem 6. An incomplete mesh IM(al x 0/2, c~3), 0 -< c~ 3 -< c~ 2 can be embedded into
CH(c~I * ~2 - 0/3) with dilation 1, i f 0/2 = 2 a.

INCOMPLETE HYPERCUBES: ALGORITHMS AND EMBEDDINGS 289

O0 O1 1
000

001

011

oio) -

110

111

lOl

10

Figure 9. An embedding of IM(7 x 4, 2) into CH(26).

Proof : We provide an outline of the proof; details are omitted for the sake of brevity. First,
note the fact that each row of an a l • c~2 mesh with a2 -- 2 d can be embedded into a
d-dimensional hypercube with dilation 1, according to the strategy explained in Theorem 5.
If the rightmost c~ 3 nodes are missing, it follows from the definition of the composite hyper-
cube that the last row can be embedded into a (c~ 2 - c~3)-node composite hypercube with
dilation 1. The union of this composite hypercube with the (cq - 1) • c~ 2 mesh gives
us the desired result. Figure 9 shows an example of an embedding of an IM(7 • 4, 2)
into a CH(26). �9

We define a composite mesh CM(c~I, OL2, O~ 3 O~k) as a collection of k meshes M1,
M2 , Mk of sizes a l • cq, o~ 2 x ~2, " " " , ~ k X 0~k, respectively. In addition, nodes
in the first row of Mi+l are adjacent to the leftmost nodes in the last row of 34i-. More
precisely, node mi(o~i, r) is adjacent to m/+l(1, r) for r = 1 , ai+l and 1 _< i < k,
where mi(p, q) denotes the node in the p- th row and q-th column of mesh M i.

T h e o r e m 7. A composite mesh CM(eq, c~2 c~k) can be embedded into a composite
hypercube with the same number o f nodes, namely CH(c~ + c~ + . . . + c~) , with dila-
tion 1 i f every ai is power o f two and ol i > oL/+ 1 > 0.

Proof : Since the details are rather straightforward we provide only an outline of the proof.
Note that each M/ can be embedded into an optimally sized hypercube Q4 where
d i = log(a /* c~i). That is, each M/maps to complete subhypercubes in the composite hyper-
cube. Moreover the Gray code embedding ensures that the nodes in the last row of M i are
adjacent to the nodes in the first row M/+ 1 if they exist. This follows from Theorem 6 since
we may consider the first row of Mi+l along with M i as an incomplete mesh IM(ai x c~i,
c~i+ 0. Figure 10 shows an example of an embedding of a CM(4, 2, 1) into a CH(21). �9

290 A.J. BOALS, A,K. GUPTA, AND N.A, SHERWANI

130 O1 11 10

001

011

010

110

111

101

000

Figure 10. An embedding of CM(4, 2, 1) into CH(21).

4.3. Embeddings o f Butterfly and Cube-Connected Cycle Networks

In this section we describe dilation-2 embeddings of a butterfly and a cube-connected cycle
network into their optimal-sized composite hypercubes. It is well known that an n-node
butterfly B(n) can be embedded into a 2 BognT_pE complete hypercube Q Flogn7 with a dila-
tion of 1 [Greenberg et al. 1990]. Observe that the expansion of the embedding is greater
than 1 but less than 2 provided n # a power of two. We show that B(n) can be embedded
into an n-node composite hypercube CH(n) with a dilation of 2 and expansion of 1. We
also show that this embedding is optimal with respect to dilation for half the values of
n. An n-node cube-connected cycle network CCC(n) is known to be embeddable into a
Q Flogn7 with an optimal dilation of at most 2. In the same vein we show that CCC(n) can
also be embedded into an n-node composite hypercube CH(n) with an optimal dilation
of at most 2. For the sake of completeness, we next define B(n) and CCC(n).

An n-node butterfly B(n) consists of h + 1 levels, with each level containing 2 h nodes.
Every node is labeled as a 2-tuple (c~, bib 2 . . . bh) , where 1 _< c~ _< h + 1 and b i = 0 , 1
for 1 < i <_ h. A node v = (c~, bl, b2 . . . b h) is connected to node (c~ + 1, bib 2 . . . b h)

by means of a straight edge and v is connected by means of a cross edge to node (c~ + 1,
b 1 . . . b~_lf~,b=+l . . . b h) , for 1 < c~ < h. Thus all the nodes at levels 2 through h have
degree 4 and the nodes at levels 1, degree 2. An n-node cube-connected cycle CCC(n)
consists of n = h2 h nodes for some positive integer h. Every node in CCC(n) has degree
3 and is labeled as a 2-tuple (a , bib2 . . . b h) , where 1 < c~ < h and b i = 0 , 1 for
1 -< i _< h. A node v = (t~, bib2 . . . b h) is connected to three nodes (c~ - 1 (mod h),
blb2 . �9 �9 b h) , (o r + 1 (modh) , b i b 2 . . . b h) , and (c~, b 1 . . . ba_l{gc~bc~+l . . . b h) . Observe
that CCC(n) is a symmetric network and the h nodes that have the same second coordinate

INCOMPLETE HYPERCUBES: ALGORITHMS AND EMBEDDINGS 291

form a cycle that we will refer to as the h-cycle. Furthermore, if each of these cycles is
collapsed to a node, then we obtain a 2h-node complete hypercube Qh,

We now describe an embedding of B(n) into CH(n) that achieves a dilation of 2. Let
~b be a dilation-1 embedding of a mesh M of size 1 • (h + 1) into CH(h + 1). We know
that 4~ exists by Theorem 5. Let k = [-log(h + 1)] and ei,lCi, 2 . . . Ci, k be the label of the
image of the i-th node of M under the embedding 0. Now, in order to embed B(n) into
CH(n), we assign node (i, bib2 . . . b h) of B(n) to PE ei, 1 . . . Ci,kb 1 . . . b h of CH(n).
Observe that the PEs that get nodes on level i of B(n) assigned form a complete hypercube
of 2 h PEs. Furthermore, the PEs that get the nodes in the j-th column of B(n) assigned
form a composite hypercube CH(h + 1). By using the fact that a CH(m2 k) can be ex-
pressed as a cross product of Qk x CH(m), we can easily see that the set of PEs that get
the nodes of B(n) assigned by the above embedding procedure form a composite hypercube
CH(n). The straight edges of B(n) are mapped to edges of the CH(n) because of the em-
bedding 0. The cross edges are mapped to paths of length 2 as follows: Let (v, v ') be a
cross edge of B(n) between levels i and i + 1. The node v is assignedto PE ci,1 . . �9 ci,kbl
�9 . . b i . . . b h and node v ' is assigned to PE ci+1,1 . . . ci+l,kbl . . . bi . . . bh. We know
that ci,js differ from ci§ for precisely one value o f j under the embedding 4~. Therefore,
the labels of v and v ' differ in precisely two bits, namely one in the first k bits and another
in the last h bits. This shows that every cross edge of B(n) is dilated by 2 in the embedding
of B(n) into CH(n). We thus can state the following result.

Theorem 8. An n-node butterfly B(n) can be embedded into an n-PE composite hypercube
CH(n) with dilation 2.

The above embedding of B(n = (h + 1)2 h) into CH(n) achieves a dilation of 2, which
is optimal whenever h is an even integer. This can be seen from the fact that B(n), in this
case, is a connected bipartite graph whose partite sets differ by 2 h nodes, whereas CH(n)
is a connected bipartite set with its partite sets of equal size. The question still remains
open as to whether the above embedding is optimal with respect to dilation for an odd h.
Note that when n is a power of two, CH(n) is a complete hypercube and thus a dilation-1
embedding of B(n) into CH(n) exists [Greenberg et al. 1990].

Finally we outline a dilation-1 embedding of an n = h2h-node cube-connected cycle net-
work into CH(n). Note that CH(n) is isomorphic to the graph CH(h) • Qh where • is
the graph product. Since CH(h) is Hamiltonian whenever h is even (see Section 2), the
h-cycles of CCC(n) can be embedded into 2 h copies of CH(h) in CH(h) x Qh in a parallel
fashion so that nodes (a , bl . . . be . . �9 b h) and (c~, b 1 . . . [~ . . . bh) are assigned to
adjacent PEs of CH(n). Note that if h is odd, CCC(n) contains h-cycles of odd length;
hence CCC(n) is not isomorphic to any subgraph of the bipartite graph CH(n). Thus we
have established the following theorem:

Theorem 9. A dilation-1 embedding o f an n = h2h-node cube-connected cycle network
into an n-PE composite hypercube exists i f and only i f h is even.

It can also be shown that whenever h is odd we can embed CCC(n) into CH(n) with
a dilation of 2.

292 A.J. BOALS, A.K. GUPTA, AND N.A. SHERWANI

5. Conclusion

In this paper we have investigated the graph properties of composite hypercubes. We have
shown that various types of incomplete binary trees, meshes and butterflies can be opti-
mally simulated by composite hypercubes. In fact, the embedding results indicate that com-
posite hypercubes show simulation capabilities that are very similar to complete hypercubes.
Finally, we showed that fully normal algorithms can be efficiently implemented on com-
posite hypercubes with a wide range of architecture sizes.

We have also briefly indicated how to design an efficient algorithm that recognizes com-
posite hypercubes within a complete hypercube. This recognition algorithm is fundamen-
tal to task allocation problems and to the development of efficient algorithms on composite
hypercubes.

Obviously, our work is simply a start if composite hypercubes are to be shown as an
effective parallel interconnection network. There remain a number of issues that need to
be investigated for composite hypercubes. For example, simulations of other popular archi-
tectures such as shuffle-exchange and pyramids still remain open problems. Design of other
classes of parallel algorithms (e.g., normal algorithms) on composite hypercubes also re-
main to be investigated.

Appendix

Here we define the graph theoretic properties used in Section 2. For more details the reader
is referred to standard graph theory text books such as [Bondy and Murthy 1976] or [Behzad
et al. 1979].

1. e = number of edges.
2. 6 = minimum node degree, and A = maximum node degree.
3. K (resp., X) = node (resp., edge) connectivity number; that is, the minimum number

of nodes (resp., edges) required to disconnect a graph.
4. ~0 = maximum clique size.
5. X0 (resp., Xl) = node (resp., edge) chromatic number.
6. d = diameter; that is, the distance between two nodes in the graph that are furthest

apart. We call [u, v] a diametrical pair if the distance between u and v is equal to
the diameter of the graph.

7. c~ 0 (resp., cq) = node (resp., edge) covering number; that is, the minimum number
of nodes (resp., edges) required to cover all the edges (resp., nodes) of a graph.

8. /3o = node independence number; that is, the size of the maximum set of nodes in
a graph such that no two of which share an edge.

9. 131 = edge independence number (the matching number); that is, the size of the max-
imum set of edges in a graph such that no two edges in the set are incident on the
same node.

10. g = girth; that is, the length of the shortest cycle in the graph.
11. c = circumference; that is, the length of the longest cycle in the graph.
12. 00 (resp., 0x) = node (resp., edge) clique number; that is, the minimum number of

cliques that contain all the nodes (resp., edges) of a graph.

INCOMPLETE HYPERCUBES: ALGORITHMS AND EMBEDDINGS 293

Notes

1. A binary reflected Gray code C(d) on d bits is defined as C(d) = OC(d - 1), 1CR(d - 1) with C(1) = 0, 1
where CR(d - 1) is a reversal of C(d - 1). For example, C3 = 000, 001,011,010, 110, 111, 101, 100.

References

Aleliunas, R., and Rosenberg, A. 1982. On embedding rectangular grids into square grids. 1EEE Trans. Comps.,
C-3l: 907-913.

Behzad, M., Chartrand, G., and Lesniak-Foster, L. 1979. Graphs andDiagraphs. Prindle, Weber, and Schmidt,
Boston.

Bhatt, S.N., and Ipsen, I.C.F. 1985. How to embed trees in hypercubes. Res. rept. 443 (Dec.), Dept. of Comp.
Sci., Yale Univ., New Haven, Conn.

Bhatt, S., Chung, E, Leighton, ET., and Rosenberg, A. 1986. Optimal simulations of tree machines. In Proc.,
27th Symp. on the Foundations of Comp. Sci., pp. 274-282.

Boals, A., Gupta, A., and Sherwani, N. 1992. Incomplete hypercubes: Embeddings and algorithms. Tech. rept.
TR/92-22, Dept. of Comp. Sci., W. Mich. Univ., Kalamazoo, Mich.

Bondy, J.A., and Murthy, U.S.R. 1976. Graph Theory with Applications. MacMillan, New York.
Chan, M.Y. 1988. Dilation-2 embeddings of grids into hypercubes. Tech. rept. UTDCS 1-88, Dept. of Comp.

Sci., Univ. of Tex. at Dallas.
Chan, M.Y., and Lee, S.-J. 1993. Fault-tolerant permutation routing in hypercubes. J. Parallel and Distr. Comp.

(Apr.): 227-281.
Chen, H.L., and Tzeng, N.-F. 1989. Enhanced incomplete hypercubes. In Proc., Internat. Conf. on Parallel Pro-

cessing, vol. 1, pp. 270-277.
Chen, M., and Shin, K.G. 1987. Processor allocation in a N-CUBE multiprocessor using Gray codes. IEEE Trans.

Comps., C-36, 12: 1396-1407.
Chen, M., and Shin, K.G. 1988. Message routing in an injured hypercube. In Proc., 3rd Conf. on Hypercube

Concurrent Comps. and Applications, pp. 312-317.
Das, S.K., Deo, N., and Prasad, S. 1990. Parallel graph algorithms for hypercube computers. Parallel Comput-

ing, 13: 143-158.
Fishburn, J.P., and Finkel, R.A. 1982. Quotient networks. IEEE Trans. Comps., C-31, 4: 288-295.
Gordon, J.M., and Stout, Q.E 1988. Hypercube message routing in the presence of faults. In Proc., 3rd Conf.

on Hypercube Concurrent Comps. and Applications, pp. 318-327.
Graham, N., Harary, E, Livingston, M., and Stout, Q.E 1993. Subcube fault-tolerance in hypercuhes. Informa-

tion and Computation (Feb.): 218-314.
Greenberg, D.S., Heath, L.S., and Rosenberg, A.L. 1990. Optimal embeddings of butterfly-like graphs in the

hypercubes. Math Systems Theory, pp. 61-77.
Gupta, A.K. 1989. On the relationship between parallel computation and graph embeddings. Ph.D. thesis, Purdue

Univ., Lafayette, Ind.
Harary, E, Hayes, J.P., and Wu, H.-J. 1988. A survey of the theory of hypercube graphs. Computational Math.

and Applications, 15, 4: 277-289.
Hastad, J., Leighton, ET., and Newman, M. 1987. Reconfiguring a hypercube in the presence of faults. In Proc.,

19th Annual ACM Symp. on the Theory of Computing, pp. 274-284.
Hastad, J., Leighton, T., and Newman, M. 1989. Fast computation using faulty hypercubes. In Proc., 21st An-

nual Symp. on the Theory of Computing, pp. 251-263.
Havel, I., and Mdravek, J. 1972. B-valuations of graphs. Czech Math. J., 22: 338-351.
Ho, C.T., and Johnsson, S.L. 1990. Embedding meshes in Boolean cubes by graph decomposition. J. Parallel

and Distr. Comp., 8: 325-339.
Hong, J.W., Mehlhorn, K., and Rosenberg, A. 1983. Cost trade-offs in graph embeddings, with applications.

JACM: 709-728.
Kandlur, D.D., and Shin, K.G. 1988. Hypercube management in the presence of node failures. In Proc., 3rd

Conf. on Hypercube Concurrent Comps. and Applications, pp. 328-336.

294 A.J. BOALS, A.K. GUPTA, AND N.A. SHERWANI

Katseff, H.P. 1988. Incomplete hypercubes. IEEE Trans. Comps., 37, 5: 604-608.
Kosaraju, S.R., and Atallah, M. 1988. Optimal simulations between mesh connected array of processors. YACM,

35, 3: 635-650.
Lee, T.C., and Hayes, J.E 1988. Routing and broadcasting in faulty hypercube computers. In Proc., 3rd Conf.

on Hypercube Concurrent Comps. and Applications, pp. 346-354.
Leiserson, C.E. 1980. Area-efficient graph layouts (for VLSI). In Proc., 22nd Annual IEEE Symp. on the Foun-

dations of Comp. Sci., pp. 270-281.
Prabhalla, V., and Sherwani, N. 1990. Parallel single row routing on compact hypercubes. Tech. rept. TR/90-06,

Dept. of Comp. Sci., W. Mich. Univ., Kalamazoo, Mich.
Roy, A., Deogun, J.S., and Sherwani, N.A. 1989. A parallel algorithm for single row routing problems. J. Cir-

cuits, Systems, and Comps. (to appear).
Saad, Y., and Schultz, M.H. 1988. Topological properties of hypercubes. IEEE Trans. Comps., 37, 7: 867-872.
Tien, J.-Y., and Yang, W.-P. 1991. Hierarchical spanning trees and distributing on incomplete hypercubes. Parallel

Comp., 17: 1343-1360.
Tzeng, N.-E 1990. Structural properties of incomplete hypercubes. In Proc., lOth Internat. Conf. on Distr. Com-

puting Systems, pp. 262-269.
Tzeng, N.-E, Chert, H.L., and Chuang, EJ. 1990. Embeddings in incomplete hypercubes. In Proc., lnternat.

Conf. on Parallel Processing, pp. III-335-III-339.

