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Bounds for the chromatic number and for some related parameters of a graph are obtained by 
applying algebraic techniques. In particular, the following result is proved: If G is a directed graph 
with maximum outdegree d, and if the number of Eulerian subgraphs of G with an even number 
of edges differs from the number of Eulerian subgraphs with an odd number of edges then for any 
assignment of a set S(v) of d + 1 colors for each vertex v of G there is a legal vertex-coloring of G 
assigning to each vertex v a color from S(v). 

1. I n t r o d u c t i o n  

A subdigraph H of a directed graph  D is called Eulerian if the indegree dH(V ) 

of every vertex v of  H in H is equal to its outdegree d+H(v). Note tha t  we do not 
assume tha t  H is connected. H is even if it has an even ]iumber of  edges, otherwise, 
it is odd. Let EE(D)  and EO(D) denote the numbers  of  even and odd Eulerian 
subgraphs of  D, respectively. (For convenience we agree tha t  the empty  subgraph is 
an even Eulerian subgraph.)  Our  main result is the following: 

Theo rem 1.1. Let D = (V, E) be a digraph. For each v E V, let S(v) be a set o f  
d+(v) + 1 distinct integers, where ~D(V) is the outdegree of v. If  BE(D)  ~ EO(D) 
then there is a legal vertex-coloring c : V -~ Z such that c(v) ~ S(v) for all v E V. 

Corollary 1.2. Let G be an undirected graph. I f  G has an orientation D satisfying 
EE(D)  ~ EO(D) in which the max/mum outdegree is d, then G is (d + 1)-colorable. 
In particular, i f  the max imum outdegree is d and D contains no odd directed (simple) 
cycle then G is (d + 1)-colorable. 

Since a complete graph  G on d + 1 vertices has such an orientation (i.e., the 
acyclic orientation),  the upper  bound  d + 1 is sharp. In  case the orientation D is 
acyclic, the conclusion of  the theorem and tha t  of the corollary can be easily proved 
by induction. The  general case seems Inuch more complicated and our  only proof  for 
it is algebraic. 

Any  upper  bound  to  the chromatic  number  of a graph  supplies a lower bound  
to its independence number.  The  resulting est imates are s ta ted  in the following two 
corollaries. 
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Corollary 1.3. Let G be an undirected graph on n vertices. I f  G has an orientation 
D satisfying E E ( D )  # EO(D) in which the max/mum outdegree is d, then G has an 
independent set of size at least n / (d  + 1). In particular, i f  the max/mum outdegree 
is d and D contains no odd directed (simple) cycle then G has an independent set of 
size at least n / (d  + 1). 

Note that  the estimate n/(d  + 1) is sharp, as shown by any union of vertex- 
disjoint complete graphs on d + 1 vertices each. As is the case in Corollary 1.2 the 
assertion of the last corollary can be easily proved by induction in the special case 
when D is acyclic. However, we do not have a non-algebraic proof for the general 
c a s e .  

Corollary 1.4. Let G be an undirected graph on a set V = {Vl, . . .  ,v~} of n vertices, 
and suppose it has an orientation D satisfying E E( D ) # EO( D ). Let dl >_ d2 . . .  >_ d~n 
be the ordered sequence of outdegrees of the n vertices of D. Then, for every k, 
n > k  > O, G has an independent set of size at least r(n - k)/(dk+l + 1)1. 

Theorem 1.1 actually deals with the notion of choosability of graphs, introduced 
and studied in [9] and [15]. Let G = (V, E)  be an undirected graph and let f :  V --* 
Z + be a function which assigns to each vertex v �9 V a positive integer f (v) .  We say 
that G is f-choosable if for every choice of sets S(v) of integers, where IS(v)l =/(v) 
for all v E V there is a legal coloring c : V --* Z such that  c(v) E S(v) for all v E V. In 
particular, if G is f-choosable for the constant function f given by f (v )  = k for each 
v �9 V we say that  G is k-choosable. Theorem 1.1 is clearly a statement concerning 
the choosability of graphs. 

Our paper is organized as follows: 
In Section 2 we present the proofs of Theorem 1.1 and its three Corollaries. 

This Theorem is applied in Section 3 to obtain results concerning the choosabil.ity of 
graphs. The final Section 4 contains some concluding remarks and open problems. 

2. The Proof  of  the Main Result 

Our method resembles the one we applied in [3]. (See also [1] for a similar 
approach.) We start with the following simple lemma. 

Lemmn 2.1. Let P = P(x l ,  x 2 , . . . ,  xn) be a polynomial in n variab/es over the ring 
of integers 7/.. Suppose that for 1 < i < n the degree of P as a polynomial in xi is at 
most di and let Si C Z be a set of di + 1 distinct integers. I f  P ( x l , x 2 , . . . , x n )  = 0 
for all n-tuples (Xl , . . .  ,xn) E S1 x $2 x . . .  x Sn then P - O. 

Proof. We apply induction on n. For n = 1 the lemma is simply the assertion 
that  a nonzero polynomial of degree dl in one-variable can have at most dl distinct 
zeros. Assuming the lemma holds for n - 1 we prove it for n, (n > 2). Given a 
polynomial P = P ( X l , . . . ,  xn) and sets Si-satisfying the hypotheses of the lemma, 

dn 
let us write P as a polynomial in xn, i.e., P = ~ P i ( x l , . . .  ,xn-1)x~,  where each 

i=0 
Pi is a polynomial with xj-degree bounded by dj. For each fixed (n - 1)-tuple 
( X l , . . . , x n - 1 )  6 $1 x $2 x . . .  x Sn-1, the polynomial in xn obtained from P 
by substituting the values of X l , . . . ,  xn-1 vanishes for all xn �9 Sn and is thus 
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identically 0. Therefore Pi(xl, . . . ,Xn-1) = 0 for all (Xl , . . .  ,xn-1) E S1 x . . . x Sn-1 
and hence, by the induction hypothesis, Pi =- 0 for all i, implying that  P _= 0. This 
completes the induction and the proof of the lemma. I 

The graph polynomial fG(Xl, x 2 , . . . ,  Xn) of an undirected graph G = (V, E) on 
a set V = {Vl, . . . ,  vn} of n vertices is defined by fG(Xl, x2 , . . . ,  Xn) = 1]{(xi - x j )  : 
i < j,  {vi,vj} E E}. This polynomial is studied by Li and Li in [12], following a 
previous related work by Graham, Li and Li ([11]). An analogous polynomial for 
certain linear matroids is considered in [3]�9 It is not too difficult to see that  the 
coefficients of the monomials that  appear in the standard representation of fG as 
a linear combination of monomials can be expressed in terms of the orientations of 
G. For each oriented edge e = (vi, vj) of G, define its weight w(e) by w(e) = xi if 
i < j and w(e) = - x i  if i > j .  The weight w(D) of an orientation D of G is defined 
to be the product l-I w(e), where e ranges over all oriented edges e of D. Clearly 
fG = ~ w(D), where D ranges over all orientations of G. This is simply because 
each term in the expansion of the product fG = I]{(xi - x j )  : i < j,  {vi,vj} E E} 
corresponds to a choice of the orientation of the edge {vi, vj} for each edge {vi, vj} of 
G. Let us call an oriented edge (vi, vj) of G decreasing if i > j .  An orientation D of 
G is called even if it has an even number of decreasing edges; otherwise, it is called 
odd. For non-negative dl, d2 , . . . ,  dn, let DE(d l , . . . ,  din) and DO(d l , . . . ,  dn) denote, 
respectively, the sets of all even and odd orientations of G in which the outdegree of 
the vertex vi is di, for 1 < i < n. By the last paragraph, the following lemma holds. 

Lemma 2.2. In the above notation 
n 

fG(Xl,. .,Xn) E (]DE(dl, . . ,dn)l  iDO(dl,. .,dn)i) y I d, �9 = �9 - �9 x i �9 I 

dl, . . . ,dn>O i = l  

Consider, now, a fixed sequence d l , . . . ,  ~ of nonnegative integers and let D 1 
be a fixed orientation in D E ( d l , . . . , d n ) U  DO(dl , . . . ,dn) .  For any orientation 
D2 E D E ( d l , . . . , d n ) U  DO(dl , . . . , dn)  let D 1 ~ D2 denote the set of all oriented 
edges of D1 whose orientation in D2 is in the opposite direction. Since the outdegree 
of every vertex in D1 is equal to its outdegree in D2, it follows that D1 @ D2 is an 
Eulerian subgraph of D1. Moreover, D1 ~ D2 is even as an Eulerian subgraph iff 
either both D 1 and D 2 are even or both are odd. The mapping D2 --* D1 �9 D2 
is clearly a bijection between DE(d l , . . . , dn )  U DO(d l , . . . ,  dn) and the set of all 
Eulerian subgraphs of D1. In case D1 is even, it maps even orientations to even 
(Eulerian) subgraphs and odd orientations to odd subgraphs. Otherwise, it maps 
even orientations t o  odd subgraphs and odd orientations to even subgraphs. In any 
case, 

I iDE(dl , . . . ,  dn)] - ]DO(dl, . . . ,  dn)] I = ]BE(D1) - EO(D1)] 

where EE(D1) and EO(D1) denote, as in Section 1, the numbers of even and odd 
Eulerian subgraphs of D1, respectively. Combining this with Lemma 2.2 we obtain 
the following. 

Corollary 2.3. Let D be an orientation of an undirected graph G = (IF, E) on a set 
V = {Vl, . . .  ,Vn} o f n  vertices. For 1 < i < n, let di = ~D(Vi) be the outdegree of 
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n di in the vi in D. Then the absolute value of the coefficient of the monomial 1-I xi 
i=1 

standard representation of f G = f G( x l ,  . . . , xn) as a linear combination of monomials 
is lEE(D) - EO(D)[. In particular, f l E E ( D )  ~ EO(D) then this coefficient is not 
zero. _=~- I 

Proof of Theorem 1.1. Let D = (V, E) be a digraph on the set of vertices V = 
{Vl, . . . ,vn} and let d i = d~)(vi) be the outdegree of vi. Suppose that  E E ( D )  
EO(D).  For 1 < i < n, let Si C Z be a set of d i + 1 distinct integers. We must show 
that  there is a legal vertex-coloring c : V -* Z such that c(vi) �9 S i for all 1 < i < n. 
Suppose this is false and there is no such coloring. Let G be the underlying undirected 
graph of D and let f a  = f a ( x l ,  . . .  , xn) be its polynomial. The assumption that the 
required coloring does not exist is equivalent to the statement: 

(2.1) f G ( X l , . . . ,  Xn) = 0 for every n-tuple ( X l , . . . ,  Xn) �9 S1 x $2 x . . .  x Sn. 

For each i, 1 < i < n, let Qi(xi) be the polynomial 

d~ 

Observe that  

(2.2) 

_ d i + l  
Qi(xi) = H (xi - s ) =  x i - Z q i j~ .  

sES~ j=0 

di 
_d~+l If xi E Si then Qi(xi) = O, i.e., x i = Z q i j~ .  

j=o 

bet ]G be the polynomial obtained from fG by writing ]G as a linear combination 
of monomials and replacing, repeatedly, each occurrence of x//i, (1 < i < n), where 
fi  > di, by a linear combination of smaller powers of xi, using the relations (2.2). 
The resulting polynomial ]G is clearly of degree at most d i in xi for each 1 < i < n. 
Moreover, f G ( X l , . . . , x n )  = f G ( X l , . . . , x n )  for all (X l , . . . , xn )  E S1 x . . .  x Sn, 
since the relations (2.2) hold for these values of Xl , . . .  ,xn. Therefore, by (2.1), 
f G ( X l , . . . , x n )  = 0 for _every n-tuple ( x l , . . . , x n )  �9 S1 x . . .  x Sn and hence, by 

n di in fG is Lemma 2.1 ]G = O. However, by Corollary 2.3, the coefficient of 1-I xi 
i=l 

nonzero, since, by assumption, E E ( D )  ~ EO(D).  Since the degree of each xi in this 
monomial is di, the relations (2.2) will not effect it. Moreover, as the polynomial fG 
is homogeneous and each application of the relations (2.1) strictly reduces degree, 

n di 
the process of replacing fG by ]G will not create any new scalar multiples of 11 xi �9 

i = l  
di Thus, the coefficient of f i x  i in ]G is equal to its coefficient in fG and is not 0. 

i----1 
This contradicts the fact that  fG = 0. Therefore, our assumption was false and there 
is a legal coloring c : V --* Z satisfying c(vi) E Si for all 1 < i < n, as needed. I 

Proof of Corollary 1.2. Let D = (V, E) be an orientation of a graph G such that  
EE(D)  ~ EO(D),  in which the maximum outdegree is d. By Theorem 1.1, with 
S(v) --- ( 1 , . . . ,  d § 1} for all v �9 V, G is (d q- 1)-colorable, as needed. 
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In case D contains no odd directed simple cycle, it cannot contain odd Eulerian 
subgraphs at all. This is because every Eulerian subgraph H is a union of edge- 
disjoint directed simple cycles, and if H is odd then at least one of these ~ycles must 
be odd. Thus, in this case EO(D) = 0 and as always EE(D) > 1 (because the empty 
subgraph is an even Eulerian subgraph) EO(D) ~ EE(D). It thus follows from the 
previous paragraph that  G is (d + 1)-colorable, in this case too. | 

Proof of Corollary 1.3. This is an immediate consequence of Corollary 1.2, since in 
any legal (d + 1)-coloring of a graph on n vertices the largest color class contains at 
least In/(d + 1)] vertices, i 

Proof of Corollary 1.4. Renumber the vertices so that  d~)(vi) = d i. By Theorem 1.1 
there is a legal coloring c : V --* Z of G such that 1 _< c(vi) <_ di + 1 for all 1 < i < n. 
For each k, 0 _< k < n, the colors ofvk+l, . . . ,Vn all lie in {1 ,2 , . . . , dk+  1 + 1} and 
hence the largest color class has size at least [(n - k)/(dk+l + 1)1. | 

Remark 2.4. The assertion of Theorem 1.1 (and hence that of Corollaries 1.2, 1.3 
and 1.4) is trivial in the special case that  D is acyclic. This is because in this special 
case there is a vertex v with 0-indegree. By induction we can obtain a coloring of the 
desired type of D - v  and this coloring can be trivially extended to the needed coloring 
of D. This argument also supplies a polynomial time algorithm for finding the desired 
coloring. The general case seems more difficult. Note that  already the case of no odd 
directed cycle is certainly more general than the acyclic one as it implies, e.g., that 
an even cycle is 2-colorable and 2-choosable (by orienting it cyclically), although it 
has no acyclic orientation with maximum outdegree less than 2. 

As observed by J. A. Bondy, R. Boppana and A. Siegel [4] Theorem 1.1 (and 
hence also Corollary 1.2 and Corollary 1.3) for the special case that D has no odd 
directed cycle follows easily from Richardson's Theorem (cf., e.g., [5]). Richardson's 
Theorem states that any digraph with no odd directed cycles has a kernel, i.e., an 
independent set such that  every vertex outside it has an edge to a neighbor in it: 
Thus we can fix some color x in the union of the sets S(v), apply Richardson's 
Theorem to the induced subgraph of D on the set of all vertices v that contain x in 
their lists S(v), color the vertices in the kernel by x (which will not be used again), 
and apply induction. Note that Richardson's proof is algorithmic. This argument 
does not seem to imply the general statement of Theorem 1.1 and its corollaries. 
Remark 2.5. An alternative proof of Corollary 1.2 can be deduced from a result of 
Kleitman and Lov~sz (cf. [12]). They proved that  if the chromatic number of a graph 
G = (V, E) is at least k, then fG lies in the ideal generated by the polynomials fH, 
where H is a complete graph on some subset of cardinality k of V. Notice that if 
K C V is the set of vertices of such an H then fH = 1-I{(xp-- Xq) : vp, Vq E K, p < q}. 
However, this product is exactly the Vandermonde's determinant det(x~)peK,O<i< k 
and each term in the expansion of this determinant contains a variable of degree k -  1. 
Therefore, if G is not d + 1 colorable, every monomial with a non-zero coefficient in 
fG has a variable of degree at least d+  1. But under the assumptions of Corollary 1.2, 

n 
Corollary 2.3 implies that the monomial l'I xd appears with a non-zero coefficient 

i = 1  
in fG, and this monomial has no variable of degree d + 1 or more. Therefore, G is 
(d + 1)-colorable, as needed. A similar derivation of Corollary 1.3 from the main 
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result of Li and Li [12], that  characterizes the ideal generated by the polynomials fG 
where G ranges over all graphs on n vertices with independence number at most k 
can be also given. 

It is worth noting that Gessel [10] describes a combinatorial proof for the ex- 
pression of the Vandermonde's determinant as a product, by associating every term 
in the expansion of the product with a turnament, i.e., with an orientation of a com- 
plete graph. Lemma 2.2 is a simple modification of Gessel's arguments to general 
graphs. 
RemArk 2.{}. Our method can be easily applied to prove the following Nullstellensatz- 
type result, which is similar to Theorem 1.1. Since the proof is similar to that  of 
Theorem 1.1 we omit it. 

Proposition 2.7. Let G = (V, E)  be a graph, and let f a  = fG(Xl, . . .  , Xn) be its 
polynomial. For every integer k the following statements are equivalent: 

(i) G is not k-colorable. 
(ii) There is a set S of k distinct (complex) numbers such that fa (X l ,  . . . , xn) = 

0 for every X l , . . . ,  xn E S. 
(iii) For every set S o fk  distinct (complex) numbers fG(Xl , .  . . , Xn) = 0 for every 

X l , . . . , X n  E S. 
(iv) There/s  a set S of k distinct (complex) numbers such that the polynomial 

f a  belongs to the ideal generated by the n polynomials Q i ( x i )  = r I  (xi  - s),  
sES 

(1 < i < n). 
(v) For every set S o fk  distinct (complex) numbers the polynomial fG belongs to 

the ideal generated by the n polynomials Qi(xi) = I] (xi - s), (1 < i < n). 
sEs 

(vi) The polynomial fG, considered as a polynomial in the ring of polynomials in 
the n + k variables Xl, �9 . . ,  xn, Zl, . . . , zk over the complex numbers, belongs 
to theidealgenerated b y t h e n  polynomialsQi = [I ( x i - z j ) ,  (1 < i < n). 

l<_j<<_k 
(vii) For every set S of k not necessarily distinct (complex) numbers the poly- 

nomial fG belongs to the ideal generated by the n polynomials Qi(xi) = 
II  (xi - s),  (1 < i < n). 

sES 

3. k-Choosable Graphs 

For a graph G = (V,E) ,  define L(G) = max(IE(H)I / IV(H)I) ,  where H = 
(V(H) ,  E (H) )  ranges over all subgraphs of G. Thus L(G) is simply a half of the 
maximum value of the average degree of a subgraph of G. The following simple 
lemma appears in [2] (and, probably, in other places as well). The proof we present 
here follows [14]. 

Lemma 3.1. A graph G = (V, E)  has an orientation D in which every outdegree is 
at most d ff  and only ff  L(G) < d. 

Proof. If there is such an orientation D, then, for any subgraph H of G 

[E(H)[ = E d~I(v) <- dig(H)[ 
~eVCH) 



COLORINGS AND ORIENTATIONS OF GRAPHS 131 

and hence IE(H)I/]V(H)] < d. Thu~ L(G) < d. Conversely, suppose L(G) < d. Let 
F be the bipartite graph on the classes of vertices A and B, where A = E and B 
is a union o f d  disjoint copies V1, V2,... ,Vd of V. Each member e = {u,v}  of E is 
joined by edges in F to the d copies of u and to the d copies of v in B. We claim 
that  F contains a matching of size IAI = IEI. Indeed, if E '  _C E is a set of edges of a 
subgraph H of G whose vertices are all endpoints of members of E',  then in F, E '  
has d]V(H)I neighbours. By the definition of L(G) : IE'I/IV(H)J <_ L(G) < d and 
hence dIV(H)l >_ ]E' I. Therefore, by Hall's theorem, the desired matching exists. 
We can now orient each edge of G from the vertex to which it is matched. This gives 
an orientation D of G with maximum outdegree _< d and completes the proof of the 
lemma. 

Recall that a graph G = (V, E) is k-choosable if for any assignment of sets 
S(v) C Z of cardinaiity k for each vertex v E V there is a proper coloring c : V ~ Z 
of G satisfying c(v) E S(v) for each v E V. 

Theorem $.2. Every bipartite graph G is ([L(G)] + 1)-choosable. 

Proof. Put  d = [L(G)]. By Lemma 3.1 there is an orientation D of G in which the 
maximum outdegree is at most d. Since D contains no odd directed cycles (and in 
fact no odd cycles at all), E E (D)  # EO(D) and the result follows from Theorem 1.1.| 

RemArk 3.3. The assumption that G is bipartite is essential, since if G = Kn is 
the complete graph on n vertices then L(G) = ( n -  1)/2 and clearly K n  is not k- 
choosable for k < n. Moreover, Theorem 3.2 is sharp in the sense that  for every k 
there is a bipartite graph G satisfying L(G) <_ k, which is not k- choosable. Indeed, 
let G be the complete bipartite graph on the classes of vertices A and  B where 

= k k and ]B] = k. Clearly L(G) <_ k, since if H is the induced subgraph of IAI A' 
G on U S ' ,  where A' _C A and B'  C S then [E(H)I = ~ dH(a ) < klA' I < 

aEAI 
kIV(H)]. In order to show that  G is not k-choosable, put B = {b l , . . . , bk }  and 
define S(bi) = {k(i - 1) + 1, k(i - 1) + 2 , . . . ,  ki}. Enumerate the vertices of A so 
t h a t A = { a i l , i  2 ..... ik : l <- ij  < k}. Now define 

S(ail,i2,...,ik) = {il, k + i2, 2k + i3 , . . .  , (k - 1)k + ik}. 

Clearly, there is no legal coloring of G in which c(v) E S(v) for each v E A U B. 
Indeed, assuming c is such a coloring, there are 1 < i l , . . . , i k  < k such that  
c(bj) = (j - 1)k + ij for i < j _< k. But then there is no value in S(ail,i2,...,ik) 
which is distinct from the colors of all its neighbours and hence c is not a legal 
coloring. 

An immediate corollary of Theorem 3.2 is the following result, which solves one 
of the open problems raised in [9]. 

Corollary 3.4. Every bipartite planar graph G is 3-choosable. 

Proof. L(G) < 2, since any bipartite (simple) planar graph on r vertices contains at 
most 2r - 4 edge. | 

Corollary 3.4 is also sharp, since K2,4 is bipartite and planar, and is not 2- 
choosable, by the discussion in Remark 3.3. 

It is interesting to note that  in general L(G) may be much larger than the degree 
of choosability of G. For example, if k > 1 and G is the complete bipartite graph Kn,n 
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on the classes of vertices A and B, where IAI --- IBI = n = 2 k-1 then L(G) = 2 k-2 
and still G is k-choosable. To see this suppose we are given a set S(v) C Z of 
cardinality k for each v E A U B. Put  S = UveV S(v) and let S = SA U SB be 
a random partition of S into two disjoint classes obtained by .assigning each s E S 
independently either to S A or to S B with,equal probability. Let us call a vertex 
a �9 A bad if S(a) n S A = 0. Similarly, a vertex b �9 B is called bad if S(b) N S B = 0. 
Since the probability that  a fixed vertex is bad is precisely 2 -k ,  the expected number 
of bad vertices is 1. However, since for some partitions (e.g., SA = S, SB = 0) there 
are 2 k-1 > 1 bad vertices there is at least one partit ion (SA, SB) with no bad 
vertices. We can now choose, for each a �9 A, c(a) �9 S(a) N S A and for each b �9 B, 
c(b) �9 S(b) N SB and obtain a legal coloring satisfying c(v) �9 S(v) for each vertex v. 
Hence G is k-choosable, as claimed. 

One of the most fascinating problems concerning choosability is a conjecture of 
Jeff Dinitz (cf. [8]), which asserts that  the line graph of Km,m is m-choosable. A 
more appealing formulation of this conjecture is the following: Given an arbitrary 
m by m array of m-sets, it is always possible to choose one element from each set, 
keeping the chosen elements distinct in every row and distinct in every column. This 
conjecture is, of course, trivial for m _< 2, and, as mentioned in [7], it has been verified 
by a surprisingly hard case by case analysis for m = 3. Applying our Theorem 1.1 
we can reduce the conjecture to a certain problem. For each m by m Latin square 
L (on the symbols 1, 2 , . . . ,  m) we can define a weight w(L) E {+1} as the product 
of the signs of the 2m permutations appearing in the rows and columns of L and 
show that  if ~ w(L) ~ O, where L ranges over all m x m Latin squares then Dinitz 
Conjecture holds for m. Unfortunately, for every odd m, the above sum is always 
0, and hence this method cannot yield a proof of the conjecture for odd m. We do 
believe, however, that the sum is nonzero for every even m, but at the moment we 
are unable to prove it. Still, it is trivial to check that  the sum is nonzero for m = 4, 
and with a computer we also checked that it is nonzero for m = 6. Therefore, the 
conjecture is true for m = 4 and m = 6; both cases are probably too difficult to be 
checked directly by a case by case analysis. We omit the details, and hope to return 
to this subject in the future. 

1) 

2) 

4. Concluding Remarks and Open Problems 

Corollary 1.2 generalizes the well known result that  if every induced subgraph 
of a graph G has a vertex of degree at most d then G is (d + 1)-colorable (cf., 
e.g., [6]), which is equivalent to the special case of the Coronary in which the 
orientation D is acyclic. 
There are several known results that  reveal the connection between the chromatic 
number of a graph G and its orientations. ,For example, it is known that  the 
chromatic number of G is equal to the minimum, over all orientation D of G of 
the maximum length of a simple directed path in D. This minimum is always 
obtained by an acyclic orientation, but  may be obtained by other orientations too 
(cf., e.g., [6]). It is also known (see [13]) that  the number of acyclic orientations 
of a graph G is equal to the absolute value of its chromatic polynomial evaluated 
at - 1 .  Theorem 1.1 and Corollary 1.2 form another example of a result that  
connects chromatic numbers and orientations. 
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3) There are simple examples of directed graphs D = (V(D), E(D)) that contain 
odd directed cycles and still satisfy EE(D) ~ EO(D). (Two directed odd 
cycles sharing an edge is one such example.) Therefore, the condition that  D 
has no odd directed cycles (which implies that  EE(D) ~ EO(D)) is a strictly 
stronger condition than the one EE(D) ~ EO(D) and hence the first part of, 
e.g., Corollary 1.2, is stronger than its last part. The advantage of the simpler 
condition that  there is no odd directed cycle is that  it can be easily checked in 
polynomial time; one way to do so is to observe that  there is no directed odd 
cycle iff no odd power A k of the adjacency matrix of D (k ~ IV(D)I) has a 
positive entry in its diagonal. 

4) It would be interesting to find a non-algebraic proof of Theorem 1.1 and its 
Corollaries. 
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