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The Bailey Transform and Bailey Lemma 

Glenn M. Lilly and Stephen C. Milne 

Abstract. The Cr nonterminating 6~5 summation theorem is derived by appro- 
priately specializing Gustafson's 6~k6 summation theorem for bilateral basic 
hypergeometric series very well-poised on symplectic C~ groups. From this, the 
terminating 6q~s and, hence, terminating 4~P3 summation theorem is obtained. A 
suitably modified 4(p3 is then used to derive the C~ generalization of the Bailey 
transform. The transform is then interpreted as a matrix inversion result for two 
infinite, lower-triangular matrices. This result is used to motis, ate the definition 
of the Ce Bailey pair. The Cr generalization of Bailey's lemma is then proved. 
This result is inverted, and the concept of the bilateral Bailey chain is discussed. 
The Ce Bailey lemma is then used to obtain a connection coefficient result for 
general Ce little q-Jacobi polynomials. All of this work is a natural extension of 
the unitary Af, or equivalently U(v ~ + 1), case. The classical case, corresponding 
to A1 or equivalently U(2), contains an immense amount of the theory and 
application of one-variable basic hypergeometric series, including elegant proofs 
of the Rogers-Ramanujan-Schur identities. The Ct nonterminating 6tps summa- 
tion theorem is also used to recover C. Krattenthaler's multivariable summation 
which he utilized in deriving his refinement of the Bender-Knuth and MacMahon 
generating functions for certain sets of plane partitions. 

I. Introduction 

The purpose of this paper is to derive a higher-dimensional generalization of the 
Bailey transform [6] and Bailey lemma [6] in the setting of basic hypergeometric 
series very well-poised on symplectic [19] groups. Our work here is a shortened 
version of the first author's thesis [24]. The symplectic case of the Bailey transform 
and Bailey lemma is a natural extension of the unitary case [30], [32] correspond- 
ing to basic hypergeometric series very well-poised on unitary [26] groups. Both 
types of series are directly related [19], [25] to the corresponding Macdonald 
identities. The series in [26] were strongly motivated by certain applications of 
mathematical physics and the unitary groups U(n) in [13], [14], [20], and [21]. 

Date received: June 27, 1991. Date revised: June 4, 1992. Communicated by Tom Koornwinder. 
AMS classification: Primary 33D70, 05A19; Secondary 33D20. 
Key words and phrases: Multiple basic hypergeometric series, Very well-poised on unitary or symplectic 
groups, Ce nonterminating 6~p5 summation theorem, Ce terminating 6tp5 summation theorem, C e Bailey 
pair, Cr Bailey transform, Ce Bailey lemma, Ce Bailey chain, Ce little q-Jacobi polynomials, Plane 
partition generating functions. 

473 



474 G.M. Lilly and S. C. Milne 

The unitary series use the notation At, or equivalently U(~ + 1); the symplectic 
case, Ct. The classical Bailey transform, lemma, and very well-poised basic 
hypergeometric series correspond to the case Aa, or equivalently U(2). 

The classical Bailey transform and Bailey lemma contain an immense amount 
of the theory and application of one-variable basic hypergeometric series [3], [6], 
[10], [16], [41]. They were ultimately inspired by Rogers' [40] second proof of 
the Rogers-Ramanujan-Schur identities [39]. The Bailey transform was first 
formulated by Bailey [11], utilized by Slater in [41], and then recast by Andrews 
[4] as a fundamental matrix inversion result. This last version of the Bailey 
transform has immediate applications to conection coefficient theory and "dual" 
pairs of identities [4], [6], [18], and q-Lagrange inversion and quadratic transfor- 
mations [17], [18]. 

Let q be a complex number such that ]ql < 1. Define 

(1.1a) 

and, thus, 

(1.1b) 

(~)o~ -- (e; q)o~ := 1-[ (1 -- o~q k) 
k_>O 

(~),---(~; q ) . . -  (~)o~ 
(cxq") ~o" 

We then have Andrews' matrix inversion result. 

Theorem 1.2 (Classical Bailey Transform for A O. Let a be indeterminate and let 
i,j >_ 0 be integers. Let the matrices M and M* be defined as in 

(1.3a) 

and 

(1.3b) 

M(i; j; A1):= (q)i-~(aq)i+~ 

M*(i; j; A1):= (1 - aq2i)(aq)i+j_ ~(q)7-~(- 1)i-jq ('~0. 

Then M and M* are inverse, infinite, lower-triangular matrices. That is, 

(1.4) 6(i, j)  = ~ M(i; y; AOM*(y; j ;  A0, 
j<y<i 

where ~(r, s) = 1 if  r = s, and 0 otherwise. 

Theorem 1.2 follows from the terminating ,(P3 summation theorem and a 
termwise rewriting of the (i,j) entry in the matrix product MM*.  Bressoud [15] 
has deduced an elegant extension of Theorem 1.2 for matrices Ma, b, with two free 
parameters, from the terminating 6~05 summation theorem. He proved that M,, b 
and Mb, . are inverse, infinite, lower-triangular matrices. This work, as well as [1] 
and [4], provides a natural setting for Theorem 1.2. 

Equation (1.3) motivates the definition of the A1 Bailey pair. 

Definition 1.5 (A I Bailey Pair). Let n _> 0 and y > 0 be integers and let ~ = {~y} 
and fl = {fir} be sequences. Let M and M* be as in (1.3). Then we say that ~ and 
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fl form an A 1 Bailey pair if 

(1.6) ft. = ~ M(n;y;Aa)c~, 
O<y<n 

for all n >_ 0. 

Equation (1.4) and Definition 1.5 immediately give the following result. 

Corollary 1.7 (A 1 Bailey Pair Inversion). ~ and fl satisfy (1.6) if and onlyif  

(1.8) = m*(n;y; AI) , 
O<y<n 

Corollary 1.7 is responsible for the dual pairs of identities in [4], [6], and [18]. 
For example, with ~, and ft, as in (1.13), it follows that (1.6) and (1.8) correspond 
to the classical terminating very well-poised 6~o5 summation [10], [16], and the 
balanced 3~o2 summation [10], [16], respectively. 

The most important application of the Bailey transform is the Bailey lemma. 
This result was mentioned by Bailey [11, Section 4], and he described how the 
proof would work. However, he never wrote the result down explicitly and thus 
missed the full power of iterating it. Andrews first established the Bailey lemma 
explicitly in [5] and realized its numerous possible applications in terms of the 
iterative "Bailey chain" concept, which produces a new Bailey pair from a given, 
arbitrary Bailey pair. This iteration mechanism enabled him to derive many 
q-series identities by "reducing" them to more elementary ones. 

Andrews' explicit formulation of Bailey's lemma is provided by 

Theorem 1.9 (Classical Bailey Lemma for A1). Let the sequences e = {e,} and 
fl = {ft,} form an A 1 Bailey pair. I f  ~' = {c(~} and i f =  {ft,} are defined by 

(aq 
(1.10a) cr (aq/p),(aq/a), kp•/ 

and 

(1.10b) f l ' ~ : = ~  (P)r(a)r(aq/pcr)~-y(aq) y~ 
o ~ , ~  (q)~-,(aq/p)~(aq/tr)~ ~ Pr' 

then ~' and [t' also form an A 1 Bailey pair. 

If we begin with a Bailey pair (e,, ft,), then the relationships in (1.10) give us 
another Bailey pair (c(,, if). If we then apply (1.II3) to (c(,, fl'~), we obtain yet another 
Bailey pair (e~, fl"). Andrews observed that if this process is continued we obtain 
a sequence of Bailey pairs 

(1.11) (~, fl~) -~ (cr fl',) ~ (~2, fl~) ~ ' - - .  

He called (1.11) an ordinary Bailey chain. Furthermore, if (e'., fl',) are given then 
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Andrews immediately determined e, from (1.10a), and also solved for/3 o,/~1 . . . . .  /3, 
from the diagonal system of equations (1.10b). Thus, he extended (1.11) to the left 
as well as to the right to give the bilateral Bailey chain 

...__,(~, ,/3~-2~) c - ,  _~(~,#~)_,.. , ,  (1.12) c-z) ~ ( e ,  , /~( -~))~( , , , / / , )  

where each pair is related to the next through instances of (1.10a) and (1.10b). 
The fact that each Bailey pair in (1.12) satisfies (1.6) has a number of well-known 

and important specializations. The most important occurs for 

(1 -- aqZ")(a),(-- 1)"q(~) 
(1.13a) ~..'= 

( 1  - -  a)(q),, 

and 

{; i f .  0 
(1.13b) /3,:= 6(n, 0) = if n > 0. 

To obtain (1.13a), just substitute (1.13b) and (1.3b) into (1.8). 
The Rogers-Ramanujan-Schur identities are a direct consequence of the second 

iteration of Theorem 1.9. That is, they follow from iterating the (1.13) case of (1.10) 
twice, with p, a --. oe each time; substituting the resulting Bailey pair (e2,/3~) into 
(1.6); letting n ~ oe; setting a equal to 1 or q; and finally applying the Jacobi- 
Triple-Product identity to the very well-poised right-hand side. Bailey's lemma 
reduces the proof of the Rogers-Ramanujan-Schur identities to the discovery and 
verification of the Bailey pair (1.13). Starting with ft, = ~(n, 0), these cases of (1.13) 
are also quickly derived from (1.6) and the q-binomial theorem [6], [10], [16]. 
General multiple series Rogers-Ramanujan-Schur identities [5], [6], [8], [36], 
[37], [41] are obtained in a similar fashion from the kth iteration of Theorem 1.9, 
with p, a ~ 0% and the same cases of (1.13), or similar Bailey pairs (e,,/3,). 

The above Bailey chain derivation of the Rogers-Ramanujan-Schur identities 
is a special case of the observation in [6] that Watson's q-analog of Whipple's 
transformation follows immediately from the (1.13) case of the second iteration of 
Theorem 1.9 in which we take p = bl and o- = ci at the ith step. Furthermore, 
continued iteration of this same case of Theorem 1.9 yields Andrews' [2] infinite 
family of extensions of Watson's q-Whipple transformation. Even Whipple's 
original work [42], [43] fits into the q = 1 case of this analysis. Paule [36]-[38] 
independently discovered important special cases of Bailey's lemma and how those 
cases could be iterated. Essentially all of the depth of the Rogers-Ramanujan- 
Schur identities and their iterations is embedded in Bailey's lemma. 

The process of iterating Bailey's lemma has led to a wide range of applications 
in additive number theory, combinatories, special functions, and mathematical 
physics. For example, see [5], [6]-[9], and [12]. 

The Bailey transform is a consequence of the terminating 4(p3 summation 
theorem. The Bailey lemma is derived in [1] directly from the 6q~5 summation and 
the matrix inversion formulation [4], [17], [18] of the Bailey transform. A similar 
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method is employed in the At and Ct cases by starting with a suitable, higher- 
dimensional, terminating 6(/)5 summation theorem extracted from [26] and [19], 
respectively. The At proofs appear in [30] and [32]. We establish the Ct case in 
this paper. We have previously announced the At and Ct results in [35]. Many 
other consequences of the A t generalization of Bailey's transform and lemma 
have been found in [30]-[34]. These include A~ q-Pfaff-Saalschiitz summation 
theorems, q-Whipple transformations more symmetrical than the one in [27]-[29], 
connection coefficient results, and applications of iterating the At Bailey lemma. 
Analogous Ct results will appear in future works. 

We organize our paper as follows. In Section 2 we first truncate, change 
parameters, and take limits in Gustafson's [19] Ct generalization of the 61]/6 
summation to derive a suitable Ce nonterminating 6~05, and hence C~ termina- 
ting very well-poised 6~05 and 4~o3 summations. We conclude Section 2 by showing 
how the Ct nonterminating 6r summation theorem is used to recover C. 
Krattenthaler's [22], [23] multivariable summation which he utilized in deriving 
his refinement of the Bender-Knuth and MacMahon generating functions for 
certain sets of plane partitions. Motivated by the A t calculation [30], the sum side 
of the Ct terminating 4~p3 is transformed termwise in Section 3 to yield the Ct 
Bailey transform, interpreted as a matrix inversion result analogous to Theorem 
1.2. The C/Bailey pair relationship is defined and then inverted in Section 4. From 
an arbitrary Ct Bailey pair, it is shown how to construct another Ct Bailey 
pair. This is the Ce generalization of the classical Bailey lemma in Theorem 
1.9. As in the classical case, the concept of the Ct Bailey chain is introduced. 
Finally, in Section 5, we obtain a connection coefficient result for the general Cl 
little q-Jacobi polynomials. First, the general Ce little q-Jacobi polynomials are 
defined. This definition is in such full generality that the polynomials need not 
even be polynomials in ( x l , . . . ,  x t )  for the connection coefficient analysis to hold. 
In fact, a similar analysis should work for suitable Ce Askey-Wilson polynomials. 
An elementary but somewhat intricate manipulation of summations together with 
the Ct terminating 4cpa is used to prove the connection coefficient theorem. 

2. Specializations of Gustafson's Ct 61//6 

We begin with Gustafson's C~ 6~/6 summation theorem from [19]. Specializations 
serve to terminate this summation theorem from below and then from above, 
yielding the Ce alP5 summation theorem and the C~ terminating 6q)5 summation 
theorem. The terminating 6~p5 has two free parameters. When these are set equal 
to each other, the resulting summation theorem is a Ce terminating 4~oa. 

The starting point is Gustafson's C~ 6~96. 

Theorem 2.1 (Gustafson) (The C~ 6~/6 Summation Theorem). 
i n d e t e r m i n a t e .  S u p p o s e  n o  z r + z S n o r  zr - zs  is i n t egra l .  I f  

I q - ~ ( b ~ b 2  " " " be + l / a l a 2  " " ar + l)[ < 1 

L e t  z l , . . . ,  z f  b e  
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and none o f  the denominators vanishes, then 

(2.2a) 

(2.2b) 

YhY2 . . . . .  yg = -- o0 

t [1 -- q2(='+") 1 
-- .ffi _ . .  

q Yf'(r Oy, i=ll~ i - 2~  J 

x 1~ [ !  -- qZ,+r,-z,-rj 1 -- r 
l<i<j<t 1 -- q=,-z, 1 ~  -3 

[ ( a , q ' % ( a , q - ' O _ , , ] ;  ~ I ~ l  ~ Zk -- Zk 

H X 
~ z k  - -  z k  

i = 1  k = l  k(blq )rk(biq )-rk/J  

=(q)~ el~' (~)(q-~blb2""be+:~ - '  
i , j =  1 oo a l a  2 �9 �9 �9 a e  + 1/oo 

x 1-I [(qai- laj 1)oo(bi blq-  1)o~] 
I _ < i < j _ < E + I  

x 1-I [(q:+Z'+~J)~o(qX-~'-zJ)~(ql+Zi-ZJ)~o(ql-~'+zJ)oo] 
l < _ i < j < _ f  

~ + 1  

x I1 I-I [(biq~Oo~(biq-ZO~o(qaF lq~Ooo(qai- lq-~Ooo]- : 
i = 1  k = l  

E 

X 1-l[(ql+2zi)~o(q 1 2zi)~o]. 
i = 1  

(2.2c) 

As in the classical case, the 6~/6 is terminated from below to yield a 6@5. 

Theorem 2.3 (The C~ 6q)5 Summation Theorem). Let  zl  . . . . . .  z l  be indeterminate. 
Suppose no z, + z s nor z, - zs is integral. I f  Ib/(alaE . . .  a~a)l < 1 and none o f  the 
denominators vanishes, then 

Z q_Z{=,(e+l_i)y,H .I 

k = l , 2  . . . . .  

(2.4a) 

(2.4b) 

x I ]  [_1 __ q~,+r~-zj-yj l__qZ,+y,+zj+yj 1 

l<_i<j<_C i ~ i ~ J 
Z k - - Z i  - - Z k - - Z i  

,,~ =1 L(q ~ +z~-~,),~(q~ -,~-z 9_,~j 
~' zk - -  Zk 

I1 X 
x . t  z k  - -  Z k  k=lL(bq  )r,(bq )-r~dJ 

= @2 I-I (a?Xq'+ZT~%o al a " 'at  a 
i , j =  l e o  

x l~ (a- lq l -~%o q~J 
i= 1 i= : /ooka/~o 
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(2.4c) 

x H [(qai l a f  lq='+~9o~(ql -z'-zgool 
l <i<j<~ 

x l - [  [(ql +='aT la -  1)o~(bq-Zgoo] 
i=1 

x l l  [ ( q l  + ~,+ ~j)oo(ql - z , -  ~,)oo(ql + ~, - , j )oo(q l  - z' +'J)oo] 
l <_i<j<E 

f 
x H [(ql+Zk-Z')~(ql-Zk-Z~)~(qa71qZk+Z')~(qai-lq-Zk+Zg~]-I 

i,k= l 

x I-[ [(bqZk)oo(bq-~)oo(qa- lqZ~)~(qa- lq-Zk)~o]-i 
k = l  

X H [(ql+2z')~176 

i=1 

Proofi Make the following substitutions in (2.2): 

ai~---~a~q -z' for i = 1, 2 . . . . .  E, 

(2.5) at  + x ~ a, 

bi~--~biq -z' for i = 1, 2 . . . . .  E, 

b~+ 1 ~-~b. 

Under  the substitutions in (2.5), equation (2.2) becomes 

q_Zi=,(t+l_i),, i_ I 1 

[_ 1 _ q~,+,,-z~-,~ 1 - q= '+"+ '~+ '~ - I  
II X L 1 - q~,-z, 1 - qZ,+Zj j 

Zk -- Zi -- Zk -- Zi [(a, qZ -Z') a 
X H Zk--Zl --Zk--Zi ,.,=, L(b,q )yk(b,q )_rkJ 

•  = k(bqZg,~(bq-~9_,JJ 

=(q )2  ~ qZj-Z, q -e  
t "= oo a l a  2 a f  a 

x l--I q-Z, qzj 
i= 1 oo i= i /oo ka/oo 

x [ I  [(qa:? la f  XqZ'+ZJ)~o(b~bjq- *q-Z'-Zg~o] 
1 <_i<j<_g 

x I-I [(ql+Z'ai-la-1)~(bibq-l-=')o~] 
i=1 

(2.6a) 

(2.6b) 
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x I ~  [ ( q l  + z,+ =j)oo(ql - ~,- ~j)~o(ql + ; , -  =j)oo(ql - ='+ =J)~o] 
1 < _ i < j ~  

E 

• I-I [(blq~-z~)o~(biq-~k-~')~(qa:~lq~+z')~(qai-lq-~k+z')~] -1 
i , k =  l 

C 

x 1-[ [(bqZk)~(bq-Zk)~o(qa- lq~k)o~(qa- Xq-~k)o~] -1 
k = l  

E 
(2.6c) • l-[ [(qX+2z~)~(ql-2Z~)o~l' 

i=1 

Now set b~ = b 2 = " "  = b C - - q  in (2.6). Under  this substitution, the diagonal  
terms in (2.6a) will each contain a factor of the form (q)~ 1. However,  (q)~ a = 0 if 
Yk < 0 since (q)~ 1 = (ql +r~)_y~, which contains the factor (1 - ql +ykq-y~- 1). There-  
fore, the only nonzero  terms occur when each Yk >-- 0 for k = 1, 2 , . . . ,  f .  �9 

An appropria te  substi tution permits us to terminate this sum from above. 

Lemma 2.7 Let  z 1 . . . . .  z t be indeterminate. Suppose no z r + z S nor z r -  zs is 
integral. I f  Ni are nonnegative integers for  i = 1, 2, . . . ,  ~ and none of  the denomina- 
tors vanishes, then 

k= 1 ,2 , . . . , f  

x ~ I  [ i  - -  q~ '+" -~J-YJ  1 - -  q~'+Y'+~J+'Jl 
1<i<j<r i -- q~'-~, i Z ~  _] 

Zk -- z i  -- Ni  -- Zk -- z i  -- N i  

(2 .8a )  x 1~ 1- ] 'Zk - -Z i  i - - Z k I Z i  k (q )rk(q )-yk ] 

r [(aq%~(aq-'9_,@, 
(2.8b) x k=[-[1 L(bqZ~),~(bq_Z~)_,~j j 

( b)-' 
=(q)2 1-I (ql+~j-~,+Nj)= qN,+N=+...+N~ 

i , j =  l a oo 

x l-I (a-lql-~')oo I-I (bqZJ+NJ)oo 
i=1 j = l  oo 

x I - I  [ ( q t  +N,+Njqzi+zj)oo(ql -zi-zO~o] 
l < _ i < j < _ ~  

x I-I [(q1+"+N'a-1)~o(bq ~')oo] 
i = 1  

l < _ i < j < _ E  
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(2.8c) 

g 

x I-[ [(q'+Z'-~%o(q'-Z'-Z%o(q'+N'qzk+z')~(ql+N'q-=*+"~)oo]-I 
i,k=l 

f 
x I~ [(bq~k)~(bq-~k)o~(qa- lq~k)oo(qa- lq-~k)~] - : 

k = l  

g 

X I-I [(ql+2z')~(ql-2z')oo]" 
i = 1  

Proofi In (2.4) set a i = q-N, for i = 1, 2 . . . . .  f ,  where each N i > O. The diagonal 
terms in (2.8a) each contain a factor of  the form (q-N~)r ~. However,  (q-Ngr ~ = 0 if 
Yk > Nk since it contains the factor (1 - q - m q N  9. Therefore,  the only nonzero  
terms occur  when each Yk ~ N k  for k = 1, 2 . . . . .  f .  �9 

Remark. Before we simplify (2.8), make the substi tut ion x k = qZ~ for k = 1, 
2 . . . . .  f .  This substi tut ion will give the summand  a form which is consistent with 
that  in Milne [30]- [34] .  Equat ion  (2.8) becomes 

(2.9a) 

(2.9b) 

Z 
O--<yk--.<Nk 

k = l , 2  . . . . .  o e 

(2.9c) 

e [1 -- x~q2yk 1 
q-Y{='r l--[k=1 i-2~zkz J 

= (q)~ 

X I-I [1--(Xr/Xs)qY'-Y" 1--XrXsqYr+Y'l 
l <_r<s<E -1-~ X~ss 1 - x, xs A 

l [((XJX~)q-N,)r,((1/X,X~)q-Ng_,r 1 
• j 

r , s = l  

' [(ax,),k(a/x,)-,,l" ~ 
• k= l L(bxOrk(b/Xk)-,kJJ 

( Xj 1~ ql+Nj _ _  qNj+N2+...+Ne 
i,j=l xi/oo\ a 00 

x l-I (a- lqx F 1)~ 1-I (bxjqNO~ 
i= 1 j= : \a/o~ 

[ ( x I-[ (ql+n'+NJxlxj)oo q 
l<_i<j<_~ ~ m 
E 

x I~ [(xiql+N'a-1)oo(bxi-1)J 
i = 1  

1 q 

I<_i<i<_: xy/ '  o~ \ xl/o~A 

[( -)I- x f l  qXj~ (q 1 ~ (q,+N,xiXj)o~(qa+N X i 1 
i,j=l Xi,/oo\ XiXj/Ioo \ Xj 0o 
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x [-[ [(bxk)~(bx; l)~(qa- XXk)~o(qa- lXf 1)| 3 - 1 
k = l  

f 

(2.9d) x I~ [(qx~)~(qxf2)~] �9 
i = 1  

The substitutions that have been made thus far in Gustafson's Cr 606 are 

ai~---~aiq-~'w-~q-N'q-~'~---,q-U'x71 for i = 1, 2 . . . . .  g, 

a l +  i H-* a ,  

bi~->blq-~-~ql-~'~--~qxf 1 for i =  1, 2 , . . . ,  ~, 

be+l~---,b, 

(2.10) q~' ~ xl. 

Equation (2.9) motivates the following theorem: 

Theorem 2.11 (Ce Terminating 6q)5 Summation Theorem). Let x l , . . . , x e ,  be 
indeterminate, let N i be nonnegative inteoers for i = 1, 2 . . . . .  E, and suppose that 
none of the denominators in (2.12a) vanishes. Then 

O<_rk<_Nk ~ {k=(-ll[1--x~q2ykll<_r<s<-lE -_] I-I 1 ~ i ~ X s  -_1 
k =  1 , 2 , . . . , f  

x h x3,,l I1 
. . . .  i L(q(x,/x,)),,(qx, x, qNJ,~J k= ~ k(bxk)r~(qxka- l)r~j 

/b\(y~ +... + y,)] 
(2.12a) x q(N'+"+N"(r'+'"+Ye)q~'2+2Y~++(~- l'r'~a ) t 

b 
(2.12b) x (a)(N, +... +N~). 

Proof. Use (a), = (a)~/(aq")~o to simplify (2.9d), the product side. Notice that in 
(2.9) all of the yi's are nonnegative. Simplify (2.9) using the identity (a)_, = 
(-q/a)"q(~)(q/a)# 1. The products in (2.9b) become 

(2.13) ( I  ((1/X'X')q-Nj-~"= ( I  [q(,+N,)rr (X,X,)~,~ l 
r,s=l (q(1/XrXs))-, . . . . .  , (qXrXsqNj,~-]" 

Those in (2.9c) become 

e (ax f ' )_ ,~_  ]-1 
(2.14) k=l[-I (bx#~)_y~ k=~ k(qxka-t)y~ 
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We also use the following simplifications: 

(2.15a) [1 q(1 +N,)y~ = q(l.l.~, +... +N~)(y~ +.--.§ 
r~s  = 1 

(2.15b) k=lI~(:) '~ = (:)( '~ + ' §  

(2.15c) q - -  ~ ' ~ =  1 ( ~  § 1 - -  k)yk ~_ q-  e(y, +... + ,~)qr~ + 2y3 § -i- (e -- 1)yt 

Combine (2.13)-(2.15) to simplify the sum side of (2.9). 

Remark. The ~ = 1 case of (2.12) is the classical terminating 6~o5 summation 
in equation (11.21) on p. 238 of [16] in which a~-*x~, n~--~N1, b~--~axl, and 
c ~ q x l b -  1. That  is, they are equivalent. 

Remark. Just as in the classical case, the b :=  aq 1-(m+''+N') case of Theorem 
2.11 yields a Ce generalization of Bressoud's matrix inversion formula in [15]. We 
give the details of this derivation elsewhere. Setting b := aq 1 -(u' § and then 
taking a ~ 0  or a ~  oo gives another way of obtaining Theorem 2.16 from 
Theorem 2.11. 

A specialization of Theorem 2.11 yields the following result: 

Theorem 2.16 (Ce Terminating 4q~3 Summation Theorem). Let  x 1 . . . .  , xe be 
indeterminate and let N1, N2 . . . . .  Nz  be nonnegative integers. I f  no xr/x s nor xrx ~ 
is an integral power o f  q, then 

k = l , 2  . . . . .  ~' 

(2.17a) 

j 

X 1-I [ 1 - ( x J x s ) q y ' - ' l - x ' x ~ q r ~ + ' ~ ]  

t<_r<s<_~ i - ~ r / X s  i -- XrX, J 

c F ((x'/x')q-m)r~(x'x~)y~ 1 xII  
. . . .  1 L(q(x,/x,))r~(qx, x,  qNgr~J 

X q(N~ +... + N,,)(yl + . . .  + reIqy2 + 2y3 + ' "  + ( E -  1)ye) 

if N I = N 2  . . . . .  N e = 0 ,  

otherwise. 

Proof. Set a = b in Theorem (2.11). Notice that (1), = 0 if n > 0. Also note 
that each Ng > 0. Therefore, the product side vanishes unless N 1 = N2 . . . .  = 
Nt  = 0. �9 

In the rest of Section 2 we show how the C~ nonterminating 6~5 summation 
theorem is used to recover C. Krattenhaler's [22], [23-] multivariable summation. 
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We begin with 

Theorem 2.18 (Ct Nontermina t ing  6q~s Summat ion  Theorem). Let a, b, al . . . . .  
at, and x l , . . . , x t  be indeterminate, with f>_ 1. Take 0 <  Iql < 1 and 
I b/ala z .." ar < 1. Suppose that none of  the denominators in (2.19) vanishes. Then 

{fl [! --/~q2"l [l--(x./xs)qr'-r'l--x~xsq"+'~l 
k= 1, 2,. . . ,~ 

x ,.,=1-I, L ( q ( x j x , ) ) : , X q x , x , a [ , ) , , ]  k = ~ L (b~O~, , (q~ ,a  ' ) , , , j  

(:?+.-+-,} 
(2.19a) x (a, " - �9 at)-~r' +..-+ yaqr~+ z,~ + .--+ (t-  t)y~ _ 

' [(qx2)~bxka#loo()qa-lxka#')oo. 1 
= l l  

k = ,  L (qx~a;*)oo(bXk)~o(qa-*Xk)o~ _] 

FI X 
1 <ff4s<l' L(qx, x, ay*)o~(qx, x, ay*)o~l 

(2.19b) x ~ a , a z ' " a r  

Proof. Set xk = qZk for k = 1, 2 . . . .  , ~ in Theorem 2.3, apply the relation 

(2.20) (A)_m = ( - A ) - "  q,,l~+ l~/z (qA- ,)~1 

to suitable factors in the sum side of  (2.4), and then simplify as in the proof  of 
Theorem 2.11. �9 
Remark. Setting as = q-N, for s = 1, 2 . . . . .  ~ in Theorem 2.18 immediately gives 
Theorem 2.11. Fur thermore,  the f = 1 case of  (2.19) is the classical nonterminat ing 
6r summat ion  in equat ion (I1.20) on p. 238 of  [16] in which a~--~x~, b~--~axl, 
c~--~ q x t b - 1  and d ~ a , .  That  is, they are equivalent. 

It is not  hard to see that  taking a s = q for s = 1, 2 . . . . .  ~ in Theorem 2.18 yields. 

Corollary 2.21. Let a, b, and xl  . . . . .  x t  be indeterminate, with ~ >_ 1. Take 
0 < Iql < 1 and Ib/al < Iq{. Suppose that none of  the denominators in (2.22) 
vanishes. Then 

S 
yk_>O 

k=l~2 . . . . .  

(2.22a) 

(2.22b) 

k = i L ( q a -  ~xk),~(bxO~J 



The Ct Bailey Transform and Bailey Lemma 485 

If we set b = x/q in (2.22) we obtain 

Corollary 2.23 Let  a and x l , . . . ,  x t  be indeterminate, with f > 1. Take 0 < I ql < 1 
, and 1 < l aq ~- 1/21. Suppose that none o f  the denominators in (2.24) vanishes. Then 

2 
yk > _ 0 

k = l , 2  . . . . .  f 
k =  , L(qa- 'xk),k_] 

(2.24a) x H [ l--(-xJx')qx'-x`l [l--x'x~qr'+x'l~ 
,_<,<,_<, l--xdx, j,_<[l_<,_<, l - - x ~  j j  

(2.24b) r - 1 - - - x ' x J q l  ( I  I (1 --(1/w/q)Xk)(1---~a-lXk)l 

=l <_,<~<_el~ L 1 - XrX s _1 k =  t (1 - Xk2)(1 - -x /~/aq  k) d" 

Remark. We terminate (2.24) by setting 

(2.25) ax k = q-Nk k = 1, 2 . . . .  , f, 

where the N k are distinct nonnegative integers. Note that if (2.25) holds, then 
xJxr  = qNr-N, ~ 1. 

Relabeling the (2.25) case of Corollary 2.23 finally gives 

Corollary 2.26 (C. Krattenthaler). Let  A and m s . . . . .  m, be indeterminate, with 
r >__ 1. Suppose that none o f  the denominators in (2.27) vanishes. Then the summation 
formula 

(2.27, ~ ( - ~ ( ~ A ) k ' f i  (miA)k' 
kl  . . . . .  kr>_O i= 1 i= 1 ( q m i / A ) k ,  

X 1-I 1 - -  ( m j / m i ) q  k j -k '  I -[  1 - -  m i m j q  ki+kj 

l<i<j<_r  1 - -  m j / m  i l<_i<_j<_r 1 - -  m l m  j 

1 - mimj/q (1 - mi/w/q)(1 - m#A) 
= rI fI  

l<_i<j<_r 1 - m i m  j ~=1 ( 1 - - m / ~ x / ~ q  ~ 

holds, provided that there exist nonnegative integers n~ with n 1 > n 2 > . . .  > n r such 
that m~A = q-n' for  all i = 1, 2 . . . . .  r. 

Remark. Krattenhaler decided to formulate Corollary 2.26 in terms of the mi's 
rather than the ni's in order to keep the notation as short as possible. However, 
the reader should never forget that the m~'s in fact disguise the n~'s via mi = q-"' /A.  

Proof. Just utilize (2.25) to terminate (2.24), and then take f ~-+r, a ~-~ A, xi ~-+mi, 
and Ni w-, nl for i = 1, 2 . . . . .  r. �9 

Krattenthaler had to prove Corollary 2.26 in [22] where he derived a refinement 
of the Bender-Knuth and MacMahon generating functions of certain sets of plane 
partitions. Corollary 2.26 is applied in the proof of Theorem 18 of [22], which in 
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turn is crucial for obtaining Theorem 21. Corollary 2.26 is also used implicitly in 
the proof of Theorem 19. In this analysis, Corollary 2.26 is useful in the evaluation 
of certain determinants in closed form. It is possible that the additional parameter 
b in Corollary 2.21 will allow the evaluation in closed form of even more general 
determinants from 1-22]. 

Krattenthaler [22] found an impressive, complicated inductive proof of Cor- 
ollary 2.26. He communicated Corollary 2.26 to us in [23], where he asked if it 
was a special case of a more general A e  or Ce summation or transformation 
formula. It turned out to be the above consequence of Theorem 2.18. 

3. The Derivation of the Cf Bailey Transform 

In Theorem 2.16 make the substitution x k ~-, x~q  jk for k = 1, 2 . . . .  , f. The point of 
this substitution is to afford some room for manipulation of the terms. The sum 
side of the 4tp3 is then modified in a manner motivated by the U(n + 1) calculation. 

The modified 4~p3 is then transformed under a number of simplifications to yield 
the C/generalization of Bailey's transform. It is vitally important to subsequent 
applications of this result that the transformation from the modified 4cp3 to the 
C~ Bailey transform be a termwise calculation. The transform is then reinterpreted 
as a matrix inversion result of two infinite, lower-triangular matrices. We begin 
by multiplying each side of the 

xk ~ xk q~":, N.:.,. ~ i k --  Jk 

case of Theorem 2.16 by the product 

(3.1) 1--1 q _ q jr--is (qx,.x~qJr+Js)i72j, �9 
r,s= I Xs /Jr-Jr  

This choice of factors is motivated by the U(n + 1) case. Notice that the product 
side of (2.17) remains unchanged. This gives us the starting point for the derivation 
of the Cl Bailey transform. We begin with 

o-<,~-<ik-j~ l_<,<s<_~" 1 -- (x,'/x,~)q jr'-j` 1 - -  x r x s q  lr+j~ J 
k = l , 2  . . . . .  t 

[1 - x~q ~"+j~] 
x 1-[ I_ 1--x~q z'/* J k = l  

e [((x , . /x , )q-t i , - j , ,q~-is)y~(x, .x ,  qJ~+J~)y,. ~ 

x I-I i~-J, x x i~-.i~ . i ~ * ~  . . . .  1 L(q(x,./x~)q )y~(q ,. ~q q )y~l 

+ ' "  + ie) - (Jl + " "  + je))(Yl + "'" + y~')qy2 + 2y3 + ' "  + (~" - 1)yd t q((il • 

3 

(3.2a) • [ I  q - -  q~-~" qx,'x.~qJ~+Js)i72J~ 
r,  s = 1 Xn / i t  - j r  -2 

t" 

(3.2b) = 1-I fi(ik,Jk)" 
k = l  
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The object is to separate the factors in (3.2a) into a function of j :=  {Jl . . . .  ,if} 
and y := {y~, . . . ,  3::} times a function of i := {i~, . . . ,  if} and j + y. Once the index 
of summation is shifted to Jk < Y* < ik for k = 1, 2 , . . . ,  f, the summand will then 
become the product of a function which is independent of i times a function that 
is independent of j. 

A term-by-term simplification of the sum follows three technical lemmas. The 
first two lemmas are exactly those which are used in the U(n + 1) calcula- 
tion. 

[,emma 3.3 (Milne). Let x~ , . . . ,  x: be indeterminate. Suppose that no x~/x s is an 
integral power of q. Then 

{ [ 1Zxr /x~  y ] ( _  1)- , : -  ~)(r, +-.-+r:) 
(3.4) f l  ( q X , ) - '  = [-I l_(x~/xs)qr~-~j 

r , s = l  \ X S / Y r ' y  s l_<r<s<_f 

( F  f Xr qa2(y)q -- (Y2 + 2y3 +"" + (: -- I )yf) 

• 1--[ _ 
r , s =  l \ X s /  

• q - < : -  ~)[6')§ § 
where a2(y) is the second elementary symmetric function of y := {Yl . . . . .  Y:}. 

Proof. The first step in the proof of equation (3.4) is the m = y, - y~, A = x,/x~ 
case of 

(qA)m(qA - ')_ ~ = ( -- A)~q(~)[ 11--A3---- -Aq~" 

The rest follows by elementary manipulation. �9 

Lemma 3.5 (Milne). Let x I . . . . .  x: be indeterminate. Suppose that no x,/x~ is an 
integral power of q. Then 

(3.6a) 

(3.6b) 

((Xs/Xr)q-- lr + j*qr~- rgyr 

(q(xr/xs)qJr-- J'qYr--rgir__ jr 

((XJX')q i~ -i')y,(q(xJxs)q j" - J'),,- ,s 
x x j , - i ,  x i , - j~  j r - j~  " (( ,/ *)q )r,- y,(q(x,/ ~)q )y,_ r,(q(x~/x,)q ),,_ j, 

Proof. Rewrite (3.6a) using the identity (A),, = (A)oo/(Aqm)oo. Then multiply and 
divide the result by 

Rearrange the terms, and rewrite as (3.6b). �9 

The following lemma is analogous to Lemma 3.5. However, instead of x,/xs, the 
parameters appear as products. 
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Lemma 3.7. Le t  x~ , . . . , x~ be indeterminate.  Suppose  that no x,.x~ is an integral 
power  o f  q. Then 

((1/x,. x~)q - ~i, - j r ) q  -- Y, -- y~q - j, - J~)r, 
(3.8a) (a~ X a J ~ + J ~ a y r + r ~ L  . 

k'l**,. S -1 -1 Igr -- Jr 

((1/x,.x~)q- ,j~- J~q- "~- ;r~)_ ~,(qx, x~qjr + j%~. + ~,~ 

(3.8b) = ((1/X~X~)q_j_j~q_U_j~)_r<~(qx,.x~qi~+i, qy~+r%~+y~(qx,.x~qJr+i~)~_;, .. 

Proof. As in Lemma 3.5, make use of the identity ( A ) m  = (A)oo/(Aq')~.  Multiply 
and divide (3.8a) by 

( x l x s  q-ir--J~)~o(qx, x s@  + J')oo(qx, x~qir+ J')o o. 

Rearrange the terms, and rewrite as (3.8b). �9 

We now use Lemmas 3.3, 3.5, and 3.7 along with standard facts about q-rising 
factorials to perform a rather lengthy series of calculations on the general term of 
(3.2a). 

Lemma 3.9. Let  x l  . . . . .  x~ be indeterminate.  Suppose  that no x,./x~ nor x,.x~ is an 
integral power  o f  q. Then 

{ t-' E f l  q - -  qJ'- J~ 1-I 1 ~ (x,/x~)~q j~- ~ J 
r , s = l  X s  / i r - j T  l < r < s < d  

( (x , / xs )@-  J~q-ti,- J~))y r 
• ,.~ =1 (q(x,./x~)q •iT- J')rr 

X qy2 + 2y3 + ' "  + (d ' -  1)yeq[( i t  + ' "  + ir - (11 + " "  + je)](r~ + " "  + Ye) 

~1 -- x~x~qJ~+~qr~+Y' 1 
X 1-'] (qx,.x~@+J~)i~.l-J~ ]-I 

r , s = l  l <_r<_s<f  1 - -  X r X s q  3r+js  .J  

e (x,.xs@+J,)y, ; 
(3.10a) x l-[ j~+~, i~-j~ 

. . . .  1 (qx,  x~q q )r,J 

= ~ q - -  q J , - J ~ q y , - Y ,  (qxr qJ'+J'qrr+r')i-~_ljr_r, 
r , s  = 1 X s  / i r - J r - Y r  ...I 

1--x 'x*qJ '+J"  1 
x (--1)(r'+'"+'~q(('~+'2 +re~) I-I i -x,x,@+J'qY~+r*J 

1 <., .<s<_d 

,[(x 1} (3.lOb) x I-I q _ q.ir-a, (x,.x,qJ~+.i,qr,)s ~ . 
r, s = 1 X s  Yr 

Remark .  It may be noticed that throughout the following calculation the terms 
involving x,./x~ are segregated from those involving x,x,. What is actually proved 
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is tha t  

(3.11a) 

(3.1 lb)  

and 

g 

lq 
r ~ S ~  l 

( x~ qj'- j` ) -  t l-I [ -- (g,./Xs)qJ'-J~qyr-r' 

•  
. . . .  1 (q(x,/x~)q j '-  J')r, 

• q [ ( 6  + . . .  + ie) - ( j l  + . . .  + je)](y~ + . .  + re) 

= ( -  1)~' + + r')q(~Y' +'2" +re)) 

' [( x, / 1 x YI q _ qJ,-J~ q __ qJ,-J ,  qy,-r~ 
r ,  s = 1 X s  / X s  / i ~ -  j ~ -  y , - ~  

' [ " 

l-[ (qxrx~qJ'+JgiT)j, H 1 -- x,x~qJ'+l'qY~+Y'] 
. . . .  1 l<_,<_,<_r -1 -- x,.x~q ''+J~ [ 

r (x,.xsqJ,+J~)r" 
(3.12a) x l--[ 

. . . .  a (qx,.xsqJ'+ j~qis- J~)y, 

l _ ~ , ~ q ~ + j  ~ ] 
= l_<,<,_<e/-I 1 - x,x~qJ'+1"qY~+Ys.J 

(3.12b) x I-[ (x,x~q~'+J~qY02 ~(qx, x~qJ'+J'q"+'~)~2~,-y, �9 

It  m a y  a lso  be noticed that  the p roo f  of  (3.11) actually contains a der ivat ion p roo f  
of the bulk of the Ae case. 

Proof.  We use L e m m a  3.3 with x k replaced by Xkq jk to t ransform (3.10a). Then  
apply  

, = (A)_ ,,( -- A) q( 2 

with A = (1/xrG)q -j'-J~ and m = yr + y~ to tha t  result. Some addi t ional  algebraic 
simplification together  with the A = x,x~q j'+js and m = y, + y~ case of  

I 1 -- Aq m] - 1 - 1 - m  - m 

i Z A  (qA ) _ , . = ( q A ) m ( - A )  q (2) 

allows us to t rans form tha t  result. Then  we switch r and s in " J,+j,-~s-ja- (qxrxsq q jy, �9 
We m a y  do this because the p roduc t  is taken over  the square  1 _< r. s .< d. Also, 
apply  

q ) - i  
(--A)mq-("+~) = (A)S~ ~ ,. 
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with A = (xjx~)q j,-~ and m = y~ - y~. To this result, apply two more transforma- 
tions. First, apply 

q ) - i  m m + l  
A m =(A)-m(- -A)  q - (  2 ) 

with A = (1/XrX~)q-Jr-JSq -tir-jr) and m = y~. Also apply 

/ q l - N \ - I  

with B = q(XJXs}qJ~-J~q rr-y. N = ir --Jr, and n = y~. Again, we switch r and s. This 
time in ((xJx,)qJ'-J'q-{a-J~))y ~. Lemma 3.5 is applied to these factors. The simplifica- 
tion 

(__A)mq- (m+*)=(A) -_ l (q~  -1 
k, AJm 

with A = (1/xrx~)q-J~-Jsq -~i~-j~ and m = Yr + Y~ is also applied. The x jx~  terms are 
now in the desired form. They will remain unchanged. Lemma 3.7 is used to 
transform the x~x, terms. We then apply the A = qxrx~q j~ + J~qY~ + r~, N = i, - J r ,  and 
n = Yr case of 

qNn(--A)nq-(n+l)(A)N l ( ~ ) n  = (A)N_in. 

The result is transformed using some simple algebra and the symmetry of the 
double product. An application of 

(A),(A)~ ~+, = (Aq")~ 1 

with A = xrx,  q j~+j', N = y,, and n = y, gives us the terms of (3.10b). A rearrange- 
ment of these terms yields the desired result. The explicit calculations described 
in this proof  are contained in equations (3.39a)-(3.39m) of [243. �9 

Lemma 3.9 concerns the general term of the modified Ct 4~o3. It  is crucial to 
the work in Sections 4 and 5 that the calculations be valid termwise. We may, 
though, at tempt to sum both sides of (3.10). The result is the Ce Bailey transform. 

Theorem 3.13 (The C c Bailey Transform). Let x l , . . . ,  x e be indeterminate. Sup- 
pose that no xr/x, nor xrx s is an integral power o f  q. Then 

E ~ q _ qr,-r, (qx,x,  qrr+Ys)?_ly r 
jk<yk<~ik r , s= 1 XS / ir--Yr ..a 

k = l , 2  . . . . .  

• ( - -  1)(Y* + ' " +  re)-  (Jr + ' "+  Je)q( (y '+ ' ' '+  re) 2 U, +" '+  JO) 

[ ~ - - x ,  xsq ,r+js] 

• 1-I XrXsqYr+Y,.J l<_r<s<~ 
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(3.14a) 

(3.14b) 

x l-[ q - -  qJ~-J" Xrx~qJr+Y')2 
r, s = 1 Xs  Yr-J~ 

I~ 6(ik, Jk)" 
k = l  

Proof. Shift the index of summation from Jk < Yk < ik to 0 < Yk <-- ik - -  J k .  Apply 
Lemma 3.9 to the general term. Equation (3.2) then gives us the desired 
result. �9 

Let us define the matrix M = {M(i.y)) as follows: 

Definition 3.15 (The C~ Matrix M). 

( 3 . 1 6 )  M(i;y;Ce) ~ Mti;y):--- I~ q _ _  qyr-y, (qx, xsqYr+r,)i~Jy ~ . 
r , s=  I X s  l i t - - Y r  -1 

Also define the matrix M* = {M~;i) }. 

Definition 3.17 (The Ct Matrix M*). 

(3.18) M(y;j;ce)* ~ M(y;j)* .--'-- ( - -  1)(Yl+'"+Ye)--(JI+'"+JDq((YI+'"+Ye)2(Jx+'"+Jt)) 

1 <_r<s<E X r X s q Y ~ + Y ' [  

x l--[ q _ qjr--J~ ( X r X ~ q J ~ + , ~ ) 2 1 ~  ~ . 
r,s = 1 XS Yr--Jr --I 

The matrices M and M* allow us to rewrite Theorem 3A3 in a way that 
will be very useful in subsequent calculations. 

Theorem 3.19 (The Cr Bailey Transform Matrices). Let  M and M *  be as defined 
in (3.16) and (3.18). I f  the entries o f  M and M *  are ordered lexicographically, then 
M and M *  are infinite, lower-triangular matrices which are also inverses o f  each 
other. 

Proof. First, order the entries lexicographically. In M suppose i I = Yl, i2  = 

Y2 . . . . .  and ik- ~ = Yk- 1, but ik < Yk" Consider the r = s = k term in the product. 
It contains the factor (q)~3y~, which equals zero since i k - Yk < 0. In M* suppose 
Yl = J l ,  Ya =J2 . . . .  , and Yk-~ = J  k - l ,  but Yk <Jk" Again, consider the r = s = k 
term in the product. It contains the factor (q)~-Jk, which equals zero since 
Yk --Jk < 0. Therefore, M and M* are lower-triangular matrices under lexicog- 
raphic ordering. They are inverses of each other because, by Theorem 3.13, the 
only nonzero entries in the product occur when i = j, and each of those entries 
equals one. �9 
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4. The Cr Generalization of Bailey's Lemma 

The first consequence of the Ct Bailey transform is the Cr generalization of Bailey's 
lemma. The concept of the C~ Bailey pair is introduced. As a consequence of 
Lemma 3.9, the relationship between the elements of the Ct Bailey pair is inverted. 
The matrix notation introduced in Theorem 3.19 is exploited to motivate the 
choice of a new Ce Bailey pair. The proof of the suitability of the new pair relies 
heavily upon the termwise nature of the calculations leading to Lemma 3.9. Once 
we are able to create a new Ce Bailey pair from an existing pair, the concept of 
the Cr Bailey chain is introduced. As in the classical case, this definition is then 
extended to that of the bilateral C~ Bailey chain. 

We begin with the definition of a Cr Bailey pair. 

Definition 4.1 (The Cr Bailey Pair). Let A = {Ay} and B = {Br} be arbitrary 
sequences. A and B form a Ce Bailey pair if and only if for every Ni >_ 0, 
i = 1 , 2  . . . . .  •, 

O < y k ~ N k  r , s = l  
k = l , 2  . . . . .  

X r  )-1 (q l 1 
_ _  qr,-r, x, xsqr'+r')[~)_r, A y  , 
XS Nr -- Yr -] J 

As a consequence of the matrix inversion result, Theorem 3.19, we can invert 
the relationship in the definition of the Cc Bailey pair. We have the following 
theorem. 

Theorem 4.3 (Cl Bailey Pair Inversion). Let A = {Ay} and B = {By} form a Cr 
Bailey pair. Then (4.2) holds if  and only if the following also holds: 

(4.4) AN = ~ I(--1)(N~+'"+Ne)-(Yt+'"+rt)q ((Nl+'''+Nt)f(rl+'''+rt)) 
O<__yk<Nk t 

k =  1 , 2 , . . . , (  

• I ]  q __ qy,-r~ X, XsqYr+~,)[~)_r" 
r,S = 1 Xs  / N r - Y r  -I 

,_<,<s___t - X,x, qN'+N'J~'J" 

Proof. Substitute the definition of By as given in (4.2) into (4.4). Lemma 3.9 
reduces the resulting inner sum to a product of delta functions. The only remaining 
nonzero term on the right-hand side is A N . The converse follows from substituting 
(4.4) into (4.2) and again applying Lemma 3.9. �9 

Let A and B form a Ct Bailey pair. With M = {M(N;r)} and with M * =  
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{M~v; y)} defined as in Theorem 3.19, (4.2) of Definition 4.1 may be written as 

(4.5a) BN = 2 M(N;y)Ay" 
O<_yk<_Nk 

k = l , 2  . . . . .  f 

We may also write (4.4) of Theorem 4.3 as 

(4.5b) AN Z * = M(N; y) By. 
O~yk'<Nk 

k = l , 2  . . . . .  E 

Consider the sequence A' = {A~v) defined by 

t . (4.6) AN .= CsAN, 

where the sequence C = {Cy} is as of yet unchosen. We want to find a sequence 
B' = {By} so that for every Ni >_ O, i = 1, 2 , . . . ,  E, 

t (4.7) B~v = ~ MtN;y)Ay. 
O<_yk<Nk 

k = l , 2  . . . . .  E 

Assume that (4.5)-(4.7) hold. Then 

(4.8a) B~ = Z {M~N;y)CyAy} 
O<--ykNNk 

k = 1 , 2  . . . . .  

( 4 . 8 b )  - ~ { M ( N ; y ) C y  2 [ 'M~y;m) n m l  } 
O<_yk<Nk O<mi<_yi 

k = 1 , 2  . . . . .  E i = 1 , 2  . . . . .  f 

{ . }  (4.8c) = Z B,, Z [M~N;y)Mcy;,,,)Cy] 
O <mk <_Nk mi<_ yi<_Ni 

k= 1, 2 . . . . .  f i= 1,2 . . . . .  f 

(4.8d) = Z {Bin Z 
O <--.mk~ Nk O'< yi<_Ni-- mi 

k = l , 2  . . . . .  f i =  1 , 2 , . . . , f  

( ; ) (Y ; ) Y ( "  [MN y+m M*+mm C +m] 
) 

We want to choose C = {Cy} so that each Cr+ ,  can be factored into a 
function that is independent of y times a function of m and y. The expression that 
is independent of y will then be pulled outside the sum. We also desire that the 
remaining terms combine with those in the inner sum of (4.8d) to form an easily 
summable expression. In effect, C allows us to pass from a Ct 4(p3 to a C/6cp5 
which is summable by Theorem 2.11. Let us take 

(4.9) 
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Substituting the definitions of M, M*, and C into the inner sum of (4.8d) 
gives us 

I (  - l : Xr  : v m r - m s ~  , . . . . . .  + m s , - 1  q 
(4.10a) YI q - u l t ~ , , , , u  mr-y,/ 

r, s = 1 X s  / N r  - mr d 

: [(~xD,~,(qxk~-x),~,l(~l (m,+...+,n<) 
(4.10b) • I ]  

k = l  ~ ( f l X k ) m k ( q X k  0~- 1)mk~x(X// 

0 <--yk<_Nk --ink 1 _<r<_s<_: 1 - -  X r X s q  mr+ms J 
k = l , 2  .. . . .  d 

<F I 
X r,s=lH L(qx, x, qmr+,n,qN,-,~,)r,3 

x ]-] [!-(xffx')q"'-"'qY'-Y'l 
, <_, <, <_: 1 -- (XffX,)q"'-m' I 

: [((Xr/X~)q'~'--'~'q--(m--m'))rrl 
•  

,,~ = 1 L (q(xffx,)q"*-m')y, J 

X qy2 + 2y3 +-,-  + (~' - 1)y:q[(N1 +--- + N:) - (ml +--- + me)l(yl +--" + y:) 

(4.10c) x l-I 
k =t  I(flxkq"gr~(qxka- lqm~)y,jkaj j" 

Utilizing Theorem 2.11 to sum (4.10c) and then simplifying, we find that (4.10) 
becomes 

(4.11) 
! / ( N I  + ' "  + N:) - (m 1 +... + m:) 

H < X ::~ L(flxDN,(qx,~- ')N,A\~/ 

• FI 
1 < _ r < s < :  

d ( Xr  ) - 1 

• 1-] q - - q ' ~ - " "  �9 
r, s = 1 Xs  / N r  - mr 

We now have the C: generalization of Bailey's lemma. 

mr + ms -- I Ns - ms - i [(qx, x~q )N, _,.,(qx, x~q )N.- m/] 

Theorem 4.12 (The C: Generalization of Bailey's Lemma). Let  A = {Ay} and 
B = (By} be sequences that satisfy 

(4.13) Bn = ~, q Xr qY~-Y~ (qxrxsqr'+r')Nfl-r, A r 
O ~ y k ~ N k  r ,S=l  L \  X s  / N r - - y  r -.I .." 

k= t ,2,  ...,~' 
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for every N i > O, i = 1, 2 , . . . ,  E. (A and B form a C~ Bailey pair.) I f  we define 

(4.14) A~v:= { ~ [(aXk)Nk(qXkfl-1)Nk](fl~t~'+'"+N~)A ~ 
N , 

and if we also define 

(4.15) B~r ..= 
O<_mk<_Nk 

k =  1 , 2 , . . . , ~  

f r ( O ~ X k ) m k ( q X k f l - - l ) m k ~ ( f l ~ ( m l + ' " + m l '  

• 
k= , L(flXk)N*(qxk~-- I)N~_]\ ~ J 

X H rn, + m~ - 1 Ns - ms - 1 [(qXrX, q )n,- m,(qx, x~q )n,- ~,] 
l <_r<s<_g 

x l - -I  q__qm,-m~ Bm , 
r , s =  1 Xs  / N r - m  r fl 

then A' = {A'y} and B' -- {By} also satisfy (4.13), that is they also form a C~ Bailey 
pair. 

Proof. In the definition of B~v, rewrite the product 

H [(qxrxsqm,+m,)N_m,(qx, xsqm-,~ON_m, ] -1 
l <_r<s<~. 

so that the 

Nk ~ Nk __ mk ' Xk ~ Xk qmk, b ~ fl, a ~-~ 

case of the product side of the Cr 6q~5 summation theorem is obtained. Replace 
these products by the sum side of the C~ 6q~5. At this point, the terms of the inner 
sum are the product of the extra terms which were multiplied with the C/4q)a, (3.1), 
times Cm and the above case of the sum side of the Cr 6(p5. Rearrange these factors, 
after pulling all of the factors inside the inner sum, to yield the modified Cc 4(pa 
from (3.2) times Cm+y. Use the termwise nature of Lemma 3.9 to rewrite this inner 
sum a s  MlN;y+m)M(y+ra;m)Cy+m. Then use the calculations in (4.8) along with 
the definition of A'y t o  obtain the desired result. �9 

t t Corollary 4.16. With A' = {Ay} and B' = {By} defined as in Theorem 4.12, A' and 
B' satisfy (4.4). 

Notice that we may apply the C~, Bailey lemma to the new Cr Bailey pair A' 
and B'. Call the resulting Ce Bailey pair (A", B"). We may continue applying the 
Ce Bailey lemma and create a sequence of Ct Bailey pairs: 

(A, B) ~ (A', B') -* (A", B") ~ - . . .  

We call this sequence the "Cr Bailey chain." This definition is motivated by 
Andrews [6]. 
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We may also move from (A', B') back to (A, B). Given a C~ Bailey pair (A', B'), 
we may determine A from (4.14) and then B from (4.2). Thus, we can move from 
right to left in the Ce Bailey chain. This gives us the "bilateral Cr Bailey chain": 

. . .  ~ (a  (-  2) B(-2)) ~ (A (-  1), B (-  1)) ~ (A, B) ~ (A', B') ~ (a", B") ~ - ' - .  

In the classical case, special cases of the bilateral Bailey chain give the Rogers-  
Ramanujan-Schur identities and also Watson's q-analog of Whipple's transforma- 
tion. Similar results should be obtainable in the Cr case. 

5. A Connection Coefficient Result 

As a direct consequence of the C~ Bailey pair inversion in Theorem 4.3, we may 
obtain a connection coefficient result for the general C~ little q-Jacobi polynomials. 
This connection coefficient result is done in full generality--it is not even necessary 
to define the Ct little q-Jacobi polynomials fully. This observation was made in 
the U(n + 1) case by Milne in [33]. Gessel and Stanton [17, Section 8] have 
observed that the same argument as used for the classical little q-Jacobi poly- 
nomials works for the Askey-Wilson polynomials. In fact, the one-variable case 
of (5.7) below is even more general: for appropriate choices of the Om we arrive 
at the Askey-Wilson polynomials or little q-Jacobi polynomials. The same 
situation should hold for the Ce case. 

The definition of the general C~ little q-Jacobi polynomials is motivated by the 
matrix M* from the Ce Bailey transform. The same change of summation lemma 
that was used in the U(n + 1) case is used in the Ce case. An appropriate choice 
of factors in the definition of the Ct little q-Jacobi polynomials allows us to use 
this summation lemma together with the C~ terminating 4~p3 to reduce the triple 
multiple sum to a single multiple sum. The result is the connection coefficient 
theorem for the general C~ little q-Jacobi polynomials. 

We begin with a change of summation lemma. 

Lemma 5.1. L e t j  = (Jl,J2 . . . . .  Jr), k = (kl, k2 . . . . .  kt), m = (ml, m2 . . . . .  me)i and 
n = (nl, nl . . . . .  ne). Then 

(5.2a) • E E F(j, k, m, n) 
O<_ki<_lti ki<ji<_ni O<_mi<ki 

/ = 1 , 2 , . . , , ~  [ = 1 , 2  . . . . .  { i = 1 , 2 , . . . , g '  

(5.2b) = E E ~, F(j, k, m, n). 
O<_mi<_.ni mi<_ji<ni mi<-ki<-ji 

i=1,2 . . . . .  ~ / = 1 , 2  . . . . .  ~ i = 1 , 2  . . . . .  E 

Proof. We repeatedly apply the one-dimensional result 

(5.3) Z • f(~,fl ,  7 )=  ~ Z f(~,fl ,  7)" 
0 _ < ~ < f l  0 < ~ , < a  0 < y _ < f l  y<a<fl 

At each stage, apply (5.3) to a pair of multiple sums for each i =  1, 2 . . . . .  f. 
Apply (5.3) to the first two multiple sums in (5.2a). Then, apply (5.3) to the inner 
two multiple sums. Finally, apply (5.3) to the first two multiple sums. The result 
is (5.2b). �9 
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When we apply Lemma 5.1, we will want the innermost sum to be easily 
summable. Moreover, if it is the Cz terminating 4~p3 the two inner sums will 
collapse to a single term. It is this observation that motivates the definition of the 
Ct little q-Jacobi polynomials. We begin with a technical lemma. 

Lemma 5.4. Let  x~, x 2 . . . . .  x t  be indeterminate. Suppose that no xrxs nor x , / x  s is 
an integral power of  q. Then 

x,, , 7  xn,,,=, q 

q(m,  + --" + mt) qm2 + 2m,  +. . .  + (C - l )me}  (5.5a) X 

{( - -  1 )(k, +...+ ka- (,,,, ++,,V)q( ('' + +  ka 2(ml + ' " +  me')) 

[_, 
x ~_~r<,_~,']] Ll--x,xsqk~+k'J 

[( -, ]} t* Xr  ra~ - r n ~  ( ra, + ks~t - 1 
(5.5b) x I ]  q - -  q I ~xrx~q ,k,-~, 

r, s = 1 X s  / k r  - mr 

f(-- 1)-(k' +...+kaq-((" +'2 +ka) X 

[ -  [(-) ]} (5.5c) x ]-I l x ' x ' q k ~ + k ' ]  f l q  (X,x~qk')k, 

Proof. First, notice that (5.5b) is M~[;m) where the matrix M* is as defined 
in (3.18). Observe that 

( "  ( -  t q _ q,~,-m, q = q q _ _  q k ~ - m ,  . 

X s  / k , -  m ~ \  k~ Xs / I  m , -  m s \  X s  /rn5 

Apply Lemma 3.3 to (q(x,/x,))m_m. Then apply (A)m = (-- 1)mA'nq(~)(A - ~q~ -m)m to 
the factor (q(xr/x~)qk'-mS)m ,. Notice that (X,x, qk~)k,(X,x, qm'+k')~l_m, = (X, Xsqk')mr 
Combine the resulting terms with the resulting factors in (5.5b) and (5.5c). The 
desired result follows after some elementary manipulation. �9 

Lemmas 5.1 and 5.4 motivate the definition of the general Ct little q-Jacobi 
polynomials. 

Definition 5.6 (The Generalized Cr Little q-Jacobi Polynomials). Let x :=  
{x~, x 2 . . . . .  x/} be indeterminate. Suppose that no x,x, nor xr/x,  is an integral 
power of q. Let O = {| be arbitrary. Define the general Cc little q-Jacobi 
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polynomials, Pk(X; | Cr by 

(5.7) Pk(X; 0 ;  Cg):= 2 
O<mi<.<_ki 

i = 1 , 2  . . . . .  E 

1-I [ l~ - x'xsqmr+m` l - (-xffx~)q"'-"'q 

x l-I q-k ,__ (x,x,  qk~),, 
r ,~= 1 X s / ~ , .  r_j 

q(ml +"" + me) qm2 + 2m3 +"' + (s 1)me| X 

) 

This definition, together with the preceding lemmas, yields the following 
theorem. 

Theorem 5.8 (Connection Coefficient). 
with D = {Di} arbitrary, 

(5.9a) ~ | 
O ~mi<ni  

i = 1 , 2  . . . . .  

With Pk(X; | C#) defined as in (5.7) and 

E 
O ~ k i ~ n i  

i =  1 , 2  . . . . .  E i =  1 , 2 , . . . , ~  

{Dj( _ 1)(k ~ +...+ k~)q((k, + .;.+ k~)) 
ki<_ji<_ni 

V 1- -  XrXs 
(5.9b) x I-I L 

x l--[ q - -  (X, XsqkS)~ 
r , s =  1 X s / k r  

E X r  k r -  ks kr + ks - 1 
(5.9c) x 1-I q --  q (qXrX~q )j~-k, 

r, s = 1 Xs  / j ,  - k~ _1 

(5.9d) x Pk(X; O; Ce)~. 

Proof, Notice that (5.9b) is DiM(k;| Also notice that (5.9c) is M0;k). Substitute 
the definition of Pk(X; | Cr into (5.9). The innermost terms are combined to yield 

* This step is the motivating step in the definition of Pk(X; | Ce). Apply M0;k) M(k;m). 
the change of summation in Lemma 5.1 to the resulting sum. Rewrite the terms 
using Lemma 5.4. The innermost sum can be summed by Theorem 2.16 to yield 
8(j, m). The double multiple sum then collapses to a simple multiple sum, which 
is the desired result. �9 

Specific definitions for the Ce generalization of the little q-Jacobi polynomials 
can be motivated by Cr generalizations of q-Saalschtitz. Ca generalizations of 
q-Saalschiitz may be obtained from sequences of C l q-Whipple transformations. 
These, in turn, may be obtained from repeated applications of the Ce- generalization 
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of Bailey's lemma. This program is the Ct analogue of the U(n + 1) program, 
carried out by Milne in 1-30]-[34]. 
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