Integral Equations and Operator Theory Vol. 9 (1986)

 $\mathcal{O}(\mathcal{O}_\mathcal{O})$, where $\mathcal{O}(\mathcal{O}_\mathcal{O})$, $\mathcal{O}(\mathcal{O}_\mathcal{O})$

THE KERNEL OF A TOEPLITZ OPERATOR

Eric Hayashi

Let Tu be a Toeplitz operator on H^2 of the unit disk. If the kernel of $\texttt T_{\rm u}$ is non-trivial, it equals $\,$ g(H $^{\omega}$ 0 $\,$ zbH $^{\omega}$) where g is an outer function and where b is inner. Moreover, $f \rightarrow g f$ is an isometry of $\,$ H $^{\prime}$ $\,$ 0 zbH $^{\prime} \,$ onto Ker T $_{\rm U}$.

Let u be a non-trivial essentially bounded measurable function on the unit circle T, and let T_{u} denote the Toeplitz operator on H^2 of the unit disk defined by $T_{11}f = P \cup f$ where P denotes orthogonal projection onto H^2 . If Ker $T_u \neq (0)$, it can be shown that there is an outer function h in H^{2^u} such that Ker T_u = Ker $T_{h/h}$ (see [2]). It is easily checked that

 $Ker T_{\overline{h}/h} = H^2 \cap (\overline{z}h/\overline{h}) \overline{H}^2$.

It was shown in [2] that Ker $T_{\overline{h}/h}$ contains $L^2 \cap g(H^2 \theta zbh^2)$ as a dense subspace for a naturally arising outer function g and inner function b. It will be shown that much more is true, but first some notation is needed. For each non-negative integer k, Let M, = $(z^{\prime\prime}H^{\prime}) \cap (h/h)H^{\prime}$ and M_{ν}^{\prime} = $z^{\prime\prime}M_{\nu}$. If $M_{\nu} \neq (0)$, let g_{k} be a unit vector in M_k' θ M_{k+1}'. Then the following was shown in [2]:

PROPOSITION 1. *For M_n ≠ (0), there is an inner functio b n such that the following conditions hold:*

 (i) *h*/ \overline{h} = $z^{n}b_{n}g_{n}/\overline{g}_{n}$. (ii) $b_n = (b_{n-1} - b_{n-1}(0)) / z(1 - b_{n-1}(0) b_{n-1})$ $(n \ge 1)$. *(iii) (iv) b = 1 if and only if dim M = 1 (v) n-i* $g_n = r_n g_0$ || $(l - b_k(0) b_k)$ for some scalar r_n . *n*
 z^{*n*}_{*g_n} spans M_n* θ *M_{n+1}*, and *b*_ng_n^{*s*} spans M_n¹</sub> θ *M_{n+1}*¹.

Remark.

The spaces M_n arise naturally in the study of stochastic processes (see [1]). It is also useful to think of g_n as the unique element in the unit ball of M_n ' which maximizes the functional f \rightarrow Re f(0). From this, it was shown in [2] that ${g_n}^2$ is an exposed point of the unit ball of H^1 .

Now, from (b_n) , construct a sequence (G_n) of functions as follows:

Let $G_1 = 1$, and for $n \ge 2$, let

$$
G_n = \prod_{k=1}^{n-1} (1 - \overline{b}_k(0)b_k) / (1 - |b_k(0)|^2)^{\frac{1}{2}}
$$
.

where P_n denotes orthognal projection onto M_n . Also, by Proposition i, it is evident that PROPOSITION 2.*If n 1 and* $M_n \neq (0)$, then $g_n = G_n g_l$. Proof. A moment's thought reveals that $g_n = g_n(0)$ ${}^+P_n$

(1)
$$
g_{n} = g_{n}(0)g_{1}(0)^{-1} \left[\prod_{k=1}^{n-1} (1-\overline{b}_{k}(0)b_{k})/(1-|b_{k}(0)|^{2})^{\frac{1}{2}} \right]g_{1}.
$$

Thus,

$$
q_{n} = q_{n}(0)^{-1}P_{n} 1
$$

= $q_{n}(0)^{-1} \sum_{k \geq n} \langle 1, b_{k} q_{k} \rangle b_{k} q_{k}$
= $q_{n}(0)^{-1} \sum_{k \geq n} \overline{b}_{k}(0) \overline{q}_{k}(0) b_{k} q_{k}$

Since $g_k(0) \ge 0$ for each k, we have

$$
q_n(0)^2 = \sum_{k \ge n} |b_k(0)|^2 q_k(0)^2
$$
.

Hence,

$$
g_{n}(0)^{2}(1-|b_{n}(0)|^{2}) = \sum_{k \geq n+1} |b_{k}(0)|^{2} g_{k}(0)^{2} = g_{n+1}(0)^{2},
$$

SO,

(2)
$$
g_{n+1}(0) = g_n(0) [1-|b_n(0)|^2]^{\frac{1}{2}}
$$

$$
= \left[\prod_{k=1}^{n} (1-|b_{k}(0)|^{2})^{\frac{1}{2}}\right] g_{1}(0) .
$$

Now, (1) and (2) imply

(3)
$$
g_{n} = \left[\prod_{k=1}^{n-1} (1-\overline{b}_{k}(0)b_{k})/(1-|b_{k}(0)|^{2})^{1/2} \right]g_{1}
$$

$$
= G_{n}g_{1}
$$

which proves the propostion.

Applying the above to the outer function $h_1 = 1 + b_1$, $\text{let } m_k = (z^H)^{\text{th}} (h_1/h_1)H \text{ and } m_k' = z m_k$. Then $h_1/h_1 = b_1$ and m_0 has { $G_1=1$, $2G_2$, z^2G_3 ,... } as an orthonormal basis. Since $\{g_1, zG_2g_1, z^2G_3g_1, \ldots \} = \{g_1, zg_2, z^2g_3, \ldots \}$ which is an orthonormal basis of M_1' , the map $f \rightarrow fg_1$ induces an isometry of m_0 onto M₁'. Thus, Ker T_u = Ker T_{h/h} = M₁' = g₁(m₀) = g₁(H² \odot zb₁H²) so we can write

THEOREM 3. Let $T_{\boldsymbol u}$ be a Toeplitz operator on H^o with a *non-trivial kernel. Then there is an outer function g and an inner function b such that Ker T = q(H* θzbH^2). Moreover, the *map f* \rightarrow *fg is an isometry of H* 2 $_{0}$ zbH 2 onto Ker $_{u}^{n}$

As an application, it is a simple matter to write down the reproducing kernel for Ker T_{11} . For w in the open unit disk D let $k_{\text{w}}(z) = 1/(1-wz)$ be the reproducing kernel for H \overline{z} . Then the reproducing kernel for H \degree 0zbH \degree is easily seen to be given by

 $k_{b,w}(z) = (1 - \overline{wb(w)}zb(z))k_w(z)$. Thus, for f in Ker T_{11} , we have, by Theorem 3, that f/g is in $H^2 \theta z b H^2$. Therefore,

$$
f(w) = g(w) < f/g, k_{b,w}
$$

= $\langle f, \overline{g}(w) \rangle g, k_{b,w}$

Because $g k_{b}$, is in Ker T if for each w in D , the reproducing kernel for Ker T_u is given by

 $K_{11, w}(z) = \overline{g(w)} g(z) K_{b, w}(z)$.

The functions g and b which appear in Theorem 3 are obviously closely related. It would be of interest to get some quantitative information linking the local behavioum of g, b, and h. Such

Hayashl 591

a study, which the author intends to pursue, might prove useful in analyzing the latitude one has in the prescription of side conditions for solutions of Wiener-Hopf equations.

REFERENCES

- i. Bloomfield, P.B., Jewell,N.P., and Hayashi,E., Characterizations of completely nondeterministic stochastic processes, Pacific J. Math., 107(1983), 307-317.
- 2. Hayashi, E., The solution sets of extremal problems in H^1 , Proc. Am. Math. Soc., 93(1985), 690-696.

Department of Mathematics San Francisco State University 1600 Holloway Ave. San Francisco, CA 94132

Submitted: September 24, 1985 Revised: January 6, 1986