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Factor izat ions  o f  and extens ions  to J -uni tary  rat ional  matr ix  funct ions  on the 

unit  circle  

L Gohberg, M.A.Kaashoek, A.C.M.Ran 

This paper concerns two topics: (1) minimal factorizations in the class of J-unitary rational matrix 

functions on the unit circle and (2) completions of contractive rational matrix functions on the unit circle to 

two by two block unitary rational matrix functions which do not increase the McMillan degree. The results 

are given in terms of a special realization which does not require any additional properties at zero and at 

infinity. The unitary completion result may be viewed as a generalization of Darlington synthesis. 

1 .Introduct ion  

In this paper  we study unitary and J-uni tary  rational matrix functions on the unit cir- 

cle W, using the concept  of  realization. Usual ly  a realization for a rational matr ix function 

W is a representation of  W in the form W(>,)=D+C(M-A)-1B, which holds whenver  W 

is analytic at oo. The latter condit ion makes this type of  realization less suitable for the 

study of  J-uni tary  functions on the unit circle. The usual procedure  is to assume first that 

the J-uni tary  function does not have a pole or  a zero at infinity, use the a forment ionend  

standard realization to derive the desired result for  this part icular  case, and then derive the 

result for the general  case using M6bius  t ransform. In this way the final formulas  do not 

appear  explicit ly in terms of  the original data. Recent ly ,  another  realization was proposed,  

which allows to study arbitrary regular rational matrix functions without  constraints on the 

behaviour  at infinity (see [GK], see also [BGR],  Section 5.2).  It is a representation of  the 

function W in the form 

W(X) = D  +(c~ - k )  C (XG - A )  -1B.  (1.1) 

where A and G are n x n  matrices with c~G - A  invert ible,  B is an n •  matrix and C is an 

m x n  matrix and,  finally, D is an m •  matrix.  This realization is valid provided  W is ana- 

lytic at X = a .  As any regular rational matrix functions has only a finite number  of  poles 

this is not a restriction; in practice we shall assume a =  1 mostly.  Since in the present  paper  

W is J-uni tary  on the unit circle it seems more  natural to use that W is analytic at some 

point  on the unit circle, than to require that W is analytic at infinity. Addit ional  motivat ion 

for using a realization of  the type (1.1) comes f rom the theory of  reproducing kernel 

spaces (see Section 3 be low) .  

In this paper  we show how this realization can be used in two problems:  the first 

one is the problem of  factorization of  J-uni tary functions into J-uni tary factors,  the second 
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one is the problem of generalized Darlington synthesis. More precisely, completion to a 

2 •  block unitary rational matrix function of  a given contractive function without increas- 

ing the McMillan degree. In the solution of  these two problems we were inspired by [AG] 

and [GR], respectively. The first problem was solved in [AG] for rational matrix functions 

which are analytic at infinity using the standard realization. For  functions on the real line 

the second problem was solved in [GR]. 

In Section 2 we study properties of realization (1.1) with respect to multiplication 

and factorization. In Section 3 the special properties for realization (1.1) are derived in 

case W is J-unitary on the unit circle. Factorizations of  J-unitary functions into J-unitary 

factors are studied in Section 4. Special attention is given to the case where J =1, i .e. ,  to 

tmitary functions. In the last section we study unitary completions of  a given contrative 

rational matrix function. 

2. Realization, similarity, multiplication and faetorization 

2.1 Similarity. Let W be an m •  rational matrix function, which has an invertible 

value at the point ccE C. A representation of the form 

W(X) =D + (~ -X)  C(kG - A )  - 1B (2.1) 

where we assume ~ G - A  is invertible, is called a realization of W. The realization (2.1) of 

W(X) is called minimal if the size of the matrices G and A is as small as possible among all 

realizations of W. In that case, if G and A are n x n ,  say, the number n is called the McMil- 

lan degree of W; this number is denoted by 8(W). The realization is minimal if and only if 

it is controllable and observable,  more precisely, if and only if the maps 

C(XG - A )  -1 :cn._+ ;~(o.), B* ( X G * - A  *) -1 :C n_._~ ~ ( a )  

are one-one. Here ,~(o) denotes the set of rational n x 1 vector functions with poles off or, 

where o is the set of  zeros of det (XG - A )  including infinity. This is most easily seen by 

using MSbius transform. Indeed, put ~b(k)=(c~X+ 1 ) x - l ,  and define V(X)= W(~b(X)). One 

easily checkes from (2.1) that 

V ( X ) = D - C ( o t G - A )  - l  (X +G(o tG-A)  -J ) - lB .  

This realization for V is minimal if and only if the realization (2.1) for W is minimal. But 

for this type of  realization it is well-known that minimality is eqmvalent to observability 

and controllability. It takes a little computation, which we leave to the reader, to see that 

the standard definitions of observability and controllability are equivalent to (for this partic- 

ular realization for IO 

C(otG - A )  -1 (X + G  (coG - A )  -1 )  -1 :C n___~ ;~A,(b) 
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is one-one,  as well as 

B*(X+(-~G* - A  *) - 1 )  -1 :cn_.~ :~(~). 

Here 8=4~ -1 (o) .  Now 

C(otG - A )  -I Ox+G(oLG - A )  - 1 )  -1 = 1C(q~0x)G - A )  -1 
)x 

Put/~=~b(k),  then 1 - -  = t t - cg .  So (ix-oOC(izG - A )  -I :cn..,,;z~g(a) is one-one.  Likewise 
), 

B * (k + ( ~ G *  - A  *) - l ) -~ : c n ~  ~ ( o )  

is one-one if and only if B * ( - a G * - A * ) - I ( X + ( ~ G * - A * ) - l ) - l  : c n ~ ( c r )  is one-one.  

A similar a rgument  as above shows that this is equivalent  to 

B*(IzG* - A  *) -1 ,C n-._~ j~(o_) 
being one-one.  

Note that together with the realization (2.1) for W(X), we also have a realization for 

its inverse,  given by 

W(X) - 1 = D - 1 _ ( a  - X ) D  - 1 C(kG • - A  x ) - 1 BD - 1, (2.2) 

where G • = G - B D  -l  C, A • =A - ~ B D  -1C. 

Let W(~k)=Di+(ot-)QCi(~kGi-Ai)- IBi ,  i = 1 ,  2, be two realizations for the 

same rational matrix function W0, ) ,  and assume that both these realizations are minimal .  

Then there exist unique  invertible matrices E and F such that 

E ( h G 1 - A 1 ) F = ( k G 2 - A 2 ) ,  C1F=C2,  EBI=B 2. (2.3) 

We shall say that the two realizations are strictly equivalent, by abuse of expression some- 

times also that they are similar. 

2.2 Multiplication.  Let 

W i ( k ) = D i + ( o t - k ) C i ( k G i - A i ) - l B i ,  i = 1 ,  2, (2.4) 

be two rational matrix functions in realized form. Then for the product  we have the follow- 

ing realization: W ( X ) = W  l (k)W2(R)=D +(ot -k )C(hG - A )  - tB ,  where D = D  LD2 and 

rBID2 

I~01 ~BIC21 I~01 B1C21 
A =  Az , G =  G2 " 

(2.5) 
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Indeed, we have 

WI (X)W2(X)=DID2 + ( a - X ) D  i C2(XG2 --A2) - t  + (2.6) 

+(c~-X)CI (XGI -A  l) - I B I D 2  +(c~-k) 2C1 (XG1 -A 1) -1 B1 C2(XG2-A2) -!  

Computing C ( X G - A ) - 1 B  from (2.5) we obtain 

iI Cl D1C2 0 XG2-A2 ~. B2 

I II ~~ ~~ ~ ~ " ' ~ ' ~ ~  ~ '  ~ ~ ' ~  = Cl D1 C2 0 (XG2-A2) -~ (- B2 

Comparison with (2.6) learns that this is equal to ( r  

thereby proving our claim. 

Note that the inverse of the product, W(X) -1 =We(X) -1WI(X) -1 is given by 

W(X) -1 = D - l  _ ( a _ X ) D - 1  C(XG • -A  • ) - I B D - I ,  where 

I ~ 1 G x = G - B D  -1C= -B2  D-1C1 G~ ' 

I ~ 1 A • =A - a B D - t  C= 
-orB2 D - t C  1 A~ " 

2.3 Factorization. In this subsection we shall study minimal factorizations of rational 

matrix functions given by 

W(X) =D + (or-X) C(kG -A)  -~ B. 

We start by giving a theorem that gives a sufficient condition for factorization; this result 

can be viewed as a converse of the formulas for multiplication obtained in the previous 

subsection. 

Theorem 2.1. Let {MI, M2} be an invariant subspace pair for XG-A ,  i.e., 

GM1 cM2,  AMI cM2,  dim Mz = dim M 2, and let {M{ , M~ } be an invariant subspace 

pair for XG • - A  x. Suppose, moreover, that 

Cn=M1 |  =M 2 @M~. (2.7) 

Let 7rl, 7r2 be the projections along M 1 , M2, respectively, onto M E ,  M ( ,  respectively. 

Then 

w(x) = wl (x) w2 (x) (2.8) 
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where 

W 1 ( k ) = D  1 + ( c ~ - k ) C ( I - T r  1 ) ( k G - A  ) -1 ( I -  7r 2)BD2 "1 , (2.9) 

W 2 ( ) k ) = O 2  + ( o t - M O  i "1 C71" 1 (~G-A) -17r2B"  (2.10) 

Proof.  Consider k G - A  as a mapping from M1 OM~ < to M2 OM~ < : 

I X G 1 - A I  hG12-AI.21 
~G - A  = 0 )xG2 - A  2 " 

Further, consider B as a mapping from C m to M2 @ M ( ,  and C as a mapping from 

M 1 O M ~  to c m :  

c1 

Then, considering XG x - A  x as a mapping from Ml O M ~  to M2 |  we have: 

XG x - A  x = 

I 
k(Gl - B 1 D  - l  C 1 ) - ( A  l - a B I D  -1 C1) 

= (c~-k)B 2D-1 C1 

As {M~ < , M~ < } is an invariant subspace pair for XG x - A  x ,  it follows that 

G12=B1D-IC2 ,  A]2=otB1D-1C2 . 

Hence WOO = W1 (k) W2 (k), where 

W 1 (k) =D1 +(c~-k)C1 (kGl - A  l ) - l B l D 2 1 ,  (2.11) 

W2 0~) =D2 + ( o t - ) 0 D  i -1 C2 0~G2 - A 2 )  -1B2 ,  (2.12) 

But clearly 

k(Gl2 - B 1 D  -1 C2) - ( A  12 -e lBl  D-1 C2) "] 

) ~ ( G 2 - B 2 D - 1 C 2 ) - ( A 2 - o t B 2 D - 1  C2) I " 

and 

C2 (XG2 - A  2 

This proves the theorem. 

- t  B 2 =CTr I ( k G - A )  -1 rc 2B" 

[] 

Next we discuss minimality of the factorization W ( ~ k ) = W  1 ()k)W2(k)  . Such a fac- 

torization is called minimal if 6 (W)=6(W1)+b(W2) .  Note that it follows from the multi- 

plication result in Section 2.2 that we always have 

CI (XG1 - A  1) -1B1 = C ( l - T r  1)(kG - A )  -1 (l_zc2)B, 
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a(w) ___ a ( w ~ ) + a ( w 2 ) .  (2.13) 

Theorem 2.2. Suppose the realization (2.1) /s minimal. Then for every choice of 

invariant subspace pairs {MI, M2} for X G - A  and {M~ , M~ } for XG x - A  x such that 

(2.7) holds the factorization (2.8), where Wi(X ) (i=1, 2) are given by (2.9) and (2.10), is 

minimal. 

Conversely, if (2.8) is a minimal factorization, then W~(X) (i=1, 2) are given by 

(2.9) and (2.10)for some unique projections 7r 1 and 7r 2 corresponding to invariant sub- 

space pairs {MI, M 2 } for XG - A  and {ME, M (  } for XG x - A  x ,  respectively, for which 

(2.7) is satisfied. 

Proof.  Suppose (2.7) holds for the invariant subspace pairs {M], M2 } for X G - A  

and { M ~ , M ~  } for X G X - A X .  By Theorem 2.1 we have a factorization 

W(X)=W 1 (X)W2(X), where W 1 and W 2 are given by (2.9) and (2.10), or alternatively by 

(2.11) and (2.12). From (2.11), (2.12) we see that 

6(W1) <_ d i m M l ,  6(W2) < d i m M ~  

So, by the minimality of the realization (2.1), and using (2.7) we have 

b ( W ) = n =  d i m M ] +  d i m M ~  ~ 8(W1)+6(W2).  

Combined with (2.13) we obtain that the factorization is minimal. 

To prove the converse, suppose (2.8) is a minimal factorlzation, and let 

Wi(~k ) =O i +(ot-~k)Ci(~kG t - A  i) -1Bi  

be a minimal realization for wio ,  ), (i = 1, 2). Build a realization of the product wOO as 

in Section 2.2: 

W(k) = D  + ( a - X )  C ( X G - A )  -I/~, (2.14) 

where C', /}, A, G are given by (2.5). As the factorization is minimal, this is a minimal 

realization for W. Hence (2.1) and (2.14) are similar. Let E and F be invertible matrices 

such that 

Now 

E ( X G - A ) F = X O - ~ t ,  CF=C, EB=B.  

XG - A  = 
XO,oA, ] 

~.G2 - A 2  ' 

(2.15) 

considered as a mapping from C n~ e C n2 to itself, where n i =6(W~). Put 
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Mt = F ( C  nl ~) (0)), M2 =E -1 ( Cnl @ (0)). 

Then {M~, M2 } is an invariant subspace pair for X G - A .  Farther 

E(XG x - A  x )F=E (XG - A ) F -  O~-cQEBD - 1 CF= 

=XG-A- (X-c~ ) /~D - ~ ? = X G  • 2 1 5  = =  (c~-X)B2 D - I C I  

Put 

• -At ' 

M~ < =F((0) OC n2), M r  =E - l ( (0)  |  n2). 

Then {M ~, M r  } is an invariant subspace pair for kG • -A • . Moreover, we have 

Cn=M1 ~ m ~  =M 2 |  

Let 7rl, 7r2 be the corresponding projections, i.e., 7r~ is the projection along M z onto M S . 

Then 

I:01 I:01 ~r I =F In2 F -1,  ~r 2=E -1 in 2 E. (2.16) 

Applying Theorem 2.1 we have W(X)= W1 (k)i, V2 (X), where 

tirl (k)=D l + ( a - X ) C ( l - ~ r  i ) 0 , G - A )  -1 (I - w 2 ) B D S  l , (2.17) 

I~2(X) =D 2 +(ce-X)D [ 1 CTr I (XG-A) - t 7r2B" (2.18) 

Using (2.16) and (2.15) in (2.17) and (2.18) we obtain 

0 1 
I~I(X)=Da+(Ot-X)C (10 Ol ( X G - A ) - I  IO ~1 /~D~-I 

(u  001 ( k G - A ) - I  II0 ~1 j~. 

As 

[BID2 
/~= ~ B2 I , C= ICl  D1C21 , 

it follows from the above formulas that WI(X)=WI(X), I~'2(X)=W2(k). This proves 

that Wt and W2 are of the form (2.9) and (2.10), respectively. 

It remains to prove the uniqueness of the projections rr I and 7r2. Suppose P1 and 

P2 are also projections such that 
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W1 (~') =D 1 q-(~ (~.GI - 4 1  ) - I / ~ I D 2 1 ,  

W2 (k) =D2 +(c~-k)Di  -I C2 (~.a2 - 4 2 )  -1J~2, 

where 

C1 = C ( I - P I ) ,  

and 

G I = ( I - P I ) G ( I - P 1 ) ,  4 1 = ( I - P 1 ) A ( I - P 1 ) ,  [~1=(I-P1)B, 

C2=CP2 ,  G2=P2GP2, A2=P2AP2, /~2=P2 B. 

We then have two minimal realizations for both W1 and W 2 . So there exist El and F1 

such that 

E I ( k G I - A I ) F I = X G 1 - A I ,  C I F I = C I ,  E I B I = / ~ I  . 

Also, there exist E 2 and F2 such that 

E2(~kG2-A2)F2=XCr2-42, C2F2 = (72, E2B2 =/~2 . 

Define 

E= IEo1 EOI , F= IF 0 F021. 

Then we have 

E(hG - A ) F = k G - A ,  CF=C, EB =B. 

In particular, C(kG-A)-1  =C(kG-A) -1E ,  i.e., C(kG-A)-1  ( E - l )  - O. By observa- 

bility of the realization for W(),) we get E=I. Further, in a similar way we have 

( F - I ) ( X G - A ) - 1 B  = O, and from the controllability of the realization for W(X) we 

obtain F =I.  But from E = F  = I  we have P i = 7ri. [] 

3. Realizations for J-unitary functions 

3.1 Characterization. The function wOO is called J-unitary if it has J-unitary values 

on the unit circle except at poles of W, or equivalently 

W(~-1)  *JW(E)=J (3.1) 

for all k which are not poles of W. In this section we shall consider the properties of such 

functions, in particular with respect to their realizations. 

Theorem 3.1 Let W(k)=D+(1-X)C(XG-A)-1B be a minimal realization with 
G-A invertible and D = W(1) invertible. Then the following are equivalent: 

(i) W(X) is a J-unitary rational matrix matrix function, 
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(ii) D *JD =J and there is an invertible matrix F such that 

GF +F*A " =BJB*, D-1 CF =JB*, (3.2) 

Oii) D * JD=J and there exists an invertible Hermitian matrix H such that 

G*HG - A  *HA = -C*JC,  (3.3) 

D -I C(A - G ) - I H - 1  =JB*. 

Proof,  First we show the equivalence of (i) and (ii). Assume (i) holds. Then 

W(1)=D is J-unitary, so D*JD=J. From (3.1) we see that W(X) -1 = J W ( E - I ) . j .  Com- 

puting realizations for both the left and right hand side of this equality we obtain 

D -1 - ( 1 - X ) D  - 1 C ( h G  x - A  • -1BD-I  = 

= J D * J - ( I  -X)JB* ( -XA * +G*)  -1 C*J. 

Since these two realizations are minimal, they must be strictly equivalent, so there exist 

unique invertible matrices E and F such that 

E(XG x - A  X ) F = _ h A *  +G*, D -1CF=JB*,  EBD-1 =C*J. (3.4) 

In particular 

E G •  *, E A •  (3.5) 

Now take adjoints in the last two equations in (3.4) and use D*JD =J to see 

D - I C E - * = J B * ,  F-*BD -1 =C*J. (3.6) 

It follows that 

F-*  BD -1 CE-* =C* JDJB * =C* D-*  B *. (3.7) 

Taking adjoints in (3.5) we have 

G * - C * D - * B * = - F - * A E - * ,  A * - C * D - - * B * = - F - * G E - * .  (3.8) 

Using (3.7) these formulas give 

F - * G •  *, F - * A X E - * = - G  *. (3.9) 

Comparing (3.6), (3.9), with (3.4), and using the uniqueness of E and F we obtain 

E = F - * .  (3.10) 

So 
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G x F= - F * A  *, (3.11) 

and using (3.4) again we have G F + F * A *  =BD - 1 C F = B J B * .  Thus (i) holds. 

Conversely, suppose (ii) holds. Put E = F  -*.  Then (3.2) gives 

G F + F * A * = B D - I C F ,  i.e., G X F = - F * A  *. So E G X F = - A  *. Taking adjoints, and 

rewriting a little, also E A X F = - G  *. Thus (3.4) holds and hence W(X) is a J-unitary 

rational matrix function. 

To show (ii) implies (iii) subtract the two formulas in (3.8), using (3.10) we obtain 

(G - A ) F  =F*(G - A )  *. 

Introduce the matrix 

H = F  -1 (A - G ) - I  

By (3.12) H is a Hermitian matrix. 

So 

(3.12) 

(3.13) 

To prove (3.3), taking adjoints in (3.11) we have 

A = - F * ( G X ) * F  -1 = - F * G * F  -1 + F * C * D - * B * F  -1 = 

= - F * G * F  - l  +F*C*JC.  

we have G * F - l + F - * A = C * J C .  Taking adjoints gives A * F - I + F - * G = C * J C .  

Adding these two, and using F - l  = H ( A  - G )  yields 2A *HA - 2 G * H G  =2C*JC, which is 

equivalent to (3.3). The second part of (iii) is an easy consequence of (3.2). 

For the converse, suppose (3.3) holds. Put F = ( A - G ) - 1 H - L .  Then 

D - 1 C F = J B *  and it is straightforward to check that G X F = - F * A  *. The result then fol- 

lows easily. [] 

Clearly, the matrix H is uniquely determined by the realization of W(X). We shall 

call H the associated Hermitian matrix. As in |AG] we shall denote the number of negative 

eigenvalues of H by v(W). That this number is independent of the particular choice of the 

minimal realization is a consequence of Theorem 3.2 below, for which we first introduce 

some notation. 

Introduce the kernel functions 

Kw(X,w)  = J -  W(X)JW(w) * , (3.14) 
1 - X ~  

K W" (w,X) = J - W(w) *JWO0 (3.15) 
1 - X w  

The function K~ is said to have x negative squares if for each positive integer r and any 

points w I .... ,w r which are not poles of W, and any vectors Cl ,...,Cr the r x r  Hermitian 
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matrix 

( c ; K ( w j , w i ) c i  
i , j  = 1 

has at most x negative eigenvalues, and has exactly ~ negative eigenvalues for some choice 

of r, w 1 . . . . .  Wr and cl  . . . . .  Cr. (See, e.g., [AG], Section 2.2.) 

With this notation we have the following result, which is comparable to [BGR], 

Theorems 7.4.3 and 7.5.3. 

Theorem 3.2. Let W (X) = D + ( 1 - )Q C(XG - A  ) -1B  be a minimal realization of  the 

rational J-unitary matrix function W with G-A invertible. Then we have 

Kw(X,~) = C  ( E G - A  ) - 1 H - 1  (~G* - A  *) -1 C* , (3.16) 

Kw" (o~,X) =B* (~G* -A *) - I  F - *  H - 1 F  - I  O~G - A )  - l B .  (3.17) 

Thus the number of  negative eigenvalues of  H is equal to the number of  negative squares of  

each of  the functions K w ( k , w )  and Kw" (00,X). 

Further, ~( B0 = dim ,Yd(IV), where or{(W) is the following set o f  functions in X 

.Yd(W)={Kw(k,~o)c [c~C,  det ( w G - A )  ~e0}. (3.18) 

Proof. We compute the kernel function Kw(X,w  ) We have, using J _ j - i  

w ( x ) J W ( ~ )  * = 

=(D +(1 - k ) C ( k G  - A )  -] B )J (D*  + ( 1 - ~ ) B * ( ~ G *  -A *) -1C*) = 

J+(1  -~o)DJB * (~G* - A  *) - i  C* +( 1 -~, )C (XG - A  ) - l  BJD * + 

( 1 +k~  - k --~) C (XG - A  ) - 1BJB * (~G * - A  *) - 1 C*. 

Using the second equation in (3.4) twice, this equals 

J + ( 1 - ~ ) C F ( ~ G * - A * )  -1 C* +(1-X)C( ;kG-A)  - IF*C*  + 

+ { ( 1 - k ) + ( 1 - ~ ) + ( k ~ - l ) } C ( k G  -A)  - l  ( F ' G *  +AF)(~G* - A  *) -1C*.  

Collect together terms with (1 -k )  and terms with ( 1 - ~ ) ,  this gives 

J+(1- -k)C(EG - A )  -1 {F* +(F*A * +GF)(~G* -A *) -1 }C* + 

+(1 - ~ ) C { F  +(),G -A)  --1 ( F ' G *  +AF) }(~G* - A  *) - 1  C* + 

+( 1 -) ,~)  C (XG -A)  -1 { -F*  G* - A F } ( ~ G *  - A  *) -1 C*. 

It is easy to see that this is equal to 
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= J + ( 1 - X ) C ( X G  - A )  -1 {~F* G* +GF) }(~G* - A  *) - l  C* + 

+(  1 - ~ )  C(XG - A )  -1 (XGF+F* G*) }(~G* - A  *) -1 C* + 

+ ( 1 - k ~ )  C ( X G - A )  -1 { - F *  G* -AF}(~G* - A  *) -1 C*. 

Now this simply rewrites as 

J + ( 1  - k ~ )  C ( k G  - A  ) -1 ( G - A  )F(~G* - A  *) - j  C*. 

We have shown that 

W(X)JW(o 0 * = J + ( 1  - k ~ ) C ( X G  - A )  -1 (G -A)F(~G*  - A  *) -I  C*. (3.19) 

This proves (3.16). 

In a similar way one shows that 

W(~0) * JW(X) = J  + ( 1 - X ~ ) B  * (~G* - A  * ) - 1 (G * - A  * ) F  - 1 (XG - A  ) - l B, 

which gives (3.17) after noting that (A * - G * ) F  - l  = F - * H  - l  F -1 . 

To see the last statement of the theorem, note that any function in of(W) can be 

written as 

CO~G - A )  -ax, x E C  n 

by (3.19). Hence dim J{( W) =< 6 ( W) . The observability of (C, X G - A ) ,  i.e. the injectivity 

of  C(kG - A )  - t  shows that dim of( W) = 6( W) . [] 

Recall that a J-unitary function W(X) is called J-inner if it is J-contractive for 

IX] <1 ,  i.e. 

W(X)*JW(k) <_ J, I X I < l. 

Then we have the following proposition: 

Proposi t ion 3.3. The J-unitary function W is J-inner if and only if the associated 

Hermitian matrix H is positive definite. 

Proof .  This is an immediate consequence of formula (3.17) and the controllability 

of  ( X G - A , B ) .  [] 

Our next result of this section describes the associated Hermitian matrix for the pro- 

duct of  two J-unitary rational matrix functions. 

Theorem 3.4. Suppose 

Wi(X) = D ,  +(1 -X)C~(XG i - A i )  -1Bi  i = 1,2 

are J-unitary functions with minimal realizations. Suppose the product W= W 1 W 2 is 
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minimal. Let H 1 , H 2 be the associated Hermitian matrices. Then the matrix 

the Hermitian matrix associated with the minimal 

wOO =D +( 1 - X ) C ( X G - A )  -I B for the product, where D =D I D2, 

[B1D2 1 
C = ( C 1  D I C 2 ) ,  B =  [. B2 ' 

I~o , ~ 1 H2 is 

realization 

A =  A2 ' G =  Gz ' 

Proof. Let F l , F2 be the invertible matrices given by F i =(A t - G i )  - 1 H ~ l .  With 

01 these F i ' s  (3.11) holds for the realizations for W i as given. Put F = F2 . It suffices 

to show that with this matrix F (3.11) holds with A,B,C,D,G as in the theorem. Indeed, if 

this is the case the associated Hermitian matrix with the above realization for W is given by 

H = F  - I ( A  - G )  - l  = 
FS  1 0 ( A 2 - G 2 ) - I  = H2 �9 

To check (3.11) in this particular case compute 

* o l l  o I o 1 F2* - B 2  D - I  C 1 G (  F2 = 

= - F ~ I B 2 D - I C I F 1  F ~ * G ( F 2  * -~ * C2JD2D D1JBI - A 2  

A1 

Further, 

D - 1 C F = ( D  - I C I F 1  D~ 1 C 2 F 2 ) = ( D f l J B ~  JB~)= 

�9 �9 [ B I D 2 ~  * �9 
=(JD2Bl JB~)=JU [. B2 J =JB , 

which proves the theorem. 

3.2 Inverse problem. Next, we turn our attention to the following problem. Given 

an observable pair (C, XG--A) with G - A  invertible, when does there exist B and D such 

that 
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W(k) = D  +(  1 - X ) C  (XG - A )  -1B 

is a minimal realization for a J-unitary function on the unit circle? The following theorem 

provides the answer, which is based on Theorem 3.1. 

Theorem 3.5. Let ( C , ) ~ G - A )  be observable and let G-A be invertible. Then there 

exists a J-unitary function W(k) with minimal realization wO~) = D + ( 1 -)~) C (kG - A  ) - 1B 

with D invertible i f  and only i f  there is an invertible Hermitian solution H of  (3.3) 

G* HG - A  *HA = - C *  JC. 

In this case one can take for  D any invertible J-unitary matrix and put 

B =H - l ( A * - G * ) - l  C * D - * J  

In this manner one obtains all possibilities for  wO~ ) given an invertible Hermitian solution 

H of(3.3).  

Proof. One direction of the theorem is contained in the statement of Theorem 3.1. 

For the converse we first show that (~G • - A  x ,B) is controllable, or equivalently, 

(B *, ~G • * - A  • *) is observable. 

Indeed, suppose this is not the case. So, suppose that 

B*0~G • - A  • - I x  =0,  

for some x ~0 .  It easily follows from (3.3) and our definition of B that 

G •  *, A X F = - F * G  *, 

where F = (A - G) - 1 H -  l .  Noting that B * =JD - 1 CF by definition this gives 

O=CFO~G x* - A  • - I x  = 

= - C ( k A  - G )  - I F x  = h - I  C ( h - I G  - A )  -1Fx. 

Using the observability of (C, X G - A ) ,  i.e. the injectivity of C ( ) ~ G - A )  -1 it now follows 

easily that x =0,  which is a contradiction. 

From Theorem 3.1 one sees that the function W given in the theorem is indeed J- 

unitary. To show that given an invertible Hermitian solution H of (3.3) the construction of 

the theorem really describes all possibilities, suppose that we have two solutions W(X) and 

W1(X). From (3.19) we see that w O O J W ( w ) * = W I ( ) O J W I ( w ) *  Thus W = W I U  for 

some J-unitary constant U. This proves the theorem. [] 

The particular case of J-inner functions is also of importance. Because of Proposi- 

tion 3.3 and the theorem above we have 

Proposit ion 3.6 Let ( C, X G - A  ) be observable and let G-A be invertible. Then there 
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exists a J-inner function W ( X ) with minimal realization w OQ = D + ( 1 - X ) C ( )~G - A  ) - 1B 

with D invertible i f  and only i f  there is a positive definite solution H o f  (3.3). In this case 

all possibilities f o r  WOO are given as in Theorem 3.5. 

Of course, the analogues of Theorem 3.5 and Proposition 3.6 for a controllable pair 

can also be formulated and proved. We omit the details. 

3.3 Connection with reproducing kernel spaces. *) The results from Section 3.1 

exhibit a close connection with the theory of reproducing kernel spaces. We shall explain 

this here in more detail. Suppose we have a linearly independent set of rational m-vector 

valued functions f 1 (X) . . . . .  f n  (X) defined on the unit circle. Assume, moreover, an indefin- 

ite inner product ( .,.> is defined on P =  span {fl  . . . . .  f n  }- Let H be the Gramm matrix of 
n 

the basis f !  . . . . .  f n ,  i.e., H = ( < f j , f ~  > ) . Also, let us denote by F(X) the matrix with 
i , j  = 1 

f i ( X )  on its i-th column. Then P is a finite dimensional reproducing kernel space with 

reproducing kernel K()~,w)=F(X)H-1F(r  * Let J be a matrix with J =J* = J - ! .  Then 

this reproducing kernel is of the form 

K (X,w) = J - wOQJW(w)  * 

1 -X-~ 

for a function W(X) which is J-unitary for I X ] = l (except for poles of W) if and only if H 

satisfies an equation of the type A * H A - G * H G = C * J C  for some G, A and C. (See [Dy], 

Theorems 5.3 and 5.4.) 

Let us specialise the result of the previous paragraph to the following case. Given C 

and XG - A  such that G - A  is invertible and (C, XG - A )  is controllable, consider the set of 

functions f t O O = C ( X G  - A )  -I  e l ,  where el  . . . . .  e n runs over a basis of C n . Assume we 

have an invertible Hermitian solution H of the equation 

A *HA - G * H G = C * J C .  

Let us denote by P the space of rational vector valued functions spanned by f l .... , f n  with 
n 

f '>i,j . Then F ( X ) = C ( ) ~ G - A ) - l  indefinite inner product given by H, i.e., H = ( ( f j ,  ) 1  

and by construction the reproducing kernel is of the form 

J - W(X)JW(oJ) * 
K (h,oJ) = 

1 -X~ 

for a function W(X) which is J-unitary for [XI = 1. In that case, putting co= 1, we may 

�9 ) The authors are grateful to Harry Dym for attracting their attention to these connections. 



Gohberg, Kaashoek and Pan 277 

solve for W(k) from the two representations of K(X, 1): 

W(X) = W(1) - (  1 - X ) F  (X)H- l  F (1) *JW(1) = 

= D + ( 1 - X ) C ( X G - A )  - i l l - 1  (A * - G * )  -1 C* JD, 

where we have put D --W(1).  Clearly, this provides us with an alternative proof of part of 

Theorem 3.5. Moreover, this construction may be viewed as additional motivation for using 

realizations of  the type (1.1) in the study of rational matrix functions which have J-unitary 

values on the unit circle. 

4. Factorization of  J-unitary functions into J-unitary factors 

In this section we shall present several results on minimal factorizations into J- 

unitary factors of  J-unitary functions. In the first subsection we study the general case, the 

special case of unitary matrix functions is studied in the second subsection. 

4.1 The general case. As we know from the general results of Section 2, minimal 

factorizations are in one-one correspondence with invariant subspace pairs. For a J-unitary 

function W(X) with minimal realization 

W ( X ) = D + ( 1  - k )  C (XG - A )  -1B (4.1) 

it turns out that the existence of a certain particular invariant subspace pair of X G - A  

implies the existence of  an invariant subspace pair for XG x - A  x such that with respect to 

these two pairs the factorization of  W is indeed a factorization into J-unitary factors. This is 

the content of the main theorem of this subsection. 

Theorem 4.1. Let W be a J-unitary function with minimal realization given by (4.1). 

Let F be the unique invertible matrix for  which (3.11) holds. Suppose {MI ,M2} is an 

invariant subspace pair for  XG - A  and suppose that 

M 1 |  =C n. (4.2) 

Then {FM~ , F ' M {  } is an invariant subspace pair for  kG x - A  x and 

M2 @ F ' M {  =C n. (4.3) 

Let 7r 1 be the projection along MI onto FM~ and let 7r 2 be the projection along 

M 2 onto F * M { .  Then 

~r 1 =F Tr ~ F - l  (4.4) 

Put 

W1 (X) = D I  +(1 - X ) C ( I  -Tr I )O~G - A )  -1 (1 -Tr2)BD ~ 1, (4.5) 
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W 2 (X) =D2 +(  1 -X)D~ -l CTr I (XG - A )  - 1 7r 2B, (4.6) 

where D =D1D 2 and D1, D2 are J-unitary matrices. Then W=W 1 W 2 is a minimal factor- 

ization of IV, and W 1 (X), W 2 (h) are J-unitary functions. 

Proof. First note that by (3.1t) G• =-F*A*M~ cF*M{ and likewise 

A • cF*M~-. So {FM~ ,F*M~- } is an invariant subspace pair for XG x - A  • To 

prove (4.3) just note that 

IF -1 (M 1 fqFM~ )] • = [ F - 1 M I  nM~- ]• =F*Mr +M 2 

and 

and 

[ F - * ( M  2 f~FM~ )l • =FM~ +M 1 . 

Next we show (4.4). Note that F~r~F -1 is indeed a projection, and 

Ker FTr~F -1 Ker 7r2F-  = F  Ker 7r 2 = F (  Im 7r2) • =F(F*M~ ) I =M 1' 

Im FTr~F -t = Im FTr; =(  Ker 7r2F* ) • - F (  Ker ~r2) • =FM~. 

So indeed FTr~F -1 =7rl. 

Now write 

G:M1 | -*M2 | , A :M1 | --*M2 | I 

B:Cm~M2 (gF*M~- , C:MI | ~ C  rn 

a s  

respectively. Then the functions W 1 , W 2 given by (4.5) and (4.6) can be written as 

WI(X)=D1 +(1-X)C1(XG1 - A I ) - I B 1 D f l  

W2(X)=D2 +(1-X)Di -1  C 2 ( X G 2 - A 2 )  -1B2.  

Clearly, by multiplication we have W(X)= W1 (X)W 2 (X). 

It remains to show that W 1 (X) and We(X ) are J-unitary. First write 

F:M2 @F*M~- -"~Ml ~FM~ 

as F =  ~F21 F22 . Then F l l  and F22 are invertible. Indeed for xEM2 we have 
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Fx~iFM~ so F l l  is invertible, and forxEF*M~- = ( F - I M 1 )  • we have FxEM1, prov- 

ing that F22 is invertible. Now 

G~ Fll =G~ ( I -Tr l )F  I M 2 =(I-Tr2)Gx F t M2 = 

=- ( I -Tr2 )F*A*  ]M2 =- ( I -TrE)F*  (PM, +PM# )A * I M2, 

where PM1, respectively PM{ are the orthogonal projections on M 1 and M I  L , respec- 

tively. Now (I-Tr2)F*PMi- =0 ,  so 

G~ FI1=-( I -Tr2)F*PM,  A * I M2 =- ( I -~r2 )F*  I M~A ~. 

Putting Ei-i 1 = ( I - T r 2 ) F *  I M~ (which indeed is invertible as a map from M 1 to M2) we 

have G ~ F I I = - E ~ l l A ~ .  Likewise A ~ F I I = - E ~ I G 1  . Next, by (4.4) we have 

C I F l l  = C ( I - T r l ) F [ M  2 =CF(I - I r~)  I M2 �9 Using (3.11) this is equal to 

DJB*(I--Tr~)IM 2 =DJ[(I-Tr2)B]* ]M2 =DJB~. So, since D2 is J-unitary we obtain 

D [  1C1F11 =D2JB~ =JDS*B~ =J(B1D~ 1 ) * This proves (3.4) hold for the realization 

for W1 given above. It then follows that W1 (~) is a J-unitary function. But then W2 (~) is 

J-unitary as well, since W 2 ( k ) = W i  -1 (h)W(~,). (Of  course one can also check that (3.4) 

hold for the realization of W 2 given in the theorem, in a similar way as was done for W 1 .) 
[] 

We can also formulate condition (4.2) in terms of the associated Hermitian matrix. 

Indeed note that (4.2) implies that dim M 1 = dim M2.  So (G -A)M1 =M2.  So 

FM~ = F (  (G -A)MI  ) .L =F(G - A )  -*M~ = 

=-FHF*M~ = F H ( F - I M I )  1 

So (4.2) is equivalent to saying that F - I M l  @H(F-IMI)  • = G  n, i.e. to saying that 

F -  1 M 1 is H-nondegenerate.  

Our next goal is to prove a theorem about the splitting off of factors degree one. 

Theorem 4.2 Let W(X) be a J-unitary matrix function with minimal realization 

(4.1). Suppose (toG - A ) x  =0,  x ~0 (in case to=oo this is interpreted as Gx =0.)  Assume 

span {x}f3F( span {Ax}) " = ( 0 ) ,  to:/:0 (4.7) 

span {x}NF( span {Gx}) .L = ( 0 ) ,  to=0. (4.8) 

Then W ( X ) = W  1 (h) W2(X) with W 1 (~) a J-unitary function of degree one with a pole at to, 
where W 1 (X) is given by 

w , ( x ) = z - P ,  to-____21 :/:1, (4.9) 
~--1  h - t o  
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W 1 ( ) O = I - p + x p ,  co= oo, (4.10) 

W 1 ( X ) = I - p + I p ,  co=0, (4.11) 

W I ( h ) = I _  ~ (1- )0c0  Cxx*C*J ] c 0 ]= l .  (4.12) 
X-o~ ( A x , F - l x )  ' 

Here P is the one-dimensional projection given by 

Cxx* C*J 
P . (4.13) 

x * C*JCx 

Proof .  Suppose (coG - A ) x  = 0, x :~ 0. We first consider the case 

co r co r co, [ co I :~ 1. Assume (4.7) holds. Then we can apply Theorem 4.1 with the spe- 

cial choice D1 =I ,  D2 =D,  and 

M 1 = span {x}, M 2 = span {Ax}= span {Gx}. 

It follows that l - T r  1 is the projection onto span {x} along span {F-~Ax} �9 and I - T r 2  IS 

the projection onto span {,4x } along span { F -  I x } • . So 

( l _ T r l ) y =  ( F - I y ,  Ax). x x*A * F - l y  x 
( F - l x ,  Ax)  x*A * F - l x  ' 

* F - *  ( y , F - l x )  x Y Ax. (I  - 7r 2)y = .Ax 
(Ax, F - i x )  x*F-*A x  

Then we have 

W 1 ()k) = I + (  1 - ) O C ( I  --Tr 1 ) ( )xG - A )  -1 ( l  - T r z ) B D  -1 = 

= I + ( 1 - X ) C ( I - T r l ) O ~ G - A  ) I ( I -Trz )F*C*J= 

= I  + (  1 - h ) C  (I - T r  1 ) ( ) , G  - A  ) - l A x  x * F -  * F* C* J 
(A.x, F - i x )  

= l  + ( 1 - k ) C ( l - T r  1 ) -  
cox x * C * J 

X-co (Ax, F - l x )  

=1-t ( 1 - ) 0 w  Cxx*C*J 
X-co (Ax, F - i x )  

(4.14) 

Next, we compute (A.r, F - i x ) .  In Section 3 we have seen that 

C*JC=G*F -1 +F-*A* (4.15) 
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Because of this we now have 

(C*JCx, x ) = ( F - I x ,  Gx) +(Ax,  F - i x )  = 

l < F - l x ,  Ax)+<Ax, F-lx)=-l<GXx, F-lx)+<Ax,  F - Ix )  = 
co co 

- I  (Gx, F-Ix)+I (c*JCx, x)+(Ax, F - I x ) =  
co OJ 

l ( c * J C x ,  x)+(1- 1 )(Ax, F - i x ) .  
CO 600J 

Hence 

(Ax, F - l x )  co(~~ x*C*JCx. 
ww-  I 

Thus 

W 1 (k )= lq -  ( 1 - X ) ( o J ~ - l )  Cxx*C*J 
( X - w ) ( ~ -  1) x*C*JCx" 

Denoting by P the projection given by (4.13) we obtain (4.9) after a little calculation. 

For  the case co=oo, x E  Ker G we have ( X G - A ) x = - A x ,  so ( X G - A )  - l A x  = - x ,  

and by (4.15) we have (Ax, F - l x ) = ( C * J C x , x ) .  Starting again from (4.14) (which holds 

as long as co :~0), we obtain with essentially the same computation as above formula (4.10). 

Note that in the case I w I = 1 formula (4.12) is just (4.14). 

It remains to consider the case co=0, x E  Ker A. In this case we have 

( F - l y ,  GX).x = x * G * F - l y  
( l - T r l ) y =  ( F - I x ,  Gx) x*G*F- lx  x' 

*F-*y ( I - T r 2 ) y =  ( Y ' F - I x )  Gx= x Gx. 
(Gx, F - l x )  x*F-*Gx 

It then follows that 

W 1 (X)=I + ( 1 - X ) C ( I - ~ r  I )(XG -A )  -1 Gx x C*J 
(Gx, F - I x )  

1 Cxx * C*J 
I + ( 1  -X)  

X <Gx, F - I x )  
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Again by (4.15) this is equal to (4.11). [] 

In the previous theorem factors are split off from the left using the poles of W. A 

similar result holds concerning the zeros of W. Indeed, suppose (wG • - A  • )x =0 ,  x * 0. 

Applying Theorem 4.1 with D 2 = I ,  D l = D  and 

F * M r  = span {A •  span {G•  FM# = span {x}, 

we obtain in case w--I:O,w~oo that 

( F - l y ,  A X x )  ( y , F - l x )  
.x, ~r 2y - 

7rlY= ( F - I x , A  Xx)  (A Xx, F - l x )  
A • 

We see that 

W2(k )-1 = I - ( I - X ) D  -1C~r I (kG • -A x ) - I  

= I  (1 -k)t.o O - l  Cxx*C*D-*J  -1 

k - w  ( A •  

7r2B= 

We can now continue as in the proof  of Theorem 4.2 to obtain formulas for W2. Details 

are omitted. 

4.2 The case of unitary functions. In this subsection we specialize the results of the 

previous subsection to the case of unitary functions, i .e. ,  J =I .  We first state and prove a 

result which follows from Theorem 4.2. 

Theorem 4.3. Let wOO be unitary on the unit circle such that W(1) is invertible. 

and have Mcmillan degree n . Then W(k) is the product of n unitary functions of McMillan 

degree one, which are either of the form 

w - 1  1-X~ 
I - P + - -  - - P ,  o~--/:O,w~oo, (4.16) 

~ - 1  k -c0  

or of the form 

I - P + X P ,  o~=oo, (4.17) 

I - p + I p ,  co=0, (4.18) 
k 

with P a projection of rank one. By the assumption that W(1) is invertible we have in 

(4.16) that w ~ 1. 

Proof .  First we show that a unitary rational matrix valued function does not have 

poles on the unit circle. Suppose W(k) has a minimal realization given by (4.1).  and sup- 

pose ( w G - A ) x = O  for l o J l = l .  Then w : ~ l ,  as G - A  is invertible. We use the same 
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computation as in the proof  of Theorem 4.2. Using (4.15) we have 

II Cx I] 2 =x * ( G * F  -1 + F - * A ) x  = 

=x * G ' F - I x  +cox * F - *  Gx =x * G ' F - I x  -cox*A •  = 

=x * G ' F - I x  -cox *A * F - l x  +co II Cx II 2 = 

( 1 - I c o l 2 ) x * G * r - l x + c o l l  Cx ll 2=collcx ll 2 

Hence (1-o~)llCx[12=0, but then Cx=O. Since ( X G - A ) x = ( X - c o ) G x  this implies 

O=Cx = C ( X G  - A )  - l  (X-co)Gx. Minimality then gives Gx =0.  But then also Ax =0 ,  and 

thus x =0  by invertthility of G - A .  

Next, we show that in this case (4.7),  (4.8) are satisfied automatically. Indeed, sup- 

pose we:0,  and x E F (  span {Ax}) •  Then O = < F - I x , A X ) = ( F - l x ,  Gx>. So, again by 

(4.15) we have Cx =0.  Arguing as above we obtain 0 = C r  = ( X - c o ) C ( X G - A ) - l  Gx, so 

Gx =0,  and hence also Ax =0 ,  which implies x =0.  Hence (4.7) holds. For the case co=0, 

suppose x E F (  span {Gx}) x . Then 0 = < F - i x ,  Gx>. Using also Ax = 0  we see from (4.15) 

that Cx =0 .  This again implies x = 0  as above, and hence (4.8) is satisfied. 

Now the theorem follows by applying Theorem 4.2 repeatedly. [] 

Note that the order of the factors can be chosen arbitrarely in the sense that we have 

freedom in the choice of  which pole to factor out first. Of course, if we take another order 

in this, then the projections P may very well change. Part of  the next theorem can also be 

seen from the previous result. 

Theorem 4.4. Let W(X) be a unitary function with minimal realization given by 

(4.1). Then W(X) can be factorized as W(X) = W 1 (h) W 2 (X) where W l , W 2 are unitary and 

W 1 has all its poles inside the unit disc hence all its zeros outside the unit disc, and W2 

has all its poles outside the unit disc and all its zeros inside. Further 

(~(w~) = ~(w), ,~(w2) =(~(w)- ~(w). 

Formulas f o r  W 1 and W2 are derived as follows. Put 

p =  1 I G ( X G - A ) - J d X '  p •  1 I G • 2 1 5 2 1 5  (4.19) 
27ri T 27ri T 

1 I ( X G - A ) - I G d X ,  Q• 1 I ( X G • 2 1 5 2 1 5  (4.20) 
Q =  2 ~r----~t r = 27ri v 

Then { Im Q, Im P} is an invariant subspace pair  for  X G - A  and { Im QX , Im P •  } is an 

invariant subspace pair  f o r  XG x - A  • . Further 

F * ( I m Q )  • = I M P •  F ( I m P )  • = I m  QX,  (4.21) 
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and 

C n = Im Q @ Im QX = Im P @ Im P•  (4.22) 

Let 7r l be the projection along Im Q onto Im Q• and 7r 2 the projection along Im P 

onto Im P • . Then 

W 1 Gk) = I + (  1 - k ) C ( I  -Tr I ) (kG - A )  - l  (I -Tr2)BD -1 , 

W 2 (k) =D + (1 -k)CTr 1 (kG - A )  -17r2B. 

Proof.  First introduce ,4 = (G + A ) ( G - A )  -1 It is easy to show that P is the spec- 

tral projection of A corresponding to the left half plane. Introduce also C = C (G - A )  - 1 

From (3.3) it follows that 

A* H +H,,i = - 2 C *  C. (4.23) 

Because of this we have that -i,4 is H-dissipative. Indeed 

-~/< {( i .~)*H-H(d)}x,x>= I[ cx Ib 2 >_o. 

By Theorem 11.5 in [IKL] we obtain that the spectral subspace of -i,~ corresponding to 

the upper (resp. lower) halfplane is maximal H-nonnegative (resp. maximal H- 

nonpositive). Hence Im P is maximal H-nonnegative and Ker P is maximal H- 

nonpositive. We shall show that the observability of  (C. XG - A )  implies that 

Im P is maximal H-positive and Ker P is maximal H-negative. This in turn implies that 

Im P and Ker P are H-nondegenerate, and conversely, non-degeneracy implies Im P is in 

fact H-positive, Ker P is H-negative. 

Note that the injectivity of C ( X G - A )  - l  implies the injectivity of C ( X - A )  -1 ,  i.e. 

the observability of the pair (C,,4). Now suppose xE Im Pf~(H Im P) • . Since A x E  Im 

P we have 0 = ( H x ,  f l x ) = ( H A x , x ) .  Then (4.23) implies 

- 2 l l &  II 2 =<nx, .~x>+<n~ix,x>=O. 

So x E Ker C. We proceed by induction. Suppose we have proved x E f~ Ker C, zi i. Then 
i=0 

for 0 ~ i 5- j we have 

, 4*HA'x+HA '+1 = - 2 C *  CA'x : 0 .  

So ,4 *H~t ix = -Hi t  i +ix. Using this we have A *JH/t j +ix = ( - 1) ) +1 ~ *2/+1Hx. Now com- 

pute 

- 2  [I &i a +*x II 2 =<+i v +2H+iJ+lx, x > +<+i*J+~H+i J+2x, x> = 
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= ( - 1 ) J  +l <ft *2j +3 Hx,x ) +<A 2x,A *J Hz~ J + lx ) 

= ( - 1 )  j+ t  </~1c, A 2J + 3 x ) + ( - 1 )  j+ l  <A 2J +3x, Hx >. 

Since f~2J+SxE Im P both terms are zero, so xE Ker ~ j + l  as well. By induction it fol- 

lows tha txE  ~ Ker CA J = ( 0 ) .  Thus Im PD(H Im P) • =(0) .  Likewise one shows 
j=o 

Ker P D (H Ker P) .t = (0). 

So Im P and Ker P are indeed H-nondegenerate, i.e. 

C n = Im P |  P) • = Ker P |  Ker P) • 

Now 

(H Im P) • = H  -t  ( Im P) • =F*(A - G ) * (  Im P )  • =F*((A - G ) - t  Im P) • 

Since ( G - A ) Q  = P ( G - A ) ,  we have ( H I m  P) " = F * (  Im Q) i = Ker Q ' F - * .  Further 

Q ' F - *  = 1 I G,(sG,_A,)_~F_.ds= 1 f •  
27ri ~T 27ri T s s 

1 ~ _ F _ , l A x ( 1 G X _ A X ) _ l d  s 
2 r i  JT s s 

= F - *  1 f 1 1 GX(l__GX A X ) _ l d s .  
27ri T s s 2 s 

Putting X = 1  in the last integral one sees that Q ' F - *  = F - * ( I - p x ) .  So ( H I m  P) • = 
s 

K e r Q * F - * =  Ker ( l _ p x ) =  I M P •  Likewise ( H K e r P )  • = K e r P  x.  Thus 

C n =  I m P |  I m P  x =  K e r P |  K e r P  x (4.24) 

Since PG =GQ, PA =AQ we have (G - A )  - 1 P = Q ( G  - A )  -1 and 

(G x --A • ) -1 p x  =QX (G x - A  x ) -1 .  Noting that (G x - A  x ) = G  - A ,  we obtain, apply- 

ing ( G - A )  -1 to (4.24) 

C n =  Im Q@ I m Q X =  K e r Q |  KerQX 

Further, as noted b e f o r e F * (  Im Q) • = Im p x ,  F*(  Ker Q) • = K e r p X .  In a similar 

way one shows 

F ( I m P )  • = K e r P * F - - l =  K e r F - l ( l - Q X ) =  Im QX, 

F (  Ker P)  • = Ker Q•  
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Then we can apply Theorem 4.1 with M1 = Im Q, M 2 = Im P. The desired formulas for 

the factors then follow, and also the fact that W1 has all its poles inside the unit disk, W2 

has all its poles outside the unit disk, as ( ) , G - A )  ] xm Q: Im Q ~  Im P is invertible for 

IX I > l , a n d ( h G  •  I m Q x : I m Q X ~  I m P  • is invertible for I X ] > I .  So w2 has 

all its zeros inside the unit disk, hence all its poles outside the unit disk. 

Finally 5(W1)= dim Ker Q =  dim Ker P, and as Ker P is maximal H-negative, 

dim Ker P = ~ ( W ) .  [] 

In particular it is a consequence of  Theorem 4.5 that p(W) is equal to the number of 

poles of  W inside the unit disk. 

In the course of the proof of the previous theorem we have also proved the follow- 

ing theorem. 

Theorem 4.5. Let W be as in Theorem 4.4. Then W(X)=W3(X)W4(X)  where W 3 

and W 4 are unitary for  [ X [ = 1, W 3 has all its poles outside the unit disk, W 4 has all its 

poles inside the unit disk, and b(W3)=u(W).  Let 7r 3 be the projection along Ker Q onto 

Ker Q x and 7r 4 the projection along Ker P onto Ker P • . Then 

W3 (X)=I  + ( 1 - X ) C  ( I -Tr  3 )(XG - A  ) -1 (I - r  4 )BD -1 , 

W4 (X)=D +(1-X)Cqr3  ( X G - A )  -17r4B" 

Comparing with Theorem 4.3 and [AG], Theorem 3.14 we can identify 

W1, W2, W 3 and W 4 as Blaschke-Potapov products. 

We next prove an analogue to a well-known inertia theorem for the matrix equation 

(3.14) with J =I. Actually, in case either A or G is invertible the theorem below reduces to 

the classical case. The general case can be obtained by the use of M6bius transform, but 

we choose to give a slightly different proof here. 

Theorem 4.6. Let (C, X G - A )  be observable, with G-A invertible, and let H be a 

Hermitian solution to the equation 

G* HG - A  *HA = - C *  C. (4.25) 

Then the matrix H is invertible, XG--A is invertible for  every X on the unit circle, and the 

number o f  positive (resp. negative) eigenvalues o f  H is equal to the number o f  zeros of  

det (XG - A )  outside (resp. inside) the unit circle. 

Proof.  First we show the invertibility of H. As in the proof of Theorem 4.4, intro- 

duce / i  =(G + A ) ( G - A ) - l ,  and C = C ( G - A ) - 1 .  Again, note that (C, ti) is observable, 

and that (4.25) implies that 

*H+H~I = - 2 C *  C. (4.26) 
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Now suppose Hx =0. Then (4,26) gives Cx =0, and hence also H A x  =0. In other words, 

Ker H is A-invariant and contained in Ker C. Using the observability of (C, A) then 

results in Ker H=(0) .  So H is invertible. 

Next, introduce 

W(k) = I + ( 1  -X)C(XG-A ) - IH-1  (A * -G* ) -1 C* 

then W(X) is unitary on the unit circle by Theorem 3.4, and moreover, the above realiza- 

tion is minimal. As was shown in the proof of Theorem 4.3 W(X) has no poles on the unit 

circle. By Theorem 4.4 the number of poles of W inside the unit disc is equal to v(W). 

Now v(W) in turn is equal to the number of negative eigenvalues of H, while the number 

of poles of W inside the unit disc equals the number of zeros of det ( k G - A )  inside the 

unit disc. This proves the theorem. [] 

5. Contractions and their minimal  complet ions  on the unit circle 

Given is the p • rational matrix function W(X) with minimal realization 

W(k) =D +(1 -k )  C (kG - a )  -1B. (5.1) 

Let us assume that W(~) has contractive values on T , and that D is a strict contraction. In 

this section we shall discuss the problem of completing W(k) to a unitary function in the 

following way: we are looking for a p +m • +m rational matrix function which is unitary 

on T of the form 

I W11(X) W(k) 1 
~i,(x)= Lw2~(x) Wz2(X) J �9 (5.2) 

We are particularly interested in such completions with the extra property that 6(I~)=6(W). 

Unitary completions (5.2) with this property will be called minimal unitary completions of 

W(k). We shall give realization formulas for the minimal unitary completions, and their 

associated chain scattering matrices or partial inverses, defined by 

[WI1()~)-W()k)W22(X)-I W21(~) W(k)W22(k)-I 1 
O(X)= - Wz2 (h) - t  Wm (X) W~2 (X) -1 . (5.3) 

For the real line case, this problem was treated in [GR]. We shall follow the same approach 

as in [GR] for the case presently under consideration. 

The problem of finding a minimal unitary completion is connected to Darlington 

synthesis, see [D]; in Darlington synthesis the function W(k) is assumed to be stable, i.e., 

all its poles are inside the unit disk. The usual solution of this problem then proceeds as 

follows. The functions Wll, We2, W21 satisfy the following equations: 
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* * - 1  W *  I -  [4rW* = W11WII, I - W * W = W ~ 2 W 2 2 .  W21 = -W22 Wll.  

Hence Wll and W22 can be found as stable spectral factors, e.g., by solving a single Ric- 

carl equation; finding W21 is then simple. In terms of  a realization of W this turns out to be 

rather straightforward, as from a minimal realization of W one gets for free a minimal reali- 

zation f o r  1 - WW* and one for I - W* W (because of the stability of W). In case W is not 

assumed to be stable this is no longer true, i.e., the realizations one gets for I -  WW* and 

I - W * W  are not necessarily minimal, compare, however, Lemma 5.4. It is therefore 

surprising that the solution to the problem of finding minimal unitary completions can still 

be had from the solution of a single Riccati equation, see Theorem 5.6. 

5.1 Characterization of contractive rational matrix functions. In this subsection we 

characterize contractive rational matrix functions in terms of solutions of algebraic Riccati 

equations. For this purpose the realization (5.1) need only be observable and stabilizable, 

i.e. the uncontrollable eigenvalues of  ( X G - A ,  B) are inside the unit disk; however, for 

some results we need minimality of  (5.1). We shall make our assumptions explicit at each 

step. The main result of  this subsection has a strong connection to [W] (cf. in particular 

[W], Lemma 5). It may be viewed as a form of the bounded real lemma (see, e.g., also 

[AV]). 

Let D be a strict contraction, and introduce the following matrices: 

"y =2(G* - A  *) - l  C * ( I - D D * )  -1 C(G  - A )  - l ,  (5.4) 

c t=(G + A ) ( G - A )  -1 +2BD* (I - D D * )  - l  C ( G  - A )  -1 ,  (5.5) 

3 = 2B (I - D  * D) - 1B * (5.6) 

The following algebraic Riccati equation plays an important role in our analysis, we shall 

call this equation the state characteristic Riccati equation 

P '~P-Pot*  - o t P + 3 = 0 .  (5.7) 

(Compare with [GR], where this concept was introduced, and where it plays a central 

role.) The importance of this equation is explained by the following theorem. 

Theorem 5.1. Let D be a strict contraction, and let (5.1) be an observable and sta- 

bilizable realization for  a rational p • matrix function W(X). Then the following are 

equivalent: 

(i) W(X) has contractive values on T , 

(ii) the state characteristic Riccati equation has a Hermitian solution P, 

(iii) the matrix 

7 (5.8) 
O/ 
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has only even partial multiplicities at its pure imaginary eigenvalues, 

(iv) the matrix ~ has an invariant subspace M such that M = M  • 
Ol  - -  O " 

The matrix (5.8) will be called the state characteristic matrix. 

We shall prove Theorem 5.1 in several steps. The first step is to prove a lemma, 

which implies the equivalence of (ii), (iii) and (iv). 

Lemma 5.2. The pair ('y, 6) is observable. In case the realization (5.1) is minimal 

the pair ( t~, {3) is controllable. 

Proof. We first show the second part of the Lemma. Suppose /3*x=0 and 

c~ *x =k0x,  for some k 0 and some x. From (5.6) we have /3 => 0. It follows that B*x  =0, 

and then, using (5.5), we have o t * x = ( G * - A * ) - l ( G * + A * ) x = k o x .  So for any X we 

have 

(),-)~0)x = 0 ~ - u  *)x = (G* - A  *) -1 {)~(G* - A  *) - ( G *  +A *)}x= 

=(G* - A  *) - I  { (k -  1)G* - (X + 1)A * }x. 

Hence for all h r h0, h r - 1  we have 

X+I h - 1  
�9 x = (  G * - A * )  -1 ( G * - A * ) x .  

X-X 0 k + l  

Since B ' x = 0  we obtain for all g B*(gG* - A * )  -1 (G* - A * ) x = 0 .  As (/xG -A ,  B) is con- 

trollable it follows that (G* - A  *)x =0. However, G - A  is invertible, so x =0. 

Next, suppose y x = 0 ,  c~x=X0x. Then by (5.4) C ( G - A ) - l x = O ,  and by (5.5) 

~x = ( G  + A ) ( G  - A )  - i x  =h0x. Hence 

( h - h o ) x  = (X-t~)x = ( ( X -  1)G - ( h +  1)A)(G - A )  - l x .  

So 

)~+1 ( X-1 G --1X. OX-)~ (G - A )  - I x  = --A) 
k + l  

Thus for all/~ we have C(tzG - A )  - i x  =0, which gives by the observability of (C, gG - A )  

that x = 0. [] 

Using this lemma we have the following proposition. 

Proposition 5.3. (i) The state characteristic Riccati equation (5. 7) has a Hermitian 

solution P i f  and only i f  the state characteristic matrix (5. 8) has only even partial multiplici- 

ties at its pure imaginary eigenvalues. 
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Oi) In case the realization (5.1) is minimal every Hermitian solution P of the state 
characteristic Riccati equation is invertible. 

Proof.  (i) is a well-known consequence of Lemma (5.2), see e.g. [LR, S, C], also 

[GLR]. 

To prove (ii), suppose Px =0.  Multiplying (5.7) on the left with x *, and on the 

right with x, we obtain x*/3x=0. As /3 is positive semidefinite, this implies ~x=0 .  Then 

multiplying (5.7) only with x on the right we have P~  *x =0.  So Ker P is an c~ *-invariant 

subspace contained in Ker/~. By controllability of (t~, /~) this gives Ker P = ( 0 ) .  []  

The next step in the proof of  Theorem 5.1 is to note that if W(X) is contractive on 

the unit circle, then the function I -  W(k)W* 0~) must be positive semidefinite on the unit 

circle, and conversely. Moreover, as D is a strict contraction this function is actually regu- 

lar. Hence it must factorize as 

I - W(h) W* 00  = Wll (~k) W;I (•), (5.9) 

where we can choose Wll(k)  to have the same poles as WOO, hence, in particular 

/ t (Wi l )=8(W).  We shall show that if the state characteristic matrix has a Hermitian solu- 

tion P, then one can construct a function Wll 0 0 ,  for which (5.9) holds, thereby proving 

the implication (/0 implies (i). 

To achieve this we first give a realization for I -  W(k)W* 0 0 .  From (5.1) on easily 

sees that 

I - w o o  W* (X) = 

= l - O D * + ( 1 - k )  ( - C  D B * I  ( X d - ~ i ) - ~  

where 

G =  - A  * 

For its inverse we have 

where 

and 

IY:l 
(5.1o) 

, A =  - G *  " 

( I -  W(k) W* (~.)) -1 = ( i - D D * )  -1 - ( 1 - X )  C(kG • ---A • ) -l/~, (5.11) 

' ( C *  

~ x =  I G + B D * ( I - D D * ) - I c  - B ( I - D * D ) - I B *  1 
C*( I -DD*) - IC  - A * - C * ( I - D D * ) - I D B  * , 
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x IA +BD*(I -DD*)  -1 C - B ( I  - D ' D )  - IB*  1 

= C * ( I - D D * )  -1C - G *  - C * ( I - D D * )  -1DB* J " 

Proof  of (ii) ~ (i) in Theorem 5.1. Suppose P = P *  solves (5.7). Put 

X = ( G - A ) - I P ,  Y = P ( G * - A * )  -1 Then Y = X * ,  and using (5.4)-(5.6) we can rewrite 

(5.7) as 

2YC* ( I - D D  * ) - l  C X -  Y( G* +A * ) - 2 Y C * ( t - D D * )  -1DB * + 

- ( G  +A)X-2BD*  (I -DD*)  -x CX + 2 B ( I - D  *D) -I B =0. 

(5.12) 

From the definition of X and Y we have 

Y(G* - A  *) - ( G  -A)X = 0. (5.13) 

Adding (5.13) and (5.12), and dividing by 2, we obtain that Y and X satisfy 

YC* (I - D D  *) - 1 C X  - YA * - YC* (I - D D  * ) - 1  DB * = (5.14) 

= GX +BD* (I -DD*)  -1 CX - B ( I  - D ' D )  -1B *. 

Taking adjoints in this equation, using Y =X* we also have 

YC* ( I - D D  * ) -1 C X - Y G *  - YC* ( I - D D  * ) -1DB * = (5.15) 

=AX + BD * (I - D D  *) - 1 CX - B  (I - D  * D) - 1B *. 

put ME = Im I f f l  and M ~ =  Im ( Y I "  Then (5.14) Now 

exactly telling us that 

GXM~ C U ~ ,  / iXM~ CM~,  

respectively. In other words, the pair 

kGX-~i  x.  Taking M l = M 2 =  Im [0/] 

subspace pair for XG - A ,  and moreover 

C2n=M1 |  =M2 |  

It follows from Section 2 that we have the following factorization 

I - W ( X ) W *  (X)=W 1 (X)W20,), 

where 

{M~ ( , M~ } is an invariant subspace pair for 

it is clear that the pair {MI, M2 } is an invariant 

and (5.15) are 

+(l-X) ( - c  L)8* 1 • 
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I: -xl I: 0 YC* ] (I--DD*) 

=( I -DD*)  �89 + ( 1 - X ) C ( k G  -A )  -~ (YC* - B D * ) ( I - D D  *) -~  

Furthermore, 

=(I -DD*)  ~ + ( I - D O * ) - � 8 9  I - C  DB*I  W20~) • 

• I :  X 3 -XA*+G*(1-X)BB*3 I :  Y l 0 : 

= ( I - D D  *) ,n +(1 - X ) ( I - D D  * ) -�89 ( - C X  +DB * )( -XA * + G * )  - l  C*. 

Using Y=X* one sees that W 2 ( k ) = W l ( k - 1 )  *, so I -W(k)W*(X)=WI(X)W~(k) ,  and 

hence W(k) is a contraction for X~T . [] 

To prove the implication (i) ~ (iii) we need again a lemma. 

Lemma 5.4. The realization (5.10) for 1 - W(X) W* (k), and hence also the realiza- 
tion (5.11)for its inverse, are minimal for every )~ on the unit circle. 

Proof.  T a k e k 0 E T  , and  IYl  such that 

o. 11 Iyl I01 
and - C x  +DB*y =0,  Then we have 

( X o G - A ) x - ( X o - 1 ) B B * y = 0 ,  ( - k o  A * + G * ) y = 0 .  

Note that k 0 ~ 1, as k 0 = 1 would imply y =0,  and hence also x =0,  by the invertibility of 

G - A .  

Now consider 

O,o-1)(BB*y,  y ) = ( ( h o G - A ) x ,  y )=(x ,  XC1(G*-XoA*)y)=O, 

because XoET As k0 r I we obtain B ' y = 0 ,  and from thin also C x = 0 ,  and 

( X o G - A ) x  =0.  Since (C, k G - A )  is observable we obtain x =0,  and from the stabiliza- 

bility of (XG-A,  B) we have y =0.  This proves observabllity of the realization (5.10). 

Controllability is proved in essentially the same way. []  

Proof  o f  (i) ~ (iii) in Theorem 5.1. Suppose that W(X) is a contractton for XET 

Note that 

I 'l 'I ,~ o ( b •  + ~ i • 2 1 5  -J r o , 
= G * - A  ~ 0 " 

- � 8 9  
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From this we obtain that 

'o; I-:; 0 = 

_ I ( k - l ( ~ •  ~ x ) ( ~ x  ~ x ) _ l  
X+t  X+ l  

) % m l  . 
Now for pure imaginary k we have that - -  is on the unit circle. 

k + l  

By equivalence the partial multiplicities of the state characteristic matrix at k EilE are 

- X-1  
the same as those of the pencil tzG • - A  • a t /z= E T . Since by the previous lemma 

X+I 

the realization (5.11) for ( I - W ( X ) W * ( X ) ) - 2  is minimal for XET the partial multiplici- 

ties of/zG • - A  • at unimodular eigenvalues # 0 coincide with the partial pole multiplicities 

of ( I -W(X)W*(X) )  -1 at/~0- But W(X) is contractive, so ( I - W ( X ) W * ( X ) )  -1 is positive 

semidefinite. Hence its partial pole multiplicities at unimodular poles are even, (as can be 

seen, e.g., by the unit circle version of Rellichs theorem, [R], see also [GLR], and [LRR], 

Proposition 3.3). Combining the above remarks proves the desired result. [] 

Next we consider a special case in Theorem 5.1, namely the case of a strictly con- 

tractive rational matrix function. 

T h e o r e m  5,5. Let D be a strict contraction and let (5.1) be an observable and sta- 

bilizable realization for  a rational p x m  matrix function W(k) .  Then the following are 

equivalent: 

(i) W(k)  is a strict contraction for  XET , 

(ii) the state characteristic matrix (5. 8) has no pure imagina~ eigenvalues, 

(iii) the state characteristic Riccati equation has a Hermitian solution P such that 

c~ * -3~P is stable. 

Proof. The eqmvalence of (ii) and (iii) is well known, in view of Lemma 5.2. 

Suppose W(X) is a strict contraction for XET Then 1 - W ( X ) W * ( X )  is poistive 

defninite for unimodular k, and so the inverse of this function is positive definite as well. 

Hence I - W ( X ) W * ( X )  has no zeros on the unit circle. Applying the same arguments as in 

the proof of Theorem 5.1 we have that (ii) holds. 

Conversely, suppose that (ii) holds. By the argument in the last part of the proof of 

Theorem 5.1 we have that #(; • - ,4  x is invertible for all ~ T  . But this implies, in view 

of (5.11) that I - W(X) W* (k) is invertible for all kEY . As (ii) and (iii) are equivalent we 

may conclude from Theorem 5.1 that W(k) is a contraction, i.e., I - W ( X ) W * ( X )  is posi- 

tive semidefinite. However, an invertible positive semidefinite matrix is positive definite. 
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Hence, W(X) is a strict contraction for hE-I- . [] 

5,2 Description of  all unitary minimal completions. Using the notation of  the previ- 

ous subsection we have the following theorem, which is the main result of  this section. 

Theorem 5.6. Let W(X) = D  +(1 -X) C(kG - A )  -1B. be a minimal realization for a 

rational matrix function which is contractive for X E-[ , with D a strict contraction and 

G - A  invertible. Then the following hold 

(i) For every Hermitian solution P of the state characteristic Riccati equation (5, 7) 

the function 

I ( I - D D * ) ~  D l W e ( k ) =  - D *  ( I - D ' D )  �89 + (5.16) 

I c -' + ( l - h )  ( I _ D . D ) _ ~ ( _ D . C + B . X _ I )  

is a unitary minimal completion. Here Y = P ( G *  - A  *) -1 ,  X = ( G  - A )  I p. 

(ii) Any unitary minimal completion of W(X) has the form 

for some unitary matrices T and S and some Hermitian solution P of the state characteristic 

Riccati equation. The matrices S and T are uniquely determined by fV(1) as follows 

S = ( I - D D * ) - ' ~  II'~'(1)3 11' T =  ( W ( 1 ) ) 2 2 ( I - D * D ) - - ~  

(iii) Given unitary S and T the correspondence 

II0 ~ I0 
is one to one. 

Proof.  To prove (i) let P be a Hermitian solution of (5.7). By Proposition 5.3 P is 

invertible. Multiplying both sides of (5.7) with p - l  we have 

7 -or *P - l  _ p  -1 ot+P - l /3P -1 =0. 

Multiplying this in turn with G* - A  * on the left and G -A  on the right we obtain 

C* (1 -DD *) -1 C_G* p - I  G+A* P-1A  + 

- C *  ( t - D D  * ) -I  DB * p -1  (G - A  ) - (  G* - A  * ) P - I  BD * (I - D D  * ) - l  C+ 

+ ( G * - A * ) p - I B ( I - D * D )  -1 C B * P - I  ( G - A )  =0. 
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Use X - l  = p - l  (G - A )  to rewrite this as 

G*P - I G - A  *P-1A = 

I C* ( - C * D + X - * B ) ( I - D * D ) - ~ I  

(5.17) 

I ( I _ D  * D ) - ~  (_CD * C +B * X - I )  I �9 

So, with H = - P - I  equation (3.3) is satisfied for the realization (5.16). The second equa- 

tion in Theorem 3.1 (iii) is also satisfied for this realization as a straightforward calculation 

shows. So by Theorem 3.1 the function 14'? 00 given by (5.16) is unitary. As it is clearly a 

minimal completion we have proved (i). 

To prove (ii) take a minimal unitary completion 

D 

Then I M Q ) i s u n i t a r y ,  so 

M = ( I - D D * ) m S ,  Q = T ( I - D * D )  '~, N = - T D * S ,  

for some unique unitary matrices T and S. By Theorem 3.1 and the remark following it 

there is a unique invertible Hermitian matrix H such that 

G* HG - A  *HA = - C *  C - Z ~ Z  1 , 

i.e., 

z2 =H -1 (A * - G *  ) -1 (C* M +Z~N),  

B = H  -1 (A * - G * ) - l  (C* D+Z~ Q). 

Solve the last equation for Z~: 

Z~ = {(A * - G *  )HB - C *  D }( I - D  * D) - ~ T *. 

Inserting this in the first equation we have after a little calculation 

Z 2 = H  -1 (A* - G * )  - I ( C * M + Z 1 N ) =  

= {H -1 (A * - G * )  -1 C* -BD* }(I - D D * )  -'/~ S 

Again using (5.18) we have 

G* HG - A  *HA = - C *  C - Z ~ Z  1 = 

(5.18) 
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= - { ( A * - G * ) H B - C * D } ( I - D * D ) - I  {-D* C +B* H ( G -A  ) }-C* C, 

which is equivalent to P =H-1 solving (5.17), and hence to P solving the state characteris- 

tic Riccati equation. Taking all this into account we have proved (ii). 

Note that the matrices S, T and P appearing in the proof of (ii) are solved uniquely 

from W0x). So 6ii) holds. [] 

The following corollary gives a connection between the solutions of the state charac- 

teristic equation and the number of  poles of  the contractive function W inside the unit disk. 

Corol lary 5.7. Let wox), given by the minimal realization (5.1), be contractive, 

with D a strict contraction. Then for any Hermitian solution P of the state characteristic 

Riccati equation the number of negative (resp. positive) eigenvalues of P is equal to the 

number of poles of W(k) outside (resp. inside) the unit disk. 

Proof.  From the proof of the previous theorem we have that P satisfies equation 

(5.17) 

G*p-I  G_A *P-1A = 

-~ C 1 

We can now apply Theorem 4.6, with H = - P - 1 ,  to obtain the theorem. [] 

5.3 The scattering matrix. We shall now provide formulas for the partial inverse (or 

chain scattering matrix) of a given minimal unitary completion of  W0x), in terms of the 

matrices appearing in a minimal realization of W(k). Recall that the partial inverse of a 

minimal unitary completion (5.2) is given by (5.3). Because of the fact that (5.2) is unitary 

we have 

- W22 (X) - I  W21 O0 = W*(),) W~l (X) - I  = 0 2 t  (X). 

It follows that 

@11 =Wll -WW~21 W21 =(Wll Wll +WW*)W~V ~ =Wll �9 

So we have for the partial inverse, instead of formula (5.3), 

I w~, ox)-' W(k)W22(k)-1 1 
O 0 , ) =  W*(X)W~ 0,) -~ W22(X) -~ " (5.19) 

Using Theorem 5.6 we have the following result. 

Theorem 5.8. The partial inverse of the minimal unitary completion Wp Ox), given 

by (5.16), has the following realization 
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[ (I-DD*)-'~ D(I-D*D)-,A 1 
Op(X)= L D . ( I _ D D . ) _ ,  ~ ( I - D ' D ) - � 8 9  ] + 

[ ( I - D D * )  -I ( C _ D B * X - I )  I y c . ( I _ D D .  ) 
(1 - ) 0  [.(I - D ' D )  -I ( D * C _ B * X - 1 )  1 (XG-.4) -1 -,~ 

where 

(5.20) 

B ( I - D *  D ) - ~  ] , 

G = G - B ( I - D  * D) -1 ( _ D  * C +B * X - 1 ) ,  

~t =A - B  ( I - D ' D )  - l  ( - D  * C + B * X -1 ). 

Here, X and Y are as in Theorem 5. 6. 

Moreover, any partial inverse of a minimal unitary completion is of the form 

I: ~ O(h) = O e  (~) T_ 1 , 

for some unitary matrices S and T, and a Hermitian solution P of the stale characteristic 

Riccati equation. 

Proof. As Oe2(h)=W2200- I  the formula for 022 is a direct consequence of the 

formula for W22 obtained from Theorem 5.6.(0. Next, we compute OII (X)=W11 (X)-l 

From Theorem 5.6 we have 

O 11 (h )=( I  -DD*)  -�89 +(1 - ) 0 ( I  -D D * )  -1 (CX -DB*)  x 

• (-X{A * - C * ( I - D D * )  -1 ( C X - D B * ) } + { G * - C * ( I - D D * )  -j  ( C X - D B * )  }) -1 • 

x C * ( I  - D D  * ) -'~ 

Now using (5.14), this equals 

O 11 (k)---(I -DD*)  -�89 +(1 - k ) ( l  -DD * )  -1 (CX -D B  *) • 

x ( k y - 1  ~ X _ y - I , ~ X )  -1 C* ( I - D D  *) -~  = 

= ( I - D D  * ) - ,A +(1 - ) , ) ( I - D D  * ) -1 ( C _ D B  * X - 1 ) ( X ~ _ ~ )  -1 YC* ( I - D D  *) -'~ 

This is exactly the formula given in the theorem. 

We now compute 012(k )=W(h)W2200-1  By the results from Section 2 a reali- 

zation for O 12 is given by 

0 12 (k) --D (1 - D ' D )  -�89 +( 1 -X) (~(k(~-/l) -1/~, 

where 
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~ =  

= 

A =  

"C D ( I - D * D ) - I ( D * C - B * X - ~ ) ) ,  

~G 
0 

A 
0 

G + B ( I - D  D ) - I ( D  C - B  X - l ) ]  , 

B ( I - D * D ) - I ( D * C - B * X - 1 )  1 
A + B ( I - D * D ) - 1 ( D * C - B * X  -1) " 

I B ( I - D * D ) - ~  ] 
B ( I - D * D ) - � 8 9  ' 

I:ol i:ol o S - 1 6 S  = , S-IriS = , S - I B =  B ( I _ D , D ) - � 8 9  , 

and 

CS= IC ( I - D D * ) - I ( C - D B * X - 1 ) I .  

It then easily follows that O 12 (k) is indeed given by the formula in the theorem as the first 

coordinate space is uncontrollable. 

Finally, we compute O 21(k) = W* (k) W~l ( k ) - 1 .  A realization for this function is 

given by 

0 21 (k) =D * (I -DD * ) - ~  +(  1 - ) , )  C ' (XG'  - A  ') -1B ', 

where 

C'= IB* - D  * ( I - D D * ) - I ( C X - D B  *) B'= [C* ( I -DD*)  , n , 
' ~_C*(I - D D * )  

-C* ( I - D D * ) - I ( C X - D B * )  1 
A * - C *  ( I -DD*)  - j (CX-DB*)  ' 

I o. 1 A '= G* -C* (I -DD*) -1 (CX-DB*) " 

Again applying similarity with S diagonalizes A'  and G ' ,  and 

0 �9 --I .J '  

So we obtain 

{921 ( R ) = D * ( I - D D * )  -~ + ( 1 - X ) ( I - D * D )  -t (_D * CX +B * ) • 
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Again applying similarity with S diagonalizes A' and G', and 

0 I 
So we obtain 

O21 (X) =D* (I -DD*) -~  +(1 -X)(I  -D'D) -1 (-D*CX +B*) x 

x(X(A * -C* (l-DD*) -1 (CX-DB*))-(G* -C* (I-DD *) -1 (CX-DB*)) -1 x 

x C * ( I - D D * )  -~,  

and using (5.14) as before, we have that this equals the formula in the theorem. This 

proves the first part of the theorem. 

The second part of the theorem is seen as follows. If Ii,'= II0 TI  W, I0 / 1  then 

I: ~ = O p T -  1 . The theorem is proved. [] 
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