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Abstract. This paper presents some new results in the theory of Newton-type 
methods for variational inequalities, and their application to nonlinear pro- 
gramming. A condition of semistability is shown to ensure the quadratic 
convergence of Newton's method and the superlinear convergence of some 
quasi-Newton algorithms, provided the sequence defined by the algorithm 
exists and converges. A partial extension of these results to nonsmooth 
functions is given. The second part of the paper considers some particular 
variational inequalities with unknowns (x, 2), generalizing optimality systems. 
Here only the question of superlinear convergence of {x k} is considered. Some 
necessary or sufficient conditions are given. Applied to some quasi-Newton 
algorithms they allow us to obtain the superlinear convergence of {Xk}. 
Application of the previous results to nonlinear programming allows us to 
strengthen the known results, the main point being a characterization of the 
superlinear convergence of {x k} assuming a weak second-order condition 
without strict complementarity. 
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1. Introduction 

This paper is devoted to the local study of Newton-type algorithms for variational 
inequalities. Variational inequalities have been studied for a long time (see [16]) 
mainly because of their applications to mechanical systems. The operators in that 
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field are often monotone, and a large theory of monotone operators has been 
developed (see [6]); several algorithms for convex programming, including duality 
methods, have been extended to this framework (see [11]). Some problems in 
economy as well as optimality systems of nonlinear programming problems can 
also be represented by variational inequalities (see [21] and [13]). Consequently, 
the strength and large use of Newton-type algorithms for nonlinear programming, 
the so-called successive quadratic programming (see [2] and [10]), suggests 
developing a theory of Newton-type methods for variational inequalities ~we do 
not speak here of some different approaches of Newton-type algorithms for 
variational inequalities--reviewed in the survey by Harker and Pang [13]). Some 
early (but unpublished) works in this direction due to Josephy [14], [15] give a 
local analysis using the concept of strong regularity [19]. Josephy obtains a 
quadratic rate of convergence for Newton's method and superlinear convergence 
for some quasi-Newton algorithms. In the case of nonlinear programming prob- 
lems, assuming the gradients of active constraints to be linearly independent, the 
strong regularity reduces to some strong second-order sufficient condition. 

The quadratic rate of convergence under the weak second-order sufficiency 
condition for nonlinear programming problems, and assuming the linear in- 
dependence of the gradients of active constraints, has been recently obtained by 
the author [4]. This suggests that the theory of Newton-type methods for 
variational inequalities can be extended. For this purpose we use the new concept 
of semistability. We say that a solution 2 of a variational inequality is semistable 
if, given a small perturbation on the right-hand side, a solution x of the perturbed 
variational inequality that is sufficiently close to 2, is such that the distance of x 
to 2 is of the order of the magnitude of the perturbation. This does not imply the 
existence of a solution for the perturbed problem. Indeed, we give a counter- 
example showing that existence for a small perturbation does not always hold 
under the semistability hypothesis. We use a "hemistability" hypothesis in order 
to prove the existence of the sequence satisfying the Newton-type steps, then we 
show that semistability allows us to obtain in a simple way quadratic convergence 
for Newton's method and superlinear convergence for a large class of Newton-type 
algorithms (here we extend the Dennis and Mor6 [9] sufficient condition for 
superlinear convergence). This allows us to adapt Grzeg6rski's [12] theory 111 order 
to derive the superlinear convergence of a large class of quasi-Newton updates 
including Broyden's one [7]. For polyhedral convex sets we may characterize 
semistability: it reduces to the condition that the solution 92 is an isolated solution 
of the variational inequality linearized at 2. An equivalent condition is the "strong 
positivity condition" of Reinoza [18]. We also check that for nondifferentiable 
data the theory can be extended using point-based approximations (reminiscent 
of those of Robinson [23]) that play the role of a linearized function. 

The second part of this paper is devoted to a special class of variational 
inequalities generalizing optimality systems. The unknowns here are couples (x, 2) 
and we try to obtain conditions related to the supeflinear convergence of {x ~} 
alone. Indeed, we give a characterization of the superlinear convergence of {xk}, 
valid under a second-order hypothesis satisfied by optimality systems for which 
the weak second-order sufficiency condition holds. This allows us to extend to 
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inequality-constrained problems the characterization of Boggs et aL [3] for 
equality-constrained problems (this improves some previous results of the author 
[4] in which some necessary or sufficient conditions are given); our result assumes 
only that the gradients of active constraints are linearly independent and the weak 
second-order sufficient condition holds, but includes no strict complementarity 
hypothesis. We apply this result in order to obtain superlinear convergence for a 
large class of quasi-Newton updates. We note that these results can be used in 
order to formulate some globally convergent algorithms having fast convergence 
rates (see [5]). 

2. Newton-Type Methods for Variational Inequalities 

Let ~0 be a continuously differentiable mapping from Nq into N~. Given a closed 
convex subset K of Rq we consider the variational inequality 

< q ) ( z ) , y - z > > O ,  V y e K ,  z e K .  (2.1) 

We may define the (closed convex) cone of outward normals to K at a point z ~ K, 

N(z) ,= {x s Nq; (x ,  y - z )  < O, Vy e K}, 

and if z q~ K, N(z).'= ~5. A relation equivalent to (2.1) is then 

(p(z) + N(z) ~ O. (2.2) 

When K = ~q, N(z) = {0} and we recover the equation ~0(z) = 0. A natural 
extension of the Lagrange-Newton method for nonlinear programming (see [10]) 
is what we call the Newton-type algorithm: 

Algorithm 1 

O. Choose z ~ e N"; k ~- O. 
1. While z k is not a solution of(2.2): choose M k, a q x q matrix, and compute 

zk+ 1 solution of 

q)(gk) ..[_ Mk(zk+ 1 -- Z k) _~_ N(zk+ 1)B O. (2.3) 

We define Newton's method as Algorithm 1 when M k = ~O'(zk). In order to 
obtain estimates of the rate of convergence of {z*} we essentially use the following 
concept. 

Definition 2.1. A solution ~ of (2.2) is said to be semistable if c 1 > 0 and c2 > 0 
exist such that, for all (z, 6) e Nq x Nq, solution of 

~o(z) + N(z) ~ 6, 

and ][z - zt[ -< cl, then ilz - z]t -< c2[[fi]]. 
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Remark  2.1. (i) Note  that  this definition involves only those 3 for which 
I I ~ l l - <  cdc2, because otherwise I I z - z l l - <  c21l~II is always satisfied whenever 
I f z -  ~11-< cl ;  hence taking cl small enough,  we can restrict 5 to an arbi t rary  
ne ighborhood of 0. 

(ii) If K = R q this condit ion reduces to the invertiNlity of go'(~); this is obtained 
as a consequence of Theorem 3.1. 

Theorem 2.1. L e t  ~ be a semis tab te  so lu t ion  o f  (2.1), and let {z k} c o m p u t e d  by  

A l g o r i t h m  1 converge  t o w a r d  L Then :  

(i) If(go'(~) - Mk)(z  k+ 1 _ z k) = o(zk + 1 __ Zk), then  {z k} converges  super l inearly .  

(ii) If(go'(~) - Mk)(z  k+ 1 _ z k) = O(llzk + 1 __ 7112)  and go' is local ly  L ipsch i t z ,  then 

{z k} converges  quadrat ica l ly .  

P r o o f  Define O k := (go'(0 - Mk)( zk~ 1 _ z k ) .  We can write the Newton- type  step 
(2.3) as 

go(z k + 1) + N ( z  k + 1) ~ r k (2.4) 

with 

r k : =  Ok + go(zk+ 1) _ g o ( ? )  _ ~0! (~) (?  + 1 _ z k) 

= O k + 0 ( ?  +1 _ ?). 
If O k = o(z  k + 1 _ zk), then from the semistability of 2 and (2.4) we get 

? + 1  _ ~ = 0 ( ? )  = 0 ( ?  +1 - z k) = o ( 1 1 7  + 1  - ~l!  + t l z  k - ~11), 

hence z k+ 1 _ 5 = o(z k _ O, i.e., {z k} converges superlinearly. This proves (i), if  go' 
is locally Lipschitz and O k = O ( l l z  k §  - ? II 2) we already know that  {z k} converges 
superlinearly, hence IIz k + l  - ?ll/tl? - ~ll --' 1. Let  L be a Lipschitz constant  of go' 
at 5. We have, for k large enough,  

i lgo(zk+ 1 ) .  g o ( ? )  _ g o , ( ~ ) ( ? +  1 _ ?)11 

= f~[go'(Z~+G(?+~--Zk))--go'(~)](Zk+I--?)d~II 

< L max(llz k+ 1 _ zlf, l] zk - ~ l l ) l l z  k §  - zklt 
< 2Zl l z  k+l - zkH 2, 

hence 

? + 1  _ e = O ( r  k) = O ( l l z  k + t  - zkll z) = 0(1t? -zll-' z), 
from which the quadrat ic  convergence follows. D 

Remark  2.2. Taking K = {0} we see that  the condit ions of Theorem 2.t are not  
necessary in general. However ,  when K = Nq (a case of a nonlinear equation) it is 
known that  condit ion (i) is a characterizat ion of superlinear convergence [8-1. 
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Corollary 2.1. ,~f {z k} computed by Algorithm 1 converges toward a semistable 
solution ~ of(2.1), then: 

(i) I f  M k ~ q)'(~), {z k} converges superlinearly. 
(ii) I f  q~ is locally Lipschitz and M k = q)'(O + O( zk - 5) (which is the case for 

Newton's method under the hypothesis of  Lipschitz continuity of  (p'), then 
{ z k} converges quadratically. 

Until  now we assumed the existence of a converging sequence instead of giving 
the hypotheses that  imply its existence. Our  point  of view is that  it is clearer to 
do so; indeed, if we now want  to prove that  the sequence is well defined for, say, 
Newton 's  method  with a good starting point, we just have to posit  the following 
definition: 

Definition 2.2. We say that  ~ is a hemistable solution of (2.1) if, for all ~ > 0, 
e > 0 exists such that, given ~ ~ ~q, the variat ional  inequality (in z) 

q~(~) + M(z  - 2) + N(z) ~ 0 

has a solution z satisfying [Iz - ill < e, whenever II~ - ill + IIM - ~0'(s < e. 

Then, using Corol lary  2.1, we obtain 

Theorem 2.2 (Local Analysis of Newton 's  Method).  I f  ~ is a semistable and 
hemistable solution of(2.1), e > 0 exists such that if  ][z ~ - zl[ < e, then: 

(i) At  each step k a z k+ 1 solution of the Newton step satisfying Ilz k+ 1 _ zk[[ < 2~ 
exists. 

(ii) The sequence {z k} defined in this way converges superlinearly (quadratically 
if cp' is locally Lipschitz) toward ~. 

Proof. We just  have to prove (i) and the convergence of {z k} toward  f, then (ii) 
will follow from Corol lary  2.1. Assume qr is merely cont inuous at f. Take  
e o _< min(cl,  1/3c2) where cl, c 2 are given by the semistability condition. F rom the 
hemistability condi t ion we have that, for some s e (0, cl), llz k - ~]t - s implies the 
existence of Z k+  1 such that  [tz k+ 1 - -  Z!t ~ SO a n d  

(p(zk) + (p,(Zk)(Zk + 1 _ Z k) + N(Zk + I) ~ O. (2.5) 

N o w  q)(z k + ') + N(z k+ ') ~ 6 k where 

~k . .=  ~ 0 ( ? +  i )  _ q~(?)  _ ~ o , ( ? ) ( ?  § 1 _ ? ) .  (2.6) 

F r o m  differential calculus we obtain,  reducing s o and e if necessary, that  

1 
tl~lJ ~ ~ - -  I t?  +~ - ? t l .  

~C2 
(2.7) 
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As e o _< c 1 the semistabili ty condit ion gives 

[[ Z k + l  - -  Zll ~-~ l [ i z k + l  - -  zkll ~-~ ~1tl Zk + l - -  ZII "4- �89 Zk - -  ZII, 

hence 

I t ?  +1 - ~1t - -~tlz k - ~11 ( 2 . 8 )  

and 

II z k + 1  - zklh -< hi z k + l  - zl[ + tLz k - 211 <- 2~. 

This proves  (i) and the linear convergence of {zk}. [] 

R e m a r k  2.3. The  condi t ion Itz k+l - zklL < 2e in Theo rem 2.2 is construct ive in 
the sense that  if we choose the solut ion of (2.5) closest to z k, then, if the s tar t ing 
point  z ~ is close enough to 2, the condi t ion is satisfied and the conclusion of 
Theo rem 2.2 follows. 

R e m a r k  2.4. (i) Semistabili ty does not  imply hemistabili ty,  as is shown by the 
following example.  Consider  the var ia t ional  inequali ty with K = ~ +: 

- z  + N(z)~O, 

corresponding to the opt imal i ty  system of the il l-posed opt imizat ion  p rob lem 

rain ; z >_ 0 . 

Here  

~ +  if z < O ,  

N(z )=  if z = 0 ,  
if z > O .  

We have that  2 = 0 is the unique solution. N o w  the per turbed var ia t ional  
inequali ty 

- z + N ( z )  ~ c~ 

has a solution iff 6 _< 0 and  this solution is z = - b ,  hence semistabili ty holds 
a l though the var ia t ional  inequali ty m a y  have no solut ion for I] 6 [j arbi t rar i ly  small. 

Let  us now prove  that  hemistabil i ty does not  hold. Here  ~o(z)= - z  and 
~o'(2) = - 1 ;  take ~ - - e  and M = e -  1 with ae (0 ,  1); we discuss the solvabili ty 
near  0 of 

- ~  + (~ - 1)(z - 0 + ~ + ( z ) ~  0. 

I f z  is a solution, either z = 0, but  then - e  + (~ - 1)(z - ~) = _ e z  < 0, impossible;  
or  - a  + (~ - 1)(z - 0 = 0, i.e., Z = ~ 2 / ( ~  _ 1) • O, which is also impossible.  Hence  
the per turbed var ia t ional  inequali ty has no solution, a l though (~, M) is arbi trar i ly 
close to (2, ~0(2)). 
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(ii) A sufficient condition for semistability and hemistability is the strong 
regularity of Robinson [19]. Indeed, strong regularity amounts to saying that the 
equation 

q~(e) + ~o'(e)(z - e) + U(z)  ~ a 

is such that e > 0, �9 > 0, fl > 0 exist such that if r[ 6 ]l -< g, then a unique solution 
z exists such that []z - ~t1 < a, and this z satisfies [Iz - ~l[ < fit]all. Now let z solve 
the perturbed variational inequality (0(z) + N(z)  ~ 6. Then 

q~(O + q)'($Xz - ~) + N(z)  ~ b + o(z - ~). 

Strong regularity implies that z - ~ -- 0(6)  + o(z - ~), hence z - ~ = 0(6), i.e., the 
semistability holds. 

Also if ~ is a strongly regular solution of (2.2) it is obviously a strongly regular 
solution of the linearized variational inequality 

q~($) + cp'(~)(z -- ~) + N(z)  ~ O. 

We apply Theorem 2.1 of [19]. If [lz - ~[[ + riM - (P'(z)l[ is small enough, the 
variational inequality 

q~(~) + M ( z  - 2) + N ( z ) ~  0 

has a solution and 

JIz - e l l  = o ( ~ , ( 2 )  - ~o (e ) ) ;  

this implies hemistability. 
(iii) We see later that in the case of optimality systems for local solutions of 

nonlinear programming problems, semistability and hemistability are equivalent. 

Theorem 2.1 may also be used in order to derive superlinear convergence of 
some quasi-Newton algorithm. By quasi-Newton algorithm we mean a Newton- 
type algorithm with M k+ 1 satisfying the so-called quasi-Newton equation 

m(zk+ 1 _ z k) = q)(zk+ l) _ o ( z k ) .  (2.9) 

A typical situation is when a closed convex subset ~ of the space of q x q matrices 
is known to satisfy 

q/(z) e • ,  Vz ~ Nq. (2.10) 

Then M g + ~ is taken as a solution of 

m i n J l M -  MkIIe_; M E ~  and M satisfies (2.9). (2.11) 

Here t['t[ e is a matrix norm that we assume to be associated with a scalar product. 
If [l't[ ~ is the Frobenius norm we recover Broyden's update when ~ is the space 
of q x q matrices, the PSB update when ~f~ is the space of symmetric matrices, 
etc.; see [12]. We first quote 
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Lemma 2.1. Under the hypotheses  o f  Theorem 2.1, /f { M  k} satisfies the quasi- 
N e w t o n  equat ion and 

( M k +  1 _ M~) ( zk+ 1 _ ? )  = o ( ? +  1 _ ? ) ,  

then {z k} converoes  superlinearIy.  

Proof.  Using (2.9) we get 

(mR+ ~ _ mk)(Zk + 1 _ Z k) = ~O(Zk+ 1) _ qO(z k) _ mk(zk+ 1 _ Z k) 

= (q/(~) - -  Mk)(z  k+l _ Z k) + O(Z k+l _ Zk). 

The conclusion is then obtained with Theorem 2.1. D 

Theorem 2.3. L e t  ~o' be locally Lipschi tz ,  and let ~ be a semis table  and hemistable  

solution of(2.2). We assume that  (2.9)-(2.11) hold. Then  e > 0 ex i s t s  such that  i f  

Llz ~ - -  zl] + H M  ~ - ~o'(z)l] e < ~, 

then: 

(i) A t  each step k a z k+l solut ion o f  the N e w t o n - t y p e  step sat is fying 
Nz k+l -zk][  <_ 2~ exis ts .  

(ii) The  sequence {z k} defined in this way  converges  superl ineariy  toward L 

P r o o f  Define 

S k := { M  e ~f-; M ( z  k+l - z k) : ~o(z k+ 1) _ q)(zk)}. 

Then M k+~ is the projection of M k onto  S k (with the tt'11, norm), hence for all 
M e S k we have (see Theorem 1 of [12]) 

[tM k+l - -  Mkl[ 2 d- I[M k+l -- M][~ <_ [[M k -- MJ[ 2 (2.12) 

and a for t ior i  

HM k+l -- Mile <-- l tM k --  Mlle.  (2.13) 

Define 

:= f ]  ~o,(z k + ~r(zk+ 1 _ Zk)) da, (2.14) 

v k:= max(llz k+l -- ztl, []z k --  zl[). (2.15) 

Then O k is an element of S k and, for k large enough, we have, L being a Lipschitz 
constant  of q; in a ne ighborhood of ~ in the [['I[ e norm, 

- e ' ( ~ ) l l ~  -- ;~ [~0~(z  ~ + ~ ( z  ~ + 1  - z~ ) )  - q~'(~)]  d ~  ~ _< Lv k, 
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hence, taking M = ~k k in (2.13), and using the previous inequality, we get 

NM k+l - ~o'(~)11 ~ < IlM k - ~o'(011~ + 2Lv  k. (2.16) 

We prove  in L e m m a  2.2 below tha t  this bounded  deter iorat ion result implies that  
(for ~ small enough) z k --, ~ l inearly and ItM k - qr ~ converges. As ~k ~ qr 
]l M k -  ~?11~ and tIM k + l -  ~k[l~ also converge toward  the same limit. Tak ing  
M = ~k in (2.12) we deduce that  tIM k+l - Mklt -~ 0; this and  L e m m a  2.1 imply 
the conclusion. [ ]  

L e m m a  2.2 (Linear Convergence  under  Bounded  Deteriorat ion).  Le t  e be as in 
Theorem 2.3. Le t  {z k} be computed  by a N e w t o n - t y p e  algori thm such that  { M  k} 
satisfies (2.16). Then,  f o r  any  0 in (0, 1), e > 0 ex is t s  such that i f  

[Iz ~ - ell + HM ~ - ~o'(~)ll~ < e, 

then: 

(i) A t  each step k a z k+l solution o f  the N e w t o n - t y p e  s tep sat is fying 
[tz k+l - zkll <_ 2e exists .  

(ii) z k ~ ~ l inearly with speed O, i.e., Hz k+l - el[ <_ O[]z k - el[. 
(iii) JIM k - qr ~ converges.  

P r o o f  Writ ing (2.3) as 

~o(z k) + ~o,(~)(zk + 1 _ z k) + N(zk  + 1) ~ (qr -- Mk)(z  k + l -- zk), 

and using 

~o(zk+ 1) = 0 ( ? )  + qr  + 1 _ ? )  

f~  [~o'(? + o.(?+ 1 _ zk)) _ (o,(~)](?+! _ ? )  do', + 

we deduce that  

(p(zk + 1) + N(zk + ~) ~ 6k 

with (v k being defined in (2.15) and using the canonical  n o r m  of L(R")) 

116k[i _< (tl(o'(e) - Mkil + Zvk)l[? + ~ -- zkll, 

and f rom the semistabil i ty hypothesis  we deduce 

tlz k+l - ell < cz([l(o'(O - Mkl[ + Lvk)l]z k+l -- zkt[. 

Using the triangle inequali ty 

I17 + ' -  ?}1-< t17 + 1 -  etl + Ilz k -  ell 
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we deduce that  whenever 

1 
limP'(e) - Mk[l + Lv ~ < - - ,  

C2 

then 

ilz k + l  - ~ll _< 0 1 l i ?  - ell 

with 

c2(l[~P'(e) - M~[I + g v  k) 

0t = 1 - c2([[r ) Mk[l + Lvk)" 

Using the hemistability hypothesis in order  to estimate v g we see that  eo > 0 exists 
such that  0 x _< 0 whenever 

[[~o'(e) - Mkll# + llz k+x - 5tl _< Co. (2.17) 

If e < eo this is the case for k = 0. N o w  assume that  (2.17) is satisfied for 
k = 0 . . . . .  /~. Then with (2.16) and using the linear convergence of {zk}, we get 

[1 zk - zl] -< oke, k = 0 to k + 1, 

v k < 2 ~ Itz k - ell -< 2 ~ Okllz ~ - ~11 < 2e 
k=o k=O -- 1 -- O' 

i[~P'(e) - Mi+I[[~  - flip'(5) - M~ + 2L ~ v k 
k=O 

4Le 

1 - 0 '  

hence 

llqr - MK+x[I {lz ~+1 e + - ~ [ i _ < 2 - -  
e + 4Le 4 L  + 2 

< - -  e. (2.!8) 
1 - - 0  - 1 - - 0  

We now choose 

1 - 0  
8 - -  '?0" 

4 L + 2  

For  this value it appears that  (2.17) is also satisfied for k = k + 1, hence (by 
recurrence) for all k r N. This proves the linear convergence with speed 0. Also, 
for all k e N and 1 < k, 

k - I  
il~o'(~) - M k l l ~  _< I i ~ ' ( ~ )  - -  M ~ I t ~  + 2L ~ v i 

i=l  

2LO l 

_< il~P'(2)- M~l[~ + 1 - - ~ '  
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hence 

li-mlt~p'(~) - Mktl ~ ~ [l~p'(~) - M t [ I  ~ + - -  
2 L O  z 

1 - 0  

When l ~  ~ we deduce 

li--~ll ~o'(~) - Mkll ~ ~ lirnJt~p'(~) -- Mkl[ ~, 

i.e., II~o'(~) - M~tl ~ converges. D 

Remark  2.5. The hemistability hypothesis is needed only to ensure the existence 
ofzk+ 1 close to ~. The rest of the analysis relies upon the semistability hypothesis. 

3. Characterization of Semistability when K is Polyhedral 

We assume here that  K is polyhedral, i.e., defined by a finite number of linear 
equalities and inequalities. This allows us to give several characterizations of 
semistability. 

Theorem 3.1. I f  K is polyhedral and ~ is a solution of(2.1), ~ is semistable iff  one 
o f  the followin9 hypotheses holds: 

(a) ~ is an isolated solution o f  the linearization at ~ of(2.2): 

~o(~) + e'(e)(z - e) + N ( z ) ~  O. (3.1) 

(b) We have ( z  - ~, ~o'(2)(z - ~)) > 0 for  all z E K different to the ~ solution o f  

(~o(~), z - ~) = 0, (3.2i) 

~0(~) + ~0'(~)(z - 2) + N(~)~ 0. (3.2ii) 

(c) The conditions below have no solution other than ~: 

N(z) = N(2), (3.3i) 

(~p(2), z - ~) = 0, (3.3ii) 

~09(~) + ~o'(5)(z - ~) + N(z )~  0 for  some ~ >>_ O. (3.3iii) 

Remark 3.1. (i) In the case of a nonlinear equation it follows from condition (a) 
that semistability is equivalent to the inversibility of the Jacobian, which in turn 
is also equivalent to hemistability. 

(ii) Reinoza [18, Theorem 2.1] has already proved the equivalence of (a) and 
(b). He called condit ion (b) a strong positivity condition, al though in the context 
of nonlinear programming we will see that  it corresponds to weak second-order 
sufficient conditions; hence it might be better to call it a weak positivity condition. 
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P r o o f  o f  Theorem 3.1. We prove  that  

{5 is semistable} ~ (a) ~ (b) ~ (c) ~ {~ is semistable}. 

(a) P r o o f  of {~ semistable} ~ ( a ) .  If  z is solut ion of (3,1), then, f rom the 
first-order expansion of q~ at ~, 

~o(z) + g ( z ) ~  o(z - ~), 

hence if~ is semistable and [Iz - ~11 -- q ,  we get ]]z - ~1i : o(z - ~) and this implies 
z = ~ for z close enough to ~; hence (a) holds. 

(b) P roo f  of  (a) ~ (b). Let  z in K contradict  (b), i.e., z # ~, z satisfies (3.2) but  
<z - $, q;(~)(z - if)> _< 0. F r o m  (3.2) we get 

0 _< <~o(~) + ~o' (~) (z  - ~) ,  z - ~ >  = < z  - ~ ,  ~0 ' (~) (z  - ~)>, 

hence 

<z - f, q~'(~)(z - f)> = 0. (3.4) 

Fo r  e in ]0, 1[ define z ' : =  ~ + e ( z -  ~). F r o m  (3.2ii), (2.2), and the convexity of  
N(~) we deduce tha t  

(p(~) + (p'(~)(z ~ - ~) + N(~)~ 0, 

hence with (3.2i) and (3.4), for all y e K, 

0 _< <~o(~) + ~o'(~)(z" - ~) ,  y - ~> 

= <~o(~ )  + ~o'(~)(z" - ~) ,  y - z O ,  

that  is, 

~o(~) + ~'(~)(z ~ - ~) + N(z ~) ~ 0, 

hence z ~ is a solution of (3.1). Also z" ~ ~ when ~ "~ 0; this contradicts  (a). 
(c) P roo f  of (b) ~ (c). Assume tha t  (c) does not  hold and let z e K, z # ~ be a 

solution of (3.3). F r o m  (3.3ii) and (3.3iii) we deduce that  

<z - ~, ~'(~)(z - ~)> _< o. 

As (3.2i) coincides with (3.3ii) it remains  to derive (3.2ii) in order  to get a 
contradic t ion with (b). If  ~ <_ 1, mult iplying relat ion (2.2) by (1 - e), adding it to 
(3.3iii), and using (3.3i) we get (3.2ii). If  e > 1 we m a y  check similarly, dividing 
(3.3iii) by c~, tha t  y~ :-- ~ + (1/e)(z - $) contradicts  (b). 

(d) P r o o f  of  (c) ~ {~ is semistable}. If  f is not  semistable let z g ~ ~ and 6 g --, 0 
in N" be such that  

~o(z k) + N( z  ~) ~ 6 k, (3,5) 

and Nt~k[l/lIz ~ - -  ~1t - ' ~ 0 .  Define ilk:= [[Z ~ __ ~[i-~ and w~:= fl~(z ~ -- ~). Then sub- 
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stituting ~o(~) + ~o'(~)(z k - ~) + o(z k - ~) to ~o(z k) in (3.5) we get, after multiplication 
by ilk, 

flk~o(O + ~p'(~)w k + N(z  k) ~ flk~ k + flkO(Z k -- ~). (3.6) 

The right-hand side of (3.6) has limit 0. As K is a polyhedron we may extract, 
without loss of generality, a subsequence such that N(z  ~ = N(z  k) for all k; also 
[jwk[[ = 1, hence {w k} has at least a limit-point w (for the same subsequence) with 
[[wl[ = 1. Again as K is a polyhedron, the set NO.'= N(z  ~ + ~+~o(~) is the cone of 
exterior normals at z ~ to the set 

K ~ :=  K c~ {z ~ ~q; ( z  - z ~ ~o(.~)) _< 0}. 

Hence N o is closed. By (3.6) and the closedness of N o we have 

~+ q~(~) + (O'(Ow + N(z~  (3.7) 

Also as i k > 0 and the vectors ~ + (Elk)-lwk = Z k, Z k __ ( i k ) -  lWk = ~ are elements 
of K, we get, from (2.1) and (3.5), 

( w  k, ~o(0) = l k ( ?  - ~, ~o(~)) _> 0, 
(3.8) 

- ( w  k, q~ (? ) )  = t k ( ~  - ? ,  q~ (? ) )  > l ~ ( ~  - ? ,  ~ )  --, 0. 

As z k -~ ~, ~o(z k) ~ ~o(~). This, (3.8), and w k ~ w imply 

(w, qg(~)) = 0. (3.9) 

Now, as K is a polyhedron, ~ + ew is in K for e > 0 small enough. Let 
us check that N(~ + e w ) ~  N(z~ It is sufficient to check that any linear in- 
equality constraint defining K that is active at z ~ is also active at ~ + ew. Here 
we say that a constraint (a, z)  < b is active at z if (a, z)  -- b. Extracting again if 
necessary a subsequence we may assume that the set of active constraints is the 
same for all {zk}. Then for the subsequence considered here we have (a, z k) = b, 
hence ( a , ~ )  = b  and ( a , w  k) = 0 ,  from which ( a , w ) = 0 ,  and finally 
(a ,  ~ + ew)  = b. This proves that N(~ + ew) ~ N(z~ This and (3.7) (multiplied by 
e > 0) imply 

~+ ~p(2) + ecp'(~)w + N(2 + ew)~ O. (3.10) 

Also, for e > 0 small enough 
This, (3.9), (3.10), and the fact 
to  (c). 

Remark 3.2. The proof of 

{~ is semistable} ~ (a) ~ (b) ~ (c) 

does not use the fact that K is polyhedral. 

and as K is a polyhedron, N(~ + ew)= N(~). 
that z = ~ + ew is in K give a contradiction 

[] 
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4. Extension of the Theory to Nonsmooth Data 

Although we are mainly interested in this paper by finite-dimensional variational 
inequalities with smooth data we give here a partial extension of the previous 
results to problems in a Hilbert space with nonsmooth data. Let K be a closed 
convex subset of a Hilbert space Z, let N(z) be the cone of outward normals to 
K at z, and let q~ be a mapping from Z into itself. In order to define an extension 
of Algorithm 1 for the problem 

qo(z) + N(z) ~ O, (4,1) 

we use a concept of point-based approximation (PBA) close to the one of Robinson 
[233. 

Definition 4.1. We say that ~: Z x Z ---, Z is a PBA to (p if, for any two sequences 
{yk}, {Z k} converging to the same point, the following holds: 

H~o(y k) -- ~(Z k, yk)ll <_ r(y k, zk), (4.2) 

with r(y k, zk)/lty k -- zkl[ --~ O. 

Here ~k(z k, ") can be seen as a generalization of the linearization of (p at z k (see 
Remark 4.1 below). We now define a somewhat abstract Newton-type method as 
the following algorithm: 

Algorithm 2 

O. Choose z ~ E Z; k *- O. 
1. While z k does not satisfy (4.1): choose a mapping Ek: Z ~ Z, an approxima- 

tion of ~b(z k, "). Compute the z k+l solution of 

~'~k(zk+ 1) "~- N(zk+l)~O.  (4.3) 

We define semistability as in Section 2. 

Theorem 4A. I f  {z k} computed by Algori thm 2 converges toward a semistabte 
solution ~ of(4.1), then: 

(i) I f  ~b(z k, z k+ 1) _ ,~k(zk+ ~) = O(Zk+ 1 __ Z~), then {z ~} converges superlinearty. 
(ii) I f  O(zk, z k+l) - E k ( z  k+l) = O(llz k + l -  zkl] 2) and, for  some cl > 0 and all 

(y, z) close enough to ~, the function r in (4.2) satisfies r(y, z) <_ cx ijy - z[{ 2, 
then {x k} converges quadratically. 

Proo f  Writing step (4.3) as 

tp(z k, zk + 1) + N(zk + 1) B ~(Zk, Zk+ 1) __ 7~k(zk + 1) 

and using (4.2), we deduce that 

(p(zk + 1) + N(zk + l) ~ ~,(z k, zk + 1) _ Ek(zk+ 1) + O(zk + 1 _ zk). 
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In case (i) it follows from semistability that  z k + 1 _ 5 = o(z k + l - zk), hence z k 

converges superlinearly. In case (ii) we similarly obtain z k + 1 _ 5 = O(lt zk + 1 __ Z k tl 2), 
which implies the quadratic convergence. []  

Remark 4.1. Theorem 4.1 can be seen as an extension of Theorem 2.1. Indeed, 
if ~o is continuously differentiable and 

q47, ?+ 1)= q~(z k) + ~o,(?)(?+1 _ ?), 

Zk(zk+l )  = ~O(Z k) + m k ( z k +  1 _ Z k) 

for some q x q matrix M k, then 

0(?, ?+ 1) _ Z k ( ? +  2) = (cp ' (? )  - M k ) ( ?  + 1 _ ?) 
= (q)'(5) - m k ) ( z  k + 1 _ Z k) + o(z k + 1 _ zk), 

hence point (i) of Theorem 4.1 reduces to point (i) of Theorem 2.1. Similarly, if q)' 
is locally Lipschitz we have 

(~o(?)  - M ~ ) ( ?  +1 _ ? )  = (~o'(5) - M ~ ) ( ?  +2 _ ? )  + 0(1t z ~ - 5 II'll z k + 1  _ z k It), 

the last term being O([fz k+l  - zkH) 2 as Ilz k+l  --  zkI[/I[Z k -- 511 ~ 1 because of the 
superlinear convergence, hence point (ii) of Theorem 4.1 reduces to point (ii) of 
Theorem 2.1. 

We define the directional derivatives g0'(., .) of (p as the limit 

1 
~o'(z, d) := lim - [~o(z + 0r - ~0(z)]. 

We state in Theorem 4.2 below an extension of Theorem 3.1. Theorem 4.2 applies 
to B-differentiable mappings (here B stands for Bouligand), as defined by Robinson 
[22], i.e., mappings having the following property: (p is locally Lipschitz, has 
directional derivatives, and d ~ (p'(x, d) is Lipschitz. Then it is known that  (for 
given x) r + d) = (p(x) + (p'(x, d) + o(d) (see also [24]). 

Theorem 4.2. A s s u m e  tha t  Z = Nq, go is a B-d i f f e ren t iab le  mapp ing ,  K is po lyhedra l ,  

and  5 is a so lu t ion  o f  (4.1). T h e n  5 is s e m i s t a b l e  i f f  one  o f  the  f o l l o w i n g  h y p o t h e s e s  

holds:  

(a) 5 is an  i so la ted  so lu t ion  o f  the  l inear i za t ion  at  5 of(4.1) def ined  as f o l l o w s :  

(p(5) + go'(5, z --  5) + g ( z ) ~  O. 

(b) W e  have  ( z  - 5, (p'(5, z - 5) )  > 0 f o r  all z d i f ferent  to the  5 so lu t ion  o f  

<~o(5), z - 5> = o, 

q , (0  + ~o'(~, z - ~) + N(5)  ~ 0. 
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(c) The relation below has no solution other than ~: 

N(z) c N(5), 

(~o(~), z - ~ )  = o,  

,~o(~) + qr z - ~) + N(z )~  0 for some c~ >_>_ O. 

The proof is the same as that of Theorem 3.1, replacing first-order variations 
by directional derivatives. 

5. Convergence Analysis for Some Structured Variational Inequalities 

We now specialize our study to a particular case of variational inequalities. In the 
next section we apply the results of this section to nonlinear programming 
problems. Let F, g be smooth (resp. C 1 and C 2) mappings: R" -~ ~" and ~" ~ ~ ' ,  
respectively. Let I, J be a partition of { 1 . . . . .  p}. By g(x) ~ 0 we mean 

g~(x) _< O, Vie I, 

g~(x) = O, Vj e J. 

We now consider the system (in which 2 e ~P) 

{F(x)  : g'(x)*2 = O, (5.1) 
g(x) ~ O, 2I >- O, 2igi(x) = O, Vie  I. 

As observed in [23] we may embed (5.1) into (2.1) in the following way. Put 
q := n + p, z := (x, 2), and 

\ -g(x) / 

K1 := {2~ ~P, 2I > 0}, K : = ~ n x K 1 ,  

so that K is polyhedral and 

N(x, 2) = {0} x N,()v), 

with N1(2 ) the normal cone (or cone of outwards normals) to K 1 at ~., i.e., 

~ if2 is not in K!, otherwise 
NI(~) 

({#~ NP;#j = 0;#i  < 0;#~ = 0if2i > 0,Vi ~ I}. 

The corresponding variational inequality can be written in the following way: 

F(x) + g'(x)*~.  = o,  
--a(X) + Nl(2  ) a 0. (5.2) 
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Let us denote 

P 

H(x, 2).'= F'(x) + ~ 2iVZgi(x). 
i = 1  

Then we have 

q/(x, 2) = (H(x, 2) 

\-g'(x) 

and 

((y, p), ~0'(x, 2)(y, p)) = (y, H(x, 2)y). (5.4) 

Taking (5.2), (5.3), and Theorem 3.t into account, we see that the semistability 
for (5.2) (expressed at some point of the (2, 2) solution of (5.2)) can be stated as 

{ (y,/~) = 0 is an isolated solution of 
U(~, i)y + g'(2)*~ = 0, (5.5i) 
g(2) + g'(2)y ~ N~(J. + #). (5.5ii) 

For any [ = I by z ~< 0 we mean zj = 0 and z~ < 0 for all i in / .  Let us define 

/ : =  { i6I;  gi(2) = 0}, 

I + :=  {i~[; ,~ > 0},  

1~ [ - -  1 + = {i el-; )'i = 0}, 

I*:= J w l +. 

It may be convenient to define the so-called "critical cone" (or cone of critical 
directions): 

C = {y e ~'; g'(2)y ~< 0; g'~+(Y~)y = 0}. 

Proposition 5.1. Semistability of(5.2) is equivalent to 

f(y,  0 is the unique solution of  #)--  

I4(2, 2)y + g'(~)*~ = O, 
y 6 C ,  /~io---0; /t i = 0  /f gi(2)<0,  V i i i ;  ~ig;(~)y=0, 

(5.6i) 
Vi ~ ! ~ 

(5.6ii) 

Proof We have to prove the equivalence of (5.5) and (5.6). The set of solutions 
of (5.6i-ii) is a cone. Hence it is equivalent to state that (y, #) = 0 is the unique 
solution of (5.6i-ii) or to state that (y, #) = 0 is an isolated solution of (5.6i-ii)). 
Now it is sufficient to prove the equivalence of (5.5ii) and (5.6ii) when (y, #) is 
small enough. If # is sufficiently close to zero and i ~ I +, then 2i + Pi > 0, hence, 
by (5.5ii), g'g(2)y -- O. On the other hand if (5,5ii) holds, #t0 must be nonnegative 
and Pi > 0 for some i~ Io  implies g'J2)y = 0. Also if g~(2)< 0, then gz(2)+ 
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g'~(2)y < 0 for y sufficiently close to 0. For that reason (5.5ii) is equivalent (when 
(y, p) is small enough) to 

( 9~Yc)y = O, u ~ I +, 

1 9'~(,2)y < O, #i > O, #d~(ff)y = 0, Vi ~ t ~ 

~i = 0 if 9~(:2) < 0, 

and this is easily shown to be equivalent to (5.6ii). [] 

Let us now consider Newton's method applied to (5.2). The subproblem to 
be solved at step k is, denoting by d k the increment in x, i.e., d k = x k + i _ x k, 

{ F(x ~) + H(x  k, 2k)d k + g,(xk),2k+ 1 = O, 

g(X k) + g,(xk)d k ~ Nl(2k+ 1). 

As the evaluation of f ( x  k) is already necessary in order to evaluate ~o(x ~, )?) the 
only part of the Jacobian that perhaps needs to be approximated is H(x  k, 2k). We 
then obtain the Newton-type algorithm: 

Algorithm 3 

O. Choose (x ~ 2 ~ ~ ~" x ~P; k ~ O. 
1. While (x k, 2 k) is not a solution of (5.2): choose M k, an n x n matrix, compute 

the (d k, 2 k+ 1) solution of 

F(x  k) + Mkd  k + g'(Xk)*2 k+ l = 0, 

g(X k) -'}- 9'(xk)d k E Nl(2  k+ 1), 

and put x k +1 ~ x k + d k. 

When M k = H(x  k, 2k), by applying Corollary 2.1 and Proposition 5.1, we easily 
obtain 

Theorem 5,1 (Convergence of Newton's Method). Let  {x k, 2 k} be computed by 
Algor i thm 3 with M k = H(x  k, 2 k) converging toward (~2, ~) satisfying (5.2) and (5.6), 
I f  x---}(F(x),9'(x))  is C 1 (resp. C 1 with a locally Lipschi tz  derivative), then 
(x k, 2 k) ---} (s ~) superIinearly (resp. at a quadratic rate). 

We now consider conditions related to the superlinear convergence of {x k} 
alone. We are looking for necessary and/or sufficient conditions of the following 
type: at each interation k we define 

E k is a closed convex subset of R", 
pk is an orthogonal projection onto E k, 
h k ,= Pk[(H(Yc, 2) -- Mk)dk]. 

The condition will be 

h k = o(dk). (5.7) 
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As a particular case of our results we recover the characterization of Boggs et al. 
[3] concerning equality-constrained nonlinear programming problems, and we are 
able to extend the characterization to variational inequalities satisfying the 
assumption 

dtH(2, .~)d > 0 for all d in C - {0}. (5.8) 

All our results, however, need the following qualification hypothesis (linear 
independence of the gradients of active constraints): 

{Vgi(2)}idus surjective. 

On the other hand we do not need any strict complementary hypothesis. 

(5.9) 

and 

(i) Condition (5.7) is sufficient for superlinear convergence when E k is defined as 

E] .'= {d E ker g'i.(xk); g'i(xk)d > O, Vie  I ~ such that g,(x k) + gi(xk)d k ---- 0}. 

(ii) Condition (5.7) is necessary, and also sufficient, for superlinear convergence 
if, in addition, (5.8) holds, when E k is defined as 

E k := {d e ker g'i,(xk); g'io(Xk)d <_ 0}. 

Remark 5.1. If the strict complementarity hypothesis holds, i.e., I ~ = ~;~, then 
E~ = Ek2 = ker g'r.(x k) and with this choice of E k, condition (5.7) is necessary and 
sufficient for superlinear convergence of {xk}, under the hypotheses of the semi- 
stability of (2, 2). 

Proof  o f  Theorem 5.2. (a) Preliminaries. Writing the Kuhn-Tucker conditions 
for the projection problem defining h k we get the existence of t/k ~ NP satisfying 

h k - [H(~, 2) - Mk]d k + g'(xk)*tl * = 0 

t / k=0  if i e I - - L  

t/go ~ 0, t/~ = 0 for all i in I ~ such that gi(x k) + g'i(xk)d k < 0, if U = E k, 

t/g0_>0 if E k = EkE. 

Subtracting the first relation defining the Newton-type step from (5,10) we get 

h k - F(x k) - H(2, 2)d k + g'(xk)*(t/k -- 2 k+ 1) = O. (5.11) 

(5.10) 

Theorem 5.2. We assume x ~ (F(x), g'(x)) to be C 1. Let  {(x k, 2k)} be computed by 
Algorithm 3 converging toward (Yc, 2), the semistable solution of(5.2) satisfying (5.9). 
Then: 
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Expanding  F ( x  k) up to first order  and taking (5.2) in account  we have 

- F ( x  ~) = - F i f o  - F ' ( ~ ) ( x  ~ - ~,) + o ( x  ~ - Y,) 

= g'(yc)*i - f"(y,)(x ~ - x)  + o(x ~ - y,) 

= ~'(xk)*i  - H(~ ,  i ) ( x  ~ - YO + o(x ~ - YO, 

hence, with (5.11), 

h k - H(Yc, ~t)(x k + d k - Y:) + 9'(xk)*(). + tlk -- 2 k+ !) ---- O(X k -- YC). (5.t2) 

Let us define 

6k:= ]lhkll + ]Ix k -  2il + ][dkll. 

Then ( 6 k ) - l ( h  k, x k + d k - 2, 2 k§ - tlk - ,~) is bounded,  the boundedness  of the 
third term being a consequence of (5.9) and (5.12). Let  (h, z, 0 be a l imit-point  of 
this sequence, i.e., a limit for a subsequence k e S c N. Then  (i = 0 if i ~ I - f and 
from (5.12) we deduce that  

h - H ( ~ ,  ,~)z - g ' (~ )* ~  = 0. (5 .13)  

Also, expanding g as follows, 

g(x k) + 9'(xk)d k = g(Yc) + g '(2)(x  k + d k --  X) + o(x  k --  x), 

we deduce f rom the fact tha t  d k is a Newton- type  step associated with a multiplier  
2k + 1 that  

I g'(~)z  ~ o, 

g'i(2)z = 0 if i ~ I  is such that  2~ +1 > 0 for all k e S  (5.14) 
(which is the case if ~-i > 0, i.e., i ~ 1 + ) .  

The above  relations imply 

z e C .  (5.15) 

We also have, f rom the definition of h k, 

g),(2)h = 0, (5.16) 

h e C when E k = Ek2. (5.17) 

(b) P roof  of case (i). If  h k = o(dk), then a f o r t i o r i  h = 0. With  (5.I3) we deduce 
that  

H(~, i)z + g'(~)% = 0. (5.18) 

, ~ 1  = 0 f o r  If  i e I ~ is such that  g'i(2)z < 0, then gi(x k) + 9'~(xk)d k < 0, r/~ = 0, and & 
k in S large enough,  hence (~ = 0. This implies 

,r~O'~(~)z = 0 for all i in 1 ~ 
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However,  this with the fact that  (t0 --- 0 (due to q~0 < 0), (5.15), (5.18), and (5.6) 
imply z = 0, i.e., 

x k + l -  2 = o(tlhkll + I[x k -211  + IIdktl). 

This and (5.7) imply 

x ~+1 - 2 = o( l l x  ~' - 921t + IIx k+x - xkll) = o( l lx  k - 211 + IIx k+l - ~ll), 

which implies x k +1 _ 92 = o ( x  k - 2) ,  i.e., x k converges superlinearly. 
(c) P r o o f  of case (ii). If x k converges superlinearly, then z = 0. Comput ing  the 

scalar product  of (5.13) by h we get 

IlhH 2 = (~,  g'(92)h). 

Using (5.17), the nonnegat ivi ty of 2~0 +1, and the complementar i ty  condit ion 
rl~g'i(xk)h k = 0, for i in I ~ we deduce that  the r ight-hand side of the above relation 
is nonposit ive;  hence h = 0, i.e., 

h k =  o(lihkll + IIx k -  211 + IldklF), 

which implies h k = o( l tx  k - 2tl + Ildkll). However,  the superlinear convergence of 
{x k} implies Itdkll/llx k - 211 ~ 1, hence (5.7) holds. 

We now prove that  if (5.7) and (5.8) hold, { x  k} converges superlinearly. As 
(5.7) implies h = 0, comput ing  the scalar product  of (5.13) with z we get 

(z, n (2 ,  ,~)z) + ( ( ,  #'(92)z) = 0. (5.19) 

As z e C, #}(2)z = 0 if 2~ +1 r 0, and ~/~0 ~ 0, the second term of (5.19) is nonnega-  
tive. This and (5.8) imply that  z = 0, i.e., 

x k + l -  92 = o(llhkll + tlx k -  921t + Hdk[]). 

Using (5.7) and the relation lldkll _< ilx k + l  - 211 + ]Ix k - 9211 we deduce that  

x k §  - 92 = o( l l x  ~ - 211 + tlx ~§ - 211), 

which implies the superlinear convergence of {xk} .  [ ]  

With the help of Theorem 5.2 we may  obtain the superlinear convergence of 
{ x  k} when M k is updated  using ideas of quasi-Newton algorithms. We define the 
quasi -Newton equat ion (for M k+ 1) as follows: 

M(xk+ 1 - -  X k )  = F(xk+ 1) - -  F(x k) + [g,(xk+ l) _ g, (Xk)]*2k+ 1. (5.20) 

We assume that  a closed convex subset X of the space of  n x n matrices exists 
such that  

H ( x ,  2) e X ,  u 2) e N" x N p, (5.21) 

and we choose the M k + ~ solution of 

mintlM - M k l l e ;  M e W ;  M satisfies (5.20), (5.22) 

where as before I1"11 ~ is a norm associated to a sclar product .  
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L e m m a  5.1. 

(Me+ 1 __ Me)(xe+ 1 _ x e) = o(xe + 1 _ xk), 

then (x e} converges superlinearly. 

Proof. As M e+ 1 satisfies (5.20) we have 
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Under the hypotheses o f  Theorem 5.2, i f  M e+ l satisfies (5.20) and 

(5.23) 

M k  + l (xe  + ~ _ x e) = F ( x e  + l) _ e ( x  e) + (g,(xk + t) _ g , (x~)) ,  i 

+ (g ' (x  ~+ ~) - g ' (xe))*(~ e+~ - i )  

= H ( ~ ,  J.)(x e§ ~ - x e) + o (x  e§ 1 _ xk). 

Hence if M e + 1 satisfies (5.20), and (5.23) holds, then 

( H ( ~ ,  i )  - M k ) ( x  e+  ~ - -  x e) = o ( x  ~ + ~ - -  xe) .  

Now let h e be the projection of (H(~, ,~) - Mk)(x k + l _ x k) onto E~. As E~ is a cone, 
and the projector operator is nonexpansive we obtain 

tlhell ~ 11(It(2, i )  - Mk)(x e * ~ - xk)tl -- o(x k + ! - xk). 

This and Theorem 5.2 (case (i)) imply the conclusion. [] 

Theorem 5.3. Le t  (2, 2) be a semistable and hemistable solution of(5.1). Then  z > 0 
exists  such that i f  llx ~ - ElL + t l M  ~  H ( ) ? , ~ ) I I ~  < ~, then at each step k, a 
(xe+l, 2 k+l) solution o f  the N e w t o n - t y p e  step satisfying I]x k+ l - xki] < 2~ exists. 
The  sequence {x  k} defined in this way  converges superlinearly toward 2. 

Proof. Define 

S k := {M eog(; M satisfies (5.20)}, 

Ak:= f ~  H ( x  e + a(x k§ -- xk), 2 k+l) da. 

Then A e is an element of S k and, for some c~ > 0, 

IIA* - H(Yc, ~)11 ~ <- clv k, (5.24) 

with 

v k = =  i lx  ~ + ~  - 211 + IIx e - ~ l i  + II;? + *  - ,Tll. 

As M k+l is the projection of M k onto S k, we have, from [12], 

IIM e+~ - Mkjl2e + !}M k+~ -- ZelJ 2 <_ IIM k - Akll~,  (5,25) 

hence with (5.24) 

ilMe+ 1 _ H(~, 2)11 ~ < IIMe - H(~, 2)tl ~ + 2clv  e. (5.26) 
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As a consequence the approximation of the Jacobian at step k is 

%)*) ~ k : =  ( Mk 
g'(X k) 

and approximates 

/Q := (H(2, ,~) 

\ g'(2) 
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We define a new norm as follows. To 

is associated 

ll-~tls .'= I lMl l l l~  + ItM1211 

with II'tl an arbitrary norm. From (5.26) we deduce that, for some c2 > 0, 

I t ~  k+l  - A l l ,  __ l l ~  k - A l l ,  + czv k. 

Applying Lemma 2.2 (for which we may assume that 2 ~ = ,~) we deduce that if 
(x ~ M ~ is close enough to (2, H(2, ).)), then (x k, 2 k) is well defined and converges 
linearly to (2, ,~) and that I1~ k - m l [ $  converges. This implies that IIM k - H(2, 2)[I 
converges. As A k ~ H(2, ).), IIM k+l - Zkl[ # and iI Mk  - AkI[ ~ converge to the same 
limit, and with (5.25) this implies [IM k+l -Mkl [  ~ 0 .  The conclusion is then a 
consequence of Lemma 5.1. []  

6. Application to Nonfinear Programming 

In this section we particularize some of our results to nonlinear programming 
problems, and we see that it allows us to get some improvements with respect to 
known results. By a nonlinear programming problem we mean 

min f(x);  9(x) ~ O, (6.1) 

where f is a smooth mapping ~" ~ R, and 9 as well as the relation " 4 "  are as 
in Section 5. Let us recall some well-known facts of optimization theory (see, e.g., 
[10]). To problem (6.1) is associated the first-order optimality system 

{ Vf(x) + o ' (x )* , t  = o, 
(6.2) 

g(X) ~ O, 21 >_ O, ,,~tg(x) = O, 

which is formally equivalent to (5.1) if we define F(x).'= Vf(x). In this case the 
mapping H(x, 2) can be interpreted as the Hessian with respect to x of the 
Lagrangean L(x, 2):= f ( x ) +  2tg(x). We say that 2 is a Lagrange multiplier 
associated with x if (x, 2) satisfies (6.2). We recall the results involving second-order 
conditions with a unique multiplier. 
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Proposition 6.1 (see, e.g., [1]), 

(i) (Second-order necessary condition.) Let 2 be a local solution of(6. i) ~o which 
a unique multiplier 2 is associated. Then dtH(2, 2)d >>_ 0 for all critical 
directions d. 

(ii) (Second-order sufficiency condition.) Let (2, ;3 satisfying (6.2) be such that 
d'H(2, 2)d > 0 for all nonzero critical directions d. Then 2 is a local solution 
4(6.1). 

We now make the link between semistability and the second-order sufficiency 
condition. 

Proposition 6.2. Let (2, 2) be an isolated solution of (6.2) such t~hat 2 is a locai 
solution of(6.1). Then (2, 2) is semistable iff it satisfies the second-order sufficiency 
condition. 

Proof. Characterization (3.2) of semistability applied to the variational inequality 
in form (5.1), and using (5.4), gives 

(d, H(2, 2)d) > 0 for all (d, #) # 0 the solution of 

21 + ,u I >_>_ 0, 

H(2, i)d + g'(2)*# = O, 

g ( ~ ) ~ ( #  - ,~) = o ,  

g(2) + g'(YOd e N~(2), 

the last relation implying that d is critical. Hence the second-order sufficiency 
optimality condition implies semistability. Conversely, let us assume that the 
second-order sufficiency condition does not hold. By Proposition 6.1 a critical 
direction d # 0 exists with dtH(2, 2)d = 0, and d is a solution of the quadratic 
homogeneous problem 

min �89 2)d; d e C, 

where the critical cone is 

C := {d; g'(2)d ~ 0; g~(2)d = 0 if ;~, > 0, Vi E I}, 

Writing the optimality system of this problem, we find that a multiplier # is 
associated to d such that (d, t2) satisfies (5.6i-ii). By Proposition 5.1 this contradicts 
semistability. D 

Proposition 6.3. Let (2, 2) be a semistable solution of (6.2) such that 2 is a local 
solution of(6.1). Then (2, ~) is hemistable. 

Proof. Semistability implies the uniqueness of the multiplier, hence aJso the 
hypothesis of Mangasarian and Fromovitz [17t. By Proposition 6.2 the second- 
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order sufficiency condition also holds for problem (6.1) at (2, 2). Let us consider the 
following problem: 

min Vf  (2)td + �89 i)d; g(2) + 9'(2)d ~ O. (6.3) 
d 

Obviously d = 0 satisfies the first-order optimality condition associated with the 
unique multiplier 2. Also d = 0 satisfies the second-order sufficiency condition 
(their formulation for (6.3) at (d = 0, 2) coincides with the one for (6.1) at (2, 2)). 
Hence if we make small perturbations in the data of this problem, then a local 
solution exists whose distance to d = 0 is of the order of the perturbation (see, 
e.g., Theorem 4.1 of [20]). Hence hemistability holds. []  

From Theorem 2.2 and Proposition 6.3 we deduce 

Theorem 6.1. Assume that f and g ar e  C 2 with Lipschitz second derivatives, 2 is 
a local solution of (6.1),). is the unique Lagrange multiplier associated with 2, 
and the second-order sufficiency condition holds. Then e > 0 exists such that if 
I]x ~ -- 2H + H2 ~ - Ell < e and (x g+1,2 k+t) is chosen so that 

Ilx k+l - xkll + rl2 k+l - 2k[I < 25, 

then Algorithm 3 with M g =  H(x k, 2k), i.e., Newton's method, is well defined and 
converges at a quadratic rate to (2, 2). 

Remark 6.1. That Newton's method converges at a quadratic rate when the 
starting point is close to a solution (2, ,~) of (6.2), assuming x is a local solution of 
(6.1), the gradients of active constraints linearly independent, and strict comple- 
mentarity, is well known. Recently the author [4] relaxed the strict complementar- 
ity hypothesis. Here we improve the result of [4] by assuming that the multiplier is 
unique instead of the linear independence of the gradients of active constraints. 

We now apply the results of Section 5 on the superlinear convergence of {x k} 
only. From Theorem 5.2 and the fact that condition (5.8) coincides with the 
second-order sufficient condition, we get: 

Theorem 6.2. Let 2 be a local solution of (6.1) such that the gradients of active 
constraints are linearly independent, let 2 be a multiplier associated with 2, and let 
the second-order sufficient condition hold. I f  (x k, 2 k) computed by Algorithm 3 
converges to (2, 2), then {x k} converges superlinearly iff 

W[(H(2, ~.) -- Mk)d k] = o(dk), 

with the pk orthogonal projection on the set E~2 defined as in Theorem 5.2. 

Remark 6.2. If no inequality constraint is present, Theorem 6.2 reduces to a 
theorem of Boggs et al. [3]. Some necessary or sufficient conditions (but not the 
characterization given here) for problems with equalities and inequalities, without 
strict complementarity have been given by the author in [4]. 
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