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Abstract. This paper presents some new results in the theory of Newton-type
methods for variational inequalities, and their application to nonlinear pro-
gramming, A condition of semistability is shown to ensure the quadratic
convergence of Newton’s method and the superlinear convergence of some
quasi-Newton algorithms, provided the sequence defined by the algorithm
exists and converges. A partial extension of these results to nomsmooth
functions is given. The second part of the paper considers some particular
variational inequalities with unknowns (x, 4), generalizing optimality systems.
Here only the question of superlinear convergence of {x*} is considered. Some
necessary or sufficient conditions are given. Applied to some quasi-Newton
algorithms they allow us to obtain the superlinear convergence of {x*}.
Application of the previous results to nonlinear programming allows us to
strengthen the known results, the main point being a characterization of the
superlinear convergence of {x*} assuming a weak second-order condition
without strict complementarity.
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1. Introduction

This paper is devoted to the local study of Newton-type algorithms for variational
inequalities. Variational inequalities have been studied for a long time (see [167)
mainly because of their applications to mechanical systems. The operators in that
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field are often monotone, and a large theory of monotone operators has been
developed (see [6]); several algorithms for convex programming, including duality
methods, have been extended to this framework {see [11]). Some problems in
economy as well ‘as optimality systems of nonlinear programming problems can
also be represented by variational inequalities (see [21] and [137). Consequently,
the strength and large use of Newton-type algorithms for nonlinear programming,
the so-called successive quadratic programming (see [2] and [10]), suggests
developing a theory of Newton-type methods for variational inequalities (we do
not speak here of some different approaches of Newton-type algorithms for
variational inequalities—reviewed in the survey by Harker and Pang [137). Some
early (but unpublished) works in this direction due to Josephy [14], [15] give a
local analysis using the concept of strong regularity [19]. Josephy obtains a
quadratic rate of convergence for Newton’s method and superlinear convergence
for some quasi-Newton algorithms. In the case of nonlinear programming prob-
lems, assuming the gradients of active constraints to be linearly independent, the
strong regularity reduces to some strong second-order sufficient condition.

The quadratic rate of convergence under the weak second-order sufficiency
condition for nonlinear programming problems, and assuming the linear in-
dependence of the gradients of active constraints, has been recently obtained by
the author [4]. This suggests that the theory of Newton-type methods for
variational inequalities.can be extended. For this purpose we use the new concept
of semistability. We say that a solution ¥ of a variational inequality is semistable
if, given a small perturbation on the right-hand side, a solution x of the perturbed
variational inequality that is sufficiently close to X, is such that the distance of x
to X is of the order of the magnitude of the perturbation. This does not imply the
existence of a solution for the perturbed problem. Indeed, we give a counter-
example showing that existence for a small perturbation does not always hold
under the semistability hypothesis. We use a “hemistability” hypothesis in order
to prove the existence of the sequence satisfying the Newton-type steps, then we
show that semistability allows us to obtain in a simple way quadratic convergence
for Newton’s method and superlinear convergence for a large class of Newton-type
algorithms (here we extend the Dennis and Moré [9] sufficient condition for
superlinear convergence). This allows us to adapt Grzegorski's [12] theory in order
to derive the superlinear convergence of a large class of quasi-Newton updates
including Broyden’s one [7]. For polyhedral convex sets we may characterize
semistability: it reduces to the condition that the solution X is an isolated solution
of the variational inequality linearized at X, An equivalent condition is the “strong
positivity condition” of Reinoza [18]. We also check that for nondifferentiable
data the theory can be extended using point-based approximations (reminiscent
of those of Robinson [23]) that play the role of a linearized function.

The second part of this paper is devoted to a special class of variational
inequalities generalizing optimality systems. The unknowns here are couples (x, A)
and we try to obtain conditions related to the superlinear convergence of {x*}
alone. Indeed, we give a characterization of the superlinear convergence of {x*},
valid under a second-order hypothesis satisfied by optimality systems for which
the weak second-order sufficiency condition holds. This allows us to extend to
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inequality-constrained problems the characterization of Boggs et al. [3] for
equality-constrained problems (this improves some previous resuits of the author
[4] in which some necessary or sufficient conditions are given); our result assumes
only that the gradients of active constraints are linearly independent and the weak
second-order sufficient condition holds, but includes no strict complementarity
hypothesis. We apply this result in order to obtain superlinear convergence for a
large class of quasi-Newton updates. We note that these results can be used in
order to formulate some globally convergent algorithms having fast convergence
rates (see [5]).

2. Newton-Type Methods for Variational Inequalities

Let ¢ be a continuously differentiable mapping from R? into R% Given a closed
convex subset K of R? we consider the variational inequality

{p(z), y —z> =0, VyeK, zek. (2.1)
We may define the (closed convex) cone of outward normals to K ata point ze K,
N(z):={xeR% (x,y —z) <0, VyeK},
and if z¢ K, N(z):= (. A relation equivalent to (2.1) is then
o(z) + N(2)20. (2.2)

When K = RY, N(z) = {0} and we recover the equation ¢(z) = 0. A natural
extension of the Lagrange-Newton method for nonlinear programming (see [10])
is what we call the Newton-type algorithm:

Algorithm 1

0. Choose z°e R"; k « 0.
1. While z* is not a solution of (2.2): choose M*, a ¢ x q matrix, and compute
ZF*1 solution of

o(z") + M*Z**! — 2% 4+ N(Z** Y s0. 2.3)
We define Newton’s method as Algorithm 1 when M* = ¢/(z). In order to

obtain estimates of the rate of convergence of {z*} we essentially use the following
concept.

Definition 2.1. A solution Z of (2.2) is said to be semistable if ¢; > 0 and ¢; > 0
exist such that, for all (z, §) € R? x R, solution of

o(z) + N(z)2 4,

and |z — 2| < ¢y, then ||z — Z|| < ¢,|8].
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Remark 2.1. (i) Note that this definition involves only those ¢ for which
|6l < e¢,/c,, because otherwise |z —Z| < c,[|]] is always satisfied whenever
lz — Z| < ¢,; hence taking c; small enough, we can restrict 6 to an arbitrary
neighborhood of 0.

(i) If K = R? this condition reduces to the invertibility of ¢'(2); this is obtained
as a consequence of Theorem 3.1.

Theorem 2.1. Let z be a semistable solution of (2.1), and let {z*} computed by
Algorithm 1 converge toward Z. Then:

(i) If (@' (2) — MM(Z**! — 2F) = o(z** — %), then {Z*} converges superlinearly.
(i) If(@'(2) — MMt — 2 = O()|2**1 — 2¥||?) and ¢’ is locally Lipschitz, then
{z*} converges quadratically.

Proof. Define 8 := (¢'(2) — M*)**! — 2¥). We can write the Newton-type step
(2.3) as

e(Z**Y) + N(Z*T Y r* (2.4
with

=05+ @(Z* ) — 9(2) — ') — 2

=0 + ozt — ZM).

If 0% = o(z"*! — 7*), then from the semistability of Z and (2.4) we get

=z =00 = o2 — 2 = o(| 2" — Z|| + || - z]),
hence z**! — Z = o(z* — 2), i.e, {z*} converges superlinearly. This proves (i). If ¢’
is locally Lipschitz and 6* = O(||z**! — z*||?) we already know that {z*} converges

superlinearly, hence ||z — z*||/|z* — || — 1. Let L be a Lipschitz constant of ¢’
at z. We have, for k large enough,

oz ) — o(") — @'@* ' — 29

1
f [@/(Z" + oz — ) ~ 9(DN T — 2 do
0

< Lmax(jz¢"! — 2|, |25 = Z) 5+ — 24|
< 2L||Z*T = 2F)
hence
T =7 =00%) = O(lz"F — %) = O(|l * ~ Z|%),
from which the quadratic convergence follows. |
Remark 2.2. Taking K = {0} we see that the conditions of Theorem 2.1 are not

necessary in general. However, when K = R (a case of a nonlinear equation) it is
known that condition (i) is a characterization of superlinear convergence [8].
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Corollary 2.1. If {7} computed by Algorithm 1 converges toward a semistable
solution z of (2.1), then:

(i) If M* — ¢'(2), {Z*} converges superlinearly.

(ii) If ¢’ is locally Lipschitz and M* = ¢'(2) + O(z* — Z) (which is the case for
Newton’s method under the hypothesis of Lipschitz continuity of ¢'), then
{z*} converges quadratically.

Until now we assumed the existence of a converging sequence instead of giving
the hypotheses that imply its existence. Our point of view is that it is ciearér to
do so; indeed, if we now want to prove that the sequence is well defined for, say,
Newton’s method with a good starting point, we just have to posit the following
definition:

Definition 2.2. We say that z is a hemistable solution of (2.1) if, for all « > 0,
& > 0 exists such that, given Z € R the variational inequality (in z)

@(2) + M(z — ) + N(2)20
has a solution z satisfying ||z — Z|| < &, whenever |Z —Z| + M — ¢'(@)| <.
Then, using Corollary 2.1, we obtain
Theorem 2.2 (Local Analysis of Newton’s Method). If Z is a semistable and
hemistable solution of (2.1), & > 0 exists such that if |z° — Z| < &, then:

(i) Ateachstepkaz**! solution of the Newton step satisfying || 2T — 2| < 2
exists.

(i) The sequence {z*} defined in this way converges superlinearly (quadratically
if ¢’ is locally Lipschitz) toward Z.

Proof. We just have to prove (i) and the convergence of {z*} toward Z, then (i)
will follow from Corollary 2.1. Assume ¢’ is merely continuous at z. Take
&, < min{c,, 1/3¢,) where c,, ¢, are given by the semistability condition. From the
hemistability condition we have that, for some ¢€(0, ¢,), ||z* — Z|| < ¢ implies the
existence of z**! such that ||z**! — Z|| < g, and

oz + @' (N — M) + N(ZF* )30, (2.5)
Now ¢(zF* 1) + N(z** )2 6* where
5k:= go(z“ 1) _ (p(Zk) _ (p’(Zk)(Zk+1 _ Zk). (26)

From differential calculus we obtain, reducing &, and ¢ if necessary, that

1
10" < 3o 1271 — 2. (2.7)
2
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As g, < ¢, the semistability condition gives

I124F0 — 2| < 24T — 24 < 42T = 2|+ 32— 2l
hence

241 — 2| < $ll2* — 2] (2.8)
and

275 = 2¥) < 124 — 2 + 2 — 2 < 2e
This proves (i) and the linear convergence of {Z*}. O
Remark 2.3. The condition [z**! — z*|| < 2¢ in Theorem 2.2 is constructive in
the sense that if we choose the solution of (2.5) closest to z*, then, if the starting

point z% is close enough to Z, the condition is satisfied and the conclusion of
Theorem 2.2 follows.

Remark 2.4. (i) Semistability does not imply hemistability, as is shown by the
following example. Consider the variational inequality with K = R*:
—z+ N(z)20,

corresponding to the optimality system of the ill-posed optimization problem

b

_ 52
min{ z 1z = 0}.
2

Here
(%] if z<0,
N(z) = <R* if z=0,
0 if z>0.

We have that z=0 is the unique solution. Now the perturbed variational
inequality

—z+ N(z)36

has a solution iff 6 < 0 and this solution is z = —§, hence semistability holds
although the variational inequality may have no solution for ||d|| arbitrarily small.

Let us now prove that hemistability does not hold. Here ¢{z) = —z and
¢'(z)= —1; take 2 =¢ and M = ¢ — 1 with ¢€(0, 1); we discuss the solvability
near 0 of

—e+{e— Wz —2) + dR*(z)30.

If z is a solution, either z = 0, but then —¢ + (¢ — 1)z — &) = —&* < 0, impossible;
or —g+ (g — )z — ¢ =0,ie, z = */(¢ — 1) < 0, which is also impossible. Hence
the perturbed variational inequality has no solution, although (2, M} is arbitrarily
close to (z, ¢(2)).
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(i) A sufficient condition for semistability and hemistability is the strong
regularity of Robinson [19]. Indeed, strong regularity amounts to saying that the
equation

@@ + ¢’ @)z — 2) + N(2)30

is such that ¢ > 0, a > 0, § > 0 exist such that if ||§] < ¢, then a unique solution
z exists such that [z — Z|| < «, and this z satisfies ||z — Z|| < Bl|d]l. Now let z solve
the perturbed variational inequality ¢(z) + N{(z)2 6. Then

o(Z) + @' (2)Nz — 2) + N(2)36 + oz — 2).

Strong regularity implies that z — Z = 0(d) + o(z — 2), hence z — zZ = 0(9), ie., the
semistability holds.

Also if Z is a strongly regular solution of (2.2) it is obviously a strongly regular
solution of the linearized variational inequality

@o(2) + ¢'(2)z — 2) + N(2)30.

We apply Theorem 2.1 of [19]. If ||Z — Z|| + |M — ¢'(2)| is small enough, the
variational inequality

o)+ M(z — 2+ N@2)30
has a solution and
Iz — z|| = O(9(2) — @(2));

this implies hemistability.
(iii) We see later that in the case of optimality systems for local solutions of
nonlinear programming problems, semistability and hemistability are equivalent.

Theorem 2.1 may also be used in order to derive superlinear convergence of
some quasi-Newton algorithm. By quasi-Newton algorithm we mean a Newton-
type algorithm with M**? satisfying the so-called quasi-Newton equation

MGt — 2 = 9(z) — o(). @9)

A typical situation is when a closed convex subset J of the space of g x g matrices
is known to satisfy

¢'(z)e A, Vze RL, (2.10)
Then M**! is taken as a solution of
min||M — M¥| ,; Mex and M satisfies (2.9). (2.11)

Here ||| is a matrix norm that we assume to be associated with a scalar product.
If ||| » is the Frobenius norm we recover Broyden’s update when 4" is the space
of g x g matrices, the PSB update when # is the space of symmetric matrices,
etc.; see [12]. We first quote
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Lemma 2.1. Under the hypotheses of Theorem 2.1, if {M*} satisfies the quasi-
Newton equation and

(Mk+1 o Mk)(zk+l . Zk) — O(Zk+1 _ Zk),

then {z*} converges superlinearly.

Proof. Using (2.9) we get

(MIH-I — Mk)(Z!«H—l . Zk) — (,D(Zk* 1) - (p(Zk) — Mk(Zk+1 _ Zk)
—_ ((P,(Z) _ Mk)(zk+1 — Zk) + O(Zk+1 _ Zk).

The conclusion is then obtained with Theorem 2.1. 0

Theorem 2.3. Let ¢ be locally Lipschitz, and let Z be a semistable and hemistable
solution of (2.2). We assume that (2.9)(2.11) hold. Then & > Q exists such that if

120~z + IM° — @'(D)ll 4 <,
then:

(i) At each step k a z**! solution of the Newton-type step satisfying
|25 — 24| < 26 exists.
(i) The sequence {z*} defined in this way converges superlinearly toward 2.

Proof. Define
Si= (Me A ME = 2 = p2** 1) — o).

Then M**! is the projection of M* onto S* (with the |||, norm), hence for all
M e S* we have (see Theorem 1 of [12])

IMFE— MY+ MR — ML < [MF - M (2.12)

and a fortiori

IM*" Y~ My < IM*— M|, (2.13)
Define
1
Y= f o'(Z* + ozt — 2) do, (2.14)
0

vei= max(| 2" — 2|, |12* — 2|). 2.15)

Then ¥* is an element of S* and, for k large enough, we have, L being a Lipschitz
constant of ¢’ in a neighborhood of 7 in the ||| . norm,

< L%,

I — 0@ = % J [ + o' — ) — ()] do

#*
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hence, taking M = * in (2.13), and using the previous inequality, we get
1M — @)l < IMF~ ¢'(2)] 4 + 210" (2.16)

We prove in Lemma 2.2 below that this bounded deterioration result implies that
(for & small enough) z* — 7 linearly and |[M* — ¢'(2)|| » converges. As ¥* — ¢'(3),
| M* — aﬁkh and |M**1 —y¥|, also converge toward the same limit. Taking
M = y* in (2.12) we deduce that ||[M**! — M*|| - 0; this and Lemma 2.1 imply
the conclusion. (]

Lemma 2.2 (Linear Convergence under Bounded Deterioration). Let Z be as in
Theorem 2.3. Let {z*} be computed by a Newton-type algorithm such that {M*}
satisfies (2.16). Then, for any 0 in (0, 1), ¢ > 0 exists such that if

12° = 2]l + [M° — (D] 4 <

then:

+1

(i) At each step k a z*
%Y — zF|| < 2¢ exists.
(i) z* — Z linearly with speed 0, i.e., |2t — z| < 6||2F — Z||.
(iii) |M* — @'(2)]| 4 converges.

solution of the Newton-type step satisfying

Proof. Writing (2.3) as
@(z") + (BN — 2 + N(Z 13 (¢/(3) — MM(ZFH! — 29),
and using
@) = o2 + '@ — 24

+ f [0 + o(z*" = 29) — @' (@] — £ do,
0

we deduce that
o(z* ) + N(ZF* 1) 2 o

with (v* being defined in (2.15) and using the canonical norm of L(R")
6% < (l@'(2) — M*|| + Ly9)|z*+* — 2,

and from the semistability hypothesis we deduce
12571 — 2| < cy(l9'(2) — M¥|| + L9 *+1 — 2.

Using the triangle inequality

250 = 24 < 1247t — 2l + |12 — 2]
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we deduce that whenever

19'@) — M¥| + Lo* < ci
then
I+ — 2] < 0,1 — 2
with
_ alle@ - MY + L)
P l—ole@) — MM + Ly

Using the hemistability hypothesis in order to estimate v* we see that &, > 0 exists
such that 6, < 6 whenever

lo'(@) — MMy + 12571 — Z|| < g. 2.17)

If & < g, this is the case for k = 0. Now assume that (2.17) is satisfied for
k=0,..., k. Then with (2.16) and using the linear convergence of {z*}, we get

I8 —Z) <% k=0 to k+1,

,'E+1 @0 28
F<2 Y F -2 Y -2 <,
k=0 k=0 1-6
. k+1
lo'E) — M, < lo'(3) — MOy + 2L Y v
k=0
<o 4L¢
SR T

hence

s+4le 4L +2

. (2.18
1-6 ~1-9° (218)

lo'@) — MM, + |12 =z < 2

We now choose
1—-6
= £
4L + 2

€ o
For this value it appears that (2.17) is also satisfied for k = k + 1, hence (by
recurrence) for all ke N. This proves the linear convergence with speed 8. Also,
forall keN and |l < k,

k~1

lo'@) — M*y < ll9'@) — Ml +2L ), ¥
i=]
2L6

< Q'@ — My +
lo'(2) e 1— o
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hence

L 5 219
im|@'(z) — M|, < ll9'(®) — M'|l4 + 1-¢
When [ - oo we deduce
lim|¢'(z) — M¥||,, <lim|o'(z) — M*|,,
ie, [@'(2) — M*||, converges. M

Remark 2.5. The hemistability hypothesis is needed only to ensure the existence
of z** 1 close to Z. The rest of the analysis relies upon the semistability hypothesis.

3. Characterization of Semistability when K is Polyhedral

We assume here that K is polyhedral, ie., defined by a finite number of linear
equalities and inequalities. This allows us to give several characterizations of
semistability.

Theorem 3.1. If K is polyhedral and z is a solution of (2.1), Z is semistable iff one
of the following hypotheses holds:

(a) z is an isolated solution of the linearization at Z of (2.2):

o(2) + 9’z — 2) + N(z)20. (3.1)
(b) We have {z — Z, ¢'(2)(z — 2)> > 0 for all z € K different to the Z solution of

o), z—1z) =0, (3.2i)

¢(2) + ¢'(2)z — 2) + N(2)30. (3.2ii)

(c) The conditions below have no solution other than z:

N(z) = N(2), (3.3i)
o2,z —z) =0, (3.3ii)
ap(Z) + @'(Z)(z — 2) + N(z)20  for some o =>0. (3.3111)

Remark 3.1. (i) In the case of a nonlinear equation it follows from condition (a)
that semistability is equivalent to the inversibility of the Jacobian, which in turn
is also equivalent to hemistability.

(ii) Reinoza [18, Theorem 2.17 has already proved the equivalence of (a) and
(b). He called condition (b) a strong positivity condition, although in the context
of nonlinear programming we will see that it corresponds to weak second-order
sufficient conditions; hence it might be better to call it a weak positivity condition.
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Proof of Theorem 3.1. We prove that
{Z is semistable} => (a) = (b) = (c) = {Z is semistable}.

(@) Proof of {Z semistable} = (a). If z is solution of (3.1), then, from the
first-order expansion of ¢ at z,

¢(z) + N(z)3 0z — 2),

hence if Z is semistable and ||z — Z|| < ¢y, we get |z — Z| = o(z — Z) and this implies
z = Z for z close enough to Z; hence (a) holds.

(b) Proof of (a) = (b). Let z in K contradict (b), i.e., z # Z, z satisfies (3.2) but
{z—2Z,¢(@)z— 2 <0. From (3.2) we get

0<<pd) + '@z —2),z — 2) =<z —Z ¢'(2)z — 2)),
hence
{z—2z,0@)Nz— 2D =0. (3.4)

For o in J0, 1[ define 2*:= 7z + o(z — 2). From (3.2ii), {2.2), and the convexity of
N(Z) we deduce that

9(2) + ¢'(2)(z* — 2) + N(2) 30,
hence with (3.2i) and (3.4), for all ye K,
0<<9@@)+ (A" -2,y —2)

=L@ + ¢'(GN" — 2), y — 2,
that is,
o(2) + ¢'(@)z" — 2) + N(z%) 20,

hence z* is a solution of (3.1). Also z* — Z when « ™\ 0; this contradicts {a).
{c) Proof of (b} = (c). Assume that (c) does not hold and let ze K, z #Z be a
solution of (3.3). From (3.3ii) and (3.3iii) we deduce that

{z—-2Z, 9@z — 2> <0

As (3.2i) coincides with (3.31i) it remains to derive (3.2ii) in order to get a
contradiction with (b). If « < 1, multiplying relation (2.2) by (1 — «), adding it to
(3.3iii), and using (3.3i) we get (3.2ii). If & > 1 we may check similarly, dividing
(3.3iii) by a, that y*:= z + (1/a)(z — Z) contradicts (b).

(d) Proof of (c) = {Z is semistable}. If 7 is not semistable let z* — z and 6* — 0
in R" be such that

o(z") + Nz o, (3.5)
and [|6%]/]z* — 2| > 0. Define f*:= ||z — z| 7! and w*:= f¥z* — ). Then sub-
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stituting (Z) + @'(ZXz"* — 2) + o(z" — 2) to ¢(z") in (3.5) we get, after multiplication
by £,

Bro(2) + @' (@W* + N(z%) > B6* + Bro(z* — 2). (3.6)

The right-hand side of (3.6) has limit 0. As K is a polyhedron we may extract,
without loss of generality, a subsequence such that N(z% = N(z*) for all k; also
[wk|| = 1, hence {w*} has at least a limit-point w (for the same subsequence) with
w| = 1. Again as K is a polyhedron, the set N°:= N(z% + R* (%) is the cone of
exterior normals at z° to the set

K%=Kn {zeR% (z - 2° ¢(2)) < 0}.
Hence N° is closed. By (3.6) and the closedness of N° we have
R*¢(2) + /(2w + N(z°)30. 3.7)

Also as f* > 0 and the vectors z + (8% 'w* = 7, zF — (%)~ 'wF = Z are elements
of K, we get, from (2.1) and (3.5),

{(W", 0@ = f<" — Z,9(2)> 2 0,

_<Wk’ (p(Zk)> — ﬂk(z _ Zk, QD(Zk)> > ﬁk<2 = Zk, 5k> 0. (38)

As z¥ - Z, o(z") - @(2). This, (3.8), and w* — w imply

(w, 9(2)) = 0. (3.9)

Now, as K is a polyhedron, Z + ew is in K for ¢ > 0 small enough. Let
us check that N(Z + ew) o N(z%. It is sufficient to check that any linear in-
equality constraint defining K that is active at z° is also active at Z + ew. Here
we say that a constraint (g, z) < b is active at z if {a, z) = b. Extracting again if
necessary a subsequence we may assume that the set of active constraints is the
same for all {z*}. Then for the subsequence considered here we have <{a, z*) = b,
hence {(a,Z)=b and <{a,w*) =0, from which <{a,w) =0, and finally
{a, Z + ew) = b. This proves that N(Z + ew) > N(z°). This and (3.7) (multiplied by
¢ > 0) imply

R*@(Z) + e@'(Z)w + N(Z + ew)20. (3.10)

Also, for ¢ >0 small enough and as K is a polyhedron, N(Z + gw)j < N(2).
This, (3.9), (3.10), and the fact that z=Zz 4+ ew is in K give a contradiction
to {c). M

Remark 3.2. The proof of
{Z is semistable} = (a) = (b) = (c)

does not use the fact that K is polyhedral.
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4. Extension of the Theory to Nonsmooth Data

Although we are mainly interested in this paper by finite-dimensional variational
inequalities with smooth data we give here a partial extension of the previous
results to problems in a Hilbert space with nonsmooth data. Let X be a closed
convex subset of a Hilbert space Z, let N{z) be the cone of outward normals to
K at z, and let ¢ be a mapping from Z into itself. In order to define an extension
of Algorithm 1 for the problem

@(z) + N(z)30, 4.1)
we use a concept of point-based approximation (PBA) close to the one of Robinson

[23].

Definition 4.1. Wesay that y: Z x Z — Z is a PBA to ¢ if, for any two sequences
{¥*}, {z*} converging to the same point, the following holds:

lo(y*) = i, YOI < r(y%, 25, (4.2)
with r(y*, 25)/[ly* — 2| - 0.

Here y/(z*, -) can be seen as a generalization of the linearization of ¢ at z* (see
Remark 4.1 below). We now define a somewhat abstract Newton-type method as
the following algorithm:

Algorithm 2

0. Choose z°€ Z; k « 0.
1. While z* does not satisfy (4.1): choose a mapping Z*: Z — Z, an approxima-
tion of ¥(z*, -). Compute the z**! solution of

BHZA Y + N(Z* s 0. (4.3)
We define semistability as in Section 2.
Theorem 4.1. If {z*} computed by Algorithm 2 converges toward a semistable

solution z of (4.1), then:
() If (¥, 21 — BN 1) = o2+t — 2%, then {z*} converges superlinearly.
@) If w(Z*, 25 Y — BMZ* Y = O(||2F T — Z4|?) and, for some ¢, > 0 and all
(y, 2) close enough to Z, the function r in (4.2) satisfies 1y, z) < ¢, |y — z||%,
then {x*} converges quadratically.
Proof. Writing step (4.3) as
I/I(Zk, Zk+ 1) -+ N(Zk+ 1) 5 l,b(Zk, Zk+ 1) _ Ek(2k+ 1)
and using (4.2), we deduce that
(p(Zk+1) + N(Zk+ 1)3 lp(Zk, zk+ 1) _ Ek(zk+ 1) + O(Zk+1 — Zk).
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k1o k+1

In case (i) it follows from semistability that z Z=o(z z%), hence z*
converges superlinearly. In case (i) we similarly obtain z#*1 — 7 = O(||z**! — Z|?),
which implies the quadratic convergence. O

Remark 4.1. Theorem 4.1 can be seen as an extension of Theorem 2.1. Indeed,
if ¢ is continuously differentiable and

WE ) = o) + ¢ - 2
FH ) = () + M~ 2
for some q x q matrix M*, then
{//(Zk’ K+ 1) _ Ek(zk+ 1) - (‘P,(Zk) _ Mk)(zk“ _ Zk)
= (¢'@) — MY — 24 + o+t — 29,

hence point (i) of Theorem 4.1 reduces to point (i) of Theorem 2.1. Similarly, if ¢’
is locally Lipschitz we have

(@) — MY = 25 = (¢'(2) — M) — 25 + Oz — 2] 271 — 2|,

the last term being O(||z**! — 2*|)? as ||zF"! — Z¥|/||z* — Z|| = 1 because of the
superlinear convergence, hence point (i) of Theorem 4.1 reduces to point (ii) of
Theorem 2.1.

We define the directional derivatives ¢'(-, ) of ¢ as the limit
o1

9'(z, d):=lim — [¢(z + od) — ¢(2)].
20 a

We state in Theorem 4.2 below an extension of Theorem 3.1. Theorem 4.2 applies
to B-differentiable mappings (here B stands for Bouligand), as defined by Robinson
[22], ie., mappings having the following property: ¢ is locally Lipschitz, has
directional derivatives, and d — ¢'(x, d) is Lipschitz. Then it is known that (for
given x) o(x + d) = ¢(x) + ¢'(x, d) + o(d) (see also [24]).

Theorem 4.2. Assume that Z = R, ¢ is a B-differentiable mapping, K is polyhedral,
and Z is a solution of (4.1). Then % is semistable iff one of the following hypotheses
holds:

(a) Z is an isolated solution of the linearization at Z of (4.1) defined as follows:
@(2) + ¢'(Z, z — 2) + N(z)30.

(b) We have {z — Z, ¢'(Z, z — 2)y > O for all z different to the Z solution of
{o(d),z —2) =0,
o(2)+ ¢'(Z, z — 2) + N(2) 2 0.
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{c} The relation below has no solution other than z:
N(z) = N(2),
{9(2), z = 2) =0,
afZ) + ¢'(Z, z — Z) + N(z})20  for some o =0.

The proof is the same as that of Theorem 3.1, replacing first-order variations
by directional derivatives.

5. Convergence Analysis for Some Structured Variational Inequalities

We now specialize our study to a particular case of variational inequalities. In the
next section we apply the results of this section to nonlinear programming
problems. Let F, g be smooth (resp. C! and C?) mappings: R" - R” and R" — R?,
respectively. Let I, J be a partition of {1, ..., p}. By g(x) < 0 we mean

gdx) <0, Viel,
gix) = 0, Vield.
We now consider the system (in which A e R?)

{F () + g'(x)* A =0,

5.1
g(x) < 0, Ar =0, Agix) =0, Viel G0

As observed in [23] we may embed (5.1) into (2.1) in the following way. Put
=p + p, z:= (x, ), and

ol 1) = (F(x) + g’(x)*&)’
—g(x)
K,={AeRr, 1, >0}, K:=R'xK,,
so that K is polyhedral and
N(x, 2) = {0} x Ny(4),

with N (%) the normal cone (or cone of outwards normals) to K at A, ie,

& if Ais not in K, otherwise

Ny() =
e {{liER";H1=0;u;gO;ui=0ifli>0,VieI}.

The corresponding variational inequality can be written in the following way:

{F () + g (x)*4 =0,

—g(x) + N{(1)20. (5.2)
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Let us denote

H(x, 2):= F'(x) + i 2 V2g4x).

i=1

Then we have

, _(Hx, ) gx)*

¢'(x, i)a(_g,(x) 0 ) (5.3)
and

Ly W, @'(x, Yy, Wy =<y, Hix, Hy). (5.4)

Taking (5.2), (5.3), and Theorem 3.1 into account, we see that the semistability
for (5.2) (expressed at some point of the (X, 4) solution of (5.2)) can be stated as

I's

§ u)_= 0 isanisolated solution of
{H(i, Ay + g (Xy*u =0, (5.51)
g(x) + g'(x)ye N (4 + p). (5.5ii)

Foranyl < IbyzéOwcmeanz,=Oandz,-sOforalliinT.Letusdeﬁnc
I'={iel; g(%) = 0},

I":={iel; 1,> 0},

°:=T~1"={iel; ,=0},

I*:=Jul".

It may be convenient to define the so-called “critical cone” {or cone of critical
directions):

C={yeR" gy &0; gj-(®)y = 0}.

Proposition 5.1. Semistability of (5.2) is equivalent to

(y, ) = 0 is the unique solution of

H(% Ay + ¢(@*u =0, (5.6i)
yeC, up=0; =0 if g(X)<0, Viel; wg(Xy=0, Viel’
(5.6i1)

Proof. We have to prove the equivalence of (5.5) and (5.6). The set of solutions
of (5.6i-i1) is a cone. Hence it is equivalent to state that (y, u) = 0 is the unique
solution of (5.6i-ii) or to state that (y, u) = 0 is an isolated solution of (5.6i-ii)).
Now it is sufficient to prove the equivalence of (5.5ii) and (5.61i) when (y, y} is
small enough. If y is sufficiently close to zero and i€ ", then 4; + y; > 0, hence,
by (5.5ii), g{%x)y = 0. On the other hand if (5.511) holds, up must be nonnegative
and g, >0 for some iel, implies g(X)y =0. Also if g(X) <0, then g(x)+
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gi{(x)y < 0 for y sufficiently close to 0. For that reason (5.5ii) is equivalent {when
(y, w) is small enough) to

{g;(ic)y =0, viel™,
gRy <0, 1,20, pgXy=0, Viel’,
=0 if g(x) <0,

and this is easily shown to be equivalent to (5.6ii). [

Let us now consider Newton’s method applied to {5.2). The subproblem to
be solved at step k is, denoting by 4* the increment in x, ie., d* = x**1 — x*,
F(x") + H(x*, A9d* + g/ (x¥*2**1 = 0,
g0x") + g'(x")d* e N,(A*1).
As the evaluation of ¢'(x*) is already necessary in order to evaluate p(x*, i*) the

only part of the Jacobian that perhaps needs to be approximated is H(x*, i*). We
then obtain the Newton-type algorithm:

Algorithm 3

0. Choose {x°, A% e R" x R?; k « 0.
1. While (x*, 2% is not a solution of (5.2): choose M*, an n x n matrix, compute
the (d*, 2**1) solution of

F(Xk) + Mkdk + g’(x")*ik“ — 0,
g(x) + g'(x")d e N,(2*17),

and put x** 1« x* + g~

When M* = H(x*, 1¥), by applying Coroliary 2.1 and Proposition 5.1, we easily
obtain

Theorem 5.1 (Convergence of Newton’s Method). Let {x*, 1*} be computed by
Algorithm 3 with M* = H(x*, J¥) converging toward (%, /) satisfying {5.2) and (5.6).
If x-(F(x),g(x)) is C* (resp. C* with a locally Lipschitz derivative), then
(x*, A% — (%, A) superlinearly (resp. at a quadratic rate).

We now consider conditions related to the superlinear convergence of {x*}
alone. We are looking for necessary and/or sufficient conditions of the following
type: at each interation k we define

EF is a closed convex subset of R,
P*is an orthogonal projection onto EF,
hE = PH(H(X, 1) — M¥)d"].

The condition will be

W = o(d"). (5.7
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As a particular case of our results we recover the characterization of Boggs et al.
[3] concerning equality-constrained nonlinear programming problems, and we are
able to extend the characterization to variational inequalities satisfying the
assumption

dH(%, 1)d > 0 for all d in C — {0}. (5.8)

All our results, however, need the following qualification hypothesis (linear
independence of the gradients of active constraints):

{Vg{X)};cros surjective. (5.9)

On the other hand we do not need any strict complementary hypothesis.

Theorem 5.2. We assume x — (F(x), g'(x)) to be C*. Let {(x*, 1*)} be computed by
Algorithm 3 converging toward (%, A), the semistable solution of (5.2) satisfying (5.9).
Then:

(i) Condition (5.7) is sufficient for superlinear convergence when E* is defined as
E% := {d e ker gi{x"); gi(x")d > 0, Yie I such that g{(x*) + gi(x*)d* = 0}.

(i) Condition (5.7) is necessary, and also sufficient, for superlinear convergence
if, in addition, (5.8) holds, when E* is defined as

Ef := {d e ker gin(x*); gp(x*)d < 0}.

Remark 5.1. If the strict complementarity hypothesis holds, ie., I° = ¢J, then
E% = E% = ker g7(x*) and with this choice of E*, condition (5.7) is necessary and
sufficient for superlinear convergence of {x*}, under the hypotheses of the semi-
stability of (%, 1).

Proof of Theorem 5.2. (a) Preliminaries. Writing the Kuhun—Tucker conditions
for the projection problem defining A* we get the existence of #* € R? satisfying

B — [H(x, X) — M¥d* + g (xX*y*n* = 0 (5.10)
and
nt=0 if iel -1,
<0, n*=0  foralliin I°suchthat g(x") + gi(x"d* <0, if E*=E%,
>0 if E*=EL.
Subtracting the first relation defining the Newton-type step from (5.10) we get

B — F(x*) — H(x, Dd* + g'(x*@* — 171 = 0. (5.11)
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Expanding F(x¥) up to first order and taking (5.2) in account we have
—F(x¥ = —F(X) — F(X)(x* — %) + o(x* — %)
= g'(X)*] — F(R)x* — %) + o(x* — %)
= g'(x"*A — H(%, D(x* — %) + o(x* — %),
hence, with (5.11),
B — H(%, Dx* + d° — %) + g (O + 7 — Y = o(x* — %), (5.12)
Let us define
8= IHE) + [1x* — %] + "]l

Then (6%~ '(h*, x* + d* — %, 2¥** — y* — }) is bounded, the boundedness of the
third term being a consequence of (5.9) and (5.12). Let (h, z, {) be a limit-point of
this sequence, i.e., a limit for a subsequence ke S = N. Then {; =0 ifie] — I and
from (5.12) we deduce that

h— H(x, Az — g'(x)*{ = 0. {5.13)
Also, expanding g as follows,
g0} + ¢ = g(3) + g D" + d* — 3) + olx* ~ %),

we deduce from the fact that d* is a Newton-type step associated with a multiplier
A+ that

g3z <0,
g(®z=0 if iel issuchthat A#*'>0 forall keS {5.14)
(which is the case if 4, > 0, ie, iel™).
The above relations imply
zeC. {5.15)
We also have, from the definition of A,
gr(Xh =0, (5.16)
heC  when E*=Ek. (5.17)

(b) Proof of case (i). If h* = o(d*), then a fortiori h = 0. With (5.13) we deduce
that

H(%, )z + g/(X)*( = 0. (5.18)

If i e I is such that gi(X)z < 0, then g{x*) + gi(x")d* < 0, #* =0, and 4¥"* =0 for
k in § large enough, hence {; = 0. This implies

{943z =0 for all i in IC.
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However, this with the fact that {; > 0 (due to 7% < 0), (5.15), (5.18), and (5.6)
imply z =0, ie,

X — 3 = o(| ¥ + [Ix* — x| + [1d*]).
This and (5.7) imply

X — % = o(x* — & + [T = xE[) = ol x* — %l + X~ ),
which implies x**! — % = o(x* — X), ie., x* converges superlinearly.

(¢) Proof of case (ii). If x* converges superlinearly, then z = 0. Computing the
scalar product of (5.13) by h we get

112 = <G g(®)h>.
k+1

Using (5.17), the nonnegativity of A% !, and the complementarity condition
nkgi(x¥h* = 0, for i in I°, we deduce that the right-hand side of the above relation
is nonpositive; hence h = 0, ie.,

W= o(lHH]| + lIx* — X + l1d*]),

which implies i* = o(|jx* — x|| + ||d*|). However, the superlinear convergence of
{x*} implies [[d*|/||x* — x|| - 1, hence (5.7) holds.

We now prove that if (5.7) and (5.8) hold, {x*} converges superlinearly. As
(5.7) implies h = 0, computing the scalar product of (5.13) with z we get

(z, H(X, Dzy + <C, g(®)z) = 0. (5.19)

As zeC, gi(%)z = 0if A¥*? # 0, and #% > 0, the second term of (5.19) is nonnega-
tive. This and (5.8) imply that z = 0, i,

XML — % = o[ R¥]l + | x* — x|l + [ld*]).

Using (5.7) and the relation ||d*|| < {|x**! — %| + ||x* — %] we deduce that
X — 5= offlx* — X[ + [x*T1 — %),

which implies the superlinear convergence of {x*}. O
With the help of Theorem 5.2 we may obtain the superlinear convergence of

{x*} when M" is updated using ideas of quasi-Newton algorithms. We define the
quasi-Newton equation (for M**1) as follows:

MY — xb) = F(e*1) — FO) + [/ 1) — g (A (520

We assume that a closed convex subset # of the space of n x n matrices exists
such that

H(x, e, Y(x, ) e R" x R?, (5.21)
and we choose the M**! solution of
min|M — M¥|.; Mex, M satisfies (5.20), (5.22)

where as before ||, is a norm associated to a sclar product.
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Lemma 5.1. Under the hypotheses of Theorem 5.2, if M**! satisfies (5.20) and
{Mk+1 . Mk)(xk+1 _ xk) - O(Xk+1 - xk)’ {5.23)

then {x*} converges superlinearly.

Proof. As M**! satisfies (5.20) we have

Mk+1(xk+1 _ xk) — F(xk-)-l) = F(xk) + (g/(xk+ 1) _ gr(xk))*z
+{g () = g = D)
= H(X, ) — x5 + o(F*+1 — xH).

Hence if M**! satisfies (5.20), and (5.23) holds, then
(H(X, 2) — MB(xFT — xF) = o(x**1 — x¥).

Now let #* be the projection of (H(%, 1) — M¥)(x**' — x* onto EX. As £ is a cone,
and the projector operator is nonexpansive we obtain

1B < WCH(E, &) — MR(xXFTE — xR)| = o(x** — xF).

This and Theorem 5.2 (case (i)) imply the conclusion. |

Theorem 5.3. Let (X, 1) be a semistable and hemistable solution of (5.1). Then & > 0
exists such that if |x° —%| + |M® — H(%, A)| . <e, then at each step k, a
(x**1 2¥* 1) solution of the Newton-type step satisfying ||x*** — x¥|| < 2e exists.
The sequence {x*} defined in this way converges superlinearly toward %.

Proof. Define
Ski= {M e i"; M satisfies (5.20)},

1
A= j H(x* + o(x**t — xb), 1**1) do.

[

Then A* is an element of S* and, for some ¢; > 0,

| 4* — H(%, Dl 4 < ¥, (5.24)
with

A P R A I Vi
As M**! is the projection of M* onto S*, we have, from [12],

MM — MM+ IMET - ARG < | ME - AR, {5.25)
hence with (5.24)

[METY — HZ, Dy < IM* ~ HE, Dl 4 + 20" {5.26)
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As a consequence the approximation of the Jacobian at step k is

Mk:=<Mk g’(x")*>
geH 0

and approximates
_ (H(% 1) g@*
M-——( (,X_ ) 9 )
g'(x) 0

We define a new norm as follows. To

- My, M12>
M:=
(M’fz 0

is associated
“Mus’: Myl + 1M 5]

with ||-| an arbitrary norm. From (5.26) we deduce that, for some ¢, > 0,
IM*TY — Mg < |M* — M5 + ¢,".

Applying Lemma 2.2 (for which we may assume that 1° = 1) we deduce that if
(x°, M) is close enough to (%, H(X, ), then (x*, 1) is well defined and converges
linearly to (%, 2) and that || M* — M ||s converges. This implies that || M* — H(X, J)| ,
converges. As A* — H(%, 1), [M*** — 4*|, and || M* — 4*|, converge to the same
limit, and with (5.25) this implies |M**! — M*| — 0. The conclusion is then a
consequence of Lemma 35.1. N

6. Application to Nonlinear Programming

In this section we particularize some of our results to nonlinear programming
problems, and we see that it allows us to get some improvements with respect to
known results. By a nonlinear programming problem we mean

min f(x);  g(x) <0, (6.1)

where f is a smooth mapping R" — R, and g as well as the relation “<” are as
in Section 5. Let us recall some well-known facts of optimization theory (see, e.g.,
[10]). To problem (6.1) is associated the first-order optimality system

{Vf () +g(x)*A =0,

6.2
g(x) < 05 /11 = 0, ltg(x) = 0, ( )

which is formally equivalent to (5.1) if we define F(x):= Vf{(x). In this case the
mapping H(x, 1) can be interpreted as the Hessian with respect to x of the
Lagrangean L(x, A):= f(x) + A'g(x). We say that 1 is a Lagrange multiplier
associated with x if (x, 4) satisfies (6.2). We recall the results involving second-order
conditions with a unique multiplier.
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Proposition 6.1 (see, e.g., [1]).

(i) (Second-order necessary condition.) Let X be a local solution of (6.1} to which
a unique multiplier A is associated. Then d'H(%, A)d =0 for all critical
directions d.

(i) (Second-order sufficiency condition.) Let (%, ) satisfying (6.2) be such that

d'H(%, 2)d > 0 for all nonzero critical directions d. Then % is a local solution

of (6.1).

We now make the link between semistability and the second-order sufficiency
condition.

Proposition 6.2. Let (X, ;}) be an isolated solution of (6.2) such that X is a local
solution of (6.1). Then (X, 1) is semistable iff it satisfies the second-order sufficiency
condition.

Proof. Characterization (3.2) of semistability applied to the variational inequality
in form (5.1), and using (5.4), gives

{d, HZ, Dd> >0  forall (d,u)#0 the solution of

Ap+pup =0,

H(X, 2)d + ¢'(%)*u = 0,

g& (e — 1) =0,

g(%) + g'(x)d e N1(4),

the last relation implying that d is critical. Hence the second-order sufficiency
optimality condition implies semistability. Conversely, let us assume that the
second-order sufficiency condition does not hold. By Proposition 6.1 a critical
direction d # 0 exists with d'H(X, 2)d = 0, and d is a solution of the quadratic
homogeneous problem

min d'H(Z, 1)d; deC,
where the critical cone is
Ci={d; ¢(%)d & 0; g(x)d = 0if 4, >0, Viel},

Writing the optimality system of this problem, we find that a muitiplier y is
associated to d such that (d, u) satisfies (5.61-ii). By Proposition 5.1 this contradicts
semistability. ]

Proposition 6.3. Let (X, }:) be a semistable solution of (6.2) such that % is a local
solution of (6.1). Then (X%, A} is hemistable.

Proof. Semistability implies the uniqueness of the multiplier, hence aiso the
hypothesis of Mangasarian and Fromovitz {17]. By Proposition 6.2 the second-



Local Analysis of Newton-Type Methods 185

order sufficiency condition also holds for problem (6.1) at (%, A). Let us consider the
following problem:

min V(x)d + 3d'H(x, Dd;  g(X) + g'(%)d < 0. (6.3)
d

Obviously d = 0 satisfies the first-order optimality condition associated with the
unique multiplier A. Also d = 0 satisfies the second-order sufficiency condition
{their formulation for (6.3) at (d = 0, 1) coincides with the one for (6.1) at (X, ).
Hence if we make small perturbations in the data of this problem, then a local
solution exists whose distance to d = 0 is of the order of the perturbation (see,
e.g., Theorem 4.1 of [207). Hence hemistability holds. ]

From Theorem 2.2 and Proposition 6.3 we deduce

Theorem 6.1. Assume that f and g are C* with Lipschitz second derivatives, % is
a local solution of (6.1), A is the unique Lagrange multiplier associated with X,
and the second-order sufficiency condition holds. Then ¢ > 0 exists such that if
1x° — x| + 1A% — 2] <& and (x**1, ¥ 1) is chosen so that

X550 — XE| 4 AT — A < 2,

then Algorithm 3 with M* = H(x*, 1¥), i.e., Newton's method, is well defined and
converges at a quadratic rate to (X, A).

Remark 6.1. That Newton’s method converges at a quadratic rate when the
starting point is close to a solution (X, 1) of (6.2), assuming x is a local solution of
(6.1), the gradients of active constraints linearly independent, and strict comple-
mentarity, is well known. Recently the author [4] relaxed the strict complementar-
ity hypothesis. Here we improve the result of [4] by assuming that the multiplier is
unique instead of the linear independence of the gradients of active constraints.

We now apply the results of Section 5 on the superlinear convergence of {x*}
only. From Theorem 5.2 and the fact that condition (5.8) coincides with the
second-order sufficient condition, we get:

Theorem 6.2. Let X be a local solution of (6.1) such that the gradients of active
constraints are linearly independent, let 4 be a multiplier associated with %, and let
the second-order sufficient condition hold. If (x*, %) computed by Algorithm 3
converges to (X, ), then {x*} converges superlinearly iff

PH(H(, 4) — MMd*] = ofd"),

with the P* orthogonal projection on the set E% defined as in Theorem 5.2.

Remark 6.2. If no inequality constraint is present, T heorem 6.2 reduces to a
theorem of Boggs et al. [3]. Some necessary or sufficient conditions (but not the
characterization given here) for problems with equalities and inequalities, without
strict complementarity have been given by the author in [4].
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