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A b s t r a c t  The design of laminated structures is highly tai- 
lorable owing to the large number of available design variables, 
thereby requiring an optimization method for effective design. 
Furthermore, in practice, the design problem translates to a dis- 
crete global optimization problem which requires a robust opti- 
mization method such as the genetic algorithm. In this paper, 
the genetic algorithm, based on the real variable coding, is ap- 
plied to the strain energy minimization of rectangular laminated 
composite plates. The results for both a point load and uniformly 
distributed load compare well with those achieved using trajectory 
methods for continuous global optimization. 

1 I n t r o d u c t i o n  

The design of laminated plates is highly tailorable due to the 
large selection of variables introduced by the constitution of 
the laminated composite. These include, different types of 
fiber and matrix combinations, layer thickness, layer number 
and fiber orientation. Due to the design complexity, designers 
have resorted to optimization methods to achieve best designs 
(Haftka and Gfirdal 1992). 

As a complicating factor, studies of the laminated com- 
posite design functions have revealed the presence of multiple 
optima due to harmonic functions included in the formula- 
tion (Haftka and Giirdal 1992). To find the global optimum 
design, a number of optimization approaches have been de- 
veloped in recent years. These methods can be broadly di- 
vided into two categories namely, deterministic and stochas- 
tic methods. A summary of the methods is presented by 
Arora et al. (1995) who emphasize that it is necessary to se- 
lect an optimization method according to the characteristics 
of the specific problem and the results desired. This could 
include the nature of the design variables (discrete or contin- 
uous or a combination of both), the nature of the objective 
function (could be nondifferentiable), or the nature of the 
desired result (all or several of the local minima could be re- 
quired). A stochastic random multistart global optimization 
method used in the present paper for comparison is based 
on a trajectory approach and has been applied to minimize 
the strain energy for laminated plates by Kam and Snyman 
(1991) and shells modelled in finite elements by Groenwold 
el al. (1996). 

A factor to be considered is that some of the variables such 
as the ply thicknesses and orientation angles may be discrete 

in which case the design problem translates to a discrete pro- 
gramming problem. Well-known methods used to solve dis- 
crete programming problems include the genetic algorithm 
(GA) (De Jong 1975), a stochastic search method and im- 
plicit enumeration procedure, and the simulated annealing 
method (Kirkpatrick et al. 1983), which is a random method. 
An advantage of these methods above gradient-based meth- 
ods is that they do not require continuity or differentiability 
of the objective function. 

Genetic algorithms date back about two decades to the 
research of De ]ong (1975) and Holland (1975) in the area 
of genetic and adaptive systems. Since then, the method 
they proposed has been used in a variety of fields [summa- 
rized by Goldberg (1989)] such as biology, computer science 
and social sciences. More recently, genetic Mgorithms were 
introduced in engineering design. These algorithms present 
alternative methods for optimization with the advantages of 
being able to solve nonlinear and nonconvex design problems, 
as is discussed by Hajela and Shieh (1990). The development 
has greatly extended discrete engineering design capabilities, 
in particular for the design of laminated composite materials, 
see e.g. Haftka and Gfirdal (1992), Hajela and Shih (1989), Le 
Riche and Haftka (1993), Nagendra et al. (1993) and Sore- 
mekun et al. (1996). As most of these references relate to 
aircraft design, a typical problem addressed is that of lami- 
nated panel buckling. Following the work of Galante (1996), 
Groenwold et al (1997) applied the GA to discrete truss sizing 
by applying it in the region of the continuous optimum. 

The current discussion deals with the implementation of 
the GA to solve the discrete programming laminated plate 
problem. The optimization problem is formulated as the min- 
imization of the bending strain energy in the plate while being 
subjected to either a central point or uniformly distributed 
load. The results are compared to the results obtained using 
the above-mentioned trajectory method for continuous global 
optimization as presented by Kam and Snyman (1991) and 
Groenwold et al. (1996). 

2 P r e l i m i n a r y  examples  

To emphasize the importance of the selection of a suitable op- 
timization method the following two-dimensional examples 
will be solved by using the GA and the BFGS (Broyden- 
Fletcher-Goldfarb-Shanno) (Press e~ al 1988) variable met- 
ric unconstrained optimization methods, respectively. Three 
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functions with diverse characteristics are chosen for the in- 
vestigation and are listed in Table 1 and depicted in Figs. 1, 
2 and 3. Funct ion f l  is minimized while functions f2 and 
f3 are maximized. The symbols for the GA are defined as 
follows: n is the populat ion size, Inc is the increment size 
between two adjacent discrete values, CI is the number  of 
convergence i terations and MI is the maximum number of 
iterations that  the algorithm may execute. The symbols in 
Table 2 are defined as follows: (Xopt, Yopt) is the optimal so- 
lution to the function, fopt is the optimal function value, FE 
is the number  of function evaluations executed to obtain the 
opt imum, DE is the number  of function gradient evaluations 
executed, ITER is the number  of times the algorithm was 
executed and MAX FE is the maximum number  of combi- 
nations of discrete values in the design space for the GA. 
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~0 function was maximized using the GA with its parameters set 
20 to: n = 20, Inc = 0.001024, CI = 100 and MI --- 1000. The 
lo results are listed in Table 2. 
0 By considering function f3 depicted in Fig. 3 it is evident 

s that  the function is highly mult imodal  with a large number  
of local maxima/min ima.  A gradient-based method such as 

-s a trajectory method (see e.g. Arora 1995) can be used to 
optimize this function. On the other hand,  a GA could be 

s -s used but  then only an approximate solution in the vicinity 

Fig. 1. Function fa 

The first example is represented by a continuous, uni- 
modal function. The GA data  is assumed to be n = 20, 
Inc -- 0.001024, CI = 100 and MI = 1000. For the BFGS 
method the star t ing vector is chosen to be (4, 5.12). The re- 
sults obtained by the two optimizat ion methods for function 
f l  are listed in Table 2. Function f l  has a min imum of 0.0 
at (0, 0). 

Considering function f2 depicted in Fig. 2, it is evident 
that  gradient calculations are not  possible and it is thus im- 
perative to use a method based on response values only. This 

of the global opt imum will be found since it uses discrete 
values. It is thus conceivable tha t  the GA could be used 
to find a start ing vector near the global op t imum for the 
gradient-based method. This concept was followed with the 
GA parameters set to: n = 20, Incz = 0.0151, Incy = 
0.0017, CI = 100 and MI = 1000. The s tar t ing vector for 
the BFGS method was found to be (11.6319,5.7252). The 
final results are listed in Table 2. 

Table 2 shows that  the gradient-based solution is more 
accurate since it uses continuous functions. The total  number 
of function evaluations for the hybrid method (f3) was 1920+ 
67 = 1987, which by comparison with that  of function f l  for 
the GA is very small. 

In conclusion, the GA performance seems to favour the 
highly mult imodal  functions, therefore confirming the results 
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Table 2. Optimization results for functions f l ,  f2 and f3 

Function Algorithm Xop t Yopt fopt FE DE I T E R  M A X  FE 

f l  GA -0.002048 -0.031744 0.001 4420 - 221 1 • 108 

BFGS 0.0 0.0 0.0 31 2 2 - 

f2 GA 5.12 5.03706 10 160 - 8 1 • 108 

BFGS . . . . . . .  

f3 GA 11.6319 5.7252 38.8129 1920 - 96 1 • 106 

BFGS 11.625556 5.72504 38.8503 +67 3 3 - 

Table 3. Refined solutions for the central point load of GA with N = 25 

b/a = 1 b/a = 2 

NL Design if) FE Design t~ FE 

4 [ - 4 5 / 4 ~ 8  1.915 180 [ -10 /5~S  4.757 40 

8 [ 4 5 / -  453] S 1.513 2820 [-25/30/35/30]S 4.304 2080 

16 [ 4 5 / - 4 5 2 / 4 5  / - 45/ 1.505 2520 [ 3 0 / -  3 0 / 2 5 / -  25/ 4.285 2960 

45/20/1518 - 3 5 / - 2 5 / -  5 / -  25]S 

of Le Riche and Haftka (1993). Due to its discrete nature, it 
is however not as accurate as the gradient-based methods. 

3 Gene t i c  a l g o r i t h m  

The GA is based on the natural phenomena and processes 
that occur among individuals of populations in species in 
their strive to progress or survive in their natural environ- 
ment or objective. This method selects the better designs 
according to the feedback obtained from the objective func- 
tion evaluations. 

The natural phenomena simulated by the GA are imple- 
mented as genetic operators which process a set of design 
alternatives (or population) during each consecutive gener- 
ation. The operators consist of three standard processes 
namely reproduction (natural objective selection), mating 
(crossover) and mutation (Goldberg 1985; and Michalewicz 
1992). The reproduction process chooses some of the de- 
sign vectors (chromosomes) according to their objective func- 
tion performance as future candidates to produce offspring. 
The mating process exchanges design variable (gene) infor- 
mation between two of the selected design vectors and thus 
constructs two new design vectors. The mutation process al- 
ters the design vectors by randomly substituting some of the 
variables in the vector and thus provides a mechanism which 
not only explores the design space but also inherits some of 
the information of the previous design vectors. 

3.1 Coding of design variables 

The three processes of the GA operate at the unit (gene) level 
of a string of units (chromosome) and in order to represent 
a specific design variable value, which could be a real num- 
ber or an integer, as a string of units, the value has to be 
transformed to another alphabet. Alternatively, if the design 
vector is long and the design space small, the transformation 
is not necessary since the design vector will comply with the 
schema theory discussed by Goldberg (1985) and Michalewicz 
(1992). This coding method is referred to as the real variable 
coding. 

3.1.1 Linear discrete coding. The phrase linear refers to a 
constant increment between consecutive values and the dis- 
crete coding to the discrete nature of the values. The values 
could be decimal integers, fractions or a combination of both. 
Decimal integers are coded as binary strings by using a divi- 
sion by 2 and a multiplication of the rest by 2 to either yield 
a 0 or a 1. Decimal fractions are coded with a linear mapping 
transformation. It is important that all the possible discrete 
values are represented by a unique character or value in the 
coded set. 

The maximum number of values representable by using 
an alphabet k of cardinality (number of characters) x and 
w ith string length ~ is x and thus for different alphabets is 
nc : Xl ~1 .x2 s .x3 s lm where x 1 to Xm are m alphabets 
with m different eardinalities x i. The most basic represen- 
tation is where the discrete set is the coding alphabet. This 
representation exactly matches the number of values in the 
discrete set whereas other representations sometimes do not. 
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If the design space for a specific variable is a continuous in- 
terval in which the increment size between discrete values can 
be selected, then it is convenient to introduce the resolution 
factor ~r = (Umax-  U m i n ) ( n c -  1), where Umax and Umi n 
are the upper and lower limits on the interval, respectively. 
It is used in the decoding of the coded values (after optimiza- 
tion) to the real values using the linear mapping as follows: 
real value = 7r. decimal (binary string) +Umi n. For example, 
if Umi n = 3 and Umax = 78 and g = 4 and if a binary coding 
is used, ~r = (78 - 3)/(24 - 1) = 5, and if it is assumed that 
the binary string [1010] was obtained, then the real value is 
computed to be 5. decimal (1010) +3 = 53. Another pos- 
sible example is, say that Umi n -- 1.74 and Umax = 2.25 
and g = 8 then ~r = 0.002 and assume that the binary string 
[11011100] is an optimum, then the real value = 0.002. deci- 
mal (11011100) +1.74 = 2.18. 

In order to comply with the predictions of the schema 
theory, it is better to choose a coding of low cardinality but 
as was pointed out above it is not always possible to map the 
exact number of values in the discrete set (having no redun- 
dant coded strings). Examples of coding methods different 
from the binary coding implementations are discussed by Le 
l%iche and Haftka (1993), Nagendra et al. (1993), Soremekun 
et al. (1996), Kogiso et al. (1994) and Ponslet et al (1993). 

3.1.2 Random discrete coding. The phrase random refers to 
the random nature of the values inside the discrete set. There 
exists no relation between consecutive values in the discrete 
Set. If the discrete set is small, it is easy to use a low cardinal- 
ity coding which would represent the set of random discrete 
values, for example as 0 = [00], +45 = [01], -45  = [10] and 
90 = [11] (Le Riche and Haftka 1993; Soremekun et al 1996). 

3.1.3 Multivariate coding. If the objective function is a mul- 
tivariate function, as for example the strain energy in a lam- 
inated plate with respect to its fiber orientations, then the 
design vector can be represented by a concatenation of the 
different or same coding in the fiber orientation of each layer. 
For example, if the design vector is a three-dimensional vec- 
tor with decimal values as A = [25,5, 10], then if the same 
coding is used for each variable with g = 5, the binary coded 
concatenated vector will be A = [11001,00101,01010] and 
for processing purposes the vector (chromosome) becomes 
A = [110010010101010]. 

For the present discussion it will be assumed that all the 
laminae are of the same material and have the same num- 
ber of possible discrete fiber orientations. Thus one discrete 
set will be used for all the laminae. Since laminated prob- 
lems sometimes incorporate a large number of layers it is 
convenient to use the real variable coding method. A typi- 
cal 6 layer design vector for a symmetric layup is thus rep- 
resented as A = [80,-25,40,40~-25,80] as equivalent to 
[so / -  2 /4o]s. 

3.2 Reproduction process 

The reproduction process resembles an evaluation and selec- 
tion process in natural systems. The implementation of this 
process consists of five events namely the function evaluation 

of each individual design in the population, the evaluation 
of the total function value, the evaluation of the probability 
of selection for each design, the evaluation of the cumulative 
probability for each design (which all have to add up to unity) 
and the random selection itself. 

The cumulative probability divides the space [0, 1] into 
the relative contributions of the probability of selection or 
"fitness" of each design and therefore causes an above aver- 
age design to occupy an above average size fraction of the 
space. A design with an above average size fraction is more 
likely to be chosen because the random number generator is 
more likely to generate numbers within that larger fraction of 
space. The cumulative space is thus analogous to a "roulette 
wheel". The selection step is made by spinning the roulette 
wheel n times and generating a random number which is then 
traced to the cumulative space where the Corresponding de- 
sign is located. The selected designs are copied to a new 
population of size n. 

It is thus conceivable that the number of above average 
designs will grow exponentially, average designs will stay the 
same and below average designs will die off. 

3.3 Crossover process 

The crossover process resembles the mating process which 
consists of the selection of suitable designs from the present 
population and the transfer of gene information between the 
selected mates. 

The crossover designs are selected proportional to the pre- 
scribed probability of crossover pc. A random number is gen- 
erated n times and if it is smaller than or equal to pc, the 
design is selected, else the design is ignored. This process 
ends up with approximately pc.  n selected designs which are 
then rounded to the nearest even number if necessary. Vari- 
ations of this implementation can be found in the work of 
Ponslet el al. (1993) and Arora et al. (1994). 

The selected designs are randomly shuffled in order to 
avoid alike designs mating with themselves, which may lead 
to a premature convergence, and to enhance the exploration 
of the design space. These designs are grouped into mating 
pairs so that each design can only mate once. The crossover is 
done by first generating a random number within the range 
of the length of the design string. The number is used to 
indicate the position of the cross-site in both mating strings. 
All the gene values from the cross-site on one side of the string 
are interchanged with those of the other string in the same 
positions. For example, if A 1 and A 2 are the parent strings 
and g -- 4, then there are 4 - 1 -- 3 possible cross-sites and, if 
it is assumed that a randomly selected cross-site is at 2, then 

A I = I  0 I 0 1, A 2 = 0  1 I 1 0, 

and if the parents are crossed at the indicated cross-site, the 
offspring become A~ and A~ as 

A =I 0 I 1 0, A =0 1 I 0 1 

For the present coding this process might be executed for a 
6 layer symmetric layup as 

A 1 = 8 0  - 2 5 1 4 0 ,  A2 = - 55  - 1 0 [  - 1 0 ,  
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to yield 

All = 80 - 25 I - 10, A~ = -55  - 10140. 

By examining the crossover process of the two coding 
methods it is evident that if the binary vector is crossed over 
inside the variable string, the decoded value after crossover 
is not going to be the same as before the crossover. In the 
real variable coding this phenomenon is not possible since 
the real value stays unaltered during crossover. This means 
that the binary crossover (and general lower order cardinality 
codings) generates new possible strings (or real values) dur- 
ing crossover and thus enhances the design space exploration. 
A method to deal with this phenomenon in real variable cod- 
ings is discussed by Ponslet et al. (1993). This method uses a 
weighted average between the values at the cross-site which 
resembles the possible change in values at the cross-site in 
the binary coding. 

3.4 Mutation process 

The purpose of the mutation process is to explore the design 
space randomly in a global manner, but at a rate that does 
not cause a large scale loss of evolved data structures. This 
is done to prevent premature convergence. In the process 
all the gene values in the population have an equal chance 
of being changed which has the effect of a random change 
in a particular design vector. The process thus consists of 
a random number being generated for each gene value (or 
character) and if this number is smaller than a prescribed 
probability of mutation pro, the value is changed randomly 
to another possible value, else it is ignored. Variations on this 
implementation can be found in the work of Huang and Arora 
(1995), Ponslet el al. (1993) and Arora et al. (1994). The 
expected number of genes (bits) or positions to be changed 
is approximately g �9 �9 n. 

3.5 Range of crossover and mutation probabilities 

Ranges for the crossover and mutation parameters of a binary 
coding are reported by Hajela (1990) to be 0.6 to 0.8 and 0.01 
to 0.02 respectively for most problems. For stacking sequence 
design, Le Riche and Haftka (1993) use a crossover value of 1 
and mutation rates up to 0.1 for a 1,2,3 coding alphabet. It is 
expected that the optimal mutation rate for the real variable 
coding will be larger than that of the binary coding because 
of the fact that a larger rate of mutation is needed for the 
real variable coding to ensure that all the characters in the 
coding alphabet enter the population information pool some 
time during the evolution process. For example, if a binary 
coding ({0, 1}) is used, the probability of occurrence for each 
character at a random call is 1/2 • 100 = 50% and thus will 
2 • 2 = 4 random calls yield a 100% probability of occurrence 
of the coding alphabet, but if a real variable coding is used 
with 37 unique characters, the probability of occurrence for 
each character at a random call will be 1/37 • 100 = 2.7% 
and thus will 37 • 37 = 1369 random calls yield a 100% 
probability of occurrence of the coding alphabet. In general, 

mutation rates are expected to be small and crossover rates 
to be relatively large. 

4 I m p l e m e n t a t i o n  of t he  G A  

Currently there exists a number of different implementations 
as discussed by Huang and Arora (1995), Goldberg (1989), 
Michalewicz (1992), Kogiso et al. (1994), Ponslet et el. (1993) 
and Arora et al. (1994). The differences include additional 
operators, different elitist methods and small variations in 
operator execution principles. The current implementation 
is based on that of Michalewicz (1992) and an algorithm is 
presented in the Appendix. 

4.1 Customizing the algorithm 

The raw algorithm consisting of the three operators alone is 
not suitable for general use. It needs to be customized for 
its specific purpose. Some additional factors that must be 
considered include the maximization or minimization of the 
problem and the convergence criterion. 

4.1.1 The cost function. Since the selection process in the re- 
production phase works relative to the largest function value, 
it is necessary to make a distinction between the maximiza- 
tion and minimization as follows. 

Maximization: It is sufficient to substitute the function value 
for the fitness value. Thus the fitness of the design string A i 
is f i  = f ( A i ) .  

Minimization: It is possible to invert the function values as 
f[  = - f i  + B + C, where B is the largest positive value from 
the set of function values and C is an offset value which in 
this case is taken as the average of the function values. Thus 
the fitness of design A i becomes f~ = - f ( A i )  + B + C and 
the relative probabilities for the calculation of the cumulative 
probabilities become p~ = ( - f i  + B + C ) / ( - F  + n ( B  + C)).  

n S Where n is the population size, F = ~-~-i=l i and f i  is the 
function value of design A i. 

4.1.2 Convergence criteria. In general the GA will converge 
to an optimum through its operations alone but will not re- 
main there since, in subsequent generations, the data struc- 
tures are disrupted by the genetic operators. It is thus neces- 
sary to implement a convergence criterion based on the rate 
of improvement of the best design. The criterion that is used 
in this exercise is based on the one proposed by Le Riche 
and Haftka (1993) which terminates if there is no further 
improvement in the optimum within a prescribed number of 
generations. 

It is also convenient to keep the best design found and to 
insert it from time to time in order to preserve the best data 
structures. 

Constraints can be implemented in the form of penalty 
functions as discussed by Michalewiez (1992), which in effect 
biases the roulette wheel towards the feasible designs. 
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Table 4. Solutions for the central point load by Groenwold et al. (1996) with N -- 25 

b/a = 1 b/a = 2 

NL Design ~ Design 

4 [ 4 5 / - 4 5 ] S  1.915 [-8.42/55.49]8 4.750 

8 [-45/453] S 1.513 [26 .54 / -  3 2 . 8 3 2 / -  32.81]S 4.298 

16 [ 4 5 / - 4 5 / 4 5 / -  455]S 1.501 [30 .27 / -  29.352/30.26/-  29.36/ 4.278 

30.35/29.76/-29.83]8 

Table 5. GA results for the uniformly distributed load with N = 7 

b/a = 1 b/a = 2 

NL Design @ FE Design ~ FE 

4 [-45/45]S 0.599 20 [0/~ S 0.865 160 

8 [ 4 5 / -  453] S 0.506 2000 [04] S 0.865 1360 

16 ~ 5 / -  4 5 2 / 4 5 / - 4 0  / 0.504 9120 [ 0 4 / -  5 / 0 2 / -  20]S 0.866 5560 
50/-45/25]S 

5 P r o b l e m  s t a t e m e n t  for  l a m i n a t e d  p l a t e  des ign  

For the present discussion the design criterion was chosen to 
be the transverse deflection of the plate. It was decided to 
minimize this deflection due to a central point and uniformly 
distributed load. Two approaches can be followed, (a) the 
deflection at a point could be minimized or (b) the strain 
energy absorbed in the plate could be minimized. In this 
case the objective function was chosen to be the strain energy. 

The optimization problem for the linear discrete coding 
method is therefore formulated as follows: 

minimize Ub(O ) = -~ ~ r f ) ~ d A ,  

A 

subject to - 90 ~ _< O k <_ +90 ~  

with 

A0 k = 5 ~ 

and 

'NL 

t= E t k '  
k=l  

Ub(O ) is the bending strain energy in the plate, O k is the 
fiber orientation of lamina k, I)  is the bending stiffness 
matrix of the laminate, ~ is the bending curvature ma- 
trix, A is the area of the plate and t is the total thickness 
of the laminate which consists of NL equally thick layers. 

The displacements are listed in normalized form as pre- 
sented by Tauchert and Adibhat la  (1984) which are calcu- 
lated as ~ = (wolOaEobt3)/(Qa 3) for the point load and 

~v = (wolO3Eot3)/(qa 4) for the uniformly distributed load. 
The symbol wo represents the actual calculated displacement, 
Eo is a stiffness magnification factor, t is the total  thickness 
of the plate, Q and q are the point and distributed loads, 
respectively, and a and b are the side lengths in the x - and 
y -  directions of the plate, respectively. 
The Rayleigh-Ritz method is employed to construct the 
structural problem where the displacement function is as- 
sumed to be approximated as follows: 

M N 
Wo(x,y)= E E a m n s i n ( m ~ r X ~ s i n ( ~ )  " (1) 

\ a / 
m=l n=l 

The boundary conditions are assumed to be free-free. 
The potential energy of the transverse loads on the plate 

can be expressed by 

Wz = / q(x, y) Wo(X, y) dA + E Qi wo(x, y), 
A J i 

where q(m,y) is the distributed load and Qi the i-th point 
load on the plate and Wo(x,y) the transverse deflection of 
the neutral plane. The total  potential energy of the elastic 
continuum can be written as 

I I  = Ub - Wz  = O. 

For the Rayleigh-Ritz method, it is necessary that  the 
derivative of the total  potential energy with respect to each 
individual coefficient aks be zero as 

0H 
--0, 

Oak l 
k - - 1 , . . . , M ; i - - 1 , . . . , N .  



The derivatives yield a system of equations which are conve- 
niently expressed in matr ix form as K a = f. Where K, a and 
f are the symmetric stiffness, weighting coefficients and force 
matrices respectively. This system of equations is solved for 
the displacement weighting coefficients which are then used 
to calculate the displacement and strain energy associated 
with the specific problem parameters. The strain energy is 
expressed as Wz = a T f. 

6 E x a m p l e  p r o b l e m s  

The example problems represent 12 plates with 4, 8 and 16 
symmetrically stacked layers subjected to either a central 
point load (CPL) or uniformly distributed load (UDL) and 
with an aspect ratio (b/a) of 1 and 2. 

Analysis parameters used are the number of Ritz har- 
monics, N = 7 and the population size for all the prob- 
lems, n = 20. The GA will start  with 8 = 0. For all cases 
the convergence iteration parameter (CI )  is set to 100 and 
the maximum iteration parameter ( M I )  to 1000. The mate- 
rial data used throughout the calculations is assumed to be 
E l l  = 1.81x 1011 Pa, E22 = 1.03x 1010 Pa, G12 = 7.17• 
Pa, ~12 = 0.28 and t k = 1.0 mm. 

Table 6. Solutions for the uniformly distributed load from Kam 
and Snyman (1991) with N = 7 

b/a = 1 

NL Design 

4 [ 4 5 / -  45]S 0.599 

8 [ 4 5 / -  453] S 0.506 

16 [ 4 5 / -  4 5 / 4 5 / -  455] S 0.503 

Table 7. FE cost comparison for the linear discrete coding 

FE (b/a = 1) FE (b/a = 2) 

NL MAX FE CPL UDL CPL UDL 

4 1369 180 20 40 160 

8 1.87 x 106 2820 2000 2080 1360 

16 3.5 x 1012 2520 9120 2960 5560 

The optimization analyses are done by assuming a coarse 
set of the pc and p m  algorithm parameters. For the present 
discussion the parameter sets are chosen to be pc E 
{1.0,0.75,0.5} and p m  E {0.4,0.25,0.1}. By performing 
nine analyses, using all the possible combinations, confidence 
is established in the best solution found since the GA is more 
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likely to find an optimum when more function evaluations are 
done. The normalized displacement (see Section 5) is used 
for the cost evaluation and the lowest cost of all the analyses 
is chosen to be the best. If more than one parameter combi- 
nation yields the same lowest cost, further analyses at these 
parameter combinations are executed until the first lowest 
cost is recorded. The best design is reported in Tables 3 and 
5. 

The GA solutions were obtained for the linear discrete 
set with N = 7 and the displacement solutions of the result- 
ing optimal designs were subsequently refined with N = 25 
(Table 3). The number of function evaluations (FE) used by 
the GA to generate the optimum is also listed in Table 3. 
For comparison, the results of Groenwold el al. (1996) with 
N = 25 are listed in Table 4. A gradient-based continuous 
global optimization method was used to generate these re- 
sults. From Tables 3 and 4 it is evident that  the GA found 
optima with normalized displacements within 1% of the op- 
timizer used by Groenwold et al. (1996). For a uniformly 
distributed load, the GA solutions for the linear discrete set 
with N = 7 are listed in Table 5 and, for comparison, the 
results of Kam and Snyman (1991) using a method similar 
to that of Groenwold et al. (1996) are presented in Table 
6. The results are similar, differing only with respect to 16 
layers. The cost function is relatively insensitive to these 
differences. 

In conclusion, the GA seems to find the region of the 
optimum and could thus also be used to obtain starting points 
for gradient-based optimizers. 

An important factor to consider is the number of func- 
tion evaluations (or cost) the GA takes to generate the op- 
timum which is expressed as cost = B I  �9 n, where B I  is 
the generation in which the best optimum was found. The 
maximum possible number of unique design vectors for the 
discrete symmetric plate problem can be calculated to be 

(number of discrete values in variable) N L / 2 .  The number of 
discrete values in the fiber orientation variable for the linear 
discrete coding is 37. Thus if the number of function eval- 
uations required by the GA is compared to the maximum 
number of discrete combinations (Table 7), it is evident that  
in all cases the cost is significantly less than the maximum 
possible cost, especially where a large number of variables are 
involved. 

7 Conc lus ions  

This paper discussed the principles and implementation of 
the genetic algorithm (GA) as a global discrete optimizer for 
the strain energy minimization of a simply supported sym- 
metric laminated plate bending problem. A real variable cod- 
ing of the discrete values of the fiber orientation variables 
was used. The GA is compared with a trajectory method 
for global optimization. The conclusions are summarized as 
follows. 

1. The GA is a robust global discrete optimization method 
which is easy to implement on a variety of problems 
and which does not require gradient calculations and line 
searches. 
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2. The GA seems to find the region of the optimum relatively 
fast, especially if the objective function is multimodal. 
The GA yielded solutions within 1% of the global optima 
obtained using comparable continuous methods. 

3. Conventionally, binary codings of the variables have been 
used in GA's but this study shows that the real vari- 
able coding method could also be used successfully. This 
method is easier to implement than the binary coding. 

4. The genetic algorithm can only use discrete variable val- 
ues. However, the values do not have to be integers but 
can be real numbers. If desired, a fine resolution of the 
discrete variable set can be chosen to enlarge the design 
space so that a "continuous" solution may be approached. 
Otherwise a gradient-based method can be used to obtain 
a better solution with the discrete solution as a starting 
point. This refinement has been shown to be relatively 
inexpensive. 

5. The real variable coding of large discrete sets seems to 
favor higher rates of mutation. Thus the real variable 
coding is expected to be more efficient (in terms of func- 
tion evaluations) for long design vectors with small design 
spaces. 
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A p p e n d i x  

Pseudo-algorithm 

The implementation listing of a real variable coding GA is 
given below. The symbols are defined as follows. Maximum 
number of iterations MI; number of convergence iterations 
CI; iteration in which first best design was found BI; popu- 
lation size n; number of layers NL; integer counters iter, i, j 
and k; random number ran E [0, 1]; random integer ri; num- 
ber of designs to crossover mz; length of the design vector 
string s 

Step 1 Start program. 

Step 2 Read GA parameters and problem related data. 



Step 3 

Step 4 

Step 5 

Step 5.a 

Step 5.b 

Step 5.c 

Step 5.d 

Step 5.e 

Step 5.f 

Initialize first population randomly: 
For ( i = l t o n )  

For (j = 1 to NL)  
set each design variable at index [i, j] 
randomly. 

Begin  evo lu t ion  process  
For (iter = 1 to M I )  do Steps 5 to 7. 

R e p r o d u c t i o n  process  

Make population symmetric with respect to 
neutral plane of plate (problem specific con- 
straint): 
For ( i = l  t o n )  

For (j = 1 to N L / 2 )  
copy variable values symmetrically with 
respect to neutral plane 

Evaluate objective function for each design vec- 
tor in the population: 
For ( i = l t o n )  

f i  is the fitness score for the i-th 
structural problem. 

Determine sum total of function fitness values: 
For (i---- 1 t o n )  

r = F + / i .  
Test for convergence of the evolution process: 
if ((iter - BI )  > CI)  

go to Step 8 

Determine the relative fitness probability (rank- 
ing) for each design: 
For ( i = l  t o n )  

fi 
Pi = F"  

Determine the cumulative probability 
(weighting sector) for each design: 
For ( i = l t o n )  

i 
qi = ~ j = l  Pj" 
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Step 5.g Select and copy designs according to cumulative 
probability: 
For (j = l to n) 
generate a random number ran 

For (k = 1 to n) seek corresponding 
sector number 

if ((qk-1 -< ran) and (ran < qk)) 
where q[0] = 0 and q[n] = 1 

For (i = 1 to NL)  
copy selected design variable at 
index [k, i] to new design 
variable at index [j, i]. 

Step 6 Crossover  process  

Step 6.a Choose crossover designs randomly according to 
pc: 
For (i = l to n) 
generate a random number ran 

if (ran < pc) 
mark design i for further processing. 

Step 6.b Make the number of selected designs even to 
give mz designs. 

Step 6.c Execute the crossover: 
For (i = 1 to rex~2) 

choose vector pairs randomly from 
selected list and 
generate a random integer 
r i e  [1, t -  1] 
For (j = 1 to ri) 
copy value of vector A at index [A,j] 
to vector B at index [B, j] 
and vice versa. 

See Ponslet (1993) and Arora et al. (1994) for 
variations of this implementation. 

Step 7 M u t a t i o n  process  

Change design variables randomly according to 
pro: 
For ( i = l t o n )  

For (j -- 1 to NL)  
generate a random number ran 

if (ran ~_ pro) 
select new design variable 
randomly from discrete set. 

Step 8 Generate output. 

Step 9 Stop program. 


