
Structural Optimization 15, 221-229 (~) Springer-Verlag 1998

The genetic algorithm applied to stiffness maximizat ion of
laminated plates: review and comparison

E. P o t g i e t e r a n d N. S t a n d e r

Structural and Multidisciplinary Optimization Research Group, Department of Mechanical and Aeronautical Engineering,
University of Pretoria, South Africa

A b s t r a c t The design of laminated structures is highly tai-
lorable owing to the large number of available design variables,
thereby requiring an optimization method for effective design.
Furthermore, in practice, the design problem translates to a dis-
crete global optimization problem which requires a robust opti-
mization method such as the genetic algorithm. In this paper,
the genetic algorithm, based on the real variable coding, is ap-
plied to the strain energy minimization of rectangular laminated
composite plates. The results for both a point load and uniformly
distributed load compare well with those achieved using trajectory
methods for continuous global optimization.

1 I n t r o d u c t i o n

The design of laminated plates is highly tailorable due to the
large selection of variables introduced by the constitution of
the laminated composite. These include, different types of
fiber and matrix combinations, layer thickness, layer number
and fiber orientation. Due to the design complexity, designers
have resorted to optimization methods to achieve best designs
(Haftka and Gfirdal 1992).

As a complicating factor, studies of the laminated com-
posite design functions have revealed the presence of multiple
optima due to harmonic functions included in the formula-
tion (Haftka and Giirdal 1992). To find the global optimum
design, a number of optimization approaches have been de-
veloped in recent years. These methods can be broadly di-
vided into two categories namely, deterministic and stochas-
tic methods. A summary of the methods is presented by
Arora et al. (1995) who emphasize that it is necessary to se-
lect an optimization method according to the characteristics
of the specific problem and the results desired. This could
include the nature of the design variables (discrete or contin-
uous or a combination of both), the nature of the objective
function (could be nondifferentiable), or the nature of the
desired result (all or several of the local minima could be re-
quired). A stochastic random multistart global optimization
method used in the present paper for comparison is based
on a trajectory approach and has been applied to minimize
the strain energy for laminated plates by Kam and Snyman
(1991) and shells modelled in finite elements by Groenwold
el al. (1996).

A factor to be considered is that some of the variables such
as the ply thicknesses and orientation angles may be discrete

in which case the design problem translates to a discrete pro-
gramming problem. Well-known methods used to solve dis-
crete programming problems include the genetic algorithm
(GA) (De Jong 1975), a stochastic search method and im-
plicit enumeration procedure, and the simulated annealing
method (Kirkpatrick et al. 1983), which is a random method.
An advantage of these methods above gradient-based meth-
ods is that they do not require continuity or differentiability
of the objective function.

Genetic algorithms date back about two decades to the
research of De]ong (1975) and Holland (1975) in the area
of genetic and adaptive systems. Since then, the method
they proposed has been used in a variety of fields [summa-
rized by Goldberg (1989)] such as biology, computer science
and social sciences. More recently, genetic Mgorithms were
introduced in engineering design. These algorithms present
alternative methods for optimization with the advantages of
being able to solve nonlinear and nonconvex design problems,
as is discussed by Hajela and Shieh (1990). The development
has greatly extended discrete engineering design capabilities,
in particular for the design of laminated composite materials,
see e.g. Haftka and Gfirdal (1992), Hajela and Shih (1989), Le
Riche and Haftka (1993), Nagendra et al. (1993) and Sore-
mekun et al. (1996). As most of these references relate to
aircraft design, a typical problem addressed is that of lami-
nated panel buckling. Following the work of Galante (1996),
Groenwold et al (1997) applied the GA to discrete truss sizing
by applying it in the region of the continuous optimum.

The current discussion deals with the implementation of
the GA to solve the discrete programming laminated plate
problem. The optimization problem is formulated as the min-
imization of the bending strain energy in the plate while being
subjected to either a central point or uniformly distributed
load. The results are compared to the results obtained using
the above-mentioned trajectory method for continuous global
optimization as presented by Kam and Snyman (1991) and
Groenwold et al. (1996).

2 P r e l i m i n a r y examples

To emphasize the importance of the selection of a suitable op-
timization method the following two-dimensional examples
will be solved by using the GA and the BFGS (Broyden-
Fletcher-Goldfarb-Shanno) (Press e~ al 1988) variable met-
ric unconstrained optimization methods, respectively. Three

222

functions with diverse characteristics are chosen for the in-
vestigation and are listed in Table 1 and depicted in Figs. 1,
2 and 3. Funct ion f l is minimized while functions f2 and
f3 are maximized. The symbols for the GA are defined as
follows: n is the populat ion size, Inc is the increment size
between two adjacent discrete values, CI is the number of
convergence i terations and MI is the maximum number of
iterations that the algorithm may execute. The symbols in
Table 2 are defined as follows: (Xopt, Yopt) is the optimal so-
lution to the function, fopt is the optimal function value, FE
is the number of function evaluations executed to obtain the
opt imum, DE is the number of function gradient evaluations
executed, ITER is the number of times the algorithm was
executed and MAX FE is the maximum number of combi-
nations of discrete values in the design space for the GA.

lO

z 5

.i
-10

5

-5

x " ~
S -5

Fig. 2. Function f~

Tablel. Fnnctionsfa, f~andf3 ~ i '

Function Design space limits 40
35

- - - - ~ 30 r

f l (x ,y)=x2§ 2 -5.12<x,y<5.12 2s

f2(x, y) = integer(x)+ integer(y) -5.12 < x, y < 5.12 is
10

f3(x, y) = 21.5 + x sin(4rx) + y sin(20~ry) -3.0 < x < 12.1 o s

4.1 _< y_< 5.S

60

so Fig. 3. Function fa

z 40

~0 function was maximized using the GA with its parameters set
20 to: n = 20, Inc = 0.001024, CI = 100 and MI --- 1000. The
lo results are listed in Table 2.
0 By considering function f3 depicted in Fig. 3 it is evident

s that the function is highly mult imodal with a large number
of local maxima/min ima. A gradient-based method such as

-s a trajectory method (see e.g. Arora 1995) can be used to
optimize this function. On the other hand, a GA could be

s -s used but then only an approximate solution in the vicinity

Fig. 1. Function fa

The first example is represented by a continuous, uni-
modal function. The GA data is assumed to be n = 20,
Inc -- 0.001024, CI = 100 and MI = 1000. For the BFGS
method the star t ing vector is chosen to be (4, 5.12). The re-
sults obtained by the two optimizat ion methods for function
f l are listed in Table 2. Function f l has a min imum of 0.0
at (0, 0).

Considering function f2 depicted in Fig. 2, it is evident
that gradient calculations are not possible and it is thus im-
perative to use a method based on response values only. This

of the global opt imum will be found since it uses discrete
values. It is thus conceivable tha t the GA could be used
to find a start ing vector near the global op t imum for the
gradient-based method. This concept was followed with the
GA parameters set to: n = 20, Incz = 0.0151, Incy =
0.0017, CI = 100 and MI = 1000. The s tar t ing vector for
the BFGS method was found to be (11.6319,5.7252). The
final results are listed in Table 2.

Table 2 shows that the gradient-based solution is more
accurate since it uses continuous functions. The total number
of function evaluations for the hybrid method (f3) was 1920+
67 = 1987, which by comparison with that of function f l for
the GA is very small.

In conclusion, the GA performance seems to favour the
highly mult imodal functions, therefore confirming the results

223

Table 2. Optimization results for functions f l , f2 and f3

Function Algorithm Xop t Yopt fopt FE DE I T E R M A X FE

f l GA -0.002048 -0.031744 0.001 4420 - 221 1 • 108

BFGS 0.0 0.0 0.0 31 2 2 -

f2 GA 5.12 5.03706 10 160 - 8 1 • 108

BFGS

f3 GA 11.6319 5.7252 38.8129 1920 - 96 1 • 106

BFGS 11.625556 5.72504 38.8503 +67 3 3 -

Table 3. Refined solutions for the central point load of GA with N = 25

b/a = 1 b/a = 2

NL Design if) FE Design t~ FE

4 [- 4 5 / 4 ~ 8 1.915 180 [-10 /5~S 4.757 40

8 [4 5 / - 453] S 1.513 2820 [-25/30/35/30]S 4.304 2080

16 [4 5 / - 4 5 2 / 4 5 / - 45/ 1.505 2520 [3 0 / - 3 0 / 2 5 / - 25/ 4.285 2960

45/20/1518 - 3 5 / - 2 5 / - 5 / - 25]S

of Le Riche and Haftka (1993). Due to its discrete nature, it
is however not as accurate as the gradient-based methods.

3 Gene t i c a l g o r i t h m

The GA is based on the natural phenomena and processes
that occur among individuals of populations in species in
their strive to progress or survive in their natural environ-
ment or objective. This method selects the better designs
according to the feedback obtained from the objective func-
tion evaluations.

The natural phenomena simulated by the GA are imple-
mented as genetic operators which process a set of design
alternatives (or population) during each consecutive gener-
ation. The operators consist of three standard processes
namely reproduction (natural objective selection), mating
(crossover) and mutation (Goldberg 1985; and Michalewicz
1992). The reproduction process chooses some of the de-
sign vectors (chromosomes) according to their objective func-
tion performance as future candidates to produce offspring.
The mating process exchanges design variable (gene) infor-
mation between two of the selected design vectors and thus
constructs two new design vectors. The mutation process al-
ters the design vectors by randomly substituting some of the
variables in the vector and thus provides a mechanism which
not only explores the design space but also inherits some of
the information of the previous design vectors.

3.1 Coding of design variables

The three processes of the GA operate at the unit (gene) level
of a string of units (chromosome) and in order to represent
a specific design variable value, which could be a real num-
ber or an integer, as a string of units, the value has to be
transformed to another alphabet. Alternatively, if the design
vector is long and the design space small, the transformation
is not necessary since the design vector will comply with the
schema theory discussed by Goldberg (1985) and Michalewicz
(1992). This coding method is referred to as the real variable
coding.

3.1.1 Linear discrete coding. The phrase linear refers to a
constant increment between consecutive values and the dis-
crete coding to the discrete nature of the values. The values
could be decimal integers, fractions or a combination of both.
Decimal integers are coded as binary strings by using a divi-
sion by 2 and a multiplication of the rest by 2 to either yield
a 0 or a 1. Decimal fractions are coded with a linear mapping
transformation. It is important that all the possible discrete
values are represented by a unique character or value in the
coded set.

The maximum number of values representable by using
an alphabet k of cardinality (number of characters) x and
w ith string length ~ is x and thus for different alphabets is
nc : Xl ~1 .x2 s .x3 s lm where x 1 to Xm are m alphabets
with m different eardinalities x i. The most basic represen-
tation is where the discrete set is the coding alphabet. This
representation exactly matches the number of values in the
discrete set whereas other representations sometimes do not.

224

If the design space for a specific variable is a continuous in-
terval in which the increment size between discrete values can
be selected, then it is convenient to introduce the resolution
factor ~r = (Umax- U m i n) (n c - 1), where Umax and Umi n
are the upper and lower limits on the interval, respectively.
It is used in the decoding of the coded values (after optimiza-
tion) to the real values using the linear mapping as follows:
real value = 7r. decimal (binary string) +Umi n. For example,
if Umi n = 3 and Umax = 78 and g = 4 and if a binary coding
is used, ~r = (78 - 3)/(24 - 1) = 5, and if it is assumed that
the binary string [1010] was obtained, then the real value is
computed to be 5. decimal (1010) +3 = 53. Another pos-
sible example is, say that Umi n -- 1.74 and Umax = 2.25
and g = 8 then ~r = 0.002 and assume that the binary string
[11011100] is an optimum, then the real value = 0.002. deci-
mal (11011100) +1.74 = 2.18.

In order to comply with the predictions of the schema
theory, it is better to choose a coding of low cardinality but
as was pointed out above it is not always possible to map the
exact number of values in the discrete set (having no redun-
dant coded strings). Examples of coding methods different
from the binary coding implementations are discussed by Le
l%iche and Haftka (1993), Nagendra et al. (1993), Soremekun
et al. (1996), Kogiso et al. (1994) and Ponslet et al (1993).

3.1.2 Random discrete coding. The phrase random refers to
the random nature of the values inside the discrete set. There
exists no relation between consecutive values in the discrete
Set. If the discrete set is small, it is easy to use a low cardinal-
ity coding which would represent the set of random discrete
values, for example as 0 = [00], +45 = [01], -45 = [10] and
90 = [11] (Le Riche and Haftka 1993; Soremekun et al 1996).

3.1.3 Multivariate coding. If the objective function is a mul-
tivariate function, as for example the strain energy in a lam-
inated plate with respect to its fiber orientations, then the
design vector can be represented by a concatenation of the
different or same coding in the fiber orientation of each layer.
For example, if the design vector is a three-dimensional vec-
tor with decimal values as A = [25,5, 10], then if the same
coding is used for each variable with g = 5, the binary coded
concatenated vector will be A = [11001,00101,01010] and
for processing purposes the vector (chromosome) becomes
A = [110010010101010].

For the present discussion it will be assumed that all the
laminae are of the same material and have the same num-
ber of possible discrete fiber orientations. Thus one discrete
set will be used for all the laminae. Since laminated prob-
lems sometimes incorporate a large number of layers it is
convenient to use the real variable coding method. A typi-
cal 6 layer design vector for a symmetric layup is thus rep-
resented as A = [80,-25,40,40~-25,80] as equivalent to
[so / - 2 /4o]s.

3.2 Reproduction process

The reproduction process resembles an evaluation and selec-
tion process in natural systems. The implementation of this
process consists of five events namely the function evaluation

of each individual design in the population, the evaluation
of the total function value, the evaluation of the probability
of selection for each design, the evaluation of the cumulative
probability for each design (which all have to add up to unity)
and the random selection itself.

The cumulative probability divides the space [0, 1] into
the relative contributions of the probability of selection or
"fitness" of each design and therefore causes an above aver-
age design to occupy an above average size fraction of the
space. A design with an above average size fraction is more
likely to be chosen because the random number generator is
more likely to generate numbers within that larger fraction of
space. The cumulative space is thus analogous to a "roulette
wheel". The selection step is made by spinning the roulette
wheel n times and generating a random number which is then
traced to the cumulative space where the Corresponding de-
sign is located. The selected designs are copied to a new
population of size n.

It is thus conceivable that the number of above average
designs will grow exponentially, average designs will stay the
same and below average designs will die off.

3.3 Crossover process

The crossover process resembles the mating process which
consists of the selection of suitable designs from the present
population and the transfer of gene information between the
selected mates.

The crossover designs are selected proportional to the pre-
scribed probability of crossover pc. A random number is gen-
erated n times and if it is smaller than or equal to pc, the
design is selected, else the design is ignored. This process
ends up with approximately pc. n selected designs which are
then rounded to the nearest even number if necessary. Vari-
ations of this implementation can be found in the work of
Ponslet el al. (1993) and Arora et al. (1994).

The selected designs are randomly shuffled in order to
avoid alike designs mating with themselves, which may lead
to a premature convergence, and to enhance the exploration
of the design space. These designs are grouped into mating
pairs so that each design can only mate once. The crossover is
done by first generating a random number within the range
of the length of the design string. The number is used to
indicate the position of the cross-site in both mating strings.
All the gene values from the cross-site on one side of the string
are interchanged with those of the other string in the same
positions. For example, if A 1 and A 2 are the parent strings
and g -- 4, then there are 4 - 1 -- 3 possible cross-sites and, if
it is assumed that a randomly selected cross-site is at 2, then

A I = I 0 I 0 1, A 2 = 0 1 I 1 0,

and if the parents are crossed at the indicated cross-site, the
offspring become A~ and A~ as

A =I 0 I 1 0, A =0 1 I 0 1

For the present coding this process might be executed for a
6 layer symmetric layup as

A 1 = 8 0 - 2 5 1 4 0 , A2 = - 55 - 1 0 [- 1 0 ,

225

to yield

All = 80 - 25 I - 10, A~ = -55 - 10140.

By examining the crossover process of the two coding
methods it is evident that if the binary vector is crossed over
inside the variable string, the decoded value after crossover
is not going to be the same as before the crossover. In the
real variable coding this phenomenon is not possible since
the real value stays unaltered during crossover. This means
that the binary crossover (and general lower order cardinality
codings) generates new possible strings (or real values) dur-
ing crossover and thus enhances the design space exploration.
A method to deal with this phenomenon in real variable cod-
ings is discussed by Ponslet et al. (1993). This method uses a
weighted average between the values at the cross-site which
resembles the possible change in values at the cross-site in
the binary coding.

3.4 Mutation process

The purpose of the mutation process is to explore the design
space randomly in a global manner, but at a rate that does
not cause a large scale loss of evolved data structures. This
is done to prevent premature convergence. In the process
all the gene values in the population have an equal chance
of being changed which has the effect of a random change
in a particular design vector. The process thus consists of
a random number being generated for each gene value (or
character) and if this number is smaller than a prescribed
probability of mutation pro, the value is changed randomly
to another possible value, else it is ignored. Variations on this
implementation can be found in the work of Huang and Arora
(1995), Ponslet el al. (1993) and Arora et al. (1994). The
expected number of genes (bits) or positions to be changed
is approximately g �9 �9 n.

3.5 Range of crossover and mutation probabilities

Ranges for the crossover and mutation parameters of a binary
coding are reported by Hajela (1990) to be 0.6 to 0.8 and 0.01
to 0.02 respectively for most problems. For stacking sequence
design, Le Riche and Haftka (1993) use a crossover value of 1
and mutation rates up to 0.1 for a 1,2,3 coding alphabet. It is
expected that the optimal mutation rate for the real variable
coding will be larger than that of the binary coding because
of the fact that a larger rate of mutation is needed for the
real variable coding to ensure that all the characters in the
coding alphabet enter the population information pool some
time during the evolution process. For example, if a binary
coding ({0, 1}) is used, the probability of occurrence for each
character at a random call is 1/2 • 100 = 50% and thus will
2 • 2 = 4 random calls yield a 100% probability of occurrence
of the coding alphabet, but if a real variable coding is used
with 37 unique characters, the probability of occurrence for
each character at a random call will be 1/37 • 100 = 2.7%
and thus will 37 • 37 = 1369 random calls yield a 100%
probability of occurrence of the coding alphabet. In general,

mutation rates are expected to be small and crossover rates
to be relatively large.

4 I m p l e m e n t a t i o n of t he G A

Currently there exists a number of different implementations
as discussed by Huang and Arora (1995), Goldberg (1989),
Michalewicz (1992), Kogiso et al. (1994), Ponslet et el. (1993)
and Arora et al. (1994). The differences include additional
operators, different elitist methods and small variations in
operator execution principles. The current implementation
is based on that of Michalewicz (1992) and an algorithm is
presented in the Appendix.

4.1 Customizing the algorithm

The raw algorithm consisting of the three operators alone is
not suitable for general use. It needs to be customized for
its specific purpose. Some additional factors that must be
considered include the maximization or minimization of the
problem and the convergence criterion.

4.1.1 The cost function. Since the selection process in the re-
production phase works relative to the largest function value,
it is necessary to make a distinction between the maximiza-
tion and minimization as follows.

Maximization: It is sufficient to substitute the function value
for the fitness value. Thus the fitness of the design string A i
is f i = f (A i) .

Minimization: It is possible to invert the function values as
f[= - f i + B + C, where B is the largest positive value from
the set of function values and C is an offset value which in
this case is taken as the average of the function values. Thus
the fitness of design A i becomes f~ = - f (A i) + B + C and
the relative probabilities for the calculation of the cumulative
probabilities become p~ = (- f i + B + C) / (- F + n (B + C)).

n S Where n is the population size, F = ~-~-i=l i and f i is the
function value of design A i.

4.1.2 Convergence criteria. In general the GA will converge
to an optimum through its operations alone but will not re-
main there since, in subsequent generations, the data struc-
tures are disrupted by the genetic operators. It is thus neces-
sary to implement a convergence criterion based on the rate
of improvement of the best design. The criterion that is used
in this exercise is based on the one proposed by Le Riche
and Haftka (1993) which terminates if there is no further
improvement in the optimum within a prescribed number of
generations.

It is also convenient to keep the best design found and to
insert it from time to time in order to preserve the best data
structures.

Constraints can be implemented in the form of penalty
functions as discussed by Michalewiez (1992), which in effect
biases the roulette wheel towards the feasible designs.

226

Table 4. Solutions for the central point load by Groenwold et al. (1996) with N -- 25

b/a = 1 b/a = 2

NL Design ~ Design

4 [4 5 / - 4 5] S 1.915 [-8.42/55.49]8 4.750

8 [-45/453] S 1.513 [26 .54 / - 3 2 . 8 3 2 / - 32.81]S 4.298

16 [4 5 / - 4 5 / 4 5 / - 455]S 1.501 [30 .27 / - 29.352/30.26/- 29.36/ 4.278

30.35/29.76/-29.83]8

Table 5. GA results for the uniformly distributed load with N = 7

b/a = 1 b/a = 2

NL Design @ FE Design ~ FE

4 [-45/45]S 0.599 20 [0/~ S 0.865 160

8 [4 5 / - 453] S 0.506 2000 [04] S 0.865 1360

16 ~ 5 / - 4 5 2 / 4 5 / - 4 0 / 0.504 9120 [0 4 / - 5 / 0 2 / - 20]S 0.866 5560
50/-45/25]S

5 P r o b l e m s t a t e m e n t for l a m i n a t e d p l a t e des ign

For the present discussion the design criterion was chosen to
be the transverse deflection of the plate. It was decided to
minimize this deflection due to a central point and uniformly
distributed load. Two approaches can be followed, (a) the
deflection at a point could be minimized or (b) the strain
energy absorbed in the plate could be minimized. In this
case the objective function was chosen to be the strain energy.

The optimization problem for the linear discrete coding
method is therefore formulated as follows:

minimize Ub(O) = -~ ~ r f) ~ d A ,

A

subject to - 90 ~ _< O k <_ +90 ~

with

A0 k = 5 ~

and

'NL

t= E t k '
k=l

Ub(O) is the bending strain energy in the plate, O k is the
fiber orientation of lamina k, I) is the bending stiffness
matrix of the laminate, ~ is the bending curvature ma-
trix, A is the area of the plate and t is the total thickness
of the laminate which consists of NL equally thick layers.

The displacements are listed in normalized form as pre-
sented by Tauchert and Adibhat la (1984) which are calcu-
lated as ~ = (wolOaEobt3)/(Qa 3) for the point load and

~v = (wolO3Eot3)/(qa 4) for the uniformly distributed load.
The symbol wo represents the actual calculated displacement,
Eo is a stiffness magnification factor, t is the total thickness
of the plate, Q and q are the point and distributed loads,
respectively, and a and b are the side lengths in the x - and
y - directions of the plate, respectively.
The Rayleigh-Ritz method is employed to construct the
structural problem where the displacement function is as-
sumed to be approximated as follows:

M N
Wo(x,y)= E E a m n s i n (m ~ r X ~ s i n (~) " (1)

\ a /
m=l n=l

The boundary conditions are assumed to be free-free.
The potential energy of the transverse loads on the plate

can be expressed by

Wz = / q(x, y) Wo(X, y) dA + E Qi wo(x, y),
A J i

where q(m,y) is the distributed load and Qi the i-th point
load on the plate and Wo(x,y) the transverse deflection of
the neutral plane. The total potential energy of the elastic
continuum can be written as

I I = Ub - Wz = O.

For the Rayleigh-Ritz method, it is necessary that the
derivative of the total potential energy with respect to each
individual coefficient aks be zero as

0H
--0,

Oak l
k - - 1 , . . . , M ; i - - 1 , . . . , N .

The derivatives yield a system of equations which are conve-
niently expressed in matr ix form as K a = f. Where K, a and
f are the symmetric stiffness, weighting coefficients and force
matrices respectively. This system of equations is solved for
the displacement weighting coefficients which are then used
to calculate the displacement and strain energy associated
with the specific problem parameters. The strain energy is
expressed as Wz = a T f.

6 E x a m p l e p r o b l e m s

The example problems represent 12 plates with 4, 8 and 16
symmetrically stacked layers subjected to either a central
point load (CPL) or uniformly distributed load (UDL) and
with an aspect ratio (b/a) of 1 and 2.

Analysis parameters used are the number of Ritz har-
monics, N = 7 and the population size for all the prob-
lems, n = 20. The GA will start with 8 = 0. For all cases
the convergence iteration parameter (CI) is set to 100 and
the maximum iteration parameter (M I) to 1000. The mate-
rial data used throughout the calculations is assumed to be
E l l = 1.81x 1011 Pa, E22 = 1.03x 1010 Pa, G12 = 7.17•
Pa, ~12 = 0.28 and t k = 1.0 mm.

Table 6. Solutions for the uniformly distributed load from Kam
and Snyman (1991) with N = 7

b/a = 1

NL Design

4 [4 5 / - 45]S 0.599

8 [4 5 / - 453] S 0.506

16 [4 5 / - 4 5 / 4 5 / - 455] S 0.503

Table 7. FE cost comparison for the linear discrete coding

FE (b/a = 1) FE (b/a = 2)

NL MAX FE CPL UDL CPL UDL

4 1369 180 20 40 160

8 1.87 x 106 2820 2000 2080 1360

16 3.5 x 1012 2520 9120 2960 5560

The optimization analyses are done by assuming a coarse
set of the pc and p m algorithm parameters. For the present
discussion the parameter sets are chosen to be pc E
{1.0,0.75,0.5} and p m E {0.4,0.25,0.1}. By performing
nine analyses, using all the possible combinations, confidence
is established in the best solution found since the GA is more

227

likely to find an optimum when more function evaluations are
done. The normalized displacement (see Section 5) is used
for the cost evaluation and the lowest cost of all the analyses
is chosen to be the best. If more than one parameter combi-
nation yields the same lowest cost, further analyses at these
parameter combinations are executed until the first lowest
cost is recorded. The best design is reported in Tables 3 and
5.

The GA solutions were obtained for the linear discrete
set with N = 7 and the displacement solutions of the result-
ing optimal designs were subsequently refined with N = 25
(Table 3). The number of function evaluations (FE) used by
the GA to generate the optimum is also listed in Table 3.
For comparison, the results of Groenwold el al. (1996) with
N = 25 are listed in Table 4. A gradient-based continuous
global optimization method was used to generate these re-
sults. From Tables 3 and 4 it is evident that the GA found
optima with normalized displacements within 1% of the op-
timizer used by Groenwold et al. (1996). For a uniformly
distributed load, the GA solutions for the linear discrete set
with N = 7 are listed in Table 5 and, for comparison, the
results of Kam and Snyman (1991) using a method similar
to that of Groenwold et al. (1996) are presented in Table
6. The results are similar, differing only with respect to 16
layers. The cost function is relatively insensitive to these
differences.

In conclusion, the GA seems to find the region of the
optimum and could thus also be used to obtain starting points
for gradient-based optimizers.

An important factor to consider is the number of func-
tion evaluations (or cost) the GA takes to generate the op-
timum which is expressed as cost = B I �9 n, where B I is
the generation in which the best optimum was found. The
maximum possible number of unique design vectors for the
discrete symmetric plate problem can be calculated to be

(number of discrete values in variable) N L / 2 . The number of
discrete values in the fiber orientation variable for the linear
discrete coding is 37. Thus if the number of function eval-
uations required by the GA is compared to the maximum
number of discrete combinations (Table 7), it is evident that
in all cases the cost is significantly less than the maximum
possible cost, especially where a large number of variables are
involved.

7 Conc lus ions

This paper discussed the principles and implementation of
the genetic algorithm (GA) as a global discrete optimizer for
the strain energy minimization of a simply supported sym-
metric laminated plate bending problem. A real variable cod-
ing of the discrete values of the fiber orientation variables
was used. The GA is compared with a trajectory method
for global optimization. The conclusions are summarized as
follows.

1. The GA is a robust global discrete optimization method
which is easy to implement on a variety of problems
and which does not require gradient calculations and line
searches.

228

2. The GA seems to find the region of the optimum relatively
fast, especially if the objective function is multimodal.
The GA yielded solutions within 1% of the global optima
obtained using comparable continuous methods.

3. Conventionally, binary codings of the variables have been
used in GA's but this study shows that the real vari-
able coding method could also be used successfully. This
method is easier to implement than the binary coding.

4. The genetic algorithm can only use discrete variable val-
ues. However, the values do not have to be integers but
can be real numbers. If desired, a fine resolution of the
discrete variable set can be chosen to enlarge the design
space so that a "continuous" solution may be approached.
Otherwise a gradient-based method can be used to obtain
a better solution with the discrete solution as a starting
point. This refinement has been shown to be relatively
inexpensive.

5. The real variable coding of large discrete sets seems to
favor higher rates of mutation. Thus the real variable
coding is expected to be more efficient (in terms of func-
tion evaluations) for long design vectors with small design
spaces.

References

Arora, J.S.; Elwakeil, O.A.; Chahande, A.I.; Hsieh, C.C. 1995:
Global optimization methods for engineering applications: a re-
view. Struct. Optim. 9, 137-159

Arora, J.S.; Huang, M.W.; Hsieh, C.C. 1994: Methods for opti-
mization of nonlinear problems with discrete variables: a review.
Struct. Optim. 8, 69-85

De 3ong, K.A. 1975: An analysis of the behaviour of a class of
genetic adaptive systems. Ph.D. Dissertation, Dept. of Computer
Science, Univ. of Michigan

Galante, M. 1996: Genetic algorithms as an approach to optimize
real-world trusses. Int. J. Num. Meth. Engrg. 39, 361-382

Goldberg, D.E. 1989: Genetic algorithms in search, optimization,
and machine learning. Reading, MA: Addison-Wesley

Groenwold, A.A.; Snyman, J.A.; Stander, N. 1996: Modified tra-
jectory method for practical global optimization problems. AIAA
J. 34, 2126-2131

Groenwold, A.A.; Stander, N.; Snyman, 3.A. 1997: A regional ge-
netic algorithm for the discrete optimal design of truss structures.
(submitted)

Haftka, R.T.; Giirdal, Z. 1992: Elements of structural optimiza-
tion, 3-rd ed. Dordrecht: Kluwer

Hajela, P. 1990: Genetic search - an approach to the nonconvex
optimization problem. AIAA J. 28, 1205-1210

Hajela, P.; Shih, C.3. 1989: Optimal design of laminated com-
posites using a modified mixed integer and discrete programming
algorithm. Comp. 8J StrucL 32, 213-221

Holland, J.H. 1975: Adaptation in natural and artificial systems.
Ann Arbor: The University of Michigan Press

Huang, M.W.; Arora, J.S. 1995: Engineering optimization with
discrete variables. Proc. 36th AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics and Materials Conf.
AIAA/ASME Adaptive Structures Forum (held in New Orleans,
LA), Paper No. AIAA-95-1333-CP, pp. 1475-1485

Kam, T.Y.; Snyman, J,A. 1991: Optimal design of laminated com-
posite plates using a global optimization technique. Comp. eJ
Struct. 19, 351-370

Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. 1983: Optimiza-
tion by simulated annealing. Science 220, 671-680

Kogiso, N.; Watson, L.T.; Giirdal, Z.; Haftka, R.T. 1994: Genetic
algorithms with local improvement for composite laminate design.
Struct. Optim. 7, 207-218

Le Riche, R.; Haftka, R.T. 1993: Optimization of laminate stack-
ing sequence for buckling load maximization by genetic algorithm.
AIAA J. 31, 951-956

Michalewicz, Z. 1992: Genetic algorithms § data structures =
evolution programs. Berlin, Heidelberg, New York: Springer

Nagendra, S.; Haftkn, R.T.; Giirdal, Z. 1993: Design of a blade
stiffened composite panel by a genetic algorithm. Proc. 34th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics
and Materials Conf. and AIAA/ASME Adaptive Structures Fo-
rum (held in La Jolla, CA), Paper No. AIAA-93-1584-CP, pp.
2418-2436

Pouslet, E.; Haftka, R.T.; Cudney, H.H. 1993: Optimal placement
of tuning masses on truss structures by genetic algorithms. Proc.
34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dy-
namics and Materials Conf. and AIAA/ASME Adaptive Struc-
tures Forum (held in La Jolla, CA), Paper No. AIAA-93-1586-CP,
pp. 2448-2457

Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T.
1988: Numerical recipes in C: the art of scientific computing. New
York: Cambridge University Press

Soremekun, G.; Giirdal, Z.; Haftk% R.T.; Watson, L.T.
1996: Improving genetic algorithm efficiency and reliability
in the design and optimization of composite structures. 6th
AIAA/NASA/ISSMO Syrup. on Multidisciplinary Analysis and
Optimization Part 1 (held in Bellevue, WA), Paper No. AIAA-
96-4024-CP, pp. 372-383.

Tauchert, T.R.; Adibhatla, S. 1984: Design of laminated plates
for maximum stiffness. J. Comp. Mat. 18, 58-69

A p p e n d i x

Pseudo-algorithm

The implementation listing of a real variable coding GA is
given below. The symbols are defined as follows. Maximum
number of iterations MI; number of convergence iterations
CI; iteration in which first best design was found BI; popu-
lation size n; number of layers NL; integer counters iter, i, j
and k; random number ran E [0, 1]; random integer ri; num-
ber of designs to crossover mz; length of the design vector
string s

Step 1 Start program.

Step 2 Read GA parameters and problem related data.

Step 3

Step 4

Step 5

Step 5.a

Step 5.b

Step 5.c

Step 5.d

Step 5.e

Step 5.f

Initialize first population randomly:
For (i = l t o n)

For (j = 1 to NL)
set each design variable at index [i, j]
randomly.

Begin evo lu t ion process
For (iter = 1 to M I) do Steps 5 to 7.

R e p r o d u c t i o n process

Make population symmetric with respect to
neutral plane of plate (problem specific con-
straint):
For (i = l t o n)

For (j = 1 to N L / 2)
copy variable values symmetrically with
respect to neutral plane

Evaluate objective function for each design vec-
tor in the population:
For (i = l t o n)

f i is the fitness score for the i-th
structural problem.

Determine sum total of function fitness values:
For (i---- 1 t o n)

r = F + / i .
Test for convergence of the evolution process:
if ((iter - BI) > CI)

go to Step 8

Determine the relative fitness probability (rank-
ing) for each design:
For (i = l t o n)

fi
Pi = F"

Determine the cumulative probability
(weighting sector) for each design:
For (i = l t o n)

i
qi = ~ j = l Pj"

Received Sept. 8, 1997

229

Step 5.g Select and copy designs according to cumulative
probability:
For (j = l to n)
generate a random number ran

For (k = 1 to n) seek corresponding
sector number

if ((qk-1 -< ran) and (ran < qk))
where q[0] = 0 and q[n] = 1

For (i = 1 to NL)
copy selected design variable at
index [k, i] to new design
variable at index [j, i].

Step 6 Crossover process

Step 6.a Choose crossover designs randomly according to
pc:
For (i = l to n)
generate a random number ran

if (ran < pc)
mark design i for further processing.

Step 6.b Make the number of selected designs even to
give mz designs.

Step 6.c Execute the crossover:
For (i = 1 to rex~2)

choose vector pairs randomly from
selected list and
generate a random integer
r i e [1, t - 1]
For (j = 1 to ri)
copy value of vector A at index [A,j]
to vector B at index [B, j]
and vice versa.

See Ponslet (1993) and Arora et al. (1994) for
variations of this implementation.

Step 7 M u t a t i o n process

Change design variables randomly according to
pro:
For (i = l t o n)

For (j -- 1 to NL)
generate a random number ran

if (ran ~_ pro)
select new design variable
randomly from discrete set.

Step 8 Generate output.

Step 9 Stop program.

