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A b s t r a c t  This paper is devoted to the problem of designing 
mechanical components of brittle materials such as ceramics using 
the Weibull probabilistic treatment of brittle strength combined 
with finite element based design optimization and mathematical 
programming. The analysis of probability of failure using Weibull 
statistics is introduced and expressions for design sensitivity anal- 
ysis are derived. The numerical finite element based implementa- 
tion is discussed, and a numerical example is used to verify the 
facilities for analysis and design sensitivity analysis. Finally, a 
shape optimization example of redesigning a cutting bit from a 
circular saw blade illustrates a design case where the objective is 
to reduce the probability of failure. 

1 I n t r o d u c t i o n  

Design optimization problems involving Weibull statistics are 
rarely discussed but design with brittle materials such as ce- 
ramics calls for use of structural shape optimization as design 
with new materials very often cannot be based on design rules 
or engineering tradition. One of the few examples of using 
structural shape optimization in the design of ceramic com- 
ponents can be found in a very interesting paper by Koski 
and Silvennionen (1990). 

In the last decades there has been an increasing use of ce- 
ramic materials in mechanical engineering applications where 
good wear resistance properties, high hardness, sufficient 
high-temperature capability, high stiffness, and good corro- 
sion resistance are needed. However, design with ceramic 
materials is different from design with traditional ductile ma- 
terials due to the brittle behaviour of ceramics. 

The use of brittle materials for load carrying components 
involves two basic features that must be taken into account 
in the design phase. First, the material has very low strain 
tolerance and practically exhibits no yielding. Thus, the ma- 
terial behaviour is linearly elastic up to the fracture point 
where an unstable crack growth suddenly takes place. Sec- 
ond, there is frequently large scatter in the strength data so 
probabilistic methods must be used. 

A reliabihty evaluation based on a two-parameter Weibull 
distribution has been generally accepted in design of brit- 
tle materials (see e,g, McLean and Hartsock 1989), and this 
probabilistic treatment of the brittle strength will be used 
throughout this paper. Weibull (1939) developed a proba- 
bilistic failure criterion based only on tensile stresses in the 
component. Compressive failure is not considered in this 
criterion because brittle materials usually fail from tensile 
stresses due to their very high compressive strengthl 

2 Analys i s  of p r o b a b i l i t y  of fai lure 

The probability of failure for a component made of a brittle 
material can be computed from its stress field by using the 
weakest link theory based on the Weibull distribution, and 
for uniaxial stress, Weibull established the following function 
that describes the cumulative probability of failure Pf of a 
ceramic component 

- dV , (1) P f = l - e x p  \ ~ ' )  ~cc V 

where , is the tensile stress at a given point, m the Weibull 
modulus, and o" c the characteristic mean fracture stress as- 
sociated with a characteristic reference volume Vc; V is the 
total volume of the component and the term 

! = r  +1 = t exp[-t]dt (2) 
0 

1 1 which is easily is the value of the gamma function/" at ~ + 
evaluated. 

Equation (1) indicates that in order to obtain an optimum 
design with respect to strength of a component made of a 
brittle material, it is usually not sufficient just to minimize 
the larger principal stresses in the structure. It is necessary 
to take into account the amount of material subjected to 
the largest tensile stresses, as a larger volume has a larger 
probability of containing big flaws than a smaller volume of 
the structure. 

In order to generalize (1) to three-dimensional stress 
states, the concept of integrating the normal stress "n and 
the maximum shear stress ~" around the portion of the unit 
radius sphere where the normal stress is positive is generally 
used (see e.g. Vardar and Finnie 1975; Evans 1978; McLean 
and Hartsock I989; Andreasen 1993, 1994; and Fig. 1). 

The normal stress crn and the maximum shear stress ~- 
acting on a single crack are defined as 

"n = n . , . n ,  7 "2 = n . a 2 . n - - n  2, (3) 

with ~r as the stress tensor and n as the normal vector to 
the unit sphere. Then, at a given location on the unit sphere 
these stresses are given as 

"n = cos 2 r ( ' 1  c~ r + "2 sin2 r  + "3 sin2 r 
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Fig. 1. Geometric variables describing location on the unit sphere 

T = Icos2r162162162 (4) 

An equivalent stress ae that is a function of an and v is in- 
troduced, i.e. ae = ae(O'n,T). The combination of stresses 
causing failure is not uniquely determined due to a lack of 
knowledge of the precise geometry of the actual flaws in 
the structure and a lack of consensus regarding an appropri- 
ate crack extension criterion as stated by Andreasen (1993). 
Therefore, different definitions of the equivalent stress can be 
chosen, depending on the wanted influence of shear stresses 
in the fracture criterion. Four different criteria that are used 
to define the equivalent stress ae can be found in Table 1. 

The normal stress averaging criterion pertains to non- 
shear sensitive cracks and is also termed "mode I failure crite- 
rion". The maximum strain release rate criterion is obtained 
from two-dimensional Griffith cracks, the third criterion is 
obtained from non-coplanar crack growth of Griifith cracks, 
and the last criterion assumes that there is no interaction be- 
tween the principal stresses ~rk, k = 1 , . . . ,  3, in the fracture 
criterion, i.e. the integration over the unit sphere is omitted. 

Thus, integrating this equivalent stress ae over the unit 
sphere with area Aus, the general equation for the probability 
of failure for a three-dimensional stress state is 

Pf  = 1 -  e x p [ - B ]  , (5) 

where the exponent B, known as the risk of rupture, is given 
as  

l / 1i[ jl-.> ] B =  ! k dA d r .  (6) 

V Aus 

The factor k is a compatibility term to force the equation 
to reduce to the original equation for uniaxial tension, see (1). 
If one of the first three definitions of the equivalent stress in 
Table 1 is used, the compatibility term k in (6) is given as 
k = (2m + 1)/(2Tr). If the principle of independent action 
of the principal stresses is assumed, the integration over the 
unit sphere is omitted and the compatibility term k = 1. 

Having defined the equivalent stress ae, the risk of rupture 
B in (6) and thereby the probability of failure in (5) can be 
evaluated based on a given stress field. 

3 Des ign  sens i t iv i ty  analys is  

Next the necessary expressions for design sensitivity analy- 
sis of the probability of failure will be derived. The design 
variables can be shape, sizing or material design variables 
and will be denoted by ai, i = 1 , . . . ,  I. Differentiating the 
probability of failure Pf  given by (5) with respect to a design 
variable ai, the derivative is found as 

OPy 
- exp [ - B ]  ~ / ,  i - 1 , . . . ,  I .  (7) 

Oa i 

The derivative of the risk of rupture B = B(gl ,  ~2, a3, V) 
can be found by applying the chain rule 

OB 3 0 B  a~z k OB OV 
On i - E act---; Oa---( --k O ,  Oa i ' (8) 

k=] 

where ak,k  = 1,2,3, are the principal stresses. The terms 
involved in (8) are derived in the following. 

As B is defined in terms of the equivalent stress 
ae -~ fie(fin, T) the chain rule is applied on the derivative 
OB/O~k, k = 1,2, 3 

OB OB O~n OB Or 
oak - oa.  oak + a-To%-; (9) 

The derivative OB/Ogn is given as 

dV, (10) 
V Aus 

and the derivative OB/a7 is found in a similar way. 
The derivatives Oo'em/OO'n in (10) and O~rem/o7 depend on 

the definition of the equivalent stress ae and can be seen in 
Table 2. 

Please note that in case of the principle of independent 
action criterion the partial derivatives 0am/a~rk, k = 1, 2, 3, 
and thereby the derivative OB/Oa k to be inserted in (8), are 
found directly. 

The derivatives of the normal stress ~r n and the maximum 
shear stress T with respect to the principal stresses o'k, k = 
1,2,3, to be inserted in (9) are easily derived as 

00" n 00" n _ cos 2r  cos 2 r  
ach a~ 2 

Cgan _ sin2 r  
cOa 3 

and 

aT cos 2 r cos 2 ~b(cr 1 - an) 

Oa I r 

0r  cos 2 r sin 2 r - an) 

a~ 2 v 

Or sin 2 r 3 - an) 
- (12) 

ac~ 3 T 

The sensitivities of the principal stresses, ao'k/aai, 
needed in (8), are computed by a standard design sensitivity 

cos 2 r sin 2 r  

( i i )  
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Table 1. Different definitions of the equivalent stress cr~ 

Name of equivalent stress criterion Definition 

Normal stress averaging criterion 

Maximum strain release rate criterion 

Max. noncoplanar strain release rate crit. 

Principle of independent action criterion 

an  if an > 0 
ae = 0 if c~n < 0 

V ~  n + ~-2 if a n > O  
ae [ 0 if an _< 0 

4 4 6o.27-2 7.4 
ae = ~//an + + 

0 

3 
ae = ~ ~ a k ~  

k=l  
a k if a k > 0 

where<~r  k >  = 0 i f a  k < 0  

if an > 0 
if an _< 0 

Table 2. Derivative of the equivalent stress ~ (definitions given in .Table 1) 

Name of equivalent stress criterion Derivative 

Normal stress averaging criterion 

Maximum strain release rate criterion 

Max. noncoplanar strain release rate crit. 

Principle of independent action criterion 

Oae m m--1 O a m  
OCrn = m a e  ' OT -- 0 

Oa~ m-2  0 o ~  m-2  
Oct n -- m a n  ae ' cgv -- rnv~re 

aa~ 
= m < a k  > m - l ,  k = 1 , 2 , 3  

Oa k 

analysis (see e.g. Lund 1994). If the analysis is finite element 
based and the analysis considered is static with possible ther- 
mal effects included, the equilibrium equation is given as 

K D  = F ,  (13) 

where K is the global stiffness matrix,  F the global consistent 
load vector and D the global displacement vector. Using the 
direct differentiation approach, the displacement sensitivities 
can be computed efficiently from 

0K(a)  0F 
K(a)  , - -  aa  i D + ~ a i ,  i =  l , . . . , I ,  (14) 

where the factorized stiffness matr ix K can be reused, i.e. a 
forward-backward substitution with the new right-hand side, 
the so-called pseudo load vector, yields the displacement sen- 
sitivities. The derivative O K / O a  i is computed at the element 

level, and analytical sensitivities are used in the case of thick- 
ness or material design variables. In the case of shape design 
variables, the method of "exact"  semianalytical sensitivity 
analysis is used (see Olhoff et al 1993; Lund and Olhoff 1994; 
Lurid 1994). 

At the element level, the stresses are computed from 

o ' = E  @ _ r  ( B d - e t h )  , (15) 

where E is the constitutive matrix,  e the strain vector, 
eth the thermally induced strains, B the element strain- 
displacement matrix and d the element displacement vector. 
The stress sensitivities can be obtained directly as 

0o" ( 0 B  B 0 d  oeth~ 0ai-E\ d+ 0oi (16) 



where the sensitivities of the thermally induced strains are 
given as 

o~th { OT OT aT } T 
Oa i -- ~a i Oa i Oa i 0 0 0  oz. (17) 

Here c~ is a matrix containing thermal expansion coefficients 
and the temperature sensitivities OT/Oa i are obtained from 
a thermal design sensitivity analysis derived in a similar way 
as (14). The sensitivities of the principal stresses, OOk/0ai, 
are obtained directly from the stress sensitivities given by 
(16). 

Table 3. Computed sensitivities of probability of failure for the 
test specimen example 

l%elative Absolute Finite Analytical 

perturbation perturbation difference evaluation 

Aal Aa 1 A~Pf OF] 
height Aal cga 1 

10 -1  1.0 2.838.10 -2  3.724.10 -2  

10 -2  10 -1  3.616.10 -2  3.724.10 -2  

10 -3  10 -2  3.713.10 -2  3.724.10 -2  

10 -4  10 -3  3.723.10 -2  3.724.10 -2  

10 -5  10 - 4  3.724.10 -2  3.724.10 -2  

10 -6  10 -5  3.724.10 -2  3.724.10 -2  

10 -7  10 - 6  3.724.10 -2  3.724.10 -2  

Finally, the volume sensitivity OV/Oa i used in (8) is com- 
puted from geometric information and the derivative of B 
with respect to the volume V is given as 

0---V = ~cc k - -  dA . (18) 
\ a c  / 

A i r s .  

Now all terms needed for computing the derivative of the 
probability of failure, see (7) and (8), have been determined. 

4 Numerical  implementat ion 

Numerical facilities for evaluating these expressions for analy- 
sis and design sensitivity analysis of the probability of failure 
of a mechanical component have been implemented in the 
general purpose design optimization system ODESSY which 
are being developed at the Institute of Mechanical Engineer- 
ing, Aalborg University (see Rasmussen et al. 1993; Lund 
1994). This system contains facilities for a very general ge- 
ometric description of the design optimization model and is 
integrated with the two commercial CAD systems AutoCAD 
and Pro/ENGINEER. The analysis facilities in the system 
are finite element based and these modules have been used 
for computing the stress field which is the basis for evaluating 
the probability of failure. 
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However, the computation of B in (5) involves several 
difficulties which will be discussed in the following. The eval- 
uation of B is based on the following expression, see (6): 

o__(1,) 
numerical integrationJ 

�9 t 

Gauss quadrature 

The volume integral is carried out using Gauss quadra- 
ture, and the number of integration points used for each finite 
element depends on the Weibull modulus m. That is, the 
stress field first is computed in each finite element at the tra- 
ditional superconvergent positions and these values are then 
used to compute the stresses at any integration point in the 
evaluation of B. For a Weibull modulus m the Gauss inte- 
gration must be of order (m + 1)/2 in order to evaluate the 
volume integral accurately. 

At each volume integration point another integration over 
the unit sphere must be carried out and this area integral is 
in the current implementation also computed using Gauss 
quadrature. Other integration schemes might be more effi- 
cient but have not yet been implemented. The evaluation 
of the probability of failure thereby involves large computa- 
tional efforts. 

Finally, it should be noted that in order to obtain reliable 
results for the probability of failure the larger stresses in the 
structure must be computed accurately and this may require 
a finite element model with many degrees of freedom. The 
computational time involved in computing the probability 
of failure depends almost linearly on the number of finite 
elements used and it is therefore an advantage to use a coarse 
mesh consisting of higher order finite elements. This fact 
should be taken into account when creating the finite element 
analysis model. 

5 N u m e r i c a l  tes t  example  

The numerical facilities for computing the probability of fail- 
ure have been implemented for a number of 2D and 3D 
isoparametric solid finite elements and comparisons with ana- 
lytical solutions have been used to verify the implementation. 
A simple test example is shown in Fig. 2. 

The test specimen in Fig. 2 has unit thickness and dimen- 
sion 50 • 10 mm. It is subjected to uniform tensile stresses 
of size 600 MPa, and the material has a characteristic mean 
fracture stress ~r c of 1000 MPa associated with a reference 
volume Vc of 10 mm 3 and Weibull modulus m of 10. Based 
on (1), the probability of failure can be computed analytically 
to 0.1678, i.e. 16.78%. The finite element model consists of 
45 eight-node isoparametric 2D solid finite elements, and the 
numerical result agrees within numerical accuracy with the 
analytical result. 

Next the analytical expressions for design sensitivity anal- 
ysis are verified by comparing with finite difference results. 
The upper boundary of the test specimen is modelled by a 
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this boundary is modelled by a quadratic 
-spUne having three control nodes 

'translation modifier 

,-'- 50 hi 

1 

Fig. 2. Design model of test specimen 

quadratic B-spline having three control nodes, and the ver- 
tical translation of the middle control node is used as shape 
design variable a 1. Different translation sizes are used to 
compare the results obtained using forward finite difference 
sensitivity evaluations and the analytical expressions derived 
in this paper. The method of "exact" semianalytical  sen- 
sitivity analysis is used to determine the stress sensitivities 
when computing the analytical expressions. The results can 
be seen in Table 3. 

The finite difference evalutions of the sensitivity of prob- 
ability of failure verify the analytical expressions as seen in 
Table 3, and the step size problem involved in using finite 
difference evaluations is completely removed by using the 
analytical expressions for design sensitivity analysis. The 
design sensitivity analysis has been verified by comparisons 
with finite difference evaluations for many other examples 
and agreement between the two methods have been obtained 
in all examples. 

6 S h a p e  o p t i m i z a t i o n  o f  c u t t i n g  b i t  f r o m  a c i r cu la r  
saw b l a d e  

An example of minimizing the probability of failure of a me- 
chanical component made of a brittle material is given in 
this section. The example deals with shape optimization of a 
cutting bit from a circular saw blade as illustrated in Fig. 3. 

The saw blade is made of steel and the cutting bit of a 
cemented carbide. The cutting bit is brazed to the saw blade 
at ~ temperature of approximately 920~ and the structure 
is then cooled down. This process causes thermally induced 
stresses which are taken into account. Furthermore, a linearly 
varying load corresponding to the maximum loading situation 
is applied at the cutting bit. This maximum mechanical load- 
ing has very little influence on the resulting stress field which 
is primarily governed by the eigenstress field from the braz- 
ing process. The cemented carbide has a characteristic mean 
fracture stress ~rc of 1300 MPa associated with a reference 
volume Vc of 13 mm 3 and Weibull modulus m of 11. 

A 2D finite element model is used and the objective is 
to redesign the shape of the cutting bit such that the prob- 
ability of failure in this maximum loading situation is mini- 
mized. The only constraints originate in allowable geometric 
changes of the shape of the cutting bit, i.e. the volume of the 
cutting bit is allowed to increase from the initial design. Con- 
straints on shear stresses at the interface between the cutting 
bit and the saw blade could be considered in the optimization 
problem but are excluded in this example. The optimization 

circular saw blade (D = 150 mm) 

linearly varying 
load ~ ~ m _ e n t e d  carbide 

7 ~ / / ~  ? r a z i n g  material 

t =  2.3 m m  ~/////,,~ ~ 

AT= t =  1.3 mm 

zoom on cutting bit 

Fig. 3. Circular saw blade (D = 150 mm) 

problem thus can be stated as 

minimize the probability of failure of the cutting bit. 

The boundaries are described by quadratic B-splines hav- 
ing 19 shape design variables and a SLP algorithm is used 
as optimizer. The finite element model consists of approxi- 
mately 5000 quadratic 2D solid finite elements. The proba- 
bility of failure of the initial design is Pf = 4.7%, i.e. 1 out of 
21 bits fails but having performed the shape optimization the 
probability of failure is reduced to Pf = 0.0014%, i.e. 1 out 
of 7250 bits fails. The initial and final design of the cutting 
bit can be seen in Fig. 4 and the largest principal stress for 
both designs can be seen in Fig. 5. 

It is seen from Fig. 5 that  the largest principal stress has 
been reduced significantly as expected. However, if the ob- 
jective of the shape optimization is to reduce the largest prin- 
cipal stress, the final shape becomes slightly different. This 
is due to the volume dependence involved in the expression 
for probability of failure, see (1). A stress minimized design 
tends to have large volumes with uniform maximum stress 
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P / =  4.7%: 1 out  of 21 fails Max. ol = 1551 M P a  

P~ = 0.0014%: 1 out  of 7250 fails 

Fig. 4. Initial and final design of cutting bit from a circular saw 
blade 

but this is usually not the best design of a brittle material 
as a larger volume has a larger probability of containing big 
flaws than a smaller volume of the structure. This tendency 
of difference between stress minimized designs and failure 
minimized designs is even more pronounced in cases where 
the second principal stress is positive and nearly equal to the 
largest principal stress, cf. the definition of the equivalent 
stress in Table 1. In such situations there might be a big 
difference in optimum design between using the probability 
of failure or the largest principal stress as objective. This im- 
portant fact has been demonstrated by Rasmussen and Lund 
(1997) in the case of designing a turbine disk of ceramic ma- 
terial. 

�9 Max. ~1 = 858 M P a  

Fig. 5. First principal stress in initial and final design of cutting 
bit 

probability of failure of components made of brittle mate- 
rials in the design process. The analysis of probability of 
failure is based on a generally accepted two-parameter model 
using Weibull's probabilistie treatment of brittle strength. 
Expressions for design sensitivities have been derived ann- 
lyrically and it has been shown how it can be implemented 
in a finite element based analysis system. A test specimen 
example is used for numerical verification of the facilities for 
analysis and design sensitivity analysis. Finally, an industrial 
example illustrates the effectiveness of designing mechanical 
components made of brittle materials by using Weibull prob- 
abilistic methods combined with finite element based shape 
optimization and mathematical programming. 

7 Conc lus ions  

In this paper an application of shape optimization has been 
discussed. The objective has been to take into account the 
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