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brittle materials 

B. D. WRIGHT 
Mechanical Test Department, British Aerosopace, Warton, Preston, Lancs., UK 

P. J. GREEN*,  P. M. B R A I D E N t  
Departments of Mathematics * and Engineeringt, University of Durham, Durham, UK 

Delayed fracture in brittle materials may be demonstrated by observing the change in 
bend strength over a range of constant stress rates to failure. A simple technique has been 
developed to analyse this behaviour making efficient use of the experimental data. Based 
on a model incorporating theories of stress corrosion and brittle fracture, with Weibull 
statistics, the technique provides estimates of relevant parameters using the method of 
maximum likelihood. Confidence intervals of estimates, the significance of any observed 
rate effect, and the validity of the model are also assessed. The technique is demonstrated 
by applying it to data from bend tests on soda-lime glass and WC-Co materials. 

1. Introduction 
Some recent studies of the effects of stress cor- 
rosion in tungsten carbide alloys containing cobalt 
as a binder phase (WC-Co), have included the 
measurement of bend strength under different 
loading rates [1]. Because most commercial 
grades of WC-Co materials exhibit brittle behaviour 
the bend strength is influenced by the distribution 
of flaws through the material in addition to any 
stress corrosion effect which might be present. 
It is therefore necessary for both factors to be 
considered in a quantitiative analysis of stress 
corrosion. 

The simplest method of analysis is to compare 
the mean strength of a number of specimens at 
one rate of loading with those obtained at other 
loading rates (see for example Davidge et al. 

[2], Braiden et al. [3]). However, materials like 
WC-Co are expensive to obtain and prepare, so 
that the number of specimens available for testing 
may be relatively small. Consequently possible 
errors in the mean strength can be considerable. 
It is obvious that a more efficient method of data 
analysis is required. More specifically, error due 
to initial grouping such as calculation of means, 

0022-2461/82/113227-08503.46/0 

must be removed, and the original data employed 
within a single analysis. 

Trustrum and Jayatilaka [4] have used an 
analysis of this type to estimate a brittle fracture 
parameter, the Weibull modulus, "m". Following 
their example a simple technique is reported here 
which enables estimates to be obtained of both 
the brittle fracture and the time dependent strength 
parameters from stress rate data, within a single 
process. Valid statistical procedures are employed 
which are based on the method of maximum 
likelihood. 

2. Development of failure model 
2.1. T h e o r y  
It is now well established that crack growth in a 
brittle solid subject to stress corrosive conditions 
may be described by a relationship between KI, 
the plane strain stress intensity factor in the crack 
opening mode and v, the crack growth velocity. 
This relationship may be written as 

v = AK~ ,  (1) 

where A and n are constants, n being often referred 
to as the stress corrosion parameter. 
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Further, KI may be related to the applied 
stress, a, through the linear elastic fracture mech- 
anics relationship 

K I = Y e a  1/2, (2) 

where Y is a geometric constant and a is some 
theoretical crack length. 

Evans and Johnson [5] have combined these 
approaches and have hence derived an expression 
relating the applied stress at fracture of to a 
constant stress rate 6 employed to raise the stress 
to the point of fracture, and a theoretical flaw 
size at the start of loading ai, namely 

[ 2 (n+ 1) a ],/in+,) 
o f  = [Ar , - -~- - -2~n_2) /~  ] (3) 

Rewriting Equation 3 in logarithmic form 

1 
log (of) - (n + 1) log (6) 

+ [ n - - ~ ]  log + log C' (4) 

where 

C' = 2 (n + 1) ] x/n+1 
= c o n s t a n t .  

Thus the fracture stress is seen to depend upon 
a nominal constant, the time dependent loading, 
and the theoretical initial flaw size, the influence 
of each being controlled by the stress corrosion 
parameter, n. 

2.2. Statistical representation of random 
variable, ai 

The measurement of n from stress rate data is 
impeded by the unknown quantity ai. This is the 
length of a theoretical initial crack used to rep- 
resent the complex system of flaws within a real 
material. Because of their microscopic size, their 
diversity of type, and complex interaction with 
others, analysis of real material flaws cannot 
be used to obtain a value of ai in the majority 
of cases. However, the problem may be overcome 
by considering the material behaviour under a 
different set of conditions. 

If the material is loaded to failure in such a way 
that stress corrosion is prohibited from acting, 
say in an inert environment, then the inert strength, 
oi, may be related to the theoretical initial flaw 
size, ai, and the fracture toughness (or critical 
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stress intensity factor) of the material, Kie, such 
that 

KIe = Yala~/2, (5) 

where Y as before is a geometrical constant. 
Combining Equations 4 and 5 to eliminate ai 

produces 
1 

log (of) - log (6) 
(n+  1) 

(n-  2) 
+ (n + 1) log (el) + log (C") 

(6) 

where 

log (C") = log (C') + (n -- 2) 
(n+  1) 

log (K-~c) = constant. x 

Now the unknown quantity is the inert strength 
ai. Taking material flaws to be randomly dis- 
tributed, their effect on strength indicates that o I 
may be considered a random variable which 
represents the brittle strength of the material 
in the absence of any corrosive influence. 

A statistical model proposed by Weibull [6] is 
commonly employed to characterize the dis- 
tribution of brittle strength [7]. 

The form of the distribution of any random 
variable, X, may be specified by means of the 
cumulative distribution function (cdf), F, which 
when evaluated at any number x, gives the pro- 
bability that a randomly chosen X does not 
exceed x, i.e. 

F(x) = P {X <~ x}. 

In this case, assuming a Weibull distribution 
for the random variable ai,  

P{el<~X} = 1- -exp  -- (7) 

where ao and m are constant parameters, con- 
trolling, respectively, the scale and shape of the 
distribution. 

Equations 6 and 7 together provide a model 
incorporating both the stress rate influence, and 
the variability in the fracture stress data that is to 
be analysed. 

2.3. Analysis of  the  model  
Equations 6 and 7 may be combined by first 
writing 



Z = m  log a(~oo ) .  (8) 

The cdf of Z may be obtained from Equation 7 
such that 

 Ioi. oo e  (x)l 
= 1 - exp (-- eX). (9) 

This probability distribution, with no par- 
ameters, is known as the Gumbel or "extreme- 
value" distribution [8]. 

The elimination of a I from Equation 6, using 
Equation 8 gives 

1 ( n - 2 )  
log(o~) - - -  l o g ( d ) + B + - -  Z, 

(n+  1) m ( n +  1) 
(10) 

where 

B = log (C") + (n -- 2_______) 
( n +  1) 

log (ao) = constant 

Equation 10 demonstrates that the model 
predicts a linear regression of log af on log d, 
the slope of which is 1/(n+ 1). The intercept, 
B, involves a number of unknown parameters, 
all constant, and the final term, involving the 
random variable Z, represents the variability in 
O'f. 

The distinctive features of this model are: 
(1) The"error" distribution is "extreme-value" 

rather than the more commonly encountered 
Normal or Gaussian. In consequence, the standard 
least squares theory is not applicable. 

(2) The "errors" in the fracture strength data 
are more properly systematic random variation 
caused by the variability in material flaws, the size 
of which cannot be measured. Thus, these errors 
are not expected to be negligible, and a close fit 
of a straight line to the (log 6, log oe) data will 
not be obtained. In this context, measurement 
error may be neglected. 

3. Use of the model to estimate unknown 
parameters, n, rn, B 

3.1. Estimation of parameters using the 
method of maximum likelihood 

Although the least squares method of linear 
regression is not applicable in this case, another 
standard statistical p rocedure-  the method of 
maximum likelihood estimation - is valid. It may 
be used to obtain not only estimates of the 

unknown parameters in the model (given by 
Equation 10) but also confidence limits for them 
(see [8] ). 

Consider a sample of N observations, (Xi,  
Yi) where 

Xi  = log (6) 
for the ith observation, 

Yi = log (ae) 

where i = 1 ,2 ,3  . . .N. 
From Equation 10, 

1 ( n  - -  2 )  
Yi = ( n +  1---~) X i +  B +  m ( n +  1) Zi" 

For temporary notational convenience, this may 
be written 

Z i = r X  i + s Y i  + t 

where r = -- m / ( n - -  2) 

s = m ( n +  1)/(n-- 2) 

t = -- mB(n  + 1)/(n-- 2) (11) 

The cdf of Yi for a given X i = x i (i.e. a fixed 
preset stress rate) is given, from Equation 9, by 

~~ < y 3  = e{z~ < (rx~ + sy~ + t)} 

= 1 -- exp [-- exp (rxi + sy i + t)]. 

The probability density function (pdf) of 
Yi, gO'i) is the derivative of the cdf. Thus 

g(Yi) = exp [-- exp (rx i + sYi + t)] 

x exp (rx i + syi + t) x s. 

The likelihood is the product of these terms 
over the whole sample so that the log-likelihood, 
or support, S, is given by 

N 

S = log I-I g ( Y i )  
i= 1 

N 

= Z logg(Yi) 
i=1  

N 

= ~, [(rX i + s Y  i + t ) - -  exp ( rX  i + sYi + t) 
i= 1 

+ log s] 

N 

= ~ [(f log6 i + s l o g a ~ i + t )  
i = l  

- -  exp (r log 6 i + s log a f i +  t) + log s]. 

The maximum likelihood estimates of r, s, t 
are obtained by maximizing S. Exact formulae 
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are not available, but the maximization can be 
carried out easily using a standard numerical 
technique. The estimates of  n, m,  B may be 
obtained using Equation 11. 

3.2. Confidence in estimated parameter 
values 

The values assigned to n, m,  B at the end of  the 
maximization procedure are only estimates, Thus 
an indication of  the confidence that may be placed 
in them is required. To this end, a likelihood ratio 
test may be employed (see [8]). Suppose that Sr 

is the maximum support obtained when the par- 
ameters n, m,  B are restricted by one fixed constant. 
If S is the maximum unrestricted support, then 

x 2 = 2 ( s -  s t )  

has approximately a X 2 distribution on one degree 
of  freedom, under the null hypothesis that the 
constraint actually holds [8]. 

For example, if the constraint is that n = no, 
where no is some preassigned number, and if the 
maximum support under this restriction is denoted 
by Sno then 2 ( S -  Sno) has a • distribution with 
one degree of freedom if n = no. The upper 5% 
point of this distribution is 3.84, so that the 
collection o f  values of  no such that 

2(S - S,,o) ~< 3.84 

provides a 95% confidence interval for n. 
A similar procedure may be adopted to obtain 

confidence intervals for m and B. If simultaneous 
confidence statements about two or three of  the 
parameters are required, then the resulting X 2 
distribution will have two or three degrees of  
freedom respectively. 

3 .3 .  S ign i f i cance  o f  ra te  e f f e c t  
Sometimes it may be necessary to show that the 
fracture stress is being influenced by the stress 
rate to a significant degree, so that any apparent 
correlation between the two is not merely an 
effect of  sampling. In this case, the null hypothesis 
is that the fracture stress is not influenced by the 
stress rate, so that a single constraint applies, 
namely that n = ~.  If  S, S=, are the unrestricted, 
and restricted supports respectively, then 

X z = 2(S--  S=) (12) 

Whether there is significant deparature from the 
null hypothesis that no rate effect exists is assessed 
by comparing X 2 calculated using Equation 12 
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Figure 1 Probability integral transform, Ui, of  residual 
Z i plotted against i /N (i = 1, 2, 3 . . .  N). Dotted lines, 
enveloPe of  36 artificial data sets. Solid lines, soda-lime 
glass. 

with the distribution of  X 2 on one degree of  free- 
dom given in standard tables. 

4. Application to experimental data 
Although the above procedure was developed to 
analyse the fracture strength-stress rate behaviour 
of  WC-Co materials, it was first applied to data 
from similar tests on abraded soda-lime glass. The 
maximum likelihood estimates of  n and m for 
both the glass and WC-Co materials are given in 
Table I. 

The maximum likelihood estimates of  n for the 
glass compare favourably with values of  n obtained 
from crack propagation studies using the double 
torsion configuration, and with values reported in 
the literature [9] from tests on comparable 

1.0 ~ [ i i . ~ 
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, f l  / /  
1 f 
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Figure 2 See Fig. 1 for details. Solid line, W C - 6  wt % 
Co (1). 
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b3gure 3 See Fig. 1 for details. Solid line, W C - 6  wt% 
Co (2 ) .  

materials. The range of measured n was between 
15 and 19. 

Double torsion tests were also performed on 
WC-Co materials containing WC-6 wt % Co and 
WC-16wt% Co. Values of n lying between 
90 and 140, and 70 and 360, were recorded 
for these materials respectively. Again these 
results lie in a similar range of the maximum 
likelihood estimates. 

Neither a description of the experimental tech- 
niques employed, nor a discussion of the results 
will be given here since they are beyond the 
scope of this report. These details may be found 
in [1]. 

5. Assessing the validity of  the model  
Up to this point, the validity o f  the model and 
in particular, the Weibull assumption has not been 
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Figure4 See Fig. 1 for details. Solid line, W C - 1 3 w t %  
Co (1). 
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Figure 5 See Fig. 1 for details. Solid line, W C - 1 3 w t %  
Co (2). 

questioned. Some attempt to do so may be made 
by examining the residuals, Zi ,  in Equation 10, 
which may be expressed in the form 

re(n+ 1 ) [  Xi ] 
Zi  - ( n - -  2) Yi n + l  B . 

Z i is evaluated for each (Xi ,  Y i ) =  [log (b), log 
(of)], given the estimated values of m, n, B. If 
the Weibull assumption is correct, then Z i, (i  = 
1, 2, 3 . . .  N) should appear to follow approxi- 
mately the extreme-value distribution [8]. This 
may be checked graphically by first transforming 
the Z i using the probability integral transform 

U i = 1 -- exp (-- eZi). 
The resulting U i (i  = 1, 2 ,  3 . . .  N )  should be 

approximately uniformly distributed in the interval 
(0, 1). If these N values are ordered in magnitude 
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Figure 6 See Fig. 1 for details. Solid line, W C - 1 6  wt% 
Co (1 ) .  



1 . 0  I I I I j ~ , . .  

/ /  / 
0.8 ,, , - 

0.6 . ~ , /  

0.4 , / "  " , , , 1 " 7 . " - ' 1  / 

0.2 ' "" 
i j / 

I I 
O. 2 0.4 0.6 0.8 1.0 

qN 

Figure 7See Fig. 1 for details. Solid line, WC-16wt% 
Co (2). 

and then plotted against i / N  (i = I,  2, 3 . . .  N') the 
points should lie close to the 45 ~ line from (0, 0) 
to (1, 1). 

Obviously, sampling fluctuations tend to 
generate deparatures from this ideal form. If the 
discrepancies yielded by the data are large, then 
this would indicate the Weibull model was unsatis- 
factory. To assess the significance of the dis- 
crepancies, a Monte Carlo technique has been used 
[8]. 

Thirty-six artificial data sets of the same size 
(N = 60) were constructed with pseudo-random 
numbers, using the model defined by Equations 
6 and 7. The parameters m, n, B were estimated 
using the maximum likelihood method and the 
graphs displaying the standardized residuals plotted 
as for the real data. It may be shown (see [8] ) that 
the distribution of the residuals does not depend 
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Figure 8 See Fig. 1 for details. Solid lines, two examples 
of artifical data sets. 

on the values of the parameters m, n, B so it is 
immaterial what values are chosen for the simu- 
lation. 

The quality of  the fit to a 45 ~ line was assessed 
visually for each artificial data set and compared 
with the corresponding curves for the real data 
sets. The results are summarized in Figs 1 to 7 
showing the graphs for the seven data sets super- 
imposed on the envelope of the 36 artificial data 
sets. Examples of graphs for two artifical data 
sets are given in Fig. 8. 

Since each artificial data set was constructed 
using the Weibull model, any discrepancies from 
the 45 ~ line originate solely from sampling fluc- 
tuations. Curves for the real data sets lie almost 
entirely within the envelope of the 36 artificial 
data sets, providing no justification for rejecting 
the Weibull hypothesis. 

The Monte Carlo method may be extended to 
provide formal tests of significance but these seem 
unnecessary here. It should be noted that the same 
method of estimation (maximum likelihood) has 
been used in assessing the validity of the model as 
was used in the original estimation of parameters 
from the real data sets. 

6. Conclusions 
A simple technique has been developed for the 
efficient analysis of delayed fracture effects in 
data obtained from bend tests performed at a 
range of stress rates. 

The fracture model, incorporating theories 
of stress corrosion and brittle fracture, with 
Weibull statistics, has an "extreme value" error 
distribution. Parameter estimation is accomplished 
using the method of maximum likelihood. 

The technique obtains: 
(1) the significance of any observed rate effect 
(2) estimates of the stress corrosion and brittle 

fracture parameters 
(3) confidence intervals for these parameters 
(4) an assessment of the validity of  the model. 
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