
Constr. Approx. (1992) 8 :401M26 
CONSTRUCTIVE 

APPROXIMATION 
�9 1992 Springer-Verlag New York Inc. 

On the Sensitivity of Radial Basis Interpolation to 
Minimal Data Separation Distance 

K. Ball, N. Sivakumar, and J. D. Ward 

To L J. Schoenberg--a tribute from admirers afar 

Abstract. Motivated by the problem of multivariate scattered data interpolation, 
much interest has centered on interpolation by functions of the form 

N 

f ( x ) =  ~ a j g ( l l x -  xjll), x E R  s, 
j = l  

where g: R + ~ R is some prescribed function. For a wide range of functions g, it 
is known that the interpolation matrices A = g ( l l x ; -  x~ll)fj= 1 are invertible for 
given distinct data points xl ,  x2 , . . . ,  xs .  More recently, progress has been made 
in quantifying these interpolation methods, in the sense of estimating the (12) 
norms of the inverses of these interpolation matrices as well as their condition 
numbers.  In particular, given a suitable function g: R + ~ R, and data in R ~ having 
minimal separation q, there exists a function ha: R + ~ R § which depends only 
on g and s, and a constant  C~, which depends only on s, such that the inverse of 
the associated interpolation matrix A satisfies the estimate ]IA- t l[ -< C~hs(q). The 
present paper seeks "converse" results to the inequality given above. That  is, 
given a suitable function g, a spatial dimension s, and a parameter q > 0 (which 
is usually assumed to be small), it is shown that there exists a data set in R ~ having 
minimal separation q, a constant Cs depending only on s, and a function k~(q), 
such that the inverse of the interpolation matrix A associated with this data set 
satisfies II A-  111 > C~k~(q). In some cases, it is seen that h~(q) = k~(q), so the bounds 
are optimal up to constants. In certain others, k~(q) is less than h~(q), but 
nevertheless exhibits a behavior comparable to that of h,(q). That is, even in these 
cases, the bounds are close to being optimal. 

1. Introduction 

During the past  several years, questions concerning the interpolat ion of scattered 
data  in the Euclidean space R s have led to various generalizations of a striking 
result of  Schoenberg. In IS1], Schoenberg showed that  if xl ,  Xz . . . . .  xN are distinct 
points in a Hilber t  space, then the matr ix  A = ( l l x ,  - xjl[)i,j=n 1 is invertible. 
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Consequently, for given data d 1, d 2 . . . . .  dN6 R, and distinct points x1, x 2 . . . . .  

xN ~ R s, it is possible to find an interpolating function f :  R s ~ R of the form 

N 

f ( x )  = ~ a / I x -  x/[.  
j = l  

Motivated by the problem of multivariate scattered data interpolation, much 
interest has centered on interpolation by functions of the form 

N 

f ( x ) =  ~ ajg(l lx-xj l l ) ,  x ~ R  s, 
j = l  

where 9: R+ -'* R is some prescribed function. For  a wide range of functions g (see 
Section 2), it was shown [M], [MN1]  that the interpolation matrices A = 
g ( l l x i  N 

- -  xill)ij= 1 are invertible for given distinct data points xl, x2 , . . . ,  xN. 
More recently, progress has been made in quantifying these interpolation 

methods, in the sense of estimating the (12) norms of the inverses of these 
interpolation matrices as well as their condition numbers. For example, in [B], 
such estimates were derived for matrices associated with the function g(r) = r. In 
[NWl] ,  a general approach, using Fourier transform techniques, was developed 
for obtaining such estimates for interpolation matrices arising from conditionally 
negative definite radial functions of order 1 (see Section 2). This approach was 
later adaPted in [NW2] to obtain estimates for ]]A-XH for matrices A determined 
by radial functions of order m > 0 that are generated by completely monotonic 
functions. Moreover, in case m = 0 or 1, all such estimates depended only on the 
minimal separation distance for the data and on the dimension s of the ambient 
space RL Thus, given a suitable function g: R + ~ R, and data in R s having minimal 
separation q, there exists a function hs: R + ~ R +, which depends only on g and 
s, and a constant Cs, which depends only on s, such that the inverse of the 
associated interpolation matrix A satisfies the estimate IIA-I[I < Csh~(q). 

In the present paper, we seek "converse" results to the inequality given above. 
In particular, given a suitable function 9, a spatial dimension s, and  a parameter 
q > 0 (which is usually assumed to be small), we show that there exists a data set 
in R s having minimal separation q, a constant Cs depending only on s, and a 
function ks(q), such that the inverse of the interpolation matrix A associated with 
this data set satisfies ][A-111 >_ ~sks(q). In certain cases (see Section 4), hs(q) = ks(q) 
and thus, up to constants, the results are optimal. In case g(r) is the Hardy 

multiquadric (i.e., 9(r) = x /1  + r2), it turns out that h~(q) > ks(q). Nevertheless, our 

methods do show that, with s fixed and g(r) = x/1 + r 2, ks(q) grows exponentially 
as q tends to zero. Thus, our investigations may be viewed as a systematic 
extension, to a broad class of functions, of the observation made in [-B-] (also see 
[Bal]);  namely, for the special c.ase g(r) = r and s = 1, hs(q) = 1/q, C 1 = 2, and 
there exist data sets in R for which 

(2 - ~) 
[IA-1H > for given ~ > 0. 

q 

So, in effect, we wish to determine the extent to which the upper bounds given in 
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[B], [-Bal], [NW1], and [NW2] reflect the actual value of IIA -1 II for matrices 
associated with certain data sets in R ~. 

An outline of the paper is as follows. In Section 2, we detail a suitable class of 
functions g to which our methods pertain. This section is necessarily technical in 
nature and the trustful reader may omit a significant portion of it during the first 
reading. Section 3 describes our main results. In particular, given a suitable 
function g and parameter q, a data set is constructed and the corresponding [IA -1 [I 
is estimated from below. For the benefit of the casual but curious reader, we 
mention that the data set is a q-scaled version of a finite portion of the regular 
integer grid, while the estimate on IIA ~ 11 is obtained by carefully examining the 
quanti ty IIA 2~s~ II/ll'~S) ll, where 2 (~) is a specific vector which will be defined in Section 
3. It transpires that A2 (~) can be expressed as a certain divided difference, and that 
]FA21S)II can be estimated purposefully by invoking Fourier analytic methods, 
notably the Parseval identity and the Poisson summation formula. The final 
section deals with specific applications of the methods developed in Section 3. 

2. Background and Preliminaries 

In this section we first recall a version of the scattered data interpolation problem 
which forms the basis of our investigations. Second, we list pertinent definitions 
and notation for use throughout the remainder of the paper. Finally, we also 
discuss some technical results which we shall use in the subsequent sections. 

Given a continuous function F: Rs--*R, distinct vectors {x~ff=l in R s, and 
scalars {yj}N=~, one version of the scattered data interpolation problem [P] 
consists of finding scalars N {a~}j= 1 such that 

N 

a j F ( x  k - x j) = Yk,  k = 1, 2 . . . . .  N .  
j = l  

Equivalently, we wish to know when the interpolation matrix { F ( x  k - N Xj)}k,j= 1 is 
invertible. 

The following class of functions has played a prominent role in the study of 
scattered data problems (see [GV]). 

Definition 2.1. Let F: RS-~ R be continuous. We say that F is conditionally 
negative (positive) definite of order m if for every finite set { x j } j ~  1 of distinct points 
in R S, and for every set of complex numbers {c~}y=l satisfying 

N 

y~ cjq(xj) = o 
.i=1 

for every q ~ H,._ 1 (the space of s-variate polynomials of total degree at most 
m - 1), we have 

N 

Y ~jc~F(xj -- x~) <_ 0 (>_ 0). 
j , k= l  
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This class of conditionally negative (positive) definite functions of order m (on 
R9 will be denoted by N~, (P~). 

D e f i n i t i o n  2.2. We say that a continuous function g: R + --, R is a conditionally 
negative (positive) definite radial function of order m if g o ([l'll) is in N~, (P~,) for 
every s. (Henceforth, unless otherwise specified, IL']I will denote the standard 
Euclidean (12) norm.) 

The set of all conditionally negative (positive) definite radial functions of order 
m (on R s) will be denoted by RN~ (RP~). The class RN~ includes those functions 

g which are  continuous on [0, or) and for which (-1)"+l(d"/dam)g(x/a)  is com- 
pletely monotonic on (0, oe); i.e., 

fo ( -  1) m§ - -  g ( , , ~ )  = e -  ~ dl~(t), 
do -m 

where d# is some nonnegative measure on [0, oe). This latter class of functions 
will be denoted by RN2,c. 

For  the remainder of the paper, we will deal only with the cases m = O, 1. In 
these cases, it is known from [$2] and [M]  that RN~.c = R N  2 := 0~= 1 RN~. So 
we will drop the subscript c. We also define the class R P 2  by requiring that f 
belong to RP2  precisely when - f  E RN2.  

Now suppose that F: R s ~ R is continuous and that it is radially symmetric, i.e., 
F(x) = F(y) if ]]xll = Ilyll- It is manifest that F may be identified with the following 
function hp: R + - ,  R given by 

hv(r ) = F(x) where [IxlL = r. 

Consequently, we may (and will) indulge in a slight abuse of notation and say that 
a function F: R s ~ R belongs to RN$(RP2)  if F is continuous, radially symmetric, 
and its associated function hv (as defined above) is in RN2(RP,~). 

Next, we wish to review some relevant facts regarding divided differences. Let 
F: R s ~ R be a function, n a natural number, and e~, the j th (standard) unit vector 

in RL We define V f ,  1 < j < s, by 

V f ( x )  := F(x - ej) -- 2F(x) + F(x + e j), x ~ R ~, 

and 
V~F(x) := Vj(V 7- ~r(x)). 

An induction argument shows that 

2. / 2 n \  

We also set 

VnF(x) := VIVa'-" V~F(x). 

Perhaps our choice of the notation V" is not altogether standard. However, in the 
absence of any other divided difference, no confusion should arise. 
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The emphasis in this paper will be on functions F (: R * ~ R) that belong to R P g  
or R N ~ .  These functions possess useful representations which we will exploit in 
many situations. In particular, if F ~ R P g ,  then F admits the representation [$2] 

(2.1) F(x) = f o  e-IIxll2' d#(t), x ~ R  ~, 

where d# is a positive measure satisfying the conditions 

(2.2) d#(t) < oo; f T e-td#(t) < oo. 

On the other hand, if F ~ R N ~ ,  then F may be realized as (see [M], [NW2], [$2], 
and [Su]) 

f o  -- e-IlxllZt 
(2.3) F(x) = F(O) + d#(t), x s R s, 

t 

where d# is a positive measure such that 

(2.4) d#(t)< and 
t 

In what follows, we shall use C, C', C, and E to denote various generic constants. 
The dependence of the constants on certain parameters will be indicated by 
subscripts (e.g., C,, C's,=), but the actual numerical values of these constants will 
likely change from one occurrence to another. We will also freely employ the 
standard Landau symbols 0 and o. 

Lemma 2.3. Le t  F (: R S ~ R ) ~ R P ~  or R N ~ ,  x 6 R  ~, and suppose that n (>_2) is 
a positive integer. Then 

(i) IV"f(x)l < C~,,/(1 + Ilxn) s+a, c5 > 0. 
(ii) V"F ~ Li0V). 

Proof. At the outset, we note that since F is continuous, so is V"F. So (ii) follows 
from (i). Second, since V'F(x) = V"-2(V2F(x)), it is enough to prove (i) for n = 2. 
Furthermore, by continuity of V2F, it is sufficient to show that 

Cs 
IV2F(x)[ ~ -  [[X]] large. 

]lxV +~" 

Thus, for the duration of the proof, we set x = (xt . . . . .  xs), rlxll = :  r, and assume 
that r is as large as necessary. 

By (2.1), (2.3), and the fact that V2(1) = 0, we see that 

f o  IV2(e IIxll2')[ (2.5) ] V2F(x)r <_ t m d#(t) 

f ~ s 2 -- x:~t 
1 - I j = l l V j e  ' I 

= t m d#(t), 
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where m equals 0 if F ~ RP'~ and equals 1 if F ~ R N  T. Let 1 < j < s be fixed (but 
arbitrary),  and consider ,-,2 -x2t v i e  , .  It  is well known that  ,-,2 -x~t v j e  , equals a constant  
multiple of  D4r(e-Y2')(r for some r e [xj  - 2, xj + 2]. Since 

D'~(e-y 2~) = (12t 2 -- 48y2t 3 + 16y4t4)e -y2t, 

we see f rom (2.5) that  

f : V l s  q2 ,2  16l~jl4t4)e-@ (2.6) IVZF(x)l < C I u = x t  ~ + 481{~12t3 + 
_ t m d ~ ( t ) .  

Setting { : =  (~1, 42 . . . . .  ~s), and recalling that  IIxl[ is large enough,  we conclude 
f rom (2.6) that  

i ~ e-(l/2)llxH2tt 2s-m f l ( 1 2  + 4811xlt2t + 16llx]l*t z) dp(t) (2.7) IV2F(x) I < C~ 
d o  j = l  

fo [2, 1 = C s e-r2t/2t 2s-m ~ ak(r2t) k d#(t), 
L k =  0 J 

where ao, a~, . . . ,  a2s are constants  depending solely on s. 
Let c~ e (~, 2) be fixed and write (2.7) as a sum of three terms 

;7 r ] l l  := C ~ e-"2t/zt 2*-m ~, ak(r2t) k d#(t), 
Lk=O 

12:= C~ e-~u2t 2~-m ak(r2t) k d#(t), 
/r ~ k = 0 

and 

NOW, 

f 7  I 2 s  ] I 3 : =  C s e-~2t/2t 2s-m Y~, ak(r2t) k dl4t). 
Lk=O 

F2-12*-,q- 2, 2 k * 

C~ C~ 
< r(2,_=)=_2s(=_2) - rS+a , ~ > O, 

since, for m = 0, 1, 

(2s - rn)~ + 2s(c~ - 2) - s >_ s(4~ - 5) - ~ _> 3~ - 5 > 0, 

and (2.2) and (2.4) hold. 
Next,  

I2 <-- C~e -~ -~r4S d#(t) _< r~+-- ~ 
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by (2.2) and (2.4). Lastly, we turn to 13 and note that if m =  0, then 

13 <_ C s f ~  e -(rz/2-1)tt2Sr4St2Se-t dp(t),  

whereas, if m = 1, then 

;1  ~176 e - r2t/ 2 t2Sr4St 2s 
I 3 <__ C s dl~(t). 

t 

For large enough r, the functions 

t ~ e - (r2t/2 - 1)t4s 

decrease in t, so 

and 

and t ~ e-  r2t/2 t 4s 

13 ~ C~r4~e -~/~-1) f ~  e -t did(t), 

13 <-- Csr4Se_r2/2 f ~  d#(t)t 

whence, by (2.2) and (2.4), 

This completes the proof. 

Cs 
13 ~ r~+~- ~ . 

m = 0 ,  

m = l ~  

407 

As pointed out by M. J. D. Powell, the proof of the preceding lemma can be 
simplified considerably by using the elementary inequality 

12 + 48(2t + 16~ t  2 _< 288er t/3, t > 0. 

Also, F. J. Narcowich notes that the function x ~ l x ]  2~, x e R ,  1 < ~ < 1, serves 
to vitiate the lemma for n = 1. 

Lemma 2.4. Let F (: R s--, R ) e R P ~  or RN~ and let dbt be its representing 
measure. Suppose that n (>_ 2) is a fixed positive integer, and define G(x):= VnF(x). 
Assume that for some (~ > O, 

(*) e-IIrll2/4' d#(t) Cs ~/2+m < - -  [lyll large, 
o - I l y l [  s + a '  

where m = 0 if F ~ RP~ while m = 1 if F ~ RN~.  Then 

Cs n 
[(~(y)[ _< ' for all y ~ R  ~. 

(1 + [lyll) s+~ 
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ProoL Since G s La(R ~) (Lemma 2.3), G e Co(RS). So it suffices to demonstra te  that 

C s  n 
IG(y)I ~ ~ '  IIyLI large. 

IlYl? +~' 

NOW, 

x2, ] 
(2.8) OJ(y) = t m d#(t) e -r dx  

s 

;o[;. ] = V"(e-Ilxll2t)e-i~" dx d#(t) 
s t m 

by Fubini 's theorem. We note here that for t = 0, V"(e-llxlE2') = V"(1) = 0, whereas 
for t > 0, x~-*e-11~112t, and hence x~-*V"(e-11~112t), belongs to L~(R~). That  is, the 
use of Fubini 's theorem is justified. 

Assume that  t # 0, and y = ( y ,  Y2 . . . . .  Ys)" Since 

Vn(e - llxlVt) = ~ V~(e-~2t), x = (x 1, x 2 . . . . .  Xs), 
j = l  

and 

e -  y2 /4 t  

(2.8) shows that  

d(y) = ( -  1)s"22s"C ~ sin 2" e-Ilyll2/*t d#(t) 
t s / 2  + m ' 

dO I_j=l 

and the desired result follows immediately from (*). 

Remark 2.5. It may be noted that  for y :~ 0, the function t~-+e-Ilyll2/4t/ts/2+m, 
m = 0, 1, is defined, by continuity, to be zero at t = 0. 

Corollary 2.6. Let F (: R s--} R)~ R P ~  or R N ~ ,  and let d# be its representing 
measure. Suppose that n (> 2)~ N and that F satisfies condition (*) of  Lemma 2.4. 
Then, for  each y ~ (0, 2n] s, the following relation holds: 

~, (V"F)(k)e -iky = ~ (V~F)^(y + 2nk). 
k ~ Z  s k ~ Z  s 

Proof. This is a direct consequence of the Poisson summat ion formula [SW, Cor. 
2.6, p. 252]. Its use in the present context is validated by the assertions of Lemmata  

2.3 and 2.4. �9 

Remark 2.7. Suppose that F (: RS-~ R)~ R P ~  or R N T ,  d# is its representing 
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measure, and q > 0 is a fixed number. Let Fq(.):= F(q . )  and 

Y = (Yl, Y2 . . . .  , ys) E (0, 2zr] '. 

If n ( > 2) E N and m is defined as before, then the proof of Lemma 2.4 and the fact 
that 

(V~(e-q~x~t))" (y j )=  ( -1)"2  2" sin2n(~)(e-'l~x~t)" (yj) 

;7 
imply that 

7~s/2(  - -  1)sn22sn s ( '~  
(V .Fq)^(y )  = l--[J= 1 sinZ"(YJ2) Jo e-HYl[z/gq2t d#(t) 

qS ts/ 2 + m" 

In particular, if F (and hence Fq) satisfies condition (,) of Lemma 2.4, then 
(V,  Fq)^(y)  satisfies the conclusion of that lemma, and by Corollary 2.6, we have 

~s/2(_ 1)sn22sn ('~o 
(2.9) ~ (V"Fq)(k)e - i f ' y -  q* (-I sin2"(YJ) ~ L e-Ily+2=kH2/4q2t 

k e Z s j = 1 k, 2 Jk e Z" ts/2 + " d#(t). 

It ought to be mentioned that condition (,) of Lemma 2.4 does not preclude 
any of the salient functions in R P ~  or R N ~  that are prevalent in the literature 
[D]. We now discuss examples of some such functions. The measures representing 
each of these functions in Examples 2.8-2.11 may be derived by using standard 
Laplace transform formulas (see, e.g., [EMOT]). 

Example 2.8. 
presenting measure d/~ is given by 

dt 
d t t ( t )=  C , - -  0 < ~ < 1 .  

tot ' 

Suppose that [lY][ > 0 and note that 

f 
o~ e-IlYEIZ/4t ;0 ~ e-Ilyll2/4t 

0 ts/2 + 1 dp(t) = C~ ts/2 + l +~ dt 

= C~. s f ~  e-lryll2uus/2+~-i du, 

C c t ,  $ 

Iryll ~+2~' 

Let F(x):= Hxlt 2~, x ~ R  s, 0 < e < 1. Then F ~ R N ~ ,  and its re- 

u = 1/4t 

whence condition (,) obtains. The last step in the preceding analysis follows from 
the fact that the integral in the penultimate step represents the Laplace transform, 
evaluated at [lYll z, of the function u~--~u s/2+~-1. It may be noted that the said 
transform exists because IJY[I > 0 and s/2 + c~ - 1 > - 1 .  
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Example 2.9. 
its representing measure du is given by 

e- t  
d#(t) = C - 7  dt. 

, i t  

Let F: R * ~ R be given by F(x) := x/1 + IlxlL 2. Then F ~ R N ~ ,  and 

Now, if Ilyl] > 0, then 

f 
m e-Ilyl12/4t f o  e-  Ilyll2/4te-Z 

0 t~/2 + 1 dy(t) = C ts/2+3/2 dt 

foe 
- Itrli2/4t 

< C ts/2 + 3/~ dt 

C, 
< - -  

-ily[l,+~, 
as demonstrated in Example 2.8. Thus F satisfies condition (,). 

Example 2.10. Define F(x) :=  log(1 + Ilxl12), x E R'. Once again, F ~ R N ~ ,  and is 
represented by the measure 

d#(t) = C e - t  dt. 

Suppose that llyll is large and observe that 

f o  e-  IIrIl214t ;0 ~ e-IIvEI2/*t 
- -  - - e  - t  dt pie + 1 dp(t) = t,/2 + 1 

f o  e-  [I y II ~"e- l l 4 u u s / 2  - 1 du, u = 1/4t. C, 

Now, this last integral above is the Mellin transform, evaluated at s/2, of the 
function u ~ e-  ~11 y II 2u + 1/4,~. Consequently, by I-EMOT, p. 313], we conclude that 

f o  e -  II ~'I1214t C~ 
t,~i7F d t 4 t ) -  ilyll~/2 g~/z(llyll), 

where Ks/2 is the modified Bessel function of the third kind. The standard 
asymptotic expansion of g,/2(llytl) for large Ilyll [AS, p. 378] guarantees that 

Ks/z(l[yll) = O(e-Ilyll), Ilyll large, 

SO 

I S  e-  H Y IIZ/4t 
ts/2+l d#(t) = O(e-lkrll), IlYll large. 

In particular, F satisfies condition (,). 

Example 2.11. Let F: R*--+R be given by F(x) = l/x/1 + Itxll 2. This function, 
called the inverse multiquadric, belongs to R P ~ ,  and has for its representing 
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measure, the measure 

If [lYll is large, then 

e-t 
d#(t) = C ~ dt. 

#t 

f/ e- Ily112/4~ I 5  e -  14yll2/4t 
t~/2 dl~(t ) = C t~/2u e- '  dt 

= C~ f o e  IlyllZue-1/4Uu(S-1)/2-1 du ,  u = 1/4t, 

= O(e-Ilyll), 

exactly as in the previous example. This shows that the inverse multiquadric also 
satisfies condition (.). 

3. Main Results 

This section is devoted to the development of a method which will be utilized to 
derive lower estimates for the norms of inverses of interpolation matrices asso- 
ciated with functions F (: R s ~ R) ~ RP~ or RN~ and certain data sets in R ". Our 
object, as discussed in the introduction, is to establish that for a given F, there 
exist certain data sets having (small) minimal data separation q, an appropriate 
function ks(q), and a constant ~ ,  such that the inverse of the associated interpola- 
tion matrix A satisfies ][A-1N > ~sk~(q). 

In the sequel, we assume that F (: RS~  R)6RP~ or RN~. Given a data set 
S N = {xj}Jv=l in R ~, and a function F ~ R P ~  or RN~, F: R ~ R ,  we will call the 
N x N matrix, with entries { F ( x i -  xj)}i.j=1,N the interpolation matrix associated 
with S N and F. 

Let us also recall the following elementary, yet useful fact, that for any N x N 
matrix A, 

{1 1 ]lz-lll  = Infll /2l~ 2ERN' 112[I = 1 . 

In particular, we have the estimate 

li~ll 
(3.1) Ila-lll > - -  for any 2~RS\{O}. 

IlA,~lr 

Crucial to most of our subsequent analysis is the introduction of the following 
special vector. 

Definition 3.1. Let n 6 N  and let 2 6 R  2"+1 be given by 

2 j = ( - 1 ) ~ ( 2 n ~  0 < j <  2n. 
\ / J  ' 



412 K. Ball, N. Sivakumar, and J. D. Ward 

Denote by 2 (~), the s-fold tensor product of )L with itself. That is, 2(~)~ R (2n+ 1),, and 
is given by 

2(s)(Jl' J2 . . . . .  Js)= k=ffIl(-- 1)J~( 2n)jk ' 0<_ jk<_2n. 

Lemma 3.2. Let 2 (~) be defined as above. Then there exists a constant C~ such that 
2*s,, 24sn 

Cs a - -  _< I1,t("112 _< Cs - -  

Proof. 
constant C such that 

2 4n 
(3.2) C - '  ~nn  -< 11;~112 -< c - -  

To this end, note that 

(3.3) N2,12= ~ ( 2 . n ' ) 2 = ( 4 n ) _  (4n)! 
s=o\ j / 2n [(2n)!-] 2' 

while the well-known Wallis' formula [AS, formula 6.1.49] warrants that 

(3.4) 
m--, ~L(2m)! x/mJ 

Now (3.2) follows from (3.3) and (3.4). �9 

By definition of 2 (~), it suffices to establish the existence of an absolute 

24. 

,A 

We proceed next to the description of data sets in R s which we shall use to 
obtain appropriate norm estimates. Let n s N and let ~s,, be the set of lattice 
points in R s given by 

Ss, n:= {(Jl,J2,--.,Js): 0 <--Jk <-- 2n, 1 <_ k <_ s}. 

Note that the cardinality of ~ , ,  is (2n + 1) s. Suppose that q > 0 and that 
F (: R ~ ~ R) ~ RP~ or RN~. The interpolation matrix A on which we wish to focus 
is the one associated with ~ ,n  and Fq. (It should perhaps be pointed out that 
studying the interpolation matrix associated with ~ , ,  (which has minimal separa- 
tion 1) and Fq is tantamount to studying the interpolation matrix associated with 
q ~ , ,  := {ql:IE 5fl~,,} (which has minimal separation q) and F.) 

The simplest example of such an interpolation matrix is the one associated with 
~1..  and Fq. In this case 

V Fq(O) Fq(1) 

A = ~ Fq( 7 1) Fq(0) 

L F q ( -  2n) F q ( -  2n - 1) 

�9 "" Fq(2n) ] 
�9 " Fq(2n-- 1) . 

�9 " Fq(0) 
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We draw the reader's attention to the fact that A is, in fact, symmetric because F 
is radial. The reason for displaying it as we have done will emerge momentarily. 

Now we wish to consider the action of the interpolation matrix associated with 
4 , ,  and Fq, on the vector 2 (~). It turns out that the vector A2 ~ (~R t2"+l)s) 
comprises as its entries, appropriate divided differences of Fq evaluated at certain 
lattice points. Indeed, for 0 < Jk <-- 2n, 1 _< k ~ s, we have (A2t~))j = V"Fq(ne - j )  
where e -- [1, 1 . . . .  ,1]  T. To see this, we first note that 

2 .  2n  /2nh  /2nh 
(A2(~))j ~ ... ~ ( _  1)k, +...+k �9 t ,Jt Y 

However, by definition, we also have 

k + . . . + k / 2 n \ . . . / 2 n \  
V"F~(ne - j ) =  L "'" L ( - 1 ) '  '[k, j \  I \ jFq ( (ne -  j ) - ( n e  k)), kl=O k s = O  

whence the required assertion follows because Fq is radially symmetric. Con- 
sequently, the components of A2 r are given by V"Fq(j), - n  <_ Jk <-- n, 1 <_ k <_ s. 
(Although the purport of the preceding proof was present in the original version 
of our paper, it was not quite so transparent. The pithy argument given above is 
due to the referee whom we acknowledge gratefully at this juncture.) 

Our primary objective in this section is to obtain a quantitative upper estimate 
for 11A2~162 where A is the interpolation matrix associated with ~,r and 
Fq (F e RP~ or RN~ Such a result, via (3.1), will provide us with a lower bound 
for HA-1N. Additional insight in this regard has also been offered by the referee, 
who points out that the sequences of Definition 3.1, appropriately normalized, 
form the coefficients of a suitable approximate identity centered at [Tr . . . . .  ~]v, a 
fact which may be used to simplify the forthcoming estimates in Section 4. In this 
connection, we also refer the interested reader to [Ba2] where this very point of 
view is made much more explicit. (The recent articles [Ba2] and [Sc], both of 
which deal with issues related to those considered in the present paper, came to 
our attention a few months after the original version of our manuscript was 
submitted.) 

Theorem 3.3. Suppose that F ( : R S - ~ R ) e R P ~  ~ or RN~,  and its representing 
measure is d#. Assume that q > O, n (>_ 2) a N, and that A is the interpolation matrix 
associated with ~s,, and Fq. I f  F satisfies condition (*) of Lemma 2.4, then 

IIA2~)N2 Cs(N~)sf( fi (~-~)[fOC( NY+2r~k"2/4q2t'~ d#(t)] 2 < .~ sin 4" 

where m is 0 if F ~ RP~ and is 1 if F ~ RN~.  

Proo~  From our foregoing discussion, we know that 

tIA2~ 2 ~ ~ ]V"Fq(k)[ 2. 
k ~ Z  s 
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By Parseval's Theorem and (2.9), we have 

(3.5) F,  Ignfq(k) l  2 = Cs ~. (WFq)(k)e -'~' dy 
k~Z s 0 , 2 r @  k e Z  ~ 

q2~ f(0, 2~1. j =~I1 

I ~ z  f o  e-Nr+2nkj[2/4q2t 12 
x tsl2 + m dt~(t) dy. 

k s 

Using the monotone convergence theorem in (3.5), we conclude that 

A2(S)[12 C~24s" f, FI sin4"(YJ~ C~ ~ e-11'+2~kH~/4q:') dt4t) ~2 
ii;i(S)ll/-< q2,1l;~(~)112 o.2,,r s:~ t.2/kJo t.k~z. ~ J  

An appeal to Lemma 3.2 now finishes the proof. 

dy. 

The upper estimate for IIAA (s)[I 2/tl2(S)112, a s  given by Theorem 3.3, involves the 
infinite sum ~k~Zs e" IIr+2~kl12/'~q2t. It will be more convenient to replace this sum 
by an amenable majorant. This is done as follows. For the sake of clarity, we first 
detail the procedure in the bivariate case. Following that, we shall indicate how 
the procedure can be extended to dimensions higher than 2. The univariate case, 
which we do not treat explicitly, can also be dealt with similarly, if not more easily. 

When s = 2, the sum in question is 

(3.6) ~ e- NY+ 2~(k't)Ne/4q2t =: ~ T(k, l), 
(k, l) e Z 2 (k, t) ~ Z 2 

where y = (y l ,  yE)E(0 ,27c]  2. (Assume t 50 . )  The dominant terms in (3.6) are 
T(0, 0), T ( -  1, 0), T(0, - 1), and T(-- 1, - 1). Accordingly, we split (3.6) into four 
parts, each of which is assigned to one dominant term. More precisely, we set 

S~:= ~ T(k,l), SE:= ~ T(k, l), 
k,l>_O k<_-i 

l>_O 

$3:= ~ T(k, 1), S4:= ~ r(k, I). 
k_>0 k <  - 1  

l_< - 1  l_< - 1  

Factoring the dominant term out of each of these sums, changing k ~ - k  in $ 2 ,  

l~-+-1 in S 3, and (k,/) ~-~ ( - k ,  - l )  in $4, we arrive at 

1 + e -  [(yl + 2r~k) 2 + (y2 + 2re/) 2 - y ~ - y ~]/4-q2t , 
k,l>_ O 

(k, l) ~: (0, O) 

S 2 -: e -[(2~-y')2+y22]/4q2t [ 1  -[- 2 

k>_l,l>_O 
(k,l)~(t,0) 

S 3 = e -[y2+(En-y2)l/4q2t [1 + 
k>~O,l>_l 

(k,l)~(O, 1) 

e - [ (2~k  - yl)  2 + (y2 + 2 M )  2 -  ( 2 ~ r -  yl)  2 -  y 291/4q2t], 

e - [(yl + 2~k)  2 + ( 2 M  - y2) 2 - y i 2 - (2~  - y2)E]/4q2t I , 
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and 

S 4 = e -[(2n-y~i2+(2~y2)2114q2t [1 + 
k>_l,l> l 

(k./)@(1, 1) 

Let us consider $l and $4. Beginning with S~, note that if k, l > 0, then 

(Yl + 2rCk) 2 + (Y2 + 27cl) z -- yZ _ y2 _> 4n2(k2 + 12), 

SO 

(3.7) 

Now 

E 
k,l>_ O 

(k, tl ~ (o, o~ 

Observe that 

e -  [ ( 2 n k - y l )  2 + ( 2 n l - y 2 )  2 - ( 2 n - y a )  2-(2r~-y2)2]/4q2t ]. 

e - n2(k2 + t2)lq2t]. 

e -"2(k2§ = 2 ~, e -'~2k21q2' + Z e-'~tk2+'2)lqh 
k = l .  k,l>_l  

=: 2Stt + S12. 

(3.8) S 1 2 < f ; f ; e - n Z ( u 2 + v 2 ) / q h d u d v .  

As to Sli, we consider two cases. If, on the one hand, 0 < qZt _< 1, then 

(3.9) ~ e-~k%~t <_ ~ e -~k~ =: K(1). 
k = l  k = I  

On the other hand, if q2t > 1, then 

SO 

(3.10) 

Consequently, 

fl _ ~2 
e -~"~/q~t du >__ e , 

e n2 f ;  c n2uZ/q2t du > e ~2 f ]  e-.~.~-iq~t du >_ 1. 

(3.11) fo io;o e -~2k~/q~' <_ e -~~ dv < e ~z e -~2(u2+v2)la2t du dv. 
k = l  

Setting K : =  max{K(1), e,~}, we see from (3.9) and (3.11) that 

(3.12) 

415 

S 1 <_ e -(y~+y~)/4q2t [1 + Z 
k,t>_O 

(k, t) ~ (0, O) 
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Therefore, it follows from (3.7) that 

(3.13) &<_C e - ( ' >Y~) /*e t [ l+ fo foe -=~("~+"~) / e ' dudv  ] 

Ce-  (y ~ + y~)/4q~t[ 1 + q2q 

where C := 3 max{2K, 1} is a constant independent of y, q, and t. Turning to S, ,  
we note that for k, l >_ 1, (Yl, Y~) ~ (0, 2hi 2, 

(2nk - y0  z + (2nl - y2) 2 - (2n - yl) 2 - (2n - y2) 2 _> 4n2[(k - 1) 2 + (l - 1)2], 

SO 

__< Ce-[(2~-YO2+(2n-y2)2]/4q2tm + "-~g j,q2tl 

as before, 
It is quite evident that S2 and S3 can be handled in the same fashion, thus giving 

s, < c 1 + + e - ' '2"- ' ' '~+'g]14q~' 
i=l 4nJ  

-~- e - [y} + (2n - y2)2]/4q2t _~_ e - [(2= - y0 2 + (2~ - y2)2]/4q2t 1 

4- 
=. 2 f,(y, t). 

i = t  

Consequently, Theorem 3.3 gives 

"A)~(2)"2 < C2(~)2 f]= f]= sinr fo ~ f~(y, t )~ ]2  dy, dy2 
112(2)]12 - q4 

< 4C2(V/n'2 ~ - - q ,  ,=, f ; "  ~ "  s i n 4 " ( 2 ) s i n " " ( 2 ) [ f /  y,ty,~" t)" d~(t'-12tq~m j dy, dY2, 

by the Cauchy-Schwarz inequality. Changing Yl ~ 2n - Yl in the second integral, 
Y2 ~--'2rc - Y 2  in the third, and (Yl, Y2)~-+( 2n - Y l ,  27z -Y2)  in the fourth, we see 
that each of these three integrals equals the first. Thus, the following bivariate 
version of Theorem 3.3 results. 

Theorem 3.3'. 
3.3. Then 

Suppose that s = 2, and that F, q, n, m, and A are as in Theorem 

H AJ-(2)H 2 C 2 ( x / n ) 2  f ( s i n a " ( ~ )  s i n 4 n ( ~ )  
[] ~(2)I[ 2 ~ q4  0,2n] 2 

q2t~e- I] y II 2/4q 2t 
x l + ~ j  t l+, . ]  dy. �9 



Sensitivity of Radial Basis Interpolation 417 

The procedure described above may be adapted, mutatis mutandis, to higher 
dimensions. We start with the infinite sum ~k~Z' e-Ily+N~kl12/4q2t and split it into 
2 s parts corresponding to the 2 ~ "octants" of Z ~. Each part is dominated by an 
appropriate term [e.g., when s = 3, the eight dominant terms correspond to 
(0, 0, 0), ( -  1, 0, 0), (0, - 1, 0), (0, 0, - 1), ( -  l, - 1, 0), ( -  1, 0, - 1), (0, - 1, - 1), and 
( - 1 , -  1 , -  1), and Z 3 is then divided suitably into eight octants]. Proceeding 
exactly as we did in the bivariate case, we obtain 2 ' sums, each dominated by a 
term f~(y, t), 1 N i < 2 ~, which consists of an appropriate exponential term multi- 
plied by a common factor 

C~[l + f o . . .  f o  e-'~("~+"~+"'+"~)/q~'dux d u z . . . d u , l =  C~[l + q~U-~z] 2~r#2J" 

So, once again, Theorem 3.3 and the Cauchy-Schwarz inequality give 

f a,.)l []A2(~)]I~ < - -  ~ 1!I sin4"(YJ~[f fi(Y, t) dy. 
ii,t(S)ll 2 - q2S i = 1  3(0,2n] s j= l  k 2 / k 3 o  t ' /2+"J 

Finally, we make an appropriate change of variables in each of the last 2 ~ - 1 
integrals and conclude thereby that all these integrals equal the first. This, taken 
in conjuction with the obvious inequality 1 + q~t~/z/2~n s/z < 1 + q~t ~/z, yields 

Theorem 3.4. Suppose that F, n, q, m, and A are as in Theorem 3.3. Then 

IIAA(S)I 2 < C~(v/-n) = 

1J2(~)112 - q2.~ J(o,2,.,1~ 

oo 

j=~ k 2 / L , l o  ue+m j dy. 

4. Applications 

Having developed a general framework in the preceding sections, we now turn to 
specific applications. As in the past, our attitude towards constants will continue 
to be somewhat cavalier. 

Theorem 4.1. Let n ( > 2 ) e N ,  q > 0, and F(x):= Ilx]l 2~, x e R s, 0 < ~ < 1. Assume 
that A is the interpolation matrix associated with ~ .n  and Fq. Then 

112(~)[[ 2 < Cs.~q 4~ 0 + 1 , n ~ oe. 

Proof. Recall that F e R N ~  and its representing measure is d#(t)= C~(dt/t'). 
Example 2.8 shows that F satisfies condition (,) of Lemma 2.4. Consequently, by 
Theorem 3.4, 

(4.1) 

N2(~)1[2 "<  q2---V-- Ill sin4~(Yf][~ (1 + qSt~/2)e-1l'll2/'q2' dt 
O, 2~z] n j = 1 ~ 2/L.Io t "/z + 1 +~ dy. 
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Suppose that y e (0, 2n] ~, and consider 

f0 e-fly I1214q21 
(1 + qSt'12) ts/2+l+a dt 

foO(l = C~,~q *+2~ �9 + ~ 1  "]e-Ilyll2~u s/2+a-i du, u = 1/4q2t, 
(4u)*lz] 

[ fo ~ f ;  1 e-i i '"~"u' iZ+:-ldu] = Cs,~q s+2= e-IlyllZUuSl2+~-I du + (4u)sf 2 

Each of the two integrals above represents (up to constants) the Laplace transform, 
evaluated at Ily]] 2, of the functions u~--~u ~/2§ and u~--,u ~-1, respectively. 
Computing these transforms leads us to conclude that 

fo x> e-Ilyil214q2t ] asts/2] . . . .  +2~ C F 1 1 
(4.2) (1 + ,,_ ,. ffla+l+= dt _< q ~'~<L/lyll s+2'< + 

Cs,~q s+ 2~ 
i lyl?+~, �9 

Using (4.2) in (4.1), we obtain 

_ _  ~ r ~  sin 4" 2" (4.3) llA2(*)112 < C,.~(v/n)*q 4~ 11~=2 t Yal )_ dv 
112~')112 - , J (o ,z . r  IlYll 2~+4<< " 

-< C,,~q'~I',/n f:'~ s in4" (Y ' /2 'dy ' ] (~  ) ~ - ' y 1 2 .  + 4~ ,(I= 2 ; ] "  sin4"(~) dy,. 

Now, note that for each 2 <_ j <_ a, 

_ 2n(4n)! _ 0 ( ~ n )  ' f f " s in4" (~ )=4 f ] i2s in4" (Y j )dYJ  24,(2n,)Z 

where the last equality follows from Wallis' formula (see (3.4)). Consequently, (4.3) 
implies that 

IlA;t(S)ll2 C~ ,,q x ~  f ]  sin'~"(Yl) - -  < ~ yZ~+~ dyi. 
ii~(S)ll2 

(4.4) 

Observe that 

(4.5) 
sin,.( ,)yl (F sin"(yl)] + _ _  

y~S+4~ dyl + sin4"(Yt) dyl" 

If 4n > 2s + 4a, then the first integral in (4.5) equals (4n - 2s - 4~ + 1)-1 = 
O(n- 1), whereas the second integral does not exceed ~ sin4"(yl) dyl = O(n- 1/2), 
as shown before. 
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Thus, from (4.4), 

IIA2(~)II e 

II ,~(')II 2 _ _  cs +11 n ---~ oo~ 

and the proof is complete. 

Corollary 4.2. Let F, q, A be as in Theorem 4.1. Then there exists a constant C~,~ 
such that for sufficiently large n, IIA-~[I > ~s, jq2~. 

Proof. Theorem 4.1 shows that there exists a constant C's,~ such that for 
sufficiently large n, IIA2(~)I]/II2(~)I] < C's,~q 2~. So, by (3.1), 

II~(~)ll (c;,~)-' 
IIA-1H ~ ~  q 2 ~  

Remark 4.3. (i) For the function F(x) = [[xl] 2~, x ~ R  ~, 0 < ~ < 1, the matrix A 
considered in Theorem 4.1 (and Corollary 4.2) exhibits "optimal" behavior with 
respect to the minimal separation distance q. More precisely, we recall from [NW2, 
Theorem 2.4] that for any interpolation matrix B associated with Fq(x) = I[qx Ir 2~, 
0 < c ~ <  1, 

(4.6) - - i 1  B -  111 >- --qS ts/2+l+~ dt, 6 = 12 zc[F((s +9 2)/2)]1 x/(s+ 1) 

Setting u = 1/q2t in (4.6) and evaluating the resulting integral, we obtain 

Es ct 
(4.7) IIB-'II ~ ~ '  q 2 ~  " 

Assertion (4.7), taken together with Corollary 4.2, demonstrates the optimal 
behavior of A. 

(ii) It should be noted that for F(x) = Ilxll 2~, the O(q-z,) behavior of I IA-IH is, 
in fact, a direct consequence of the homogeneity of the norm. So the additional 
import of Theorem 4.1, and hence of Corollary 4.2, is that the bound for IIA-Xll 
derived there is independent of n for large n. 

Remark 4.4. As indicated in the introductory section, the purport of Corollary 
4.2 and Remark 4.3 for the special case s = 1 and ~ = �89 was noted in I-B]. A 
rather elegant proof of this has also been furnished recently in [Bal]. 

Theorem 4.5. Let F(x) = x/1 + [[xl] 2, x e R  s, n ( > 2 ) e N ,  and 0 < q < 1. Suppose 
that A is the interpolation matrix associated with &a~., and Fq. Then 

I[A2(~)IF 2 
- -  <_ Csq2[e - 'S /q  + O(1)3 , n --~ o(3. 

[I;~(S)ll 2 
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Proof. Since our  interest centers a round  small values of q, it is no loss to assume 
that q ~ (0, 1). Also, recall that  F ~ R N ~  and its representing measure is 

e - t  
d#(t) = C ~ dt. 

, i t  

By Example 2.9, F satisfies condit ion (.) of Lemma 2.4. So by Theorem 3.4, 

(4.8) 

HA2(S)]]2 < ( ]  sin4"(Ys~[ C (1 + qStS /2 )e - l lY l l z / r  e - ~  
112(=)112 - q2S O,2~zls S=I \ 2 / L 3 o  r dt dy 

0, 2nl s j = 1 

iron( 1 • 1 + - Ilyll2,e - 1/4q2ug(s- 1)/2 dg dy, 

Suppose now that  y = (Yl, Y2 . . . . .  Ys) ~ (0, 27r] =, and consider 

f;(1 1 + --)e- IlY[12Uc- 1/4q2uu(s-- 1)/2 du 
1,l s/ 2 } 

fo fo e-Ilyll2u = e - II y II 2u e - 1/4-q2ubl(s- 1)/2 dH gr- 

=: 11 + 1 2 .  

F r o m  [SW, p. 6], 

(4.9) 
G 

/2 = N/'~ e-I[yll/q. 
Ilyl[ 

Turning to 11 , we write 

11 = + e -  Ily[12Ue- 1/4-q2Uu(S- 1)/2]  du 
/qllyl[ 

=:111 + 112. 

Note  that  the function u ~ e-1/4q2, increases with u, so 

e-[lYll/4q .fn ~176 e-lly/12Uu(S- 1)/2 du (4.10) I l l  < 

Cs e - 11Y II/4q 

IlyH ~+1 

Next, since e-1/4q2u _< 1, 

f 
og 

112 _< e-Ilyl?Uu(S 1)/2 du. 
1/qllyll 

u = 1/4q2t. 

- -  e-1/4qZu du 
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Now,  observe that  if s = 2k + 1, then u t~-1)/2 = u k, whereas 

u ~-1)/2 <_ x ~ y l l u  k, for 1/qlly[I < u < oo. Thus,  in either case, 

(4.11) I l e  _< C~ e-IlYlt2"uk du, 
/qllyll 

where s = 2k or 2k + 1. N o w  

(4.12) e_llrll~.ukdu_ 1 k II II k - 1  
/qllyll [lYll Zk + 2 e-Ilyll/q + k - -  

C, (11,11%_ < Ilyll/q 
-ilyll  +: 

Cs e- Ilyll/2q 

ilYl13k+2 ' 

have used the inequalities q < 1 and where we 
sequently, 

Cs -IlYll/2q (4.13) 112 < e 
11Y[1(3~+~)/2 

where 7 equals 1 if s = 2k + 1, and equals 4 if s = 2k. 
F r o m  (4.9), (4.10), and (4.13), we infer tha t  

Ve- ]lyll/q e-  [lyll/4q 
(11 + 12) <- C, l  ,~-,, + 

~lyl :  + l  / Ily~l 

and therefore, 

(4.14) 

if s = 2k, then 

+ +k, l 

(x/2) k < (k!)e x/2, X > 0. Con-  

" e- Ilyll/2q 

Cse- Ily[I/2q 
(I 1 + 12) 2 < 

IlYll 3s§ 

Using (4.14) in (4.8), we get 

(4.15) [IZ;~(~)ll 2 < Csq2(N//~) s f( 1~7=1 s in"(yj /2)  Ilyll/2q 
]12(S)ll 2 _ o ,  2rr] s ] t Y l l 3 S + ~  e -  dy. 

Not ing  that  Ityll > yl,  and v/sllyl[ > ~ =  1 Yj by the Cauchy-Schwarz  inequality, 
we have f rom (4.15), 

112t,)ll 2 - y3S+r e-yff2q~ss @1 

x[j=(I2f]'~sin4"(~)e-y:/2q~dyjl  

ya12+ ~ e -yl/qx/~ dyl 

x [j=(-lz f f  sin'*"(Y:)e-Ydq'fi~ dyj 1. 



422 K. Ball, N. Sivakumar, and J. D. Ward 

Assuming that  4n > 3s + y, we note  that  

fo " s i n " ' :  ' ( f )  f"~[sin4~(Y'!le-Y/q~ ,. ~ylJe-r~m~/Zd, ' = + dy 1 

< f2 y~"-3~-rdy~ +e-1/q'fi y;sin4"(yl) dy ~ 

as seen in the proof  of Theorem 4.1. A similar argument  shows that for each 
2 < j < s ,  

f ;  sin4"(y~)e -yj/q'fi dyj= 0 ( ! ) +  e-~/q~O(-~n ). 

Thus, by (4.16), 

- -  < C~q 2 0 + e-1/q'fiO(1) 

< C, qZEe -~/q + o(1)], n ~ ~ ,  
as desired. �9 

][A2(~)tl 2 

Using (3.1) along with the preceding theorem, we obtain, as before, 

Corollary 4.6. Suppose that F(x) = x//] - + Ilxll 2, x ~ R s. There exists a constant C, 
such that, for each q ~ (0, 1), we can find an no(q)~ N so that for all n > no(q), the 
interpolation matrix A associated with ~ , ,  and Fq satisfies 

e~/2q 
IIZ-X[I >_ C ~ -  �9 

q 

Remark  4.7. It is worthwhile to compare  the lower estimate for IIA-111 derived 
above with the general upper  bound  for the same, obtained in [NW2,  Theorem 
2.4]. Therein it was shown that  for any interpolat ion matrix B associated with the 
Hardy  multiquadric,  and (5 as in Remark 4.3, we have 

1 Es ~ e - t  - -  > - -  e - -  62/q2t dt 
lIB -all - qS Jo t(s+3)/2 

. f :  e-6~Ue-1/q2Uu(S-1)/2 du, Esq 

~ Es q e-O%- 1/q2Uu(S- l)/2 du 

> E~qe -~m e -~ du 
1/~q 

> E s qe- 26/a. 

u =  1/q2t, 

(as u~--~e-1/q2u increases and q < 1) 
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Now, by Stirling's formula [AS, formula 6.1.37], lim~_.oo 6/(s + 2 ) =  6/e; in 
particular, 3 ,-~ s. Thus 

E Z l eZ~ E [  leZs/q 
llB-~ll < 

q q 

At this time, it is not clear to the writers whether this upper estimate can in fact 
be sharpened to obtain e ,/s/q behavior. 

Our next illustration concerns the inverse multiquadric. 

Theorem 4.8. Let F (: R ~ ~ R) s RPg be given by F(x) = 1/x/i- + ][xl] 2. Suppose 
that 0 < q < 1, n (> 2)e N, and that A is the interpolation matrix associated with 
2,a~,, and Fq. Then 

ItA:t('TII 2 
/i,lCSTll------ ~ _< Cs[e-~/q + o(1)], n ~ oo. 

Proof .  

satisfies condition (,) of Lemma 2.4. So Theorem 3.4 ensures that 
Recall that F is represented by the measure d#(t)= C(e - t /~ )d t ,  and 

=:  Ia + 12. 

Again, from [SW, p. 6], 

(4.18) I2 = x f  ~q~e - IIyJJ/q 

Next, 

e --t 12 
t(s+ D/2 dt dy. 

~ oo e - t 
11 -~- e []Yll2/4qZt - -  d t  

t(s + 17/2 0 

f :  e -  1/4q2u = 2,- lq ,  1 e -Ilyl/h' - -  u ~ du, u = 1/4q2t, 
U 

(ff/4q.,/[ f f  , / ; ) [e  e-'/4"2" ] d u  = 2S-lqS-1 + -ily/12u __ u(S-1)/2 
/4q U 

=:111 + I 1 2 .  

(4.17) 

( )Efo ~ 
IIA2(')[l~Z < ~ 2 7  12I sin'" (1 + qSt'/2)e-Ilrtl2/4q2t 

11):'7112 - o , 2 ~ r  j = l  

Let y = (Yl, Y2, .'.., Y~) e (0, 2r~] s, and consider 

f f (  e - '  1 + qStS/2)e-Ilylr2/4q2t t ( s+  1 7 / ~  dt 

e-t  f ;  - -  = e-llyll2/4q2t - -  dt + q'e-Ilylt2(4q2y e- t  
to+ 17/2 v/~t dt 
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As the function u ~ e-1/4q~"/u increases on 0 < u < 1/4q 2, and since 1/4qx~s < 
1/4q < 1/4q 2, we see that 

(4.19) 111 <- 2~+ lx~ssq~e-'~ss/q f o  e-IlYllauU(s-1)/2 du 

Cs q~e-'fi/q < 
[[ylr s §  

Since e-1/4q~. < 1, 

~1 ~176 
I12 < 2s+ lxfsqS e-[lyllZuU(S-1)/2 du 

/4q,/; 

< Csq s e-I[YllZuuk du, 

/4q.~ 

where s = 2k or 2k + 1. The rest of the proof now runs almost parallel to that of 
Theorem 4.5. First, we get 

(4.20) 112 < C, qS [[yll2/8q~ss - -  e -  

Ilyll 2s+e 

where 7 equals 2 if s = 2k, and equals 0 if s = 2k + 1. Second, from (4.18), (4.19), 
and (4.20), we arrive at 

e -2~/q e-IlYlI2/4O~fS~ 
(11 + 12) 2 ~ Csq 2s e -211rtl/q + itYllZs+2 + IlYl[4~+z~j, 

whence, from (4.17), 

IlA2(S)ll~ll2(S)l[2 -< cs(x/~)~ f(0,2=l, 1-I~= ltly[I 4~+2'sin4"(yJ2) [e-211yll/q + e-2"~s/q + e-Ilylle/4q'/~] dy 

=:T~+T2+T~. 

Finally, we note that Ilyll 2 = Z ~ =  1 y~, and invoke familiar techniques to conclude 
that f o r n > s + l ,  

T 1 <_ Cs[e -4"~/q -.t- o(1)], 

and 
T2 < Cs[e -2~/q + o(1)], 

T a < Cs[e -,fis/q + o(1)], n --* ~ .  

This yields the required result. 

Corollary 4.9. Suppose that F(x) = l/x/1 + ][xll 2, x s R  s. There exists a constant 
Cs such that, for each 0 < q < 1, we can find an no(q) e N, so that for all n > no(q), 
the interpolation matrix A associated with ~s,, and Fq satisfies 

IIA- 111 ~ C,e ~/2q. 
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Remark 4.10. Let 0 < q < 1 and let B be any interpolation matrix associated 

with Fq(x)= l /x/1 + ILqxll 2, x ~ R  s. With 6 being the same as before, we know 
from [NW2, Theorem 2.4] that 

1 E~ ['~ e -t  
- -  ~ - -  J o  e-aZiq2t dt (4.21) [iB-Xtl q~ r 

f ~ e -- 1/q2u 
Es e -  a2u u(S- 1)/'2 du, 
q u 

Choose a constant 
6/(s + 2) ~ 6/e as s ~ oe). Since the function u~--->e-1/'q~"/u increases on [0, 1/q2],  

and q < 1, we deduce from (4.21) that 

u = 1/q2t. 

a (depending only on s) such that air < 1 (recall that 

E~ f./oq e -  1/q2. 
- -  ~___ e -  6zu - -  bl (s-  1)]2 du  

! 
q d a/2Oq u 

~ a/6q 
>_ E , e -  2o/,q e -~2" du 

d a/26q 

Us e-~/q(2/a + a/2), 

so that 

lIB- 11[ ~ E s le6/q(21a+a/2) ~ E~- leS/q. 

1 
IrB- ~fl 

Remark 4.11. The techniques developed here may also be applied to F(x)= 
log(1 + {[x[I 2) ~ R N ? .  We shall, however, refrain from carrying out this analysis. 
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