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On the structure of varieties with equationally definable principal
congruences II

W. J. Brok, P. KOHIER, AND D. Picozzi

Introduction

We continue here the investigations begun in [1], but the present paper can be
read independently; all the definitions and results from [1] we shall need are
summarized in Section 0.

A comprehensive list of examples of varieties with equationally definable
principal congruences (EDPC for short —see Section O for the definition) can be
found in [1]. There are two principal kinds: The first are discriminator varieties.
The second the varieties that arise from the algebraization of various deductive
systems of classical or non-classical logic. (In fact it is shown in [2] that every
variety that arises from a deductive system satisfying some reasonable version of
the deduction theorem must have EDPC.) There are fundamental differences
between these two kinds of examples. Discriminator varieties are both con-
gruence-permutable and semisimple, and they comprehend all EDPC varieties
with these two properties ([1] and Fried and Kiss [10]). On the other hand the
varieties arising in logic may or may not be congruence-permutable, and, gener-
ally speaking, are semisimple only in the case of classical systems.

We have been motivated by two general questions: (I) Can the characteriza-
tion of congruence-permutable and semisimple EDPC varieties by means of the
discriminator function be extended in a useful way to classes of congruence-
permutable EDPC varieties that fail to be semisimple? (II) How comprehensive is
the class of EDPC varities that arise from logic? Can it be characterized by some
natural algebraic conditions? If the class does in fact turn out to be extensive, then
the study of EDPC varieties might be opened to the highly developed methods of
algebraic logic. On the other hand, a natural algebraic characterization of the class
of varieties that result from the algebraization of a deductive system, or some
large subclass, would open algebraic logic to a broader study within the context of
the general theory of algebras.
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Every EDPC variety has certain quaternary terms, we call them a quaternary
deductive (or QD) system, that collectively have many of the characteristics of the
implication connective of non-classical logic. In Sections 1-3 we investigate the
extent to which this fact can be used to give an arbitrary variety with EDPC the
structure of one arising from the algebraization of a deductive system. The
characterization of EDPC varieties in terms of the existence of a QD system is
given in Section 1. Several different characterizations of QD systems themselves
are also given there. One of them (Definition 1.1) strongly suggests the definition
of the normal transform operation introduced in Gould and Gritzer [11].
Another (Theorem 1.5(ii1)) is a Mal’cev-style condition that generalizes McKen-
zie’s [20] characterization of discriminator varieties; our condition is formulated
in such a way however as to emphasize the connection between quaternary
deduction systems and the implication connective of non-classical logic. The
results of this section overlap to a considerable extent the work of Fried and Kiss
[10].

In Section 3 we consider the properties of congruence-permutability and the
existence of a constant term with well behaved ideals, and we study their effect
when taken in conjunction with EDPC. It turns out that in combination they
allow us to replace the QD system by an equivalent system of just two binary
terms which correspond closely to the actual implication and conjunction connec-
tives of non-classical logic. This results in a characterization of arbitrary
congruence-permutable varieties with EDPC and a constant term with well
behaved ideals as the members of a very general class of varieties arising in
algebraic logic called weak Brouwerian semilattices with filter preserving operations
(WBSO’s). In preparation for this result WBSO varieties are defined in Section 2
and their basic properties are developed. A number of examples are given to
illustrate how the varieties that result from the algebraization of a wide range of
deductive systems that have occurred in the literature naturally assume the form
of WBSO’s.

The investigations of Section 4 are concerned with the first of the two
questions raised above. We see that those congruence-permutable EDPC varieties
whose subdirectly irreducibles have linearly ordered congruence lattices, the
so-called congruence relative Stone varieties with permuting congruences, can be
characterized by means of a natural generalization of the normal transform
(Theorem 4.3). As a consequence congruence-permutable congruence relative
Stone varieties share many of the special properties of discriminator varieties.
Finally we prove a strong concrete representation theorem involving the congru-
ence lattices of members of congruence-permutable congruence relative Stone
varieties (Corollary 4.5). This result turns out to be very useful for constructing
counterexamples to various natural conjectures about the EDPC varieties.
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0. Preliminaries

By a term function on an algebra & we mean any operation on A, the universe
of %, of the form t* where t is some term in the equational language of ¥; thus
term functions will be what were called polynomials in [1]. We shall not be careful
to distinguish between a term and its associated term function. For example, if
S(Xgs + s Xn1), E(Xq, . - ., X,_1) are terms in the language of U, and ay,..., 4,1 €
A, then we shall write Uk(s(xy,..., X 1) =Ko, ..., X% do, . .., A1), Ak
s(o, ..., a,_)=tag,-..,a,_,), and s™ao,...,a,_)=tNa,, ..., a,_;) inter-
changeably, and, if ¥ is clear from context, we may simply write s(ag, . .., @,_1) =
t(ag, ..., a,_1). A constant of a class of algebras will always mean a constant
term, or the unique element in each member of the class that is the range of the
associated term function.

A system A,, ..., A, ; of binary terms is said to be an equivalence system for
a variety V" of algebras if there exist unary terms E,, ..., E, _1, Fy, . .., F,,_; such
that the following identities and quasi-identity hold in V.

E(xA;x)=F(x4;x) for i<n and j<m,

(1)
(/\ N Ej(x4;y)= F,-(xAiy)) implies x=y.

i<nj<m
If the E; all coincide with the identity and the F; all coincide with the same
constant 1, then the equivalence system is called a Godel system (with respect to
1). Thus Ay, ..., A,_; is a Gédel equivalence system for V' (with respect to 1) if

xA;x=1 forall i<n,

(/\ xAiy=1> implies x=y

i<<n

hold in V. If there is just one term 4 in the system we refer to it as a Gédel
equivalence term for V.

It is not difficult to see that A,, ..., 4, .; is a Godel equivalence system for a
variety V' with respect to a constant 1 iff, for every ¥ eV and all a, bc A, the
following congruence condition holds:

O(a, b)=0(adyb, 1)v---vB(ad,_,b,1).
(@y(a, b) denotes the principal congruence of U generated by the pair a, b; when

U is clear from context we omit the subscript).
In [2] it is shown that a variety V" is the result of algebraizing some deductive
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system & iff ¥ has an equivalence system A, ..., 4,_;. Furthermore, the system
is a Godel system iff & has the property that, from any two formulas ¢ and ¢, one
can deduce the equivalence of ¢ and ¢, i.e., the following so-called Gédel rule
holds in £:

&, Yo dA Y, for i<n

Here we identify the term 4; with the formula of ¥ from which it naturally
comes. See [2] for details. With a few notable exceptions all the algebraizable
deductive systems of classical and non-classical logic occurring in the literature
have the Godel rule.

It turns out that the existence of a Godel equivalence system can be charac-
terized in more algebraic terms. Let ¢ be an element of an arbitrary algebra .
We say that 9 is e-regular if every congruence of ¥ is completely determined by
its e-equivalence class; U is point-regular if e-regular for some e. (See Henkin,
Monk, and Tarski [15, p. 80] and Jonsson [16, p. 158] where the same property is
described by saying that the e-ideals of % are well-behaved.) Let ¥ be a class of
algebras with a constant 1. We say that % is a 1-regular if each member of ¥ is
1-regular in the above sense; ¥ is point-regular if it is 1-regular for some constant
1. (In Grétzer [13] this property is called weak regularity.) The following result is
proved in [2]; very closely related results were established earlier in Fichtner
[5,6,7] and Gritzer [13].

THEOREM 0.1. Let V' be any variety. V' is 1-regular for some constant 1 iff V'
has a Godel equivalence system with respect to 1.

Consequently, in view of previous remarks, a variety is point-regular iff it
arises from the algebraization of some deductive system with the Godel rule.

Let (A, -, 1) be a semilattice with largest element. If it exists, the binary
operation — on A defined by the condition that, for every c€ A,

c=a—b iff a-c=b

is called relative pseudo complementation. If — does exist (A, -, 1) is said to be
relatively pseudo complemented; the algebra (A, -, —, 1) obtained by adjoining —
as a new fundamental operation is called a Brouwerian semilattice.

The following useful result from the general theory of algebras is easily
established; see for instance [18; Lemma 2].

LEMMA 0.2. Let % be any algebra, and @ any congruence on . Then, for all
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a, b c,decA,
c/D=d|P(Oy,s(a/D, b/D) iff c=d(Oyla, b)vP).

A variety V" has equationally definable principal congruences (EDPC) if there
exists a finite system of quaternary terms s;(x,y, z, w), t(x, y, z, w), i<n, such
that, for every Yc ¥ and all q, b, ¢, de€ A,

c=d(@y(a, b)) iff UEs(a, b,c,d)=t(a b, c d), i<n

(This is equivalent to the notion of restricted equationally definable principal
congruences (REDPC) considered in Fried, Gritzer, and Quackenbush [9].) It is
easily seen that every variety with EDPC has the congruence extension property.

In [2] it is shown that, if ¥ comes from algebraizing a deductive system &£,
then ¥ has EDPC iff &£ satisfies the following so-called generalized deduction
theorem (it actually generalizes both the modus ponens rule and the deduction
theorem): there exists a finite system —>, ..., —>,,_; of formulas in two proposi-
tional variables such that, for all formulas 6, ..., 6, ¢, ¥ of £,

Og, ..., 0 1, ke T 6g,...,0 1Fed—i, i<m.

See [2] for details.

As was the case for the existence of a Gddel equivalence system, the property
of having EDPC can be characterized in more algebraic terms. For any algebra 2
the set of congruences of ¥ is denoted by Co¥l, and the lattice of congruences by
Co. I (or just I) is the identity congruence on ¥. The set of compact (i.e.,
finitely generated) congruences is denoted by Cp¥. The compact congruences
form a semilattice under join with smallest element Iy. If it exists, the binary
operation * on Cp defined by the condition

=¥ ff TePve

for every ® e Cp is called dual relative pseudo complementation. The following is
proved in [18].

THEOREM 0.3. A variety Vv has EDPC iff (Cp¥,v, I is dually relatively
pseudo complemented for every A eV,

When * exists we define Cpd =(Cp, v, *,I); CpA is a dual Brouwerian
semilattice. We shall assume the elementary theory of Brouwerian semilattices is
known; see for instance Nemitz [23] or Kohler [17].
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Let h:% — B be a homomorphism. For each @ e Cp¥ let (CpA)(P) be the
congruence of B generated by the set of all pairs (ha, hb) such that a = b(P). The
following result is established in [1, Lemma 4.4].

LEMMA 0.4. Assume U, B are members of a variety with EDPC, and h is a
homomorphism from U into B. Then Cph is a homomorphism from Cp¥ into CpB.

In the sequel U is assumed to be a member of a variety ¥ with EDPC. Let
K(Wg, . .., W,,) be any term in the language of &p?, i.e., any term built up from
the variables w,, ..., w,, using the constant symbol I and the binary operation
. symbols v and *. The main result of [1, Theorem 2.2] says that there exists a
conjunction &, (Yo, Zo, - - - » Yms Zm) Of €quations in the language of ¥ such that, for
all ag, by, ..., 4y, by, €A,

Ck-g"p%I':K(@(a()a b0)> DR @(ama bm)) =1 lff Q”:‘b.((am bOa e iy bm)'

The conjunction of equations ¢, depends only on the Brouwerian semilattice
term «, not on ¥, and is constructed from «k by a specific recursive procedure. We
can use this translation to characterize the quasi-identities satisfied by subvarieties
of V.

Consider any quasi-identity

(A o@=7®) implies p(®)=m(x) ©
i<<m
in the language of V" where X represents the sequence of variables x,, ..., X, ;.

Let 3 be an arbitrary subclass of ¥, and let H,% be the class of all algebras B
such that B=YU/P for some A< ¥ and ¢ € Cp. Tt is easy to see that (2) holds in
H_% iff the congruence condition

p@ =@V 0@),7(@))
holds for all €K and a e A", or, equivalently, iff

Ak k(O(ao(a), 7o(a)), . . ., 0(0,,-1(a), T -1(@)), O(p(a), 7(a)))
holds for all A< and a € A™ where

K(WO: cees Whg, Wm) = (WOV' ot VWm—l) * W
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Thus the quasi-identity (2) holds in H, % iff the conjunction of identities

¢K (Uo(i)a 70(2)5 s O—mfl(x)a Tmfl(x)a p(f)s 77(.72))
holds in . This gives

THEOREM 0.5. Assume V' is a variety with EDPC and % <V. Then HSP¥#
satisfies every quasi-identity H, % does.

Let P, % be the class of all algebras isomorphic to an ultraproduct of a system
of algebras of ¥.

COROLLARY 0.6. Assume V' and ¥ are as in the theorem. Then HSP¥ =
SPP H_ .

Proof. Clearly SPP H, % < HSP¥. By the theorem HSP¥ is included in the
quasivariety generated by H, % ; but this is just SPP, H ¥.

When a variety V" has EDPC, Theorem 0.5 provides a very useful criterion for -
determining when ¥ has an equivalence system, and hence arises from the
algebraization of some deductive system. Indeed, since the conditions (1) are in
the form of identities and quasi-identities, in order to show A4,,..., 4,  is an
equivalence system for V7', it suffices to show that it is one for H, % where ¥ is
'some generating subclass of 7. It turns out to be more convenient in practice to
express the fact that (1) holds in H, % in the form of a congruence condition on %
itself. Also we shall actually formulate the result for Godel equivalence systems
since they are the ones we shall always be dealing with.

THEOREM 0.7. Assume V is a variety with EDPC and a constant 1, and let
H<V. Let A, . ..,A,_, be a system of binary terms of V. Then Ay, ..., A, isa
Godel equivalence system for HSPI with respect to 1 iff the congruence condition

O(adyb, V) v---vO(ad,_;b,1)=0{a, b)
holds for all e K and all a, be A.

In [1, Theorem 4.1] the following theorem is proved. It is closely connected to
0.5 although this is not evident from comparing their statements.

THEOREM 0.8. Let U be any variety of dual Brouwerian semilattices, V' a
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variety with EDPC, and X < V. If €pU e U for every A e K, then CpA € U for every
A < HSPHK.

1. Quaternary deductive systems

We show how the property of having EDPC may be characterized in terms of
the existence of a system of quaternary term functions having certain well
specified properties. Most of the results of this section, with the exception of those
formulated in terms of the dual relative psendo complementation operation on
compact congruences, also appear in one form or another in Fried and Kiss
[10].(1)

DEFINITION 1.1. Let q={q;(x, y, z, w):i=n) be a finite system of quaternary
terms such that n=2 and qo(x, y, z, w) coincides with z and q,(x, y, z, w) with w. q
is a quaternary deductive (QD) system (of length n-+1) for an algebra U if A
satisfies the identities

@ a;(x,x,y,2)=qi1(x, x, y,2) foreven i<n,
and, for all a, b, c,dc A,

(i) g{a, b, ¢, d)=qii1(a, b, c, d) for odd i <n whenever c=d(O(a,b)).

q is a QD system for a class ¥ of similar algebras if it is one for every member of
K.

A system q ={q;(x, y, z, w):i=n) of quaternary terms will be called bounded if
n=2 and qy(x, y, z, w) and q,(x, y, z, w) coincide respectively with z and w. Note
that by definition every QD system is bounded.

LEMMA 1.2. Let U be an algebra and q={q;(x, y, z, w):i=n) a QD system
for H Y. For all a,b,c, d,c A let

(po(a, b7 c, d) = V @(qi(a7 b’ C, d)’ qi+1(a9 b: C, d))y

oddi<n

¢E(aa b> C, d) = V @(qi(a’ b7 C, d):r qi+1(aa bn c, d))-

eveni<n

1 They were originally obtained by the present authors in 1979 for congruence-permutable
varieties. Subsequently, on becoming aware of the results in [10], we realized our methods could be
applied with only minor technical changes to obtain the results in the general form they are presented
here.
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Then (Cp¥, v, I) is dually relatively pseudo complemented and, for all a,b,c,d e
A,

(1) q)O(aa b: Ca d) = @(a) b) * @(67 d)’

(il) (@(a) b) * @(Ca d)) * @(C: d)g (DE(aa b: Ca d)g @(aa b)

Proof. Write @ and ®g respectively for @ (a, b, ¢, d) and Pg(q, b, ¢, d). By
the definition of @,

a(al @, b/ Do, ¢/ Do, d| Po) = G;11(a/ Po, b/ Po, ¢/Po, d/Po) forodd i<n.
(1
But since g is a QD polynomial for %/@(a, b) by hypothesis,

q(a/®(a,b),...,d/0(a, b))=q . (a/@(a,b),...,d/IO(a, b)) foreven i<n.

2
Combining (1) and (2) and using the premiss g is bounded, we get
O(c,d) = Do v O (a, b). 3)
Let ¥ be an arbitrary compact congruence of ¥ such that
Oc,d)= v (ab). 4)

Then by Lemma 0.2 ¢/ ¥ =d/¥(0(a/V¥, b/¥P)), and hence, since q is also a QD
system for A/¥ by hypothesis,

qal¥,...,dV)=q. (a/V,...,d/¥) forodd i<n.

This immediately gives the inclusion @, < ¥ for every ¥ e Cp¥ satisfying (4).
Together with (3) this establishes (i). In particular, the dual relative pseudo
complement of any pair of principal congruences exists. From this it follows
without difficulty that {(Cp¥, v, I) is dually relatively pseudo complemented; see
[18] for details.

The second inclusion of (ii) follows immediately from (2). By definition of @,

qa/Dg, ...,dIPs)=q1(a/Dg, . ..,d/DPe) foreven i<n.
Combining this with (1), and using the premiss q is bounded, we get @(c, d)<

@ v Dp. Thus @, * O (¢, d) = Pr. Hence the first inclusion of (ji) follows from (i).
This completes the proof of the lemma.
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A QD system for H, 9 turns out to exhibit many of the characteristics of the
implication connective of non-classical logic. This idea is developed in the
following definition and the subsequent lemmas. It is used to characterize in
Theorem 1.5 the QD systems of H, % entirely in terms of the identities of .

Let q={q;(x,y,z, w):i=n) be a bounded system of quaternary terms. Let
¢ =A\i<,0;=7 and =\, p. = m be any two finite conjunctions of identities
in the language of . Using q we associate with ¢ and ¢ another finite
conjunction of equations that we shall denote by ¢ = . If ¢ is a single equation
o =1, then we define

((0-: T) $ ll’) = /\ /\ Qi(0-9 T, Pk» wk) = qi+1(0-a T P> Trk)'

k<soddi<n

In general
(=2 =(oo=1) > (oy=1) > D(Gro1=7_) > ) - ).

LEMMA 1.3. Let q={q;(x, y, z, w):i=n) be a bounded system of quaternary
terms and let ¥ be an algebra satisfying the identities

a:(x, x, 2, W) =i 11(x, X, z, w)  for even i<n. (5)

Let d(xq, ..., %pm_1), ¥(xq,...,Xm_1) be finite conjunctions of equations, and let
ag, ..., Q1A If

AE(P 2> ) (ao, ..., an-1) and UEP(a, ..., an-1),
then UkY(ag, ..., Ay 1)

Proof. We write ¥ and a respectively for the sequences xg, ..., X,,_; and
dg, - . ., Q1. Suppose first of all ¢(X) consists of a single conjunct o(%) = 7(X).
Let ¢ = Ar<; pe (X) = m (%). From (5) and the premiss Ak $(a), i.e., o(a) =7(a),
we conclude that

4 (a(a), 7(a), p(a@), m (@) = qi+1 (0 (@), (@), p (@), m (@), (6)

for all k<<s and even i <n. But the premiss Ak(p = )(a) says exactly that (6)
holds also for all k<s and odd i <n. Thus, since q is bounded, p, (@) = m.(a) for
all k<s, i.e., AkyY(a).

Now let ¢ =A;<,0;=1. Then ¢ = coincides with (ou=17y) = (6> )
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where 6 = A\g<;<, 0; = 7;. By the first part of the proof we have Y (8 = )(a), and
by the induction hypothesis % F(a). So the lemma is proved.

For any conjunction ¢ = A;<, ;(Xq, - - ., Xm_1) = 7i{Xo, - - - , X _1) Of equations,
any algebra ¥, and any aq, ..., a, 1€ A, let

@((b: dg, - - -, am.—l) = \/ @(O.j(a0> ] am—l)’ Tj(a05 sy am—l))'

j<r

LEMMA 1.4. Let U be an algebra, q a bounded system of quaternary terms,
and ¢(xy, . .., Xpm_1), Y(Xq, . . ., Xm_1) a pair of finite conjunctions of equations. If q
is a QD system for H, %, then, for all ag, ..., a, €A,

@((b $ IP, Ao, - -« am*l) = @(¢5 Ag, - - amvl) * @(ll’: Ag, . - - a'mfl)'

Proof. By induction on the number of conjuncts of ¢. Let = Ay, or(X) =
m (X). If ¢ is of the form o (%)= 7(X), then

0(¢=> ¢, a)
=V V 0qloa), (@), p(a), m(a)), g:1(0(a), 7(a), p.(3), m ()

k<<soddi<n

=V 60(0(a), 7(@) * O(p.(a), m(a)) by 1.2()

ks

=0(o(a), 7(a)) = V &{(p(a), m.(a)) by the theory of Brouwerian
foss semilattices

=0(¢, a) = O(¢, a).

Now assume ¢ =(o(X)=7(X))A8 so that (¢ > ¢)=(o(X)=7(x))>
(6 = ¢). Then

O(d = ¢, a)
= 0(o(a), 7(a)) = 60 = ¢, a)
= @(o(a), r(a)) = (0, a) * @, a)) by the induction hypothesis

=(0(c(a), T(a)) v 08, a)) * @(y, a) by the theory of Brouwerian
semilattices

=0(s, a) * O, a).

This completes the proof.
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In connection with parts (i) and (iii) of the next theorem compare Fried and
Kiss [10, Theorem 5.1].

THEOREM 1.5. Let ¥ be an algebra and q ={q;(x, y, z, w):i=n) a bounded
system of quaternary terms of . The following conditions are equivalent.

(1) g is a QD system for H_ 9.

(it) A satisfies the following congruence conditions for all a, b, c,dc A:

a:,(a, b, ¢, d)=g;11(a, b, ¢, d)(O(a, b)) foreven i<n; N
®(a, b) * O(c, d) exists and

qi(a7 b: C, d) Eqi+1(a7 b: C, d)(@(a> b) * @(C7 d)) fOr Odd l< n. (8)

(iti) U satisfies the following system of identities:

qi(x, x, z, W) = G 11(x, x, Z, w) foreven i<nm; )

x=y)=>&x=y) (10)

(x=y)=>(z=2); (11)

(x=y)=>@z=w)=2(x=y)>(w=2)); 12)

(x=y) 2 (z=wr(w=0))) > (x=y) > (z =0)); (13)
for every term o(zg, - . ., Zn_1) in the language of ¥,

(=92 A z= wf): (=)D (0 (z0s - - -, 2} = Wy - -, W),

i<m

(14)

Proof. That (i) implies (ii) follows trivially from Lemma 1.2. Suppose (ii) holds.
(Implicit in (ii) is the requirement that (Cp¥, v, I) is dually relatively pseudo
complemented.) Consider any B e H,U. We identify 8 with the quotient algebra
A/® for some compact congruence @ of A. Let a,b,c,de A such that ¢/®=
d/P(Oy(a/D, b/D)), ie. Oglc/P,d/P)c Ox(a/P,b/P). Then Oylc,d)s
Oy(a, b)v® by 0.2, and hence Oyla, b) = Oy(c, d)< d. So by (8)

qla,b,c,d)=gq;.1(a,b,c, (D) forodd i<n.
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Hence in B,
q(a/D, bj D, c/D, d| D) = q;.1(a/D, b/ D, c/D, d/P) for odd i<n.

This gives 1.1(i) for 9B, and a similar argument shows that 1.1() for 2B follows
from (7). So (i) and (ii) are equivalent.

Assume (i) and (ii) hold. (9)-(11) follow at once from 1.1(i) and (ii). Let
&, Y, 20, - 5 Zim1s Wos - - - » Wye_1) be the conjunction of identities (14), and let
a,bco, ..., Cn1,d0,-..,d, 1€ A. Then

@(¢, a” b’ E’ d_)

= (@(a, b) = .\/ O(c;, d,)) % (0(a, b) * O(c(€), 0(d))) by Lemma 1.4

i<m

_ 0, b) <<;<m 0(c, d)) * 6(0(@), o(@))

by the theory of Brouwerian semilattices
=@(a,b)=Iy since () Eo(J)( V 6(c, dj))
f <<

:Ig[.

Thus recalling the definition of @(¢, a, b, &, d) we immediately get AP (a, b, ¢, d).
Hence the conjunction of identities (14) holds in %. The remaining identities (12)
and (13) of (iii) are established in a similar way. Thus (i) implies (iii).

Now assume (iii) holds. Let Be H_ . Then B also satisfies the identities of
(iii). Let g, b B, and let

@ ={{c,dycB*:BFq/a,b,c,d)=q;.,(a,b,c d) for odd i <n}.
Then in terms of “=>” we have

c=d(®) iff BE(x=y)=>(z=w))(a,b,c, d).

Assume ¢;=d;(®) for j<<m. Then

%P((x=y):> A z,-=w,-)(a, b, ¢ d).

j<m

Then using the premise that (14) holds identically in 9, and applying Lemma 1.3,
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we conclude that
BE(x=y) > (0(2)=c(W))(a, b, ¢, d).

Hence o(¢)=o(d)(P). So P has the substitution property with respect to all the
term functions of 8. In a similar way we use the identities {10)—(13) to show that
@ is an equivalence relation, and hence a congruence relation, and that a = b(®).
Thus @(a, b)< &. It follows at once that 1.1(ii) holds for 8B; 1.1(i) coincides with
(9). Hence (ii) implies (i), and the proof of the theorem is complete.

Observe that in condition (iii) the identities (14) may be replaced by the
smaller system

(G== A z,-=w,~):((x=y):>(1~"zo~-zm,lewo--wm_l))

i<m

for every fundamental operation F of .

COROLLARY 1.6. Let % be any class of similar algebras and q a bounded
system of quaternary terms of ¥. Then q is a QD system for HSPX iff it is one for
H. %

THEOREM 1.7. Let % be any class of similar algebras. The following are
equivalent.
(1) HSPX has EDPC;
(i) H,% has a QD system;
(ti)) H,% has a QD system q={q;(x,y, z, w):i=n) satisfying the additional
congruence condition

v @(ql (a, b: C, d)7 qi+1(a’ b7 C, d)) = (@(a7 b) * @(C, d)) * @(C> d) (15)
even i<<n
for all AcHSPHK and all a,b,c,dc A;
(iv) there exists a bounded system q of quaternary terms such that the identities
(9)-(14) of 1.5@ii) hold in .

Proof. (i) and (iv) are equivalent by 1.5, and (iii) trivially implies (ii). If
q={q(x, y,z, w):i<n) is a QD system for H_ %, then by 1.5 it is also a QD
system for HSP¥. let H<cHSP¥ and a,b,¢,dcA. Then c=d(O(a,b)) iff
O(a, b)*O(c,d)=1Iy iff qla,b,c,d)=q.(a b,c,d) for odd i<n, by 1.2%).
Hence HSPY has EDPC and (ii) implies (i). It remains only to show that (i)
implies (iii).
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Assume HSP¥ has EDPC and let ¥ be the free algebra of HSP¥ with four
free generators x, y, z, w. By Theorem 0.3, @(x, y) * @(z, w) and

O(x, y) = O(z, w)* = (O(x, y) * O(z, w)) * O(z, w)
both exist, and by the theory of Brouwerian semilattices
z=w((O(x, y) * O(z, w)) v(O(x, y) = O(z, w)?)).

Thus there exists a bounded sequence {g(x, y, z, w):i=n}) of elements of & (that
we identify with terms) satisfying the congruence conditions

Gi(x, y, z, W) =q1(x, y, 2, wO(x, y) * Oz, w)) forodd i<n, (16)

a(x, y, z, W) =qi1(X, y, z, W) (O(x, y) * O(z, w)*) foreven i<n. 17)

Let A be any algebra of HSP¥ and a, b, ¢, d any clements of . Let h be
the homomorphism from % into U such that hx=a, hy =b, hz =¢, and hw =d.
Using the fact that HSP¥# has the congruence extension property we get
(Cph)Ogx(x, y) = Ogla, b) and (Cph)Ogx(z, w)=Oglc,d). Hence by means of
Lemma 0.4 we can conclude from (16) and (17) respectively

qi(a, b, c, d)=qi+1(a, b, ¢, d)(Og(a, b) = Oglc,d)) for odd i<n, (18)

qi(a7 bn c, d) Eqi-#—l(aa b; c, d)(@ﬂ(aa b) * @%[(ca d)z) for cven l< n. (19)

Taking a = b in (19) and observing that

Oyla, a) = Oy(c, dy*= (I * Oglc, ) = Oglc, d) = Oglc, d) * Oylc, d) = Iy

we obtain the identities 1.1(i). On the other hand, if ¢=d(@gy(a, b)), then
Oy(a, b) = Og(c, d) = Iy, and hence from (18) we obtain condition 1.1(ii). So g is a
QD system for HSPJ, and in particular for H,%. Finally, from (19) and 1.2(ii) we
get (15). Hence (i) does imply (iii) and the theorem is proved.

Let g be a QD system for H,% satisfying the additional condition (15). Let
AcHSPH and a, b, ce A. Then @(a, b) * O(c,c)=0(a, b) * I=1I, and similarly
(@(a, b) *O(c,c)) *O(c,c)=1 Thus the identity qx,y,z, 2)=qi1(xV, 2, 2)
holds in HSPYX for all i <n; compare Fried and Kiss [10, Theorem 4.1(b)].
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Let V' be a variety and V' its class of subdirectly irreducibles. Assume ¥ has
EDPC and let g be a QD system for 7. Assume further that 7" is semisimple, i.e.,
every subdirectly irreducible is simple. Then for every Ac V' and all a, b, ¢, de
A, condition 1.1(ii) becomes

g(a,b,c,d)=q,,1(a,b,c,d) forodd i<n whenever a#b. 20)

Assume conversely that q is a bounded system of quaternary terms for ¥ such
that the identities 1.1(i) hold in V", and (20) holds for every Ye¥; and all
a, b, c,d € A. The conditions 1.1(i) and (20) together imply that every member of
V', is simple. Hence V' is semisimple, and also H, ¥V ="7; it follows that (20)
coincides with 1.1(i) on H,V, and so q is a QD system for H, V. Applying
1.7@), (if) we conclude that ¥ has EDPC.

Fried, Gritzer, and Quackenbush [9] have shown that a variety is filtral iff it is
semisimple and has EDPC. Hence the above argument shows that a necessary and
sufficient condition for 7" to be filtral is the existence of a bounded system q of
quaternary terms satisfying the identities 1.1(i) together with the condition (20) on
the subdirectly irreducible members of ¥'; compare Fried and Kiss [10, Theorem
4.1(a)].

2. Weak Brouwerian semilattices with filter preserving operations

In the last section, in Theorem 1.7, we saw how the property of having EDPC
can be characterized in terms of the existence of an “operation” => that exhibits,
at least formally, many of the characteristics of the implication connective of
non-classical fogic. But = is a metamathematical operation whose domain is the
set of conjunctions of equations. In the next section we shall show that, when
EDPC is combined with congruence-permutability and point-regularity (the latter
property being characteristic of a very wide family of varieties coming from logic),
= can be replaced by two term functions that correspond quite closely to the
implication and conjunction of non-classical logic. Moreover every EDPC variety
with these two additional properties assumes a form quite close to that of the
familiar varieties of algebraic logic.

In the present section we axiomatize the varieties that arise in this way and
investigate some of their basic properties. Later in the section we show by
examples how the familiar varieties arising in non-classical logic fit naturally into
this scheme.

DEFINITION 2.1. V is a variety of weak Brouwerian semilattices with filter
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preserving operations (WBSO) if there exist binary terms —, -, and A and a
constant 1 such that the following identities and quasi-identities hold in V.

i x—>x=1,
(i) x—>1=1,
(i) (x—=>y)—>(y—=>2z)>Kx—2)=1,
(iv) 1-1=1,
W) z=>x)=>((z—=y)>(Ez—=x-y)=1,
i) (x-y)—=x=1, (x-y)—>y=1,
(vil) xAx=1,
(viii) (xA1)—>x=1, x—=xA1l=1
(ix) (xAy)—(ydx)=1,
® ((xAy)-(ydz))—>(x4z)=1,
(xi) for every fundamental operation F of V",

(- ((x0Ayo) - (x14y1) -+ ) - (Xp1 AYp—1)
= (FXg** " Xp_1) 4 (Fyg Ym-1)=1,

(i) 1—>x=1 implies x=1,
(xiii) xAy=1 implies x=y.

Any quasi-identity that holds throughout a variety is equivalent to a system of
identities. Consider for example the quasi-identity (xiii). The condition that it
holds throughout 7" is equivalent to the congruence condition

a= br(@g{(aA b, 1))

holding for all eV and all a, be A. Applying this in the case U is the free
algebra of V" on two generators x, y we obtain by Mal’cev’s lemma [12, Theorem
10.3] a system of ternary terms f, . .., t, such that t,=1x,t, =y, and, for all i <n,

ti(gi(x, Y)7 X, Y) = ti+1(gi(xa Y)a X, Y) (1)

where g;(x, y) is either xAy or 1, and g(x, y) is 1 when g;(x, y) is xAy and g (x, y)
is xAy when g;(x,y) is 1.

The system of identities (1) holds throughout 7" and, conversely, any variety in
which they hold must satisfy (xiii). The quasi-identity (xii) can be replaced by
identities in a similar way. Thus the property of being a variety of WBSO’s can
assume a form somewhat similar to the one characterizing varieties with EDPC
given in 1.7(iv).

An algebra ¥ is a weak Brouwerian semilattice with filter preserving operations
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if it is a member of some WBSO variety, or equivalently, if it generates a WBSO
variety. Clearly U is a WBSO algebra if it satisfies the identities 2.1(i)—(xi), the

identities (1) for some system of terms #,,...,t, and ‘“switching functions”
20, .-» 21, and a similar set of identities associated with the quasi-identity
2.1 (xii).

In the sequel V" will denote a WBSO variety with special terms —, -, A, and 1,
and % will be an arbitrary member of V.
Define a binary relation < on A by the condition

a<b iff a—>b=1.

By (i) <X is reflexive, and by (iii) and (xii) it is transitive, hence a quasiordering.
Let = be its associated equivalence relation, so that

a=b if a-—->b=1 and b—a=1.

From (v), (vi), and the fact < is a quasiordering it follows that = is a congruence
relation on (A, -), and (A/=, -/=) is a semilattice with -/= as the greatest lower
bound operation for the partial ordering induced by <. By (xii) 1 is congruent
only to itself, so we shall identify 1 with its equivalence class {1} under =~. By (ii} 1
is the largest element of the partial ordering induced by <.

A subset F< A is a weak filter of A if 1€ F, a - beF whenever a, be F, and
b e F whenever a€ F and a< b. Notice in particular that ae F and a=b imply
b e F. We denote the set of weak filters of % by Wf¥. For any congruence relation
&P on YU let

Fo=1/9,

the congruence class of 1. a=1(®) and b=1(P) imply (with the help of (iv))
a-b=¢1-1=1, and a=1P) and a<b together imply 1 =>b=ga—b=1.
Thus, by (xii) applied to the quotient /P, b=1(P). Hence FP is a weak filter.
Now suppose F is an arbitrary weak filter. Let

DF ={{(c,d):cAdeF}.

Then (vii), (ix), and (x) imply @ is an equivalence relation, and by (xi) @F has the
substitution property with respect to each fundamental operation of ¥. Thus ®F
is a congruence relation on U. a=1(PF) iff aAleF iff aeF by (viii). Thus
F®F = F. For any congruence @ of U, a =b(PFD)iff aAbecFP iff aAb=1(P) ift
a=b(P) by (xiii) applied to the quotient algebra A/®. Thus GFP = P. This
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immediately gives the following

LEMMA 2.2. Let % be a WBSO. F is an isomorphism between the congruence
and weak filter lattices of U; its inverse is @.

Subsets of A of the form F® for some @ cCo are just the 1-ideals of 2.
From 2.2 it follows that the 1l-ideals are exactly the weak filters. Another
consequence of 2.2 is that ¥ is point-regular (see the Preliminaries).

For any a,bec A we have a=b(®) iff a=b(PFP) iff aAbecFP iff aAb=
1(®). This gives

LEMMA 2.3. Let % be a WBSO. For all a,be A, @(a, b)=0(aAb,1).

Thus A is a Godel equivalence term in any WBSO variety ¥ (see the
Preliminaries).

For every ac A define
[a)={bc A:a<b}.

a<b<c implies a< ¢, and a<b and a<c imply a<b - c. Thus [a) is a weak
filter. Clearly [a) is the weak filter generated by a, and [a)v[b)=[a - b) where
“v” denotes join in the lattice of weak filters.

LEMMA 2.4. Let Y be a WBSO. For any ag, by, ..., ad, 1,b,_1,c,de A,
c=d(0(ay, by) v+ - -vO(a,_1, b,_1)) iff (---(apAbg): --+)- (a,_14Ab,_)< cAd.

Proof. Recall for any congruence @ of U we have, by 2.3 and the definition of
F’
a,=b(®) iff aqAb cFP.

Thus from the fact F is a lattice isomorphism we get

FO(a;, b)) =FN{D e CoU: a;=b;(D)}
= {FP: q;=b,(D)}
=N {Fe Wfd:q,Ab,cF}
=[a,Ab,).
Therefore,

F(O(ag, bo) v+ -V O(a,_1, b,_1))
=FO(ay, by)v---vFO(a, i, b, 1)
=lagAby)v---via, 1Ab, ;)
=[(agAby) - -+ - - (an 14D, 1)).
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This proves the lemma.

As a particular case of the lemma we have, for all a, b, c,dc A,
c=d(6O(a,b)) if aAb—cAd=1. )

Thus V" has EDPC, and hence by 0.3, the join-semilattice of compact congruences
of U is dually relatively pseudo complemented.

Observe that the principal congruences of a WBSO variety V" are defined by a
single equation. One cannot however conclude from this that ¥ has a uniform
congruence scheme of length 1, and is thus congruence-permutable. (See Fried,
Griitzer, and Quackenbush [9, p. 178].) Indeed one of the examples of WBSO
varieties considered below, Nelson algebras, fails to be congruence-permutable.
Although we have not investigated the matter it seems very likely that no upper
bound can be placed on the minimal length of uniform congruence schemes of
WBSO varieties.

LEMMA 2.5. Let A be a WBSO. Then for all a,bc A
@) a<biff @b, 1)=0(a, 1),

(i) a=b iff @(a,1)=0(b, 1),

(iii) @(a—b,1)=0(a, 1)* O(h, 1),

(iv) @(a-b,1)=0(a, 1)ve(b,1).

Proof. From 2.1(viii) we have adl=a and bA1=b. Thus, by (2), b=
1(O(a, 1)) iff aA 1< bA 1 iff a< b. Hence @(b, 1)< @(a, 1) iff a< b. This gives (i),
and (ii) follows. This also gives b=1(@(a, 1)) iff a — b = 1. Using this equivalence
we get for every @ e Co

O, 1N O H)vd
iff OB/D,1/P)s@(a/P,1/D) by 0.2
iff a/®—>bd=1/D
if a—b=1(P)
iff @la—b 1)@,

and hence the equality (iii) holds.

From 2.1(viii} and the fact = is a congruence relation on (A, -) we get
(aA1)- (bA1l)=(a-b)A1l. Thus F(O(a,1)vO(b 1)=FO(a 1)VvFO(,1)=
[aA)v[bAT)=[(alA1)- (bA1))=[(a-b)A1)=F@(a- b, 1). (iv) follows since F
is one-one.
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Therefore the mapping a— 0 (a, 1) from A to Co¥ is a homomorphism from
(A, ,—, 1) onto Cp¥ with = as its relation-kernel. Thus (A, -, —, 1)/~ is a
Brouwerian semilattice in the ordinary sense since it is isomorphic to Ep2l.
Observe that F< A is a weak filter of % iff F is of the form |J G for some filter (in
the usual sense) G of the Brouwerian semilattice (A, -, —, 1)/=.

THEOREM 2.6. 7 is a WBSO wvariety iff it has terms —, -, A, and 1 such that
every member U of V' satisfies the following conditions.

(1) A is 1-regular and A is a Gidel equivalence term function with respect to 1.

(ii) The relation = defined by the condition a=biffa—~b=1andb—a=11is
a congruence relation on (A, -,—, 1), and the quotient {A,:,—,1)/= is a
Brouwerian semilattice.

(iii) The 1-ideals of A are exactly the subsets of A of the form |J G where G is
a filter of (A, -, —, 1)/~=.

Proof. We have already shown that (i)—(iii) hold in any WBSO variety. So we
only need to prove that these conditions imply ¥ is a WBSO variety. It is well
known from the theory of Brouwerian semilattices that the mapping a/~+>[a/=)
is a (dual) isomorphism between (A, -, 1)/~ and its join-semilattice of compact
filters. By conditions (i) and (iii) the mapping [a/~)+> @(a, 1) is an isomorphism
from this latter semilattice onto {Cp?%, v, I), the join-semilattice of of compact
congruences of . Consequently, since (¥, -, 1)/~ is relatively pseudo com-
plemented by hypothesis, so is (Cp¥, v, I), and a/=—>0O(a, 1) is actually an
isomorphism between the Brouwerian semilattices (X, -,—, 1)/= and Ep¥=
(Cp¥, v, =, I). Tt follows almost immediately that, for all a, be A,

O(a—b,1)= 0O(a,1)=6O(b 1), @(a-b,1)=0(a, 1)vO(b1).
Also, directly from (i),
O(adb, 1)=6(qa, b).
The identities 2.1(I)—(xi) are now easily established. Consider for example 2.1(iii).

O(a—b)—=>({(b—>c)—>(a—c), 1)
=(0(a, 1) * 0(b, 1)) = ((B(b, 1) * O(c, 1)) *(O(a, 1) * O(c, 1))
=1

by the theory of Brouwerian semilattices. Thus (a — b) = ((b—c¢)—(a—c¢))=
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1. Consider also 2.1(xi) where, to simplify computation, we assume m = 2.

O((agAby)-(a; Aby) — F(ag, a;) AF(by, by), 1)
=(0(ag, bo) v O(a,, by)) * O(F(ao, a,), F(by, by))
=]

since @(F(ay, a,), F(by, by)) = @(ay,, by) v Ofay, by).

The two quasi-identities 2.1(xii), (xiii) are established in the same way. For
instance, if 1—a=1, then I=0(1—->a 1)=0(1,1)*0(q,1)=I1%6(a,1)=
O(a, 1). Hence we must have a = 1. This completes the proof of the theorem.

Let U be an arbitrary algebra (not necessarily a WBSO) and 1€ A. A term
function - of 9 is called a weak meet (with respect to 1) if, for all a,bc A,

Oa-b,1)=0(a 1)vO(,1). 3)

A binary term function — is called a weak relative pseudo complementation (with
respect to 1) if {Cp, v, I) is dually relatively pseudo complemented and

Ola—>b,1)=0(a, 1)+ (b, 1)

for all a, be A. Finally, a binary term function A is called a Gdédel equivalence
term (with respect to 1), if, for all a, be A,

@(a,b)=0(adb,1).

All three of these definitions are extended to arbitrary classes of similar algebras
in the obvious way; in the case of Gddel equivalence terms this agrees with the
definition given in the Preliminaries for varieties.

Lemmas 2.3, 2.5(iii), (iv) and the proof of Theorem 2.6 immediately give the
following useful result.

LEMMA 2.7. v is a WBSO variety iff it has terms —, -, A, and 1 such that —
is a weak relative pseudo complementation, - is a weak meet, and A is a Gédel
equivalence term, all with respect to 1.

For any WBSO % the term (x — y) - (y = x) is a Godel equivalence term for
the quotient algebra (A, -, —,1)/~=; this is simply in virtue of the fact
(A, -,—, 1)/= is a Brouwerian semilattice. But the term is not in general a Gddel
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equivalence term for U itself. Indeed (a—b)-(b—>a)=1 iff a=b. Thus
(x > y)-(y—>x) is a Gddel equivalence term for U iff = coincides with the
identity relation on A, or, equivalently, iff

O@(a,1)=6(b,1) implies a=>b

for all a, be A. If a variety V" is 1-regular for some constant 1, and if the above
implication holds for all 9 V" and a, be A, then V" is said to be Fregean (with
respect to 1); see [2] for the justification of this terminology.

As suggested by the name, perhaps the most typical example of a WBSO
variety is Brouwerian semilattices with the original operations of relative pseudo
complementation, meet, and unit. Moreover xAy=(x —y)-(y—>x) is the
equivalence term, so Brouwerian semilattices form a Fregean variety. For details
see [17].

Boolean algebras also form a WBSO variety, but so does any discriminator
variety with at least one constant term function. More precisely, take U to be any
member of a discriminator variety, and let 1 be an arbitrary element of 2. Then
A, or more exactly the algebra obtained from it by adjoining 1 if necessary as a
new constant operation, is a WBSO whose weak relative pseudo complementa-
tion, weak meet, and Godel equivalence terms are given by

x—=>y=nx1y1, x-y=n(x1y,x), 4)
xAy=n(xv,1,nx 1,y x)) Q)

where n(x, y, z, w) is the normal transform on A. See Bulman-Fleming and
Werner [4, Lemma 1.3] for details; see also the remarks following 3.5, 3.8, and
4.1 below.

It is clear that the simple and hence the subdirectly irreducible members of a
Fregean discriminator variety can contain only two elements. Thus (up to equa-
tional definitional equivalence) the only discriminator varieties that are Fregean
are Boolean algebras and generalized Boolean algebras (i.e., distributive lattices
(D, +, -,—>, 1) with largest element 1 and relative-complement operation —>).

The paradigm for a non-Fregean variety of WBSQO’s is the variety of interior
algebras (or topological Boolean algebras in the terminology of Rasiowa and
Sikorski [27]) A =(A, +, -, —, 0, 1, %): these are the modal algebras associated with
Lewis’ system (S4), and are characterized by the condition that (A, +, -, —, 0, 1) is
a Boolean algebra and °, the interior operator, satisfies the identities 1°=1,
(x-y)°=x"y° x°=x, and x°=x%. An element a of U is open if a’°=a; A°®is
the set of all open elements. McKinsey and Tarski [21] showed that every interior



Vol. 18, 1984 On the structure of varieties 357

algebra is isomorphic to a subalgebra of the interior algebra of all subsets of a
topological space X where, for each Y< X, Y° is the interior of Y in the
topological sense; see also Rasiowa [26, p. 120].

A filter F of the Boolean reduct of an interior algebra % is open if acF
implies a®c F. The 1-ideals of % are well behaved and coincide with the open
filters; moreover

xAy=(-x+y)  (—y+x)

is a Godel equivalence term with respect to 1 (Rasiowa [26, pp. 166 fI.]). The set
A° of open elements of 9 contains 0 and 1 and is closed under + and -; hence it
forms a sublattice of . This lattice is relatively pseudo complemented and thus
forms a Heyting algebra; specifically, for any a, b € A° the pseudo complement of
b relative to a is (—b+a)® (Rasiowa [26, p.123]). Let — be the operation
defined for all a, b A by

a-—>b=(—a’+bp"°. (6)

Then it is easy to check that a=b (i.e., a—b=1and b —a=1) iff a’=b°. Thus
~ is a congruence relation on (A, -,—, 1), and (A, -,—, 1)/= is isomorphic to
(A° -, —,1), a Brouwerian semilattice. It is clear that the weak filters of
(A, -,—, 1) coincide with the open filters of (A, +,-,0, 1), and hence with the
1-ideals. Consequently, by Theorem 2.6 interior algebras form a WBSO variety.

It turns out there are several equivalent alternative choices @ and © for the
weak relative pseudo complementation and weak meet operations of interior
algebras in the sense that @ defines the same quasiordering relation < as —,
and @ and (O coincide with — and -, respectively, modulo ~. We can take any
one of x°-y, (x - y)°, or x°- y+—x°- x in place of x - y. Also either (—x°+y)° or
—x°+1y can be taken in place of (—x°+y°)° in (6). But it is not difficult to see that
neither the ordinary relative complementation ~x+y nor its interior (—x+y)°,
which corresponds to the strict implication of modal logic, can be used for this
purpose. The weak meet and weak relative pseudo complementation x° -y +
—x°-x and —x°+y is a naturally occurring pair; see the remarks following
Theorem 3.6 below, especially (6).

The final example we consider are Nelson algebras, or quasi-pseudo Boolean
algebras in the terminology of Rasiowa [26]. They arise from the algebraization of
constructive logic with strong negation; see Rasiowa [26, Chapter XII]. A Nelson
algebra is an algebra A =(A, +, -, —, —, 0, 1) satisfying the following conditions.
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D (A, +,-,—,0,1) is a DeMorgan algebra with smallest element 0 and largest
element 1. (II) The relation < on A defined by a<b iff a—b=1 is a
quasi-ordering of A. (IIT) The relation = on A defined by a=b iff a< b and
b<<a is a congruence relation on (A,+,-,—,0,1) and the quotient
(A, +,-,—,0, 1)/~ is a Heyting algebra. (IV) The following hold for all a,be
A:—(a—>b)y=a-—b,a-—a<0,(a—b) - (-b——a)=1iff a-b=a.

The definition of Nelson algebras we give here has been adapted from the one
presented in Rasiowa [26]. The class of Nelson algebras turns out to be a variety
(Brignole and Monteiro [3]; see also Rasiowa [26, pp. 75 f£.]). It turns out further
that in any Nelson algebra ¥ the 1-ideals are well behaved and

xAy=(x—=y) - y—=-x) - (y—=>x)  (~x—-y)

serves as a Godel equivalence function with respect to 1. Furthermore the
1-ideals are exactly the subsets of A of the form |} G where G is a filter of the
Heyting algebra (A, +, -, —, 0, 1)/~ (Monteiro [22]; see also Rasiowa [26, pp. 91—
92]). Thus the variety of Nelson algebras is a WBSO variety by Theorem 2.6 with
weak relative pseudo complementation x —y and weak meet x - y; it is non-
Fregean.

As WBSO’s interior algebras and Nelson algebras both have a rather special
character that is not shared by WBSO varieties in general, in particular by
arbitrary discriminator varieties. In any interior algebra % the set A® of open
elements contains 1 and is closed under the weak relative pseudo complementa-
tion and weak meet operations — and -. The algebra (A°, -, —, 1) turns out to be
(dually) isomorphic to €p2l under the mapping that sends each open element a to
©(a, 1). So an interior algebra actually includes, if we identify a with @(a, 1), Cp¥
as a subalgebra of its term-function reduct (A, -,—, 1), and the mapping a —
®(a, 1) is a retraction from (A,-,—, 1) onto EpA; WBSO varieties with this
property will be studied in detail in a sequel to the present paper.

An analogous phenomenon can be observed in a Nelson algebra . The
analog of the interior operator is the mapping

a——(a—0).

Take B={-(a—0):acA} and let x@y =—((x—>y)—0) and xOy=
—(x -y —0). Then B is closed under these operations, contains 1, and (B, O, @
,1) is isomorphic to Gpd under the mapping ar>@(a, 1); see Rasiowa [26,
Chapter V] for details.
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3. Congruence-permutability and quaternary deduction terms

In this section we examine the effect congruence-permutability has on the
structure of varieties with EDPC. It allows us to replace the quaternary deductive
system by a single quaternary term. If the variety is also point-regular, this
quaternary term can be replaced in turn by a pair of binary terms with all the
properties of weak relative pseudo complementation and weak meet. As a
consequence, congruence permutable and point-regular varieties with EDPC
coincide with congruence-permutable WBSO varieties (Theorem 3.6).

Let & be an algebra and q(x, y, z, w) a quaternary term function of 2. It
follows from Definition 1.1 that q(x, y, z, w) is the middle term of a quaternary
deduction system of length 3 for U iff, for all a, b, ¢, dc A,

d if ¢=d(O(a,b))
qla,b,c,d)=<c if a=b

arbitrary otherwise.

Any term satisfying this condition is called a quaternary deduction (QD) term for
9. Observe that, if U is simple, there is only one QD term function and it
coincides with the normal transform.

The following are immediate corollaries of Lemma 1.2 and Theorem 1.5,
respectively.

LEMMA 3.1. Let U be an algebra and q(x, y, z, w) a QD term for H,¥%. Then
(Cp¥, v, I) is dually relatively pseudo complemented and for all a, b, ¢, d e A,

() O(q(a, b, c,d),d)=0(a, b)* O(c, d),

(ii) (@(a,b)* O(c,d)) = B(c, d)= O(q(a, b, ¢, d), c) < B(a, b).

THEOREM 3.2. Let q(x, y, z, w) be a quaternary term function for an algebra
. Then the following are equivalent.

(i) q is a QD term for H, ¥,

(i) A satisfies the following congruence conditions for all a,b,c,de
A:0O(a, b) = O(c, d) exists and

c E@(a,b)Q(a, b, c, d) =o@brocdd;

@il) U satisfies the identity g(x, x, z, w) = z together with the identities (10)—(14)
of 1.5(iii).
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The next theorem is essentially a specialization of Theorem 1.7; it gives
several equivalent conditions for a class % of algebras to generate a congruence-
permutable variety with EDPC. Observe that, in view of 3.2(i), (ii), condition (ii)
below can be reformulated in terms of a congruence condition on members of ¥
only; in practice this proves to be the most useful of all the conditions.

THEOREM 3.3. Let % be any class of similar algebras. The following are
equivalent.
(1) HSP¥ has EDPC and is congruence-permutable;
(i) H, % has a QD term;
Gil) H,% has a QD term q(x,y, z, w) satisfying the additional congruence
condition

O(qla, b,c,d),c)=(O(a,b)*O(c,d)) * O(c, d)

for all Ac HSPK and all a, b, c,de A,
(iv) % has a quaternary term satisfying the identity q(x, x, z, w) = z together with
the identities (10)-(14) of 1.5(iii).

Proof. The equivalence of (ii)~(iv) is an immediate consequence of 1.7(ii)—(iv).
An easy modification of the proof of the implication 1.7(i) to 1.7(ii) gives the
implication from (i) to (ii). Suppose q(x, y, z, w) is a QD polynomial for H, %, and
let m(x,y, z) = q(x, y, z, x). It follows easily from the two congruence conditions
of 3.2(ii) that m(x, y, z) is a Mal’cev polynomial for % and hence for HSP¥. Thus
HSP¥ is congruence-permutable. It has EDPC by 1.7(i), (ii). Hence (ii) implies
D).

Observe that the single equation q(x, y, z, w)=w serves to define principal
congruences. Thus the existence of a uniform restricted congruence scheme of
length 1 guarantees principal congruences are definable by a single equation; as
we noted previously the converse fails. (See Fried, Gritzer, and Quackenbush

[91)

COROLLARY 3.4. VvV is a discriminator variety iff V' is semi-simple,
congruence-permutable, and has EDPC.

Proof. Tt is well known that every discriminator variety is semi-simple,
congruence-permutable, and has EDPC. (See for instance Werner [28].) Suppose
v has these three properties, and q(x,y, z, w) is a QD term for ¥. Then g
coincides with the normal transform on each subdirectly irreducible of ¥". So ¥
must be a discriminator variety.
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This result was obtained independently by Fried and Kiss [10].
Brouwerian semilattices % = (A, -, —, 1) constitute a congruence-permutable
variety with EDPC. Define

px,y,z)=(x—>y) (y—=>x)- 2z

m(x, y, z)=((x—>y)—>2)  ((z—>y)—>x).

It is well known from the theory of Brouwerian semilattices that m is a Mal’cev
polynomial, i.e., m{x, x, z)=z and m(x, z, z) = x are identities of ¥, and that, for
all a,b,c,de A, c=d(0(a, b)) iff p(a, b, c)=p(a, b, d) (see, for instance, [17]).
Using these facts it is easy to show that

q(x. y, z, w)=m(p(x, y, 2), p(x, y, w), w) @)

is a QD term for .
In interior algebras
»

ax, y, z, w)y=(xAy)° - z+ —(xAy)° - w (3)

is a QD term where xAy=(—x+y)-(—y+x). In discriminator varieties the
normal transform is a QD term. Nelson algebras fail to have a QD term since they
are not congruence-permutable. This can be shown by an argument very similar
to the one used in [1; Section 1] to show DeMorgan algebras are not congruence-
permutable.

In a sense made precise in Theorem 3.6 below Brouwerian semilattices can
be thought of as the paradigm for congruence-permutable varieties with EDPC.

Throughout the remainder of the section ¥ will be, unless otherwise specified,
a member of a variety with EDPC and permuting congruence relations.
Moreover, q will be a term that serves as a QD term H_¥, or equivalently,
satisfies condition 3.2(ii) in .

Consider an arbitrary element e € A. Define for a,bec A

a—.,b=qlaeb,e), a-.b=q(a, e b,a). 4

THEOREM 3.5. Assume ¥ is a member of variety with EDPC and permuting
congruences. Let q(x, y, z, w) be a QD term for H,U, and let e c A. Then the term
functions —, and -, defined in (4) are respectively a weak relative pseudo
complementation and weak meet for W relative to e, i.e., for all a,be A

(i) ®(a—.b,e)=0(a,e)*O(b,e),

(ii) @(a -, b,e)=0(a, e)vOD,e).
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Proof. (i) is a trivial consequence of 3.1(i). From the string of equivalences
b=6@a(a € b, A)=g@ pe)€ =6l

we get
O(b,a)= B{a, e)vB(a-,b,e), (5)

and hence @(a, e¢) * @(b, a)= O(a-.b, e). Thus by 3.1(), taking a, e, b, a in place
of a,b,c d, respectively, a-.b=a(@(a-,b,e)). Hence @(a,e)=B(a-.b,e),
and combined with (5) this also gives @(b,e)< @(a-.b,e). Thus since
A ob = gae)b =opee by 3.1(ii), we have (ii).

The next theorem is a natural companion to 3.3. It provides a very satisfactory
characterization of varieties with EDPC that are also congruence-permutable and
point-regular.

THEOREM 3.6. Let % be any class of similar algebras with a constant 1. The
following are equivalent.
(1) HSP3 has EDPC and is congruence-permutable and 1-regular.
(i) H, % has a QD terim q and a Godel equivalence term A with respect to 1.
(iii) I has a quaternary term q and a binary term A such that the congruence
conditions

C E@(a, b) Q(a, b9 c, d) E@(a, b)=@(c, d) da
@(aAb, 1)=0O(a, b)

are satisfied by all WeH and a, b, ¢, d € A.
(iv) HSPX is a congruence-permutable WBSO variety.

Proof. The equivalence of (i), (ii), and (iii) follows immediately from Theorems
0.1, 0.7, 3.2(1), (ii), 3.3(i), (ii), and 3.5(i). Clearly (iv) implies (i). (See the remarks
following the proof of Lemma 2.4.) To complete the proof we show that (i)
implies (iv).

Let % be the free algebra of HSPX with two generators x and y. By hypothesis
O(x,y) is generated by pairs of terms of the form (t(x,y),1) where t(x,y)=
1(O@(x, y)). But since @ (x, y) is finitely generated, it can be generated by a finite
pumber {to(x, v), 1), ..., {t._1{x, ), 1) of these pairs. Let

xAy =t5(x, y) 1 (X ¥) -1 ha(x ).
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Then by 3.5(ii) we have
O(x,y)=0(t(x, y), Dv- - - vO(,_4(x, y), 1) = O(xAy, 1).

Since HSP¥* has EDPC by hypothesis, and hence the congruence extension
property, the congruence condition @(a, b)=@(aAb, 1) holds for all A « HSP¥H
and a, b€ A (see Lemma 0.2). When this is combined with the special cases of the
congruence conditions 3.5(i), (ii) obtained by taking e to be 1, we get by Lemma
2.7 that HSP¥ is a WBSO variety with weak relative pseudo complement —; and
weak meet -.

It is easy to check that the operations —, and -; that one obtains from (4) by
using the QD term (2) coincide with the usual relative pseudo complementation
— and meet - of Brouwerian semilattices. With the QD term (3) for an interior
algebra 9 the definitions (4) give

a-> b=—a"+b, a,b=ab+—a’a (6)

for all a, b A. Finally, applying (4) with q equal to the normal transform we
obtain the same weak relative pseudo complementation and weak meet for
discriminator varieties originally obtained by Bulman-Fleming and Werner [4];
see (4) of Section 2.

We mentioned in the Preliminaries that, if a deductive system that has both
the deduction theorem and the Godel rule is algebraizable, the associated variety
must have EDPC and be point-regular. Thus all the congruence-permutable
varieties that arise from algebraizing deductive systems of this kind take the form
of WBSO’s. For some insight into the metalogical significance of congruence
permutability see Corollary 3.10 below.

Suppose V" is a variety with a QD term q and a constant 1 with well behaved
ideals, i.e., V" is 1-regular. If V" is Fregean with respect to 1 (recall the definition
of this notion given in the remarks following Lemma 2.7), then —; and -, defined
in (4) are actual relative pseudo complementation and meet operations since, for
every eV, (A, -1, =1, 1) is isomorphic to the Brouwerian semilattice €p?. Even
in the non-Fregean case these operations turn out to have some of the special
properties of relative pseudo complementation and meet that are not shared by
the weak relative pseudo complementation and weak meet of arbitrary WBSO
varieties.

THEOREM 3.7. Assume U, q(x, y, z, W), e, —,, -, are as in Theorem 3.5, and
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let
X+, y=((x—=.y) = y) . ((y =.x) = x).

The following identities hold in Y.
D x-.x=x,
(ii) x-,e=e-,x=x,
(iif) e —>,x=x,
(iv) x —>.e=e,
V) x+,x=x,
(vi) x+.,e=e+.,x=e.
The following quasi-identities also hold.
(i) x—>,y=e iff x-.y=x,
(viii) x —>,y=e iff x+.y=y.

Proof. ()—(vi) are all easy consequences of 3.2(ii) and 3.5. Consider for
example (iii). e—,a =q(a, ¢, a, &) = a by 3.2(ii).

The quasi-identities (vii) and (viii) require somewhat more work. From 3.2(ii)
and 3.5(1) we get the string of equivalences a->.b=e iff b=e(@(a,e)) iff
b=a(®{a,e)) iff a-,b=q(a, e b, a)=a. Thus (vii) holds. For the purpose of
verifying (viii) we observe first of all that

Ob—.(b—.a)—.a),e)=0(b,e) *((O(b, e) * O(a, e)) = Oa, e)) =1
by 3.5 and the theory of Brouwerian semilattices. Thus

Y= ((y = x)—>.x) =€ (7)
is an identity of ¥, and in analogous manner we can show that

x—, (x+,y)=e (8)

is also an identity. Assume a—,b = e. Then

a +eb = (e—ae b) .e ((b_>€ a)——)e a)
=b-.((b—>.a)—.a) by (iii)
=b by (7) and (vii).

Now assume a +,b =b. Then a—.b=e by (8). So (viii} holds.
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The example of interior algebras (see (6)) shows that in general —, and -, fail
to satisfy most of the other familiar identities of relative pseudo complementation
and meet, even in the case e has well behaved ideals. For instance, -, ‘is neither
associative nor commutative.

We have not been able to determine to what extent the special identities and
quasi-identities given in 3.7 are reflected in special properties of congruence-
permutable WBSO varieties. For example, if we had replaced the quasi-identity
1 — x =1 implies x =1 in Definition 2.1 by the stronger identity 1 — x = x, then
we would have obtained a stricter notion of WBSO variety for which, in view of
3.7(iii), Theorem 3.6 would continue to hold. However, we know of no nice
characterization of WBSO varieties in this stricter sense comparable to the one
given in Theorem 2.6.

In the next section we present a very general method for constructing algebras
that generate congruence-permutable EDPC varieties (Corollary 4.5) and
congruence-permutable WBSO varieties (Theorem 4.6). It provides counter-
examples to many of the conjectures about such algebras that naturally arise from
considering discriminator varieties and the more familiar varieties of algebraic
logic. For example, Bulman-Fleming and Werner [4] have shown that each
member of a discriminator variety is e-regular for every element e, and,
moreover, a Godel equivalence operation relative to e is uniformly definable in
terms of the QD term function (the normal transform) with e as parameter; see
(4) of Section 2. We shall see in Section 4 that this result does not extend to
congruence-permutable WBSO varieties in general, even those that are in a
natural sense closest to discriminator varieties. (See the remarks following
Theorem 4.6 below.)

It follows from the existence of a weak relative pseudo complementation and
weak meet (3.5(1), (i) that, if 9 is a member of congruence-permutable EDPC
variety, then principal congruences of the form @{(a, e) for fixed e are closed
under both join and dual relative pseudo complementation, and hence form a
subalgebra €p, A of Cp¥, regardless of whether U is e-regular. In fact, it follows
from 3.1(i) that @ = @(a, ¢) is contained in Cp,Y for every ac A and every
DcCpA. Le., Cp .U is what is called a total subalgebra of Cp (see [17]).
Moreover, the mapping a — @(a, ¢) is a homomorphism from (A, -, —,, ) onto
Cp.U. If =~, is the relation-kernel of this homomorphism, a==_b iff @(a,e)=
O(b, e) iff both @(a,e)* @(b,e)=1I and O(b, e) * @(a,e)=1 iff both a—,b=¢
and b—,a = e. We summarize these results in the following

THEOREM 3.8. Assume ¥ is a member of a variety with EDPC and
permuting congruences. For every ec A let

Cp U ={0(a,e):acAl}.



366 W. I. BLOK, P. KOHLER AND D. PIGOZZI ALGEBRA UNIV.

Then Cp,U is the universe of a subalgebra &p A of CpU, and, if q is a QD
polynomial for H,9 and —, and -, are defined as in (4), then

<A) .83 ﬁ67 e>/z€ E@pe%{

where ~, is a congruence relation on (A, -,,—,, e) defined by a~,b if a—.,b=e
and b—,a=e.

Observe that Cp, A =Cp iff A is e-regular.

Consider for example a Brouwerian semilattice U = (A, -, —, 1) together with
the QD term g defined in (2). After some computation the definitions (4) can be
reduced to the formulas

a—.b=((a—e) - (e—a) b)—e)—e) ((e—a)—Db),

a.b=(((a—>e) (e—>a)-b)—>a)—a) (a—e)—Db),

and €p, Y corresponds under the natural isomorphism between €pl and U to the
subalgebra {(a — e) - (e — a): ac A} of &. We note again +, and — coincide wtih

and —, and =~ is the identity relation. If 9 has a smallest element 0, and U is
linearly ordered or more generally 0 is meet irreducible, then a#0 implies
(a—0)-(0—a)=1. Thus in this case Cp,A contains just two elements, the
identity and universal congruences.

If % is a member of a discriminator variety then Cp, % =Cp¥ for every ec A;
see Bulman-Fleming and Werner [4] and the remarks following Lemma 2.7.

If a WBSO variety is Fregean (see the remarks after 2.7), then it must have
permuting congruences since, as noted previously, its (-, —, 1)-reduct is a class of
Brouwerian semilattices. Underlying this fact is a close connection between
congruence permutability and the characteristic property of the weak meet
operation (see (3) of Section 2).

THEOREM 3.9. Assume the variety V' is Fregean with respect to 1 (so in
particular it is 1-regular). If every compact congruence of every member of V' is
principal, then V' has permuting congruences.

Proof. Let & be the free algebra of ¥V with a denumerable number of
generators X, y, Zg, Z1, . . . . Let t(x, ¥, Zo, . . ., Zy—1) be a term such that

@(xa 1)\/ @(Y: 1) = @(t(x’ Y, 2050 -+ Zm—1)9 1)7
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and let

X y=t(x,y,x,...,Xx).

By a well known argument (see for instance [18, the proof of Theorem 8]) it can
be shown that, for every A ¥ and all a, be A,

Oy(a, 1} v Oy(b, 1) = Oyl(a - b, 1). )

Thus x - y is a weak meet term with respect to 1. The existence of a weak meet
term, together with the assumption that 1-ideals behave properly, implies the
existence of a Godel equivalence term xAy with respect to 1 (see the proof of
3.6).

Recall that the identity xAx =1 holds for any Godel equivalence term, and,
since ¥V is Fregean with respect to 1, the identities xA1l=x and 1Ay=1y also
hold. Define

m(x,y, z) =((x4y)Az) - (xA(yAz)).
Then by (9) we have for all eV and q,bc A

Oy(m(a, a,b), 1)=0Ox((ada)Ab, 1)v Oylad (aAb), 1)
= Oy(b, 1)v Oyla, aAb)

the last equality holds since a =ad 1=aAb(O (b, 1)). Thus, since V' is Fregean,
m(a, a,b)=>b, and by a symmetric argument m(a, b, b)=a. Thus m(x,y,z) is a
Mal’cev term for 7.

Combining this result with Theorem 3.5(ii) we immediately get the following

COROLLARY 3.10. Assume V is Fregean with respect to 1 and has EDPC.
Then V' has a weak meet term with respect to 1 iff V' is congruence-permutable.

Brouwerian semilattices satisty the hypothesis of the corollary. They obviously
have a weak meet so by the corollary they are congruence-permutable, a well
known fact we noted previously. On the other hand, the variety of Hilbert
algebras (which consists of all subalgebras of (—, 1)-reducts of Brouwerian
semilattices) also satisfies the hypothesis of the corollary. But it clearly does not
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have a weak meet term, and hence must necessarily fail to be congruence-
permutable.

The assumption that 7" be Fregean is essential for the conclusions of both the
theorem and the corollary. Since Nelson algebras form a WBSO variety, they
have a weak meet term and every compact congruence is principal. But they fail
to be congruence-permutable. On the other hand, in Section 4 below we will
construct an algebra 9 that generates a congruence-permutable EDPC variety
and yet has compact congruences that are not principal.

In the case of interior algebras we cannot use 3.10 directly to infer
congruence-permutability from the existence of a weak meet term. But we can
use it indirectly by applying it to the Boolean algebra reduct. Observe that in the
case of Nelson algebras the analogus reduction leads to DeMorgan algebras,
another non-Fregean variety with EDPC.

4. Congruence relative Stone varieties

There is a natural way of arranging the class of varieties with EDPC into a
hierarchy, the so-called Brouwerian hierarchy, corresponding to the lattice of
varieties of Brouwerian semilattices. The position of any given variety ¥ within
the hierarchy is determined by the variety of Brouwerian semilattices generated
by all the semilattices of compact congruences of members of 7'. At the lowest
non-trivial level, the one corresponding to generalized Boolean algebras (the
unique minimal variety of Brouwerian semi-lattices) we have exactly the semisim-
ple varieties with EDPC. These have been shown to coincide with filtral varieties
in Fried, Gritzer, and Quackenbush [9]. In the presence of congruence permuta-
bility they turn out to coincide with discriminator varieties. (For a more detailed
discussion of the Brouwerian hierarchy see [1, Section 4].)

In this section we investigate those varieties that, in the congruence-
permutable part of the Brouwerian hierarchy, lie just above discriminator var-
ieties.

A Brouwerian semilattice that is the subdirect product of a family of chains is
called a relative Stone lattice. The class of all relative Stone lattices forms a variety
denoted by €. It can be axiomatized, relative to Brouwerian semilattices, by any
one of the following four identities:

(x—=y)+2)+{(y—=>x)+2)=1,

(x—=2)-(y—=2)—=>(x+y—2z)=1, (1)
(x+y)+z=x+(y+2z), )
(x—=9+2)+((x—>y)—=y)+z)=1, 3)
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where + is defined by

x+ty=((x—=y)—=y) (y—=>x)—x).

It is easy to check that the identities x+y=y+x and x=x-+y hold in any
Brouwerian semilattice. Thus relative to the axioms of Brouwerian semilattices (1)
is equivalent to the condition that a+b is the least upper bound of a and b.
Consequently, every relative Stone lattice is a relatively pseudo complemented
lattice.

Brouwerian semilattices that are subdirect products of chains have been
studied by Nemitz and Whaley [24] who, in particular, obtained the characteriza-
tions (1) and (2) above. It follows from results of Hecht and Katrindk [14] that
they are equationally definitionally equivalent with what are commonly called
relative Stone lattices (or algebras) in the literature. The following basic facts
about relative Stone lattices are established in Nemitz and Whaley [24].

% is generated by any infinite chain and hence also by the set of all finite
chains. The subdirectly irreducibles of € are exactly the chains with a dual atom.
If €,, denotes the subvariety of € generated by a chain of n-elements, then €, is
axiomatized relative to € by the identity

(X1 = x)+ (X, = x3)++ -+ (x, > %) =1

The subdirectly irreducibles of €, are exactly the chains of length <n. It follows
immediately from these results that €, <€, whenever n<\m, and every proper
subvariety of € is of the form €, for some n with 1=n <w. Observe that €, is the
variety of generalized Boolean algebras.

A variety V" with EDPC is called a congruence relative Stone variety if Cpl € €
for every YV, or, equivalently, if every subdirectly irreducible of ¥ has a
linearly ordered congruence lattice. ¥ is a congruence relative Stone variety of
length <n it CpA €, for every Ae V. Congruence relative Stone varieties of
length =2 coincide with filtral varieties. The paradigm for a congruence relative
Stone variety at the 6,,-level of the congruence-permutable Brouwerian hierarchy
is the variety €,, itself.

If % is a member of a congruence relative Stone variety, then Cp¥ is closed
under intersection. In fact, let g ={q;:i=n) be a QD system of terms for H_
such that, for all a, b,c,dc A,

v @(qi(a9 b: c, d): qi+1(a, b; c, d)) = @(a’ b) * @(C’ d)z

eveni<n

where 0 (a, b) * O(c, d)>=(0(a, b) * O(c, d)) * @(c, d). (By Theorem 1.7 such a q
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always exists.) Then
O(a, bYyNO(c,d)=D(a, b, c, d)vP(c, d, a, b) 4)

Where (I)(xa Yy, Z, W) = Veveni<n @(Qi(X, Y, 2, W): Qi+1(X, Y, Z, W))-

In the sequel the congruence relative Stone variety ¥ we consider will always
be congruence-permutable, and the algebra ¥ will always be an arbitrary member
of such a variety. (Hence ¥ is a discriminator variety if €p? is a generalized
Boolean algebra.) Furthermore, q will always be a QD term for H % that satisfies
the following condition for all a, b, ¢, d € A (Theorem 3.3.(1ii)):

0(q(a, b, ¢, d), c) = O(a, b) = O(c, d)™. (5)
Then as a particular case of (4) we have
O(a, b)NO(c,d)=0(q(a, b, c, d), c)vO(qlc, d, a, b), a).

Theorem 3.8 can be improved in the expected way for congruence relative
Stone varieties. Consider an arbitrary element e of % and define for all g, be A

a+.b=(a—.b)—.b)-.((b—.a)>.a)

where —, and -, are the weak relative pseudo complementation and weak meet
operations defined in (4) of Section 3. Recall that Cp,A={O(q, e):acA}. The
proof of the following is obvious.

THEOREM 4.1. Assume U is a member of a congruence relative Stone variety
with permuting congruences. Let e be an arbitrary element of . Then for all a, b

O(a+,b,e)=0(a, e)NO(b,e). (6)

Hence Cp, 2 is closed under intersection, as well as join and dual relative pseudo
complementation, and

(A, +or o e €)= =(Cp A, N, A, %, 1) (7)
where =, is the congruence relation defined by a=,bifa—.,b=eand b—.,a=e.

A binary term +, that satisfies (6) for all a, b€ A is called a weak join (with
respect 1o e).
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If e has well behaved ideals, then every compact congruence of 9 is principal,
and then the quotient algebra on the right-hand side of (7) is isomorphic to the
lattice of all principal congruences. As previously noted Bulman-Fleming and
Werner [4] have shown that, if 9 belongs to a discriminator variety, % is e-regular
for every element e, and ¥ has a Gddel equivalence term A, definable in terms of
q (the normal transform term in the discriminator case) with e as parameterf

x4, y=q(x, y, e, q(x, ey, x)).

(Compare formula (5) of Section 2.) To see this observe first of all that by (4) of
Section 3, (5), and 3.5(ii) we have @(aA.b, e)=0O(a, b)*(O(a, e)v O(b, e))*.
Recall that every generalized Boolean algebra satisfies the identity (x — y) —>y =
x +7y. Hence, if 9 is a member of a discriminator variety,

O@(aA.b,e)=0(a, b)N(O(a, e)v O(b, e))=0O(a, b).

At higher levels of the Brouwerian hierarchy A, does not give a Godel
equivalence term. For example, if the compact congruences of ¥ form a chain,
and a (or equivalently b) fails to be congruent to e modulo @(q,b), then
O(aA.b, e) = I. Consequently, if ¥ is not a discriminator variety, there is always
an A€V and e c A such that the congruence condition @(aA. b, e) = @{a, b) fails
for some a, b € A. We shall construct below, following 4.6, a WBSO variety at the
%s-level of the Brouwerian hierarchy in which no Godel equivalent term (with
respect to the constant 1) is definable in terms of g and 1.

Some characteristic properties of discriminator varieties can, however, be
generalized in a natural way higher up in the Brouwerian hierarchy, at least at the
permutable congruence relative Stone levels.

Let A be any non-empty set. Let =(L,v,N, I, AXA) be a complete
0, 1-sublattice of the lattice of equivalence relations on A. (By a complete
sublattice we mean one closed under arbitrary intersection and join of equivalence
relations.) For every pair a, b of elements of A let

Ou(a, b)={®ecL:a=b(P)}.

A quaternary operation ¢ on A is called the %-normal transform if, for all
a,b,c,deA,

d if c=d(Oya, b))

¢ otherwise.

q(a, b, c, d) ={
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Observe that in opposition to the definition of a QD term this definition

completely determines q; conversely, q completely determines the lattice L.
Recall that €o¥ denotes the congruence lattice of U.

LEMMA 4.2. Let U be any algebra and q a quaternary term function of %U.
Then the conjunction of any two of the following conditions implies the third.
(i) q is a QD term for H, 9 satisfying the special condition of 3.3(iii);
(ii) q coincides with the Co¥-normal transform on A;
(i) v T =PUY for all &, ¥ e Col.

Proof. We observe first of all that (iii) is equivalent to the same condition
holding for all principal congruences @, ¥ of ¥. It is also equivalent to the
condition that (Cp¥, v, I} be dually relatively pseudo complemented and, for all
a,b,c,deA,

O(a,b)+O(c,d)=1 or O(a,b)+*0O(cd*=L (8)

In order to see this assume (iii) holds. If c=d(@(q, b)), i.e., O(c, d)= O(a, b),
then @(a, b) = @(c, d) exists and equals I. Suppose ¢Fd(&{a, b)). Then for any
congruence @, the equality @(a, b)v® = @(a, b)U P implies ¢ =d(@(a, b)v P)
iff c =d(®). Hence @(a, b) * @{(c, d) exists and equals @(c, d), and thus @(a, b) =
O(c,d*=0(c,d)* O(c,d)=1I So (8) holds, and from the fact that the dual
relative pseudo complement of every pair of principal congruences exists, it
follows that (Cp2, v, I) is dually relatively pseudo complemented (see for instance
[18, Lemma 4].)
Assume conversely that (8) holds for all a, b, ¢, d € A. Suppose

(e, /Ye(O(a, b)v O(c, d))~ O(a, b). 9)

Since (e, f) £ &{a, b) we can conclude from (8) (taking e and f respectively for ¢
and d) that @(a, b) * O(e, f)* =1, and hence, in view of (9),

O, )= O(a, b)*O(e, f)=O(c, d). (10

Thus (O(a, b)vO(c, d)~O(a, by O(c,d), which gives @(a, b)vO(c, d)=
O(a, b)U O(c, d). So condition (iii) holds.

Assume (i) and (iii). If ¢=d(®(a, b)), then g{a, b, c,d)=d since q is a QD
term function. Suppose ¢#d(@ (a, b)). Then (8) gives O(a, b) * O(c, d)*>=1I, and
thus q(a, b, ¢, d) = ¢ by (5).
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Assume (i) and (ii) hold. If @(c, d) < @(a, b), then O(aq, b) * O(c, d) = I, other-
wise q(a, b, ¢, d) = ¢, and hence, by 3.1(ii), @(a, b) * O(c, d)>*< O(q(a, b, ¢, d), c) =
I Thus (8) holds for all a, b, ¢, d€ A, and this gives (iii).

Assume finally that (ii) and (iii) hold. From (8) it follows easily that
I if ¢=d(O(a, b))

O(c,d) otherwise, 1

B, d) if c=d(O(a,b))

I otherwise.

O(a,b)*0O(c, d) :{

A(a, b) * Ofc, d)2:{ 12

From (11) and (ii) we get that the second of the following two equivalences, and
from (12) and (ii) we get the first.

C=0(ab)=0L, d)ZQ(a, b, c, d) =6(a, b6 d) d-

Thus q is a QD term for H,Y by Theorem 3.2(i),(ii) (since
O(a, b) * O(c, d)>< @(a, b)), and so (i) holds. This proves the lemma.

Observe that in order to infer (iii) from (i) and (ii) we needed only to assume g
is a QD term for H, %, and not that it satisfies in addition the special condition of
3.3(iii). As a consequence, if q is a QD term for H, ¥, and (iii) is satisfied, in
particular if €o¥ is a chain, then g must necessarily satisfy the special condition of
3.3(iii).

The lemma allows us to characterize permutable congruence relative Stone
varieties in a way very close in spirit to the usual definition of discriminator
varieties; see Werner [28].

THEOREM 4.3. Let V' be a variety. The following are equivalent.

(i) V' is a congruence relative Stone variety (of length =<n) with permuting
congruences.

(i) There is a quaternary term q of V' such that, for every subdirectly irreducible
AecV, CoU is a chain (of length =<n) and q coincides with the Go-normal
transform on A.

(iiiy There is a class ¥ of algebras and a quaternary term q of ¥ such that
V' =HSPX and, for every UecH, Co¥ is a chain (of length <n) and q coincides
with the Col-normal transform on A.

Proof. Suppose ¥ is a congruence relative Stone variety (of length =<n) with
permuting congruences. By definition each subdirectly irreducible U has a linearly
ordered congruence lattice (of length =rn), and, if q is a QD term for V.

>
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then by 4.2 ¢ is the €o¥-normal transform on A. Thus (i) implies (i) which in turn
trivially implies (iii).

Suppose (iii) holds. By Lemma 4.2, q is a QD term for H_%, and hence, by 3.3,
V' = HSP¥ has EDPC and is congruence-permutable. It then follows directly from
Theorem 0.8 that 7" is a congruence relative Stone variety (of length =<n).

Another very characteristic property of discriminator varieties is the following:
when we adjoin the normal transform to the fundamental operations of an
arbitrary algebra ¥, the new algebra (2, q) we get obviously generates a dis-
criminator variety. But when we try to adjoin an ¥-pormal transform where &
contains equivalence relations other than I and A XA, we run into apparent
difficulties. We may select any linearly ordered complete sub-lattice £ of ol and
adjoin to the operations of ¥ the special normal transform determined by &. But
we cannot immediately apply Lemma 4.2 to conclude that q is a QD term for
H_, (Y, q) since it is not apparent, as it is in the case of the ordinary normal
transform, that & coincides with €o(¥, q). The next theorem establishes this result
and, indeed, something even stronger.

THEOREM 4.4. Let % be any algebra and & a complete sublattice of Eo%
having the following two properties:

() the join semilattice of compact members of & form a dual relative Stone
lattice,

(ii) the members of & permute.
Then there exists a unique quaternary operation q on A such that & =Eo(¥, q), and
q is a QD term for H, (¥, q) satisfying the condition of 3.3(iii).

Proof. Recall that the identity (3) characterizes congruence relative Stone
lattices among the Brouwerian semilattices; in particular the identity (x — y)+
((x — y)— y =1 holds in any congruence relative Stone lattice. Thus, in view of
4.1, the premiss (i) implies that, for all a, b,c,dc A,

Ou(a, b) = Og(c, d)N Og(a, b) = Og(c, d)* =1L (13)

In view of the premiss (ii) we can define q(a, b, ¢, d) to be the unique element of
A such that

C =@y(a, b)*Oglc, d)zCI(a, b, c,d) =@g(a, b)*Og(c, d) d. (14)
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Observe that since @g(a, b) * Og(c, d)*> < Og(a, b) we have

c E@g(a,b)q(a: b, c,d) =0g(a, b)*=Oglc, d) d,

and thus g(x, x, z, w) = z holds identically.
Let 8=, q). If c=d (Oy(a, b)), then

c= q(a7 a, ¢, d) E@;B(a., b)q(ay b> c, d) = d-

Hence Gg(a, b) < Oxla, b). Suppose we can prove that each @ in & has the
substitution property with respect to q. Then & would be a sublattice of €o®B. This
would imply @x(a, b) < @g(a, b), and thus Og(a, b) = Oxla, b) for all a, be A. But
this in turn would imply that & =Co®B since & and €oB are both complete
sublattices of €o. The last part of the conclusion of the theorem would then
follow immediately from (14) by 3.2(1), (ii).

Let @ be any member of & and let a, b, ¢, d, a’, b, ¢’, d' € A such that a=a’,
b=b', c=c’, d=d' modulo ®. We must show

qa, b, c, dy=q(a’, b', ¢, d') (D). (15)

Let ¥ =0g(a, b)* Oulc,d) and V' =60g(a’, b’} = Bg(c’,d"). Since Oq(c,d)c
Bg(a’, b)v Vv d we have ¥' < ¥vd, and so by symmetry

V'vod=vvao. (16)

Using this identity we get the inclusion Og(c’,d)= V' v (¥ * Oy(c, d))vP and
also the symmetric inclusion. Thus

V= @g(c’,dYvDP =T = 0g(c, d)v P a7
By (14),

q(a, b, c, d) =y .oy, )¢ =0 €' =ypuoge. anqla’, b, ¢, d').
Thus by (17) we have

qla, b,c,dy=q(a’, b, c', &YW = Og(c, d) v D). (18)
By (14), q(a, b, ¢, d)=¢d=¢d =4.q(a’, b', ¢', d’). Thus by (16) we also have

q(a,b,c,d)y=q(a’,b', ¢, d') (¥ v D). (19)
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By the premiss (i) the join semilattice of compact members of & is dually
relatively pseudo complemented. It is well known that this implies € is distribu-
tive. (See for instance [18, the proof of Corollary 6].) Combining the distributivity
of & with (13) we get @ =(¥ * Ou(c, d)v OYN(¥ v D). Thus (15) follows im-
mediately from (18) and (19), and the proof is complete.

By taking the set of operations of ¥ to be empty we obtain the following
concrete congruence-lattice representation result.

COROLLARY 4.5. Let A be any set and & any complete sublattice of the
lattice of equivalence relations that satisfies conditions 4.4(i), (ii). Then 2 is the
congruence lattice of a member of a congruence-permutable variety with EDPC.

Several natural questions arise as to how this result might be improved. For
instance, does the conclusion of 4.5 continue to hold if condition 4.4(i) is
weakened to the requirement that the join semilattice of compact members of 2
be dually relatively pseudo complemented? Does it continue to hold if in place of
4.4(ii) we require only the existence of an n such that all the members of { are
n-permutable? Condition 4.4(ii) cannot be done away with entirely however. For
this would allow us to conclude that every algebraic lattice & that satisfies the
purely lattice-theoretic condition 4.4(i) is strongly representable. But Pudlak and
Tuama [25] have shown that an algebraic lattice is strongly representable only if it
is completely distributive.

It turns out that Theorem 4.4 and its corollary can in fact be somewhat
improved. More precisely, the proof given is easily seen to apply to any complete
sublattice & of permuting relations for which the condition

(D V)N(D*P)*PT=1 (20)

is satisfied by all principal equivalences (but not necessarily all compact equiv-
lances) of €. Hence, in view of the first part of the proof of 4.2, the conclusion of
4.4 applies to any & with the property that @ v ¥ =& U ¥ holds for all ¢, Ve L.
This result was found independently by Fried [8] who also obtained an intrinsic
characterization of the lattices isomorphic to some lattice & with this property;
for a similar result see Korec [19].

There are lattices & with the above property that fail to satisfy 4.4(i). Consider
for example the set A ={0,1,2,3,4,5,6,7}, and let ® and E be the equivalence
relations on A whose associated partitions are respectively {{0, 1,2, 3}, {4, 5},
{6, 7% and {{0,1}, 42,3}, {4,5,6,7}}; observe that @UE is an equivalence
relation. Let & be the sublattice of equivalence relations generated by @ and E;
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its members are I, ®,5,0NE, OUE, and AXA: all of these are principal
except ® U . Condition (20) is satisfied by all the principal members of &, but
O«xOUENO+*xOUE)*(OUE))=ENE*OUE)=ENO+I1

As an application of the corollary we shall construct an algebra U that
generates a congruence-permutable variety with EDPC but has the property that
not all its compact congruences are principal. (See the remarks following Corol-
lary 3.10.)

Let A={a, b, ¢, d}, and let O, d, ¥ be the equivalence relations on A whose
associated partitions are respectively {{a}, {b}, {c, d}}, {a, b}, {c}, {d}}, and {a, b},
{c, d}}. Then the set {@, ®, ¥, I, A x A} forms the universe of a complete sublat-
tice of equivalence relations that satisfies conditions 4.4(i), (ii). By 4.5 there is a
quaternary operation q on A such that Co(A, q)={6, D, ¥, I, AX A} and {A, q)
generates a congruence-permutable variety with EDPC, in fact, at the €5-level of
the Brouwerian hierarchy. Observe that ¥ is not principal.

A weaker analog of 4.4 is available for WBSO varieties.

THEOREM 4.6. Let U be any algebra and & any complete sublattice of €o
that satisfies the following conditions.

{i) & is a chain,

(ii) & is 1-regular for some element 1< A.
Then there exist a quaternary operation q and a binary operation A on A such that
=60, q, 4, 1), and (A, q, A, 1) generates a congruence-permutable WBSO vari-
ety with QD term q (satisfying 3.3(iii)(8)) and Gédel equivalence term A.

Proof. By 4.4 there is a quaternary operation q on A such that  =Co(¥, q)
and q is a QD term for H,, (%, q). Thus by 3.5(ii), (¥, q) has a weak meet term
function with respect to the element 1. Combining this with the premise (ii) it is
straightforward to show that, for each pair a, b € A, there exists a ¢ € A such that
Oglc, 1) = Og(a, b). (Compare the proof of 3.6.) Define A such that
Og(adb, 1)=0g(a, b) for all a, bec A, and, in addition, Og(a, b) = Bg(c, d) implies
alAb=cAd. In order to prove the theorem it is enough, in view of 3.6, to show
that each @ of & has the substitution property with respect to of A, and hence that
L=Co®, q, A, 1).

Assume & is a relation of &, a=ga’, and b=4b’. Suppose first of all that

Og(aAb, a’' Ab") = Og(a, b) N BOg(a’, b'). (21)
Then a’Ab'=1 (BOg(a, b)) since Oyla, b) = Og(aAb, 1). Thus Oq(a’, b') < Og(a, b),

and so by symmetry @g(a’, b") = @g(a, b). Hence by hypothesis adb = a’ Ab’ and,
a fortiori, aAb=a'Ab'(P). So we may assume that (21) fails, ie., since Q is a
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chain, that either @g(a, b)< @q(adb, a’ Ab’) or Og(a’, b')< Ogx(adb, a'Ab’).
Without loss of generality we assume the former. Thus, since @g(a’,b’)c
Oy(a, b)v P, and hence adb=1=a’Ab’ (O(a, b)v D), we get Og(aldb, a’ Ab") =
Ou(a, b) v ®. Therefore, since £ is a chain and Og(adb, a’ Ab"Y& Oy(a, b), we
must have @g(aAb, a’ Ab") = @. This completes the proof.

Finally, as an application of the last theorem, we construct an algebra % that
generates a congruence-permutable WBSO variety (at the €;-level of the
Brouwerian hierarchy in fact) in which the Goédel equivalence operation is not
definable in terms of the QD term and the constant 1 (see the remarks following
3.7).

Let A={0,1,2, 3,4}, and let @ be the equivalence relation on A correspond-
ing to the partition {{0}, {1, 2}, {3, 4}}. Then {®, I, A x A} forms the universe of a
complete sublattice of equivalence relations that satisfies conditions 4.6(i)-(ii).
Thus there are operations q and A on A such that Co(A, q, 4, 1)={®, I, A X A},
and (A, q,A4,1) generates a congruence-permutable WBSO variety. Since
Co(A, q, 4, 1) is a chain and q is a QD term satisfying 3.3(iii)(8), q must be the
(Co{A, q, A, 1))-normal transform on A by 4.2. Consequently the set {1, 3, 4} is
closed under any term function constructed from q and 1. But clearly 3 A 4 must

take the value 2, and the same is true of any Godel equivalence operation on
<A7 q’ A’ 1>'
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