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Abstract. The Naka-Rushton equation empirically describes the amplitude R of the dark- 
adapted electroretinogram b-wave, as a function of stimulus luminance L, as R/Rma × = L"/ 
(L"+ Kn). Estimating the three parameters R ..... n, and K of this function from elec- 
troretinogram data is of both experimental and clinical interest. Several different approaches 
have been developed to accomplish this analysis, but these approaches may derive different 
estimates of the three parameters. To examine this possibility, we compared the results of three 
methods of fitting the Naka-Rushton equation to data sets obtained from 30 normal subjects. 
Two methods were nonlinear curve-fitting programs; the third method involved fitting a 
regression line to transformed data. The results indicate that solutions provided by these 
methods have consistent differences, which may be an important consideration when comparing 
results reported in studies that used different curve-fitting methods. 

Introduction 

T h e  increase  in a m p l i t u d e  of  the  b -wave  of  the  d a r k - a d a p t e d  h u m a n  
e l e c t r o r e t i n o g r a m  ( E R G )  with  increas ing  s t imulus  l uminance  is de sc r ibed  
empi r i ca l ly  by  the  N a k a - R u s h t o n  equa t ion :  

R/Rm~x  = L ~ / ( L  " + K ~) (1)  

In this equa t ion ,  R is the  r e sponse  to a s t imulus  of  l uminance  L,  Rma x is the  
a sympto t i c  m a x i m u m  response  amp l i t ude ,  K is the  s e m i s a t u r a t i o n  cons t an t  
or  l uminance  r e q u i r e d  to elicit  a r e sponse  equa l  to one -ha l f  the  a m p l i t u d e  of  
R . . . .  and  n is p r o p o r t i o n a l  to the  s lope  of  the  g raph  of  E q u a t i o n  1 at  the  
po in t  w h e r e  the  s t imulus  l uminance  is t a k e n  to  be  K. In p rac t i ce ,  R is 
p l o t t e d  as a func t ion  of  log L,  and  the  g raph  t akes  the  symmet r i c  shape  of  
the  hype rbo l i c  t angen t  funct ion .  Ini t ia l  m o d e l s  i n t e r p r e t e d  the  p a r a m e t e r s  
R . . . . .  n and  K as i n d e p e n d e n t  m e a s u r e s  of  r e spons iveness ,  r e t ina l  h o m o -  
gene i ty  and  sensi t ivi ty ,  r espec t ive ly  [1, 2]. H o w e v e r ,  m o r e  r ecen t  m o d e l s  
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indicate that the -parameters may not be independent [3, 4]. The analysis of 
luminance-response functions has been applied to the study of several 
clinical populations [1-8]. 

At high stimulus luminances, a second limb appears on the luminance- 
response function that reaches a new asymptotic maximum greater than 
Rma x [1, 9, 10]. Since additional parameters are required to fit a curve to the 
complete luminance-response function, most studies have restricted their 
analyses to the initial portion of the f u.nction. To accomplish this, several 
approaches have been developed. The solutions derived from these ap- 
proaches have not been previously compared. However, determining if one 
approach results in a systematic change in one or more of the parameters of 
the Naka-Rushton equation would be important in contrasting results 
obtained in studies that used different analyses. In the present study, we 
addressed this question by applying three commonly used curve-fitting 
methods to luminance-response functions obtained from 30 normal human 
subjects. Two of the methods used here are commercially available non- 
linear curve-fitting computer programs; the third was a method recently 
proposed by Aylward [11]. 

Subjects and methods 

Dark-adapted luminance-response functions were obtained from 30 normal 
subjects, whose results served as a control group in a previous study [12]. 
The ERGs were recorded with a Burian-Allen contact lens electrode 
referenced to a forehead electrode; the left earlobe served as ground. A 
Nicolet Compact Four signal averaging system with an amplifier bandpass of 
1-1000 Hz (3 dB down points) was used to obtain recordings, which were 
stored for later analysis. 

White (xenon) stimulus flashes were presented in a Nicolet ganzfeld bowl. 
Flash luminances were attenuated by means of internal strobe settings and 
Wratten No.96 neutral-density filters. Flash luminances were calibrated with 
an EG&G model 550 radiometer equipped with a luminance probe and a 
flash integrator. 

The pupil of the test eye was dilated with 1% tropicamide and 2.5% 
phenylephrine hydrochloride drops. The test eye was then dark-adapted for 
at least 30 minutes. Drops of 0.5% proparacaine hydrochloride anesthetized 
the cornea, and a contact lens was inserted under dim long-wavelength 
illumination. The luminance-response function was obtained by presenting a 
series of stimulus flashes, in order of increasing luminance (18 steps between 
-2.97 and 0.82 log cd second/m2). At each flash luminance, th e response to 
two flashes presented 15 seconds apart were averaged. 

The amplitude of the b-wave was measured from the trough of the a-wave 
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or, if no a-wave was present, from the baseline to the peak of the most 
positive deflection. 

Curve fitting 

Equation 1 was fit to luminance-response functions by three methods, 
denoted A, B and C. Curve-fitting method A used the computer program 
NAKA-2, which is a nonlinear curve-fitting algorithm developed by L-K-C 
Technologies (Gaithersburg, MD) specifically for the b-wave luminance 
function. This program attempts to identify points in the data corresponding 
to the second rising limb of the luminance-response curve and to remove 
them. It does this by iteratively fitting the Naka-Rushton equation as the 
high-luminance data points are removed until successive fits do not improve. 

Curve-fitting method B was described by Aylward [11]. After some 
algebraic manipulation and taking logarithms, the Naka-Rushton becomes 
linear in log L. This allows one to estimate n and log K by fitting a straight 
regression line to the data. This analysis is similar to that used on the Hill 
equation of respiratory physiology [13]. However, in Aylward's method, one 
must first estimate Rrnax graphically [11], whereas with the Hill equation this 
step is unnecessary because the corresponding term is always 1 (100%). 
There are two linearized forms of the Naka-Rushton equation. The first is 
that used b 37 Aylward [11]: 

log{(R/Rmax)/[1 - -  (e/emax)]} = H, log L - n log K .  (2) 

The second is the corresponding equation for the reciprocals of the 
arguments of the logarithms in Equation 2. 

log[(Rmax/R ) - 1] = - n  log L + n log K .  (3) 

We used the second form because the quantities on the left-hand side 
required less computation, lessening the possibility of introducing rounding 
errors into the calculations. 

The steps in Aylward's method are first to identify the second rising limb 
of the luminance-response curve and to ignore these data for the remainder 
of the analysis [11]. This step is justified on the grounds that the Naka- 
Rushton equation does not suffice to describe the complete luminance- 
response function. Second, Rma x is estimated graphically as the height of the 
upper horizontal asymptote of the remaining data. Here it is necessary that 
Rma x be strictly greater than all of the response data; otherwise the formula 
to transform the response data will not work. In this study, we set Rma x at a 
value that was 1% greater than the highest amplitude response before the 
second limb. The third step is to compute the transformed responses, log 
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1(Rmax/R)- 1], for each response R. A straight line is fitted by the least- 
squares method to the transformed response values plotted against the log 
stimulus luminances. The estimate of n is read as the negative slope of the 
line and log K as the vertical intercept divided by the estimate of n. The 
slope and vertical intercept are derived by well-known formulas of linear 
regression analysis. It is not actually necessary to produce the graphs of the 
lines in this method, because the estimates of n and log K are not read from 
graphs but are obtained from linear regression formulas. However, graphs 
of the stimulus response data are helpful in identifying the upper limb of the 
response curves and in choosing Rma x. 

An interesting consequence of Aylward's method [11] is that when the 
light stimuli increase in equal log steps, the linear regression formulas for n 
and log K condense to tractable formulas. This enables one to estimate the 
parameters of the Naka-Rushton equation without recourse to a computer 
or without the necessity of performing a regression analysis calculation on 
every data set. 

First, denote by H the lowest luminance stimulus and let J be the factor 
by which luminance increases. This means that the log luminance of the ith 
stimulus will be log H + (i - 1) log J. Let R i denote the response to the ith 
stimulus. Estimate Rma x as previously discussed by making it larger than the 
greatest response remaining after the upper limb of the response curve has 
been discarded. 

Next, form the transformed responses yi = log [ ( R m a x / R i ) -  1] and the 
sums S = [ ( m + I ) / 2 ] E  y~ and T = E i y ~  where m is the total number of 
stimuli. Then we have the following: 

n = 12(S - T ) / [ m ( m  2 - 1)log J], and (4) 

log K = log H + [(m - 1)/21 log J + (1/3)[1 - (S/T)] log J .  (5) 

Inspection of these formulas shows that log H does not appear in Formula 4, 
which means that n is mathematically independent of the baseline stimulus. 
When Equation 1 is plotted in semilogarithmic coordinates as usual, the 

1 function is a sigmoid curve that is symmetric about the point (log K, ~Rmax), 
with the parameter n describing the shape of the curve rather than its 
location. 

Formula 5 is a sum of three terms, the first two of which add up to the 
midpoint of the range of stimuli. The third term specifies how far from the 
midpoint one finds log K 

Currently, flash stimuli cannot always be presented in equal log incre- 
ments, so Formulas 4 and 5 are of limited practical utility. The problems 
attendant with the choice of R ... .  as discussed above must also be dealt 
with. Curiously, we have not encountered formulas analogous to 4 or 5 for 
the Hill equation or for any other application of the logistic equation, of 
which Equation 1 is a special case. 
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Curve-fitting method C used the nonlinear curve fitting program Systat. 
This program fits the Naka-Rushton equation to the initial portion of the 
luminance-response function. This function was truncated at -0.71ogcd 
second/m 2, near the point where the second limb begins [10]. 

Results 

The data points in Fig. 1 present the luminance-response function obtained 
from subject 14. The three lines represent the solutions for the Naka- 
Rushton equation derived by means of the three curve fitting methods. In 
this case, all three methods successfully avoid data points comprising the 
second limb. As a result, the three fits provide similar functions. 

To compare the parameters derived from the three curve-fitting methods 
more carefully, the values obtained from one method were plotted against 
those obtained from another method. A one-sided sign test was then used to 
compare the pairs of values obtained from each subject [14]. Figure 2 
presents the derived R m a  x values. Method A consistently yielded greater 
values of R .... than did method B (Fig. 2a; p <0.01) or method C (Fig. 2c; 
p < 0.05). The magnitude of the difference between the estimates was larger 
at higher values of Rma x. In addition, method C gave greater values than did 
method B (Fig. 2b; p <0.05), although the values of the actual dis- 
crepancies were seldom large. 

Figure 3 compares the derived values of n. Method A consistently gave 
smaller values than did method B (Fig. 3a p < 0.001). Values obtained in 
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methods A and C did not give consistently different values (Fig. 3B). 
Method B gave greater values for n than did method C (Fig. 3c; p < 0.025). 

The values of log K are presented in Fig. 4. Method A consistently gave 
greater values than did methods B (Fig. 4a p <0.001) and C (Fig. 4c; 
p <0.001). The magnitude of the differences appeared to increase with 
higher values of log K, The values obtained from methods B and C were not 
consistently different (Fig. 4b). 

Discussion 

These results indicate the presence of systematic differences in the parame- 
ter values derived by the different curve-fitting methods. These differences 
may be an important consideration when results are compared from studies 
that used different methods to fit the Naka-Rushton equation to the 
luminance-response function. For Rmax, method A yielded the largest 
values. This is likely to be due to some solutions incorporating one or more 
points of the second limb. This possibility is consistent with the reduced 
values of n and increased values of log K derived by method A. 

With method B, three difficulties can be identified that impact on the 
initial step of choosing Rma x. First for a noisy data set, identification of the 
upper limb of the stimulus response curve may be difficult. Having graphs of 
the data in addition to tables to inspect may enable easier identification of 
the upper limb. A second difficulty arises if Rma x is taken as a fixed 
percentage greater than the actual maximum response (Rpeak). After 
responses from the upper limb are rejected, the transformed value of  Rpeak 
will be the same in any data set to which the method is applied. In our 
calculation, the transformed value of  Rpeak was always --2, because we 
chose it to be 1% less than Rma x after discarding the upper limb. Having this 
fixed value in the transformed data tends to steepen the regression line 
through the data, thereby raising the value of n. This effect may account for 
the tendency for method B to give greater values of n than did either 
method A or C. In his article, Aylward did not specify a fixed method for 
choos ing  Rma x [11]. In this study, 1% was chosen to be consistent for the 
treatment of all data sets after trials with other percentages. A third 
weakness of method B is that the linearizing transformation depends on 
Rma x. As a result, subsequent calculations for n and log K are sensitive to 
errors in the choice of Rm, x. The extent to which varying the initial Rma x 
value will affect the derived values of n and log K is shown in Fig. 5a and 
5b, respectively. For this illustration we used the data set published by 
Aylward [11], because the data are relatively noisefree and the second rising 
limb of the luminance-response function is easy to identify. The derived 
values of both n and K vary considerably as Rma x changes. For example, a 
3% change in Rma x resulted in an 11% change in n (Fig. 5a) and a 7.7% 
change in log K (Fig. 5b). Such dependence on the choice of Rma x may be 



28 

> 
' C  

C) 
C3 

"5 
;> 
c- 

1.2 

1.1 ¸ 

1.0. 

0 . 9 -  

0 . 8 , :  
30O 

0 0  

0 0 0 0 0 0  

310 320 3.30 340 

Rme x Value Chosen (/zV) 

-0 .5  

• c. - 0 . 6  
Q 

-6 >.  

x: -0.7-  
-A 

-0 .8  

0 0 0 0 0 0  

300 310 .320 .3.30 .340 

Rma x Value Chosen (/zV) 

Fig. 5. Dependence of values of n (a) or log K on the initial value chosen for R ~  x by means of 
method B applied to the data set analyzed by Aylward [11]. 

exacerbated by  noisy data, particularly where a single high amplitude point 
is present. 

Each of the methods used in the present study solved for the value of n as 
well as for Rma x and log K. The primary advantage of this approach is that 
the value of n may be used as an indicator of retinal homogeneity [2]. If a 
disease process has a uniform effect on the retina, then n values are 
expected to remain near 1.0; if a disease process increases log K values for 
some retinal areas but not others, then the value of n is expected to decrease 
[2]. In this light, setting the value of n at a constant value (typically 1.0) will 
limit the value of the analysis applied to patients with retinal disorders that 
result in retinal inhomogeneity. In addition, while the value of n averages 
near 1.0 for the normal dark-adapted luminance-response function [2], the 
corresponding value for the light-adapted Cone E R G  luminance-response 
function is above 1.5 [12, 15]. As a result, setting n to a value of 1.0 would 
lead t o  an inaccurate description of the cone ERG luminance-response 
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funct ion .  T h e r e f o r e ,  a l though  a n u m b e r  of  s tudies  have  set  the  va lue  of  n to 
1.0 [1, 3, 16, 17], we so lved  for  this p a r a m e t e r  in pa ra l l e l  wi th  Rma X and  log 

K. 
O t h e r  m e t h o d s  than  those  used  in the  p re sen t  s tudy have  been  d e v e l o p e d  

to ana lyze  the  l u m i n a n c e - r e s p o n s e  func t ion  of  the  E R G .  F o r  e x a m p l e ,  
H o o d  & Birch [17] desc r ibed  an a p p r o a c h  to de r ive  P3 and  then  P2, the  
p r i m a r y  c o m p o n e n t s  that  dec rea se  the  E R G  b-wave  [18]. A l t h o u g h  this 
a p p r o a c h  has cer ta in  advan tages  ove r  those  used  in the  p r e se n t  s tudy ,  it is 
not  in c o m m o n  use.  Unt i l  this changes ,  mos t  ana lyses  will e m p l o y  a m e t h o d  
s imi lar  to one  used  here .  The  poss ib i l i ty  of  cons i s ten t  d i f fe rences  in 
es t ima tes  o f  the  N a k a - R u s h t o n  p a r a m e t e r s  o b t a i n e d  by  var ious  a p p r o a c h e s  
m a y  be  an i m p o r t a n t  fac tor  when  cons ider ing  va lues  pub l i shed  in the  

l i t e ra ture .  
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