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Integral Equations 
and Operator Theory 

O N  E I G E N V A L U E S  OF D I F F E R E N T I A B L E  

P O S I T I V E  D E F I N I T E  K E R N E L S  

CHING-HUA CHANG AND CHUNG-WEI HA 

If a positive definite kernel K(z,y) has the pth order partial derivative 
(OP/OyP)K(x, y) continuous on the square [0, 1] 2, we show that the eigenvalues 
of the integral operator generated by K(x, y) are asymptotically o(1/n p+I). We 
also obtain the anticipated asymptotic estimate when (OP/OyP)K(x, y) satisfies 
further a Lipschitz condition in y of order 0 < a < 1. These results, which ex- 
tend some classical estimates of I. Fredholm and H. Weyl under the additional 
positive definiteness assumption, are based on two interesting inequalities of 
K. Fan. 

1. INTRODUCTION 

Let K(x, y) belong to L 2 [0,1] 2 such that K(x, y) = K(y, x) almost everywhere on the 

square [0, 1] 2. Then the integral operator with the kernel K(x, y) defined on the Hilbert 

space L2[0, I] by 

/ol Kf(x) = K(x, y)f(y) dy 

is compact Hermitian, and so has a sequence {A,(K)} of real eigenvalues which are as 

usual arranged in the order of decreasing modulus and counted according to multiplicities. 

We assume further that 

~1 ~1 K(x, y)f(x)f(y) dxdy > 0 

for f E L2[0, 1] so that K is also positive definite. Extending a classical result of Weyl [11] 

it has been shown that if r > 0 is an integer and the symmetric derivative 

~2r 
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exists and is either continuous or has partial  derivative with respect to one of the variables 
continuous on [0, 1] 2, then 

(1) An(K) = o(1/n ~+l) as n --* co, 

where p = 2r or p = 2r + 1 according to whether the former or the latter is the case (see 

Ha [9] and Reade [10]). Moreover, if the symmetr ic  derivative K,r(x,  y) itself or its partial  

derivative in y satisfies further a Lipschitz condition in y of order 0 < a < 1, then 

(2) = o ( 1 / , ?  a s  n oo  

(see Cochran-Lukas [2] and also Predholm [7]). We recall that  a kernel H(x, y) is said to 

satisfy a Lipschitz condition in y of order 0 < a < 1 if 

IH(z,x) - H(z,y)l  <_ A(z)[x - yl ~ f o r x , y ,  z 6 [ 0 , 1 ] ,  

where A E L2[0,1]. 

In this paper  we obtain further results along those lines and prove tha t  if p > 1 is an 

integer and a positive definite Hermitian kernel K(x,  y) has the pth order part ial  derivative 

(OP/OyP)K(x, y) continuous on [0,1] 2, then the estimate (1) remains valid. Moreover, we 

show tha t  if (OP/OyP)K(x, y) satisfies further a Lipschitz condition in y of order 0 < a < 1, 

then the est imate (2) is also true. These results, which complement those cited above, are 

based on two interesting inequalities of Fan [5, 6]. 

2. T w o  INEQUALITIES OF K. FAN 

We assume throughout  this section that  K(x,  y) is a positive definite Hermit ian kernel 

continuous on [0, 1] 2. We fix an arbitrarily chosen integer N > 1. For 1 < n < N let 

In = [ - ~ ,  ~ ]  and let 

We define 

1 if z 6 In 
fin(X) = 0 otherwise. 

N 

which is clearly positive definite Hermitian. 
We first prove the following majorizat ion (3) of the eigenvalues of KN by that  of K 

whose matr ix  version is obtained in Fan [6]. 

L e m m a  1. Let K and KN be given as above. Then/'or any integer m > 1 

j= l  j= l  
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Proof. For each integer n >__ 1 we divide the square Ii x Ij for 1 < i , j  < N into n 2 small 

squares of equal size. We then define two kernels K(")(x, y) and K(N~)(x, y) which have 

constant values on each small square that equal, respectively, to the values of K(x, y) and 
KN(X, y) at the center of the small square. It follows from Fan's majorization theorem for 

Hermitian matrices cited above (see also [1, p. 50]) that for n > 1 

m 

j = l  j = l  

We observe that  the eigenvalues of K(") and K(N n) as integral operators and as matrices 

differ from each other by the  same weight factor for the same n, and so (4) holds in either 

case. Clearly {K(")} converges to K and {K (") } converges to KN in the operator norm 

as n --+ oo, and so (3) is proved by applying Lemma 5 in [4, p. 1091]. 

L e m m a  2. Let K and KN be given as above. Then for any/nteger m _> 1 

(5) A,(K) < E A,(KN). 
n=m. . { - I  n = m + l  

Proof. By the well-known Mercer's theorem (see also [8, p.l15]) both K and KN are 

operators of trace class and 

oo / 1  
= K ( x , x ) d =  

n = l  /1 
= KN(X, x) dx A,(KN). 

n----1 

Thus (5) follows from (3). 

Now we invoke another inequality of Fan [5] to obtain a formula which is useful for the 

asymptotic estimates of {A.(K)}. 

L e m m a  3. Let r >_ 0 be an integer, B > O. If H(x,y) is a Hermitian kernel which differs 
from ICy(x, y) by a degenerate kernel of rank <_ r and satis~es 

A,(H) > - B  

for n > 1, then 

oo N 

n = N q - r - { - I  n = l  • n 
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Proof. Clearly 

(7) A.+r(KN) _ IA.(H)I 

for n k 1 (see [8, p. 29]). Moreover, H is an operator of trace class with at most r negative 
eigenvalues (see [2, T,emma 1]) and so 

(s) /01 
n = l  n = l  

The inequality of Fan cited above (see also Lemma 4.1 in [8, p. 47]) implies in the present 

situation that for any orthonormal family {r  ,r in L2[0, 1] 

N N 1 1 

n----I n = l  

Choosing in particular Cn = v/N-Kn for i < n < N we have 

(9) 
N N 

n = l  n = l  n n 

From (7), (S) and (9) it follows that 

(lo) 

n = N + r + l  n=N+l 

<- f0 zc(x, x)ex - ~ ~r ~(x, y) e ~ y  + 2rB 
n--.-'-: 1 a n 

N 

n = l  n n 

Finally we combine (5) and (10) to obtain (6). 

The formula (10) is of some interest of its own right. We observe that when r = 0 it 

reduces to 
o o  N 

n = N + l  n = l  n n 

which improves the one obtained in Reade [10]. 



Chang and Ha 5 

3. TIIE MAIN RESULTS 

We shall continue with the notations given in w and write for short 

0i 
K(i)(x,y)  - -~yiK(x,y) 

for 0 < j _ < p .  

T h e o r e m  1. / / K ( x ,  y) is a positive de/~nite Hermitian kernel such that the paxtiM de- 
OP rivative ~-~ K(x ,  y) exists and is continuous on [0, 1] 2, and satisfies a Lipschitz cond/tion 

in y of order 0 < a < 1, that is, 

OP 
~--~pK(,, x) - -~ypK(z, y) < A(z)lx - y]~ for z e [0,1], Y, 

where A E L2[0, 1], then 

(11) ~n(g)  = O(1/n p+"+I) as n ~ oo. 

Proof. We fix N k 1, denote the center of In by c,  and define 

v) V) 

2 j=0 

for x ,y  E In, 1 < n < N and H(x ,y)  = 0 otherwise. Clearly H(x,y)  is a Hermitian kernel 

andfor  1 < n < N 

[H(x, y)] _<]g(P)(x, 5) - Z(P)(x, c,)Hy - c,[P/2p! 

(13) +[K(P)(Y' ~7) - K(P)(Y' cn)Hx - cn]P/2P! 

_<~p[ [A(x) + A(y)]N -('+") 

for x ,y  E In, where 5, rl lie between y and cn, x and Cn, respectively. Thus we also have 

t / 01 fo lH(x ,Y ) f ( x ) f (Y )dxdy l  <- CoN-('+") fol lf(x)' 2 dx 

for f E L2[0, 1], here and in what follows Co and C denote positive constants independent 

of the choice of N, and so 

(14) I.X,,(H)I < CoN -( '+")  

for n > 1. Hence H satisfies the hypothesis o fLemma 3 with r = 2 p + 2  and B = 

CoN -(p+"). By (6) 
o o  

_< 
n=N+2p+3 

Since N >_ 1 is arbitrary, (11) follows. 
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T h e o r e m  2. /_f K(x,  y) is a positive definite Hermitian kernel such that the partial de- 
OP 

rivative -~ypK (x, y) exists and is continuous on [0, 112, then 

(15) An(K) = o(1/n "+1) as n -* ee. 

Proof. For a given e > 0 we choose N >__ 1 so large that  

IK(P)(z,x) - K(P)(z,y)I/p! <_ 

for x, y, z E In, 1 <_ n <_ N. We define a Hermitian kernel H(x, y) as in (12). Then it 

follows analogously to (13) and (14) that  

s 

f o r x , y E I , , l < n < N ,  and 

IAn(H)I ___ ~-7 

for n >_ 1. Hence H satisfies the hypothesis of Lemma 3 with r = 2p + 2 and B = eN -p.  

Using (6) again 

An(K) <_ ~CN-P 
n=N+2p+3 

for N _> 1 large enough. Since e > 0 is arbitrary, (15) follows. 

As noted in Cochran-Lukas [2] and Reade [10], the estimates (11) and (15) would remain 

valid if the Hermit ian kernel K(z ,  y) is assumed to have at most finitely many  negative 

eigenvalues instead of positive definiteness, since the positive par t  of K satisfies the hy- 

pothesis of Theorem 1 or 2 whenever K does itself. 

4. AN EXAMPLE 

We consider a selfadjoint eigenvalue problem 

Lr = ~r 

(~6) Be = 0 

with homogeneous boundary  condition on [0, I], where L is an ruth order ordinary differen- 

tial operator  with sufficiently smooth coefficients (see [3], Chap. 7). If # is not an eigenvalue 

of (16), a Hermit ian kernel G(x, y) known as the Green's function of the problem (16) can 

be constructed such that  the eigenvalues of (16) axe precisely the reciprocals of tha t  of 
0rn--2 

the kernel G(x, y). It is known that  the partial  derivative O-~2gG(x , y) is continuous on 
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~ra--1 
[0, 1] 2. But O--ff--~-~G(x,y) is continuous on each of the triangles x _< y and x > y and has 

Om--1 
jump discontinuities along the diagonal x = y. Thus ~ G ( x ,  y) is bounded on [0,1] 2. 

Keeping the previous notations we have by the mean value theorem for N >_ 1 

IG(~-2)(z,x) _ G(~-2)(z,y)l <_ CN -1 

for x, y, z E In, 1 < n < N, where as before C > 0 is a constant independent of the choice 
of N. If we assume further that all but a finite number of the eigenvalues of G are of 
the same sign, then by Theorem 1 the eigenvalues of the kernel G(x, y) are asymptotically 
O(1/n TM) which gives also art asymptotic estimate for the eigenvalues of the problem (16). 
It is easy to show by examples that this result, though somewhat rough, is the best possible 
in terms of the powers of n. 
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