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Abstract. The meaning of a formula built out of proof-functional connectives de- 
pends in an essential way upon the intensional aspect of the proofs of the component 
subformulas. We study three such connectives, strong equivalence (where the two 
directions of the equivalence are established by mutually inverse maps), strong con- 
junction (where the two components of the conjunction are established by the same 
proof) and relevant implication (where the implication is established by an identity 
map). For each of these connectives we give a type assignment system, a realizabil- 
ity semantics, and a completeness theorem. This form of completeness implies the 
semantic completeness of the type assignment system. 

1 Introduction 

Usual connectives of classical propositional logic are truth-functional,  the meaning of 
a compound formula being dependent only on the truth value of its subformulas. In the 
constructive analysis of logical constants, on the other hand, the concept of p r o o f  (or 
just i f ication,  or reason, or realizer) for a formula becomes of paramount importance. 
In the Brouwer-Heyting-Kreisel interpretation, for instance, a realizer for A & B is 
given once a realizer for A and a realizer for B are given, while a realizer for A --+ B 
is given once we have an (effective) way of transforming any realizer for A into a 
realizer for B. Several variations on this paradigm have been studied, trying to better 
specify what has to be counted as a valid "realizer" (for instance, which operations 
are available on them), or, once fixed a formal notion of realizer, trying to identify 
the relations between constructive proofs and properties of their (formal) realizers. 
The intensional  character  of realizers, however, has no part in these analysis. Beside 
the fact that it has to be assumed that we are able to recognize that a realizer realizes 
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something, no other requirement is usually issued. In particular no commitment is 
made on the ability to recognize whether two realizers are equal. 

Provability for proof-functional connectives [Lopez-Escobar 85], on the other 
hand, depends on the actual shape of the proofs (realizers) for the components of a 
complex formula. This connectives arise as an attempt to clarify the logical status of 
constructions introduced, with different aims, in A-calculus and theoretical computer 
science. It is well known that, by the Curry-Howard isomorphism, any type of (first or 
second order) A-calculus corresponds to a formula of (first or second order) intuition- 
istic logic, whose proofs correspon d to the terms of that type. In [Coppo & Dezani 80] 
a new type system for A-calculus was introduced, whose notable characteristic was 
the presence of an intersection (A) type constructor. It is a very important system 
for the study of typed and untyped A-calculus (some of its features will be listed in 
Sect. 4), but it does not fit into the Curry-Howard paradigm. While the elimination 
rule for intersection types exactly matches the elimination rule for conjunction, the 
introduction rule 

M:c~  M : / 3  

M : a A / 3  (1) 

prevents the interpretation of c~ A 13 as "c~ and/3", since its realizer M has to be the 
same realizer of both c~ and/3. It is for giving a logical account of this type constructor 
that [Pottinger 80] introduces the proof-functional connective of strong conjunction, 
with the informal realizability analysis "to assert A & B is to assert that one has a 
reason for asserting A which is also a reason for asserting B." 

Proof-functional connectives can be used to study several other constructions. In 
this paper, in addition to strong conjunction (Sect. 4), we will study strong equivalence 
(Sect. 3), a connective arising from the study of provable isomorphisms in A-theories, 
and relevant implication (Sect. 5), a well-known connective with also some computer 
science motivations in the background. 

Main focus of the paper will be the realizability analysis of such connectives, out- 
lined in the following section. Indipendently of one's opinion about their relevance 
per se, however, proof-functional connectives bears an interest also from a founda- 
tional point of view, especially for the relation between mathematical concepts and 
their formalization, a subject we will briefly touch in the rest of this section. 

As soon as the (informal) definition of a proof-functional connective comes into 
one's mind, indeed, it is clear that even the problem of its "soundness" - that is, 
of spelling it out in a mathematically acceptable way - reduces to the possibility 
of considering decidable relations, like (extensional or intensional) equality, between 
constructions (representatives of constructive proofs). If one agrees with Brouwer's 
viewpoint on the non formalizability of mathematical thought, one could simply get 
rid of the problems by simply stating that one cannot go beyond recognizing that 
a construction (realizer)justifies a formula. If, however, we divert from Brouwer's 
extremist point of view, and build formal systems - which we believe embodying our 
logical reasoning - relational aspects between proofs have to be given full citizenship 
into our logical investigations. Accepting this last fact leads immediately to Lopez- 
Escobar's consideration [Lopez-Escobar 85] that 

accepting proof-functional connectives, such as strong conjunction, requires 
rejecting the assumption that a construction proves a unique sentence and thus 
forces us to distinguish between a construction as an object and a construction 
as a method. 
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To see constructions as methods means to consider them separately from the sentences 
they prove; hence they are formalized separately and separately they are included in 
rules for proof-functional connectives. In this way, such formal systems come to be 
more strongly dependent than other sorts of logical systems on how one decides to 
formalize constructions and the intended relations between them. This is well ex- 
emplified by the rule (1), which will be shown to be a sound introduction rule for 
strong conjunction. In formalizing with this rule the notion of a construction proving 
two different sentences, one makes the choice of formalizing equality between con- 
structions as syntactical equality between A-terms. Moreover, one makes the further 
choice, among the many possible and different ones, of considering the logical steps 
regarding strong conjunction as being, in a sense, non-existent from the point of view 
of constructions, since in the term corresponding to the construction for c~ A/3 no 
information is contained about the fact that to get to this point we passed through 
one and the same construction for o~ and/3. This makes us recall that formalization, 
in general, necessarily brings with it elements external to what we are trying to for- 
malize and consequently enforces, somewhat paradoxically, Brouwer's viewpoint on 
unformalizability of mathematical reasoning seen as pure mental process in its widest 
sense. Hoping things to be otherwise would lead to the well known paradox of the 
dove dreaming of freely flying into a sky where the air which obstacles its flight is 
absent, so forgetting that it is the air which enables its flight. 

Thus, even if not supporting the formalistic viewpoint, one could hardly disre- 
gard the fact that the interest of logic, in particular if one deals with proof-functional 
notions, is somewhat interleaved between the mathematical concept and its formal- 
ization. About the latter, in a proof-functional context, the notion of "formal" rule 
is relevant and surely cannot be an absolute one, being tightly tied at. least to the 
rest of the formalization choices such as, in the previously considered case, how to 
formalize constructions and equality between them. It is then misleading to follow 
the (frequent) judgment of people who have a (too) clear (to be true) idea of what a 
logical rule must be. Rules like (1), probably are not rules at all for them. But, then, 
can one deny that refusing them would considerably limit the scope of the logical 
investigation and debate? 

We shall refrain, in the rest of the paper, from this sort of considerations, but stress 
how they testify how the notion of proof-functional connective, besides its relations 
with computer science, far from being a notion without citizenship into the world of 
logic investigation, can, in the worst of cases, make debates arise. Debates that have 
hardly been unfruitful for logics. 

Section 2 rests on [Martini 92], while Sect. 3 borrows results and techniques from 
[Alessi & Barbanera 91]~ 

2 Provable realizability 

The informal discussion of realizability of the introduction can be pushed one step 
further, by formalizing the requirements on the provability of compound propositional 
formulas inside a formal logical system. Following Kleene's approach, this is achieved 
by associating to any propositional formula A a predicate rA[z] together with suitable 
axioms formalizing that x realizes the formula A. The definition of rA[x] is given 
inductively on the structure of A, while the intended domain for x is some universe 
of "realizers" for which the notions of applying a proof (of an implication) to another, 
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or splitting a proof (of a conjunction) in the proofs of its components make sense. 
One obvious choice is to take any (partial) combinatory algebra ~:~ = (A, .). Notice 
that we did not require a typed combinatory algebra; realizers come from an untyped 
universe, and, as a consequence, a single element may realize different formulas. 

The following definition introduces realizability predicates for minimal proposi- 
tional logic. Extensions to logics with other connectives will be given in the following 
sections. Assume first that for any propositional variable r there exists a correspond- 
ing (atomic) realizability predicate PC- Application between realizers will be denoted 
by juxtaposition. 

Definition 2.1. For any positive propositional formula A, its realizability predicate, 
rA, is inductively defined as follows. 

- re[z] = PC(x) 
- r~-~-[x] = Vy(r~[y] ~ r~-[xy]) 

The analysis of provable realizability for a propositional formal system ~ ,  then, 
consists in studying the relation between formal provability in ~ of a formula A and 
the provability of the formula 3xrA[x], in an another formal system ~ / ' .  A standard 
completeness result for ~ with respect to provable realizability in ~ assumes then 
the form 

For all formulas A : t -~  A ~ F ~  3xrA[x]. 

A result of this kind can be interpreted as evidence of the fact that ~ embodies 
(from the "point of view" of system ~ )  our informal specification of the connectives 
composing the well-formed formulas of ~ .  Suppose, now, that ~ has connectives 
somewhat related to "constructivism" and, in particular, to the intensional behaviour 
of proofs, like the proof-functional connectives; it is then natural to require ~ to be 
a system dealing, in some way, with "representations" of proofs, or proof-skeletons. 
If  such proofs are encoded in a (partial) combinatory algebra structure (e.g. A-terms 
representing skeletons of proofs in natural deduction), then completeness can be ex- 
pressed more perspicuously as 

For all formulas A : t -~  t : A ~ F j,;  rA[t], (2) 

where we have denoted with F ~  t : A the judgment that t codes (part of) a proof in 
of A. 
Given a system ~ ,  for which we want to investigate realizability, we have a 

choice both on the system 3 b  r and on the algebra of realizers ~ .  
For what concerns ~ ,  a standard and classical choice is to take Kleene's par- 

tial applicative structure (w,-) where n - m = Cn(m) for some suitable enumeration 
r of the partial recursive functions. Another possible choice, the one used in the 
present paper, is to consider the total combinatory algebra of untyped ),-terms mod- 
ulo/~-equality. Recall that A-terms are those expressions generated by the following 
grammar 

t ::= x I ;~x.t I (tt) 

modulo the equality given by the axiom 

(~x.t)s =n fix ,--- s] (/~) 

and the other standard rules for making =Z a congruence; we shall omit the subscript 
/~ when there is no danger of confusion. As a variant of this approach, in Sect. 4.4 we 
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will also deal with Combinatory Logic terms equipped with the so-called combinatory 
/3-equality. 

For what concerns the system ~:C, its choice essentially depends on the notions 
is intended to formalize and on the conceptual use one wishes to make of a 

completeness result. 
For instance, the standard choice for the investigation of provable realizability for 

intuitionistic propositional logic is to take the classical predicate calculus (thus, 
is IL, ~ is CL and ~ is Kleene's structure), for which [Mints 89] proved com- 
pleteness. The more ~ is powerful and "far" from ~ ,  the stronger a completeness 
result appears as evidence that the formalization given by ~ to some logical concept 
is sound and robust. The choice of classical logic for ~ ' ,  however, does not give 
any additional bonus over the choice of intuitionistic logic. Due to a result of Mints, 
in fact, for judgments of the form of those involved in the completeness property 
(equivalence (2) above), the two systems coincide (see Remark 3.2). This is the rea- 
son for which, in the following, we will always take intuitionistic predicate calculus 
for 57C. 

We will carry over this kind of analysis for three type-assignment systems, proving 
for each of them a completeness theorem of the form (2). This result implies the 
semantical completeness of the type assignment system we started with (system 
in (2)). This is detailed in Sect. 4.4.2 for strong conjunction, where we obtain an easy 
proof of the completeness of the intersection type discipline. 

In the following sections we will find useful to switch between different formu- 
lation of the same calculus. We denote with LK (L J, respectively) Gentzen sequent 
calculus for classical (intuitionistic) logic with equality, where untyped A-terms are 
used as terms and equality is/3-conversion; with NK and NJ we denote the corre- 
sponding natural deduction systems. The following is a standard result, the presence 
of A-terms being irrelevant. 

Proposition 2.2. (i) F ~-LK A ~ I ~ ~-NK A. 
(ii) I ~ ~-LJ A ~ 1 ~ t-Nj A. 

Notation. We will use & for intuitionistic conjunction and A for strong conjunction 
(or intersection for types). 

3 Strong equivalence 

We consider in this section a proof-functional connective for double implication. 
Although many connectives of this kind could be defined (e.g. requiring the two di- 
rections of the implication to be obtained by the same proof, cf. [Lopez-Escobar 85]), 
the one we are interested in, that we call strong equivalence and denote with 
~,  comes from independent work on provable isomorphisms in typed A-calculi 
([Bruce & Longo 85], [Bruce et al. 92] and [Di Cosmo 91]). 

A justification for the propositional formula A ~ B is given iff we have a jus- 
tification t for A ---+ B (that is a way of mapping any justification a for A into a 
justification ta for B), a justification s for B --+ A, and moreover for any justification 
a for A, and any justification b for B, we are able to recognize that a and s(ta) are the 
same justification for A, and that b and t(sb) are the same justification for B. Strong 
equivalences, thus, are those double implications for which we can give proofs of the 
two "directions" that are one the inverse of the other. 
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The reader will have noticed how isomorphisms come in. Indeed, given a typed 
A-calculus ,kT, two types A and B are provably isomorphic iff there are two terms 
f : A --+/3 and g : B ~ A such that ,kT t- f o  9 = idu and ,kT F- 9 o f  = idA. The prob- 
lem attacked in the cited papers is to characterize by means of an equational theory all 
the isomorphisms provable in a specific AT. ([Bruce & Longo 85] deals with simply 
typed )`-calculus; [Bruce et al. 92] with the simply typed ),-calculus extended with 
(surjective) pairs and a terminal type; [Di Cosmo 91] with second order ),-calculus.) 
From the computer science point of view, these results help to analyse extensions 
to typed functional languages, where in some cases it may be useful to relax the 
constraint on the application of a function to its arguments, allowing arguments from 
isomorphic types. (Indeed some preliminary studies [Rittri 90] on this subject had a 
key retrieval problem for library functions as explicit motivation.). From the logical 
point of view, by the Curry-Howard isomorphism, these results exactly characterize 
strong equivalences in fragments of intuitionistic logic. It appeared then natural to 
investigate how this new connective behaves with respect to provable realizability. 

The informal analysis of the realizability of strong equivalence we have just made 
can be formalized along the lines of Sect. 2. Note, first, that our algebra of realizers 
has to have a way of pairing realizers, since a realizer for A ~ / 3  is given via two 
different realizers, one for A -~ B and one for B --+ A. Instead of taking pure )`- 
terms, then, it is convenient to extend our combinatory algebra with explicit pairs and 
projections: 

t : : = x l ) , x . t l ( t t ) I <  t , t  >1 It I st .  

Application associates to the left. Conversion between A-terms is given by the fol- 
lowing rules 

O,x.t)s = t[z  ~ sl (/3) 
f < s , t >  = s (7rl) 
S < 8, t > = t (71"2) , 

together with rules for making = a congruence; we will sometimes write =;~,~ for this 
relation. Composition of terms is defined as usual: M o N - l x . M ( N x ) ;  id denotes 
the term Ax.x. 

With this machinery, we can extend Definition 2.1 with the following. 

Definition 3.1. The realizability predicate for strong equivalence is defined as 

rA~_B[X] -- rA--,B[f X] & rB--,A[S X] & ((IX) o (Sx) = id) & ((Sx) o (Ix) = id) 

Next sections will introduce a very natural formal system for strong equivalence 
and then show its completeness. 

3.1 A type assignment system for strong equivalence 

Strong equivalence can be seen as a new type constructor for A-calculus, embodying 
into type assignment rules the realizability analysis discussed above. 

Types are given by the following grammar (r ranges over atomic types) 

T : : = r  (3) 

A basis is a finite sequence xl : A1 , . . . ,  x,~ : An, where the x 's  are distinct variables 
and the A's are types; we usually denote a basis with F.  
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F x : A ~- x : A (Ax) 

F P s : A - + B  F P t : B - ~ A  F l - s o t = i d  F ~ - t o s = i d  
F F - ( s , t ) : A ~ B  

N F- s A ~ B ~s 
f f  g f-~:: A --~ B 

F ~ - s : A ~ B  ~_g,~ 
F F - s s : B - - ~ A  

F t - t : A ~ B  ~_~j 
F t - ( f t ) o ( s t ) = i d  - 

F t - t : A ~ B  

F x : A t - b : B  ~ j  F t - b : A - * B  F ~ - a : A  __,~, 
F P Ax.b : A --* B F t- b(a) : B 

F P f t : A - - * B  F t - s t : B - - * A  
F x : A F t x  : B Ft-(ft)o(st)=id FF(st)o(f t)=id 
F ~ - t : A - - ~ B  (n) F P t : A ~ B  (SP) 

s=~,,~t F I - s : A  F t - s = t  
F ~- s = t (Eqt) /" f- t : A (N2) 

F P s = u  F P u = t  F I - s = t  
F l- s = t (N-t) F 1- t = s (N-s) 

Fig. 1. Type assignment system for strong equivalence 
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Definition 3.2. The type assignment system for Strong Equivalence is given in Fig. 1, 
defining by mutual induction the relations F ~- t : A (a type judgment ,  to be read "t 
has type A in basis F" )  and F ~- t = s (an equality judgment ,  to be read "t and s are 
equal terms in basis F).  

R e m a r k  3.1. 1. In force of  rules (Eq), the relation t : A holds up to =;~,~, a fact 
which is essential for completeness. 

2. A type A ~' B is inhabited (that is, F- s : A ~ B for some term s), iff A and B 
are provable isomorphic, iff A = B is derivable in Bruce and Longo 's  equality 
theory for simply typed A-calculus. 

3.2 Provable  realizability f o r  strong equivalence 

Following [Mints 89], and according to completeness (2), we will show that, for any 
A, rA[t] is provable in intuitionistic predicate calculus LJ  iff the type assignment 
system introduced in Definition 3.2 proves that t can be given the type A. 

For the purpose of  this section, axioms of LJ  are of the form ~-rJ s = t together 
with a justification for s =~,~ t, or of the form s = t, P ( s )  ~-LJ P( t ) .  Recall (e.g. 
[Takeuti 75]) that for this system we can prove the elimination of  essential cuts, a 
cut being inessential if the cut formula is an equation. 

All proofs and techniques are modifications of  Mints' ones, those for strong equiv- 
alence being similar to those for (standard) conjunction. The novelty is the presence 
of  equations in the premises of sequents (coming from left introduction of strong 
equivalences), that forces us to choose a less compact form for the axioms and 
to consider normal proofs with inessential cuts (axioms in [Mints 89] are sequents 
A ,  P ( s )  ~- P ( s ' ) ,  together with a justification for s = st.) In the following we will 
only give the cases for axioms and strong equivalences, all the other being either 
identical to Mints' treatment, or trivially modifiable. 
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The main idea for Mints' result is a careful analysis of the structure of LJ  proofs 
of sequents expressing provable realizability. The crucial points are expressed by the 
following proposition, showing that any sequent occurring in a proof of a formula 
of the form rA[t] has a very special shape (thus allowing an easy inductive proof of 
Theorem 3.4). 

The following proposition considers (essential-) cut-free proofs of sequents of the 
form ~-cJ rF[t]. By the subformula property, such derivations will only contain either 
formulas of the form rA[t], with A subformula of F, or equations t = s (coming from 
formulas rA~B [t]), or instances 

rA[s] --4 rB[tS] (4) 

(coming from formulas of the kind Vy(rA[y] --+ rB[ty]).) By the permutability of 
inferences in sequent proofs ([Kleene 52], Theorem 2, p. 18) we can assume that in 
any proof of the kind at hand, any ---*-rule (introducing a formula of the shape 4) is 
immediately followed by a V-rule on the same side, thus producing proof structures 
of the shape 

F, rA[y] ~-LJ rs[ty] ~__. and 1" ~-LJ rA[y] F, rB[ty] [-LJ C -M- . 
1~ ~-LJ rA~B[ t ]  if, rA~B[t ]  ~-LJ C 

Similarly, we can always rearrange a proof in such a way that all & -rules introducing 
(on the left or on the right) a formula rA~_B [t] occur together, giving rise to proof 
structures we will call F-~ and ~ - .  Once these proof structures have been isolated, 
the proof of the following proposition is straightforward; in its statement, these proof 
structures have to be counted as single inferences. 

Notation. (i) t denotes a sequence of terms; E denotes a sequence of equations. 
(ii) 7r denotes a finite (possibly empty) sequence of projections (e.g. f s f f). 
(iii) If 7r =_ P l . . . P n ,  then ~r(t) stands for Pl( . . .  (Pn(t))...). 
(iv) A term is a head projection term iff it is of the shape 

:rn(...  7h@(xt) t l ) . . .  tn), for n > 0. 
(v) We will write rA[t] F- rB[S] for rAl[ t l ] , . . .  ,rA,~[tn] F- rB[S]. 

Proposition 3.3. Let F be any propositional formula. Any sequent occurring in a cut- 
free derivation of the sequent ~-LJ rF[t] is of the form 

l'Fl [hi ],. �9 �9 l'F,~ [hn], E l , . . . ,  Ek ~-LJ ra [sl (5) 

or of the form 
rF l [h l ] , . . . ,  rF~[hn], E l , . . . ,  Ek ~-LJ Q (6) 

where n, k >_ O, s is a term, the hi's are head projection terms, and the Ei '  s and 
Q are equations between terms. 

Proof By induction on the length of the derivation. The basis and the case of an 
inessential cut are obvious. 

Case ~ - :  We have four cases: 

rF[h], rA---.B[f h'], E I- rG[s] 

rF[h], rA~B[ht], E ~- rG[S] 

and its symmetric; or 
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rF[h], (f h') o (S h') = id, E ~- re[s]  

rF[h], rA~B[h'], E t-- re[s]  

and its symmetric. In all the cases the premises are of the required form. 
Case t- ~ i 

rF[h],E ~- rA~B[ft]  rv[h],E F- (ft) o (s t )  = id 
rF[h],E ~- rB~A[St]  rv[h],E ~- (st)  o fit) = id 

rF[h] ,  E ~- rA~B[t] [] (7) 

Remark 3.2. Although we have stated the previous proposition in terms of the in- 
tuitionistic system L J, the completeness theorem holds also for classical predicate 
calculus. Following [Mints 89], in fact, in [Martini 92] it is proved that 

r A [ t ] , E  ~-LJ rB[s] r rA[t],E ~-LK rB[s]. 

Theorem 3.4. (Completeness) 
(i) Xl :AI~. . .~Xn : A n  ~-~_ ~ : t3 .'. ;" rA l [Xl] , . . . , rA~[Xn]  ~-LJ rs[ t ] ;  
(ii) Xl : A 1 , . . .  , xn  : An  F~ s = t ~ rAl[Xl],...  ,rAn[Xn] ~-nJ 8 : t. 

Proof. (i) and (ii) are proved by combined induction on the derivations; for LJ it will 
be convenient to argue instead in its natural deduction version, NJ. 
(~): 
Basis: If Xl : A1, . . . ,  x~ : An  ~-~ xi  : Ai ,  then an inessential cut from ~LJ  Xi = Xi 
and xi  = xi ,  rA~ [xi] ~-LJ rA~ [Xi], followed by n - 1 weakenings gives the thesis. 

Case ~ ~ :  By inductive hypothesis, for F '  _-- rA~[Xl], . . .  ,rA~[Xn], we have 
1"' ~-LJ T A--.B[8], F' ~-LJ rB--*A[t], F' ~-LJ 8 o ~ : id, and 1"' ~-LJ ~ o 8 : id. By the 
equality rules (which are derivable in L J) we obtain 

F! ~LJ rA--,B[f < s , t  >] and F'  ~LJ rB--.A[S < S, t  >]. 

Noting that (f < s , t  > ) o ( s  < s , t  >) = so t ,  one (~ ~ )  (in NJ) allows to conclude. 
Case (SP): Similarly. 
Cases ~' ~ :  Immediate, by induction and & ~ .  
Case (Eql): If s =/~,~ t, then ~-nJ S : t is an axiom. Some weakenings give the 

thesis. 
Case (Eq2): By induction and the equality rules in LJ. 

(~): 
Assume rA[x] ~nJ rB[t]. We argue by induction on a normal natural deduction proof 
in NJ. 

Basis: The proof consists of the single premise rB[x]. Then x : B ~-~ x : B by 
(Ax) 

Equality rules: If the conclusion is an equality, the induction hypothesis and the 
corresponding equality rule give the thesis. If the conclusion is a predicate 

rA[X] F-NJ 8 = t rA[X] ~-NJ rB[S] 

TA[X] ~NJ rB[t] 

conclude by induction hypothesis and rule (Eq2). 
& 57: 

rA[X] ~-NJ ?~B---.C[ f~] TA[X] ~-YJ rC~B[St] 
"FA[X] ~-NJ ( f t )  o ($~) = id rA[X] ~-NJ (S t )  o ( f t )  = id 

TA[X] ~-NJ ?~ t] 
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Induction hypothesis and rule (SP) give the thesis. 
& 4 :  We have two main cases, one where the conclusion is a realizability 

predicate 
rA[X] ~-NJ rB--+C[8] & & g~z 

rA[X] ~-NJ rB-+C[8] 

and one where the conclusion is an equality 

rA[x] F-Nj s = J & r & gez 
rA[X] F-Nj s = s' 

, \ 

In both cases, by Proposition 3.3 the premise has to be of the form rA[x] ~-LJ TB~C[t] 
for some term t (the right-hand side cannot be a single equation because we are 
applying a &-elimination rule). By the definition of the realizability predicate, the 
premise is thus 

?~A[ X] ~-NJ rB-~c[f~] & rC-,B[St] & (fQ o (St )  = id & (s t )  o (ft) = id, 

where s = f t, in the first case, and s = (f t) o (s t), s I = id in the second case. Conclude 
by induction and rule (~  ~Y) (in the first case) or (~  ~=1) (in the second). The two 
symmetrical cases are analogous. [] 

4 Strong conjunction 

The first logical system for strong conjunction is due to Lopez-Escobar [Lopez-Esco- 
bar 85], who first studied also its completeness with respect to provable realizability. 
The system can be seen as a variant of the type assignment system for A-terms we 
will introduce in Definition 4.1. As it was shown in [Mints 89], however, Lopez- 
Escobar's system is not  complete with respect to provable realizability. The formula 
((c~ -+ t )  A 6) -+ (((c~ A 7) --+ t )  A tS) is not provable in that system, yet it is realized 
by (any representative of) the identity function (any realizer for ct ~ fl is also a 
realizer for (c~ A'7) -+/3). This counterexample relies on the fact that the system lacks 
a rule of extensionality for proofs, which has then to be added in order to achieve 
completeness (this is the role of rule (r/), cf. Lemma 4.2). 

A second system for strong conjunction is the one given in [Mints 89], which 
contains an extensionality rule, but which uses typed A-terms as notation for proofs, 
taking then their type erasures (i.e. the untyped terms obtained by forgetting all type 
decorations) as realizers. In [Mints 89] it is further proved that the given system is 
complete with respect to provable realizability. The proof, however, does not work 
properly, for the presence of these typed terms. The difference between typed systems 
and type assignment systems is often overlooked and this can make problems arise. 

A typed system consists in a set of terms each possessing a precise, unique type; 
types are not, so to speak, autonomous objects, but just decorations recalling what 
the functionality of a term is, and they are used as a means of partitioning the set of 
terms. In type assignment systems, instead, types are objects themselves, and belong 
to a universe strictly separated from that of (untyped) terms. Types can be looked at 
as predicates denoting functional properties; the rules of the type assignment system 
allow one to infer which predicates hold for a given term. While typed terms have a 
unique type, in a type assignment system a term can have more than a functionality, 
that is, it can be given more than one type. 
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Let us informally explain how having overlooked these differences prevented the 
completeness proof in [Mints 89] to work properly. 

It is not difficult to see that the untyped )~-term Ax.x (i.e. a representative for the 
identity function) is a realizer for the formula (a  --+ a)  A (/3 ~ /3). In fact, in the 
notation of  Sect. 2, it is provable that 

~-LJ r(a-~a)A(fl-~) [)~X-X] �9 

However, it is not possible to have a typed term t such that the statement (a  --+ 
a)A(/3 --+/3)(t) is derivable, even if it is possible to derive the statements (a -+ a)(tl) 
and (/3 --+ /3)(t2) for terms ~1 and t2 such that their type erasures are both equal to 
Ax.x (we have used the notation "y(t) for the judgment "7 is the type of the typed term 
t", in order to stress the difference of this approach with a type assignment system). 
This is because two typed terms with the same "structure", but with different types 
(even if the difference between them consists only in the names of  type variables), 
are two distinct terms, a fact that prevents Mints' rule 

r ~ ,~(t) r ~ ,~(t) 

1" 1- 3' A 5(t) 

from applying in case we have a --+ a ( t l )  and fl --+ fl(t2) and we only know that 
tl and t2 have the same type erasure, as it should be in the proof of Lemma 2.3 in 
[Mints 89]. 

To amend the completeness result we have to recast the system in a type assign- 
ment framework instead that in a typed one ([Mints 91] agrees with our remarks). 
With this modification, and with essentially the same rules and similar proofs, we will 
be able to show the completeness of  the system (Theorem 4.13 below). The system 
we obtain, in conclusion, is an already existing one: the type assignment system for 
intersection types introduced in [Barendregt et al. 83]. 

4.1 A type assignment system for strong conjunction 

Definition 4.1. (i) The set of intersection types is the set of types built out of  a 
denumerable set of  type variables and the type constant w by means of two type 
constructors: ~ and A. 

(ii) A (type assignment) statement is an expression of the form M " cr where ~r is a 
type and M is a )~-term. M is called the subject of the statement. A basis B is 
a set of  statements with only variables as subjects. The same variable can occur 
several times in a basis B. 

(iii) The relation _< among types is the smallest relation satisfying the following 
clauses: 

1. 
3. 
5. 
7. 
9. 
10. 

" rS ' r  
cr~_w 

(cr -~  p) A (o" --~ T) (_ cr ---~ (p A T) 
_( ~ ,  "I" (_ ~_l ==~ cr A T (_ O " /A  T ~ 

2. T ~ T A T  
4. CV < CV ---~ W 
6. c r A T < T  
8. r  

~7 ,-~ 7 is short for (~7 < ~- and 7 < ~). 



200 F. Barbanera and S. Martini 

x : 0.[-A X : O- (Ax) 

B I  - A M : w  (ax-w) 

B F A  M : T  
(weak) 

B , x  : a I-A M : ,r 

B , x : a ~ - A M : ~  

B }  - A  A x . M  : o" --+ T 
(---*I) (.) 

B I - A M : o - - - + 7 "  B t - A N : 0 .  
B I - A  ( M N )  : "r ( ~ E )  

B I - A  M : o  - B F A  M : . r  
B I - A  M : 0 . A ' r  

(AI) 

B [_A M : 0" A T (AE 1) B [_A M : 0. A ~- (AE") 
B } - A  M : 0. B [ - A  M : 'r  

(*) if  x does not occur in B.  

B ~-A M : 0. o '<'1- 
B F - A M : T  

(<) 

Fig. 2. The type assignment system for strong conjunction 

(iv) The type assignment system FA is defined in Fig. 2. 

Remark 4.1. It is easy to check that if B F A M �9 a then B 0 B'  F^ M : a for any 
basis B '. 

L e m m a  4.2. [Barendregt et al. 83] Rule 

B t- A x . M x  : a 

B F M ' a  
(n) /f x~FV(M) 

is admissible in ~_i. 

L e m m a  4.3. (Subject conversion) [Coppo & Dezani 80] [B [_A M : a and M =;~ 
M']  ~ B F A M t : a. 

It is beyond the scope of this paper to give the detailed motivations and the main 
achievements obtained by means of  system l -/~ and its variants. To show its relevance 
for the syntactical theory of pure A-calculus we just quote the following theorem, 
where intersection types are used to characterize relevant classes of A-terms. 

Theorem 4.4. [Barendregt et al. 83, Coppo et al. 82] 

(i) M is normalizable i f f  there exist B and a ( B , a  w-free) such that B F i M : a. 
(ii) M is strongly normalizable i f f  there exist B and a ( B , a  w-free) such that B F~o 

M : a, where F - ~  is the subsystem obtained from F - i  by taking out the constant 
w and axiom (Ax-w). 

(iii) M has head normal form iff  there exist B and a (a tail proper) such that B F -A 
M : a, where a type is tail proper/f it is o f  the form Pl ~ . . .  ~ Pn -+ r with r 
type variable. 
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Systems with intersection types have been used also in the construction of (filter) 
models of the type-free A-calculus, see [Barendregt et al. 83, Coppo et al. 82]. 

To prove that k A is a good formalization for the notion of strong conjunction, 
i.e. a sound and complete system for provable realizability, we shall first prove the 
equivalence of t -A to the type assignment system ~ defined below. Then, by using 
this equivalence, a proof will be given of the fact that a statement F ̂  M : a is 
derivable iff it is possible to prove in intuitionistic first order logic that M is a 
realizer for a. 

Definition 4.5. The system F-jZ is defined from F/x by taking out the constant w, 
axiom (Ax-w)  and rule (<), and by adding the following rules. 

B , x  : a D.~ M x : ~3 
B F ~  M : a--+ ~ (m) 

B F ~ M : a  M = ) N  
B / ~  N �9 a. (eq#) 

Note that P .~  is an untyped version of the system for provable realizability given 
in [Mints 89] (the subscript ~ is used to recall this fact). The completeness result 
of next section could have been proved more directly, thus avoiding system F,~.  
However, our formalization, which closely matches Mints' proof, helps to note how 
the untypedness of F./N is essential in the proof, where Mints' approach would break. 

Lemma 4.6. Rule (<_) is admissible in F j z .  

Proof By induction on the derivation of a <_ T. [] 

Lemma 4.7. Let w ~ a, B.  Then B F A M : a ~=~ B I-j/~ M " a. 

Proof ( ~ )  It is enough to prove that rules (eq~) and 070 are admissible in P A. 

(eq;O By Lemma 4.3. 
(70 By Lemma 4.2 the admissibility of this rule can be easily proved in the fol- 

lowing way. 

B , x  : a F -A M x  :/~ 
(~I) 

B F A A x . M x  : a -~ 
(~1) B F A M : a ~ / ~  

(==>)BF A M : a  ~ B F  t ' M : a  

B t  -A - M  : a - -CO 

m 

B F ~ M : a  
B F ~ M : a  

by Lemma 4.3 
M is the normal form of M 
(which exists by Theorem 4.4) 
by the subformula principle, 
cf. Lemma 4.5 
of [Barendregt et al. 83] 
by Lemma 4.6 
by rule (eq~). [] 
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4.2 Provable realizability for strong conjunction 

We will show in this section that the type assignment system of Definition 4.1 is 
complete with respect to provable realizabilty. We extend, first, the definition of the 
realizability predicate, Definition 2.1, to encompass strong conjunction. 

Definition 4.8. The realizability predicate for strong conjunction is defined as 

rAAB[X] -= rA[X] & rB[X]. 

Realizers are here pure ),-terms as defined in Sect. 2, modulo/~-equality. As for L J, 
we can use here the more compact form having as axioms sequents A, P(s) F P(sl), 
together with a justification for s = J .  Recall, now, from Sect. 3.2, that proofs in 
LJ  of formulas of the form rA[t] can be seen, by the subformula principle and the 
permutability of rules, as consisting of special proof structures, called there F--+ and 
--+F. (Recall also the notation we used there: M stands for a sequence of terms, while 
r~[M] F- rB[N] stands for rc~[M1], . . .  , r ~ [ M n ]  F rB[N].) 

Proposition 3.3 specializes now to the following proposition [Mints 89], showing 
that if we are interested only in deriving formulas of the form rA[t], then it is enough 
to use a restriction of LJ  where the sequences of formulas on the left of the entailment 
are of a special shape and the rules are only those for conjunction (& ~-LJ and ~-LJ •) 
and the two "condensed" proof structures for implication (---~F and ~---*). 

Proposition 4.9. Any sequent occurring in the cut-free derivation of the sequent 

r~l [xlM1], �9 �9 �9 r~h[xhMh] ~-LJ rE[M] 

is of the form 
rT~ [ylM1],. �9 r-~k [ykMk] ~-LJ re[M]. 

In order to show the equivalence of ~-LJ and F ~ ,  it is handy to introduce some 
further notation for comparing sequences of formulas in ~LJ and bases in F ~ .  

Definition 4.10. (i) A context F for ~-LJ is an r-context if all its elements are of 
the form ra[M].  

(ii) Let /~  be an r-context in which all terms M are variables and let B be a basis 
for F -A such that co ~ B. 
1. F ~ is the basis for h A obtained by replacing in F each element rT[x] by 

x : %  
2. B * is the r-context obtained by replacing in B each element x : "y by r 7 [x]. 

L e m m a  4.11. 
B F ~  M : c~ ~ B ~ ~-LJ r~[M]. 

Proof. By induction on the derivation of B ~-~  M : c~. We shall give only the 
non-trivial cases. 

(AE) 
B F./~ M : c~ A/3 

B ~-j~ M : c ~  

By the induction hypothesis B ~ F-Lj r~ ip[M] .  By Proposition 2.2 B ~ FNJ 
r~ ip [M]  -- r~ [M]&rs[M] .  Then by &E) in t -Nj we get B <' FN:  r~[M] 
and, by 2.2 again, B ~ FLj  rc~[M]. 
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( 7  I) 

(--+ E) 

B, x : a ~-~:/3 

B F-~ A x . M  : a --+/3 

By the induction hypothesis B ~, x : a t-Lj rz[N] and hence, since }-LJ is a 
system with equality and N = (Ax .N)x ,  we get B ~, x : a F-Lj r z [ (Ax .N)x] .  
By applying rule ~----+ we obtain B ~ F-Lj r~_.,/~[N]. 

B t- /~ : ol ---+ /3 B ~-/~ N : o~ 

B t-.z~ ( M N )  :/3 

By the induction hypothesis B ~ bLJ  r~._+/~[M] and B ~ F-Lj r~[N]. By 
Proposition 2.2 B ~ PNJ  r~__+5[M] = Vx(r~[x] --+ rz[Nx]). Then by roles 
(VE) and (--~ E) and 2.2 again, B ~ ~-~j ro[MN]. [] 

Lemma 4.12. Let F F-Lj r~[M] with F = {ry~[Pd}ie~ such that there exist bases 
B~ such that B~ ~_A p~ : % Then U~ei B~ ~-^ M : c~. 

Proof  By induction on the derivation of F F-Lj r~[M], exploiting Proposition 4.9. 

(Ax) F, rc~[xM] F-Lj r~[N], with x M  = N .  
By hypothesis we know that, for some B, B ~_A x M  : c~; Lemma 4.3 allows 
to conclude. 

(~ LJ ~:~.) 

(r }-L J) 

( - - + ~ j )  

( ~ L a ~ )  

F ~-LJ r~[M] F ~LJ rp[M] 

F ~LJ r~Az[M] 

By the induction hypothesis we have B1, B2 such that B1 ~_A M : ~ and 
B2 ~_A M :/3 and hence the thesis follows by Remark 4.1 and rule (AI). 

F, r , [P],  r~[P] ~LJ r~[M] 

F, r6A~[P] }-LJ rc~[M] 

We have that there exists B'  such that B'  ~_A p : 5 A/3. By rule (AE) it is 
possible to apply the induction hypothesis, which yields the thesis. 

F F-Lj r,[y] F,r~[zPy] ~-LJ r~[M] 

F, r,__./~[zP] F-Lj r~[M] 

We have that there exists B1 such that B1 ~_A zP : 3 --~ /3. As it is 
possible to apply the induction hypothesis to /7 F-Lj r,[y], there exists 
B2 such that B2 t -A y : & The thesis then follows from the induction 
hypothesis on F, rf~[zPy] ~-LJ r~[M], which is applicable since, by (-~ E), 
B1 U B2 t -A zPy :/5. 

F, r~[y] }-LJ rz[My] 

F I-Lj r ~ z [ M ]  

We can apply the induction hypothesis since y : c~ f_A y : C~. Then 
U i c I  Bi ,  y : o! F -A M y  :/3 and by rule (---+ I) Uicx Bi F -A A y . M y  : o~ ~ /3. 
Since y r F V ( M ) ,  by rule (7), which is admissible in F -A, we get 
Ui~i B~ ~_A M : c~ ---+/3. [] 
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From the two lemmas above it is straightforward to obtain the following theorem, 
stating formally that [_A is sound and complete with respect to provable realizability 
for strong conjunction, and hence a good formalization of it. Of course we have to 
take care that w does not appear in the types of assumptions and conclusions. 

Theorem 4.13. Let w ~ OZl,.. . ,O~n,O~. Then 

371 : O L I , . . .  , X n  : OZn }-/" M : ~ r  r~l[Zl], . . .  , r~ .  [x~] ~-LJ r ~ [ M ] .  

It is worth pointing out that it would be possible to prove, in a more direct way, 
that F-arj is equivalent to t -^,  without using Gentzen's sequent calculus and ~-~. 
Their use is justified by our aim of comparing what is done in the present paper with 
what is done in [Mints 89]. 

4.3 Getting rid of  w 

The type assignment system for implication and strong conjunction has the "non- 
logical" rules (<) and (w), not involving the operators "--+" and "A. Is it possible to 
have a (restricted) system without rule (<) or (w), for which still some completeness 
result is provable? 

Let us observe, first, that the extensionality rule (77) is necessary in the proof of 
Lemma 4.12, c a s e  ~LJ--'+ (similarly, extensionality for pairs, rule SP of Definition 3.2, 
is necessary for the completeness of strong equivalence, Theorem 3.4). Its presence, 
in other words, it is not connected with strong conjunction, but with the implication 
connective. Rule (_<), therefore, is unavoidable, in view of its equivalence with (~/), 
or (zh) (see Lemmas 4.2 and 4.6). 

What about rule (w)? Its role is crucial in the proof of the Subject Conversion 
Lemma, 4.3, which is essential for completeness, since we use a logic equipped with 
p-equality between A-terms. If we want to eliminate rule (w), therefore, we must 
change our combinatory algebra of realizers in such a way that the preservation of 
their types could be guaranteed without making use of (co). Such a system does exist: 
it is the system ~_A_w, with the additional restriction that the terms have to be AI-terms 

Az (we will write F-_~ for this system). Let us recall that the M-calculus is a restriction 
of the pure A-calculus, where it is possible to form a term Ax.M only if x E F V ( M ) .  
We refer to [Barendegt 1984], Chap. 9, for the precise definition and properties. 

The zealous reader will enjoy to check that if we restrict realizers to be M-terms, 
a good formalization for strong conjunction, i.e. a system sound and complete w.r.t. 

AI provable realizability, is exactly t--_~. 
Before starting such an exercise, however, it is likely that the reader will ask 

her/himself if this is not a too strong solution for getting rid of w. Weaker restrictions, 
however, seem to prevent Theorem 4.13 from holding. As an example, maintain all 
),-terms as realizers and restrict only the conversion among them in the following 
way: M = N iff both M and N are strongly normalizable, M =# N, and F V ( M )  = 
F V ( N )  = F V ( P )  with P the normal form of M and N. With such a restriction 
it is still possible to wove the ( ~ )  half of Theorem 4.13, while the derivation of 
(Axy .x ) z t  : c~ from the basis z : a ,  t :/7 is a counterexample for the ( 3 )  direction. 
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4.4 Combinatory logic 

Realizers of implicational formulas have always been, so far, A-terms. As mentioned 
in Sect. 2, however, other choices are possible. We will consider in this section the 
combinatory algebra of Combinatory Logic (CL) terms, a well known and studied 
alternative to A-terms ([Lopez-Escobar 85] uses CL-terms for his study of provable 
realizability). 

As a corollary to Theorem 4.13, by building on some known results relating A- 
terms and CL-terms, we will be able to obtain a completeness result also for CL-terms. 
Since CL is a first-order theory, this result, by appealing to the standard (GSdel's) 
completeness theorem, will enable us to get an easy proof of some semantic conse- 
quences, like the equivalence of type judgement validity for CL-terms and their A- 
calculus translation w.r.t, two different notions of model (A-algebras and A-models). 
It will be also possible to provide an alternative proof of the semantic completeness 
of system ~_A. 

Before going into the details, however, we have to decide which notion of equality 
between CL-terms to consider. Two notions of conversion are sensible in CL. The first, 
weak equality, is sufficient for combinatory completeness (and thus for considering 
CL as a good theory of functions, without having to deal with the notion of bound 
variables). It is equationally axiomatizable by 

Kxy = x S x y z  = xz(yz).  

The second notion of conversion, combinatory/3-equality (whose theory will be 
denoted by CL~ and whose symbol will be =c;~), enables a good correspondence 
between CL-terms and A-terms with 13-equality. It is possible to define translations 

(-);~ : CL-terms ~ A-terms 

(--)H : A-terms ~ CL-terms, 

such that X =c;~ Y iff X;~ =/~ Y;~. In what follows we shall assume (--)H to be one 
of the most powerful translations, for instance H n, as defined in [Curry & Feys 58]. 
Also CL~ is equationally axiomatizable (we refer to [Barendegt 1984] par. 7.3 for 
the rather long list of axioms needed); the class of its models (A-algebras) is larger 
than the class of models of the A-calculus, which is first-order axiomatizable, but not 
with equations only (rule (~), a principle of weak extensionality, is an implication 
and does not hold in A-algebras). 

4.4.1 CL-terms with combinatory/3-equality 

In the rest of this section we shall deal with provable realizability using CL-terms 
(with K, S and I as basic combinators) and combinatory/3-equality. 

The definition of the realizability predicate r~[X] where X is a CL-term is ob- 
viously the same as the one with A-terms. We shall use superscripts to stress the fact 
that we are using systems with CL-terms. 

I_CL~ Definition 4.14. The system -LJ  is the intuitionistic sequent calculus with equality, 
where terms are CL-terms and equality is combinatory/3-equality. 

The following lemma is a straightforward check. 
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Lemma 4.15. 
t_cr~ r~[X] r FLj r~[X~]. L J  

The type assignment system corresponding to this notion of provable realizability 
uses CL-terms and intersection types, and was introduced in [Dezani & Hindley 89]. 

Definition 4.16. The system ~-~L is defined by the following axiom schemes and 
rules. 
Axioms: 

- B F ~ L I : ( r - - - ~ a  
- BF~L K : o" ~ T - - >  o- 

- B F ~ L S : ( o - - - - ~ , r - - ~ p ) - - , ( o - - - + . r ) - ~ a - +  p 

Rules: (--+ E), (AI), (AE), (w) and (_<). 

Lemma 4.17. [Dezani & Hindley 89] 

F~L X : a ~ F/~ Xa : a .  

The presence of rule (co) allows ~-~L to have rule (eq~) admissible also for CL- 
terms. 

Lemma 4.18. [Dezani & Hindley 89] 

B F - ~ L X ' a ,  X = c a Y  ~ B F ~ L Y : a .  

With these facts, completeness of provable realizability is now proved easily. 

Theorem 4.19. 

~ CL~ ra[X]-: ' - F ~ L X : a  ( w i t h w r  L J  

Proof 

[] 

•CLz LJ r~[X] F~L X : a  
Lemma 4.15 ~ ~ Lemma 4.17 

[-LJ rMX:d r F A X:~ : a 
Theorem 4.13 

4.4.2 Some semantic consequences 

Theorem 4.19 allows easy and elegant proofs of several semantical equivalences, 
I__CL~s exploiting the fact that the semantic completeness of -LJ and [-LJ is an instance of 

usual (GSdel) completeness. 
Let us first define the notion of validity for type assignment systems. 

Definition 4.20. [Barendregt et al. 83] Let ~ be a )~-model ()~-algebra) over the 
applicative structure < D, .  >. 

(i) If ~ is a valuation of variables in D, then ~P]I~  is the interpretation of the 
)~-term (CL-term) P in ~ via ~. 
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(ii) Let ~ "  be a valuation of type variable in subsets of the domain D, Then the 
interpretation of a type ~ in ~/~ via ~"  is defined as follows. 

- I [qS~ = 57/'(r where r a type variable. 

- [ [ w l ] ~  = D 

- I[cr --+ r ~  = {d �9 DiVe �9 I D ] I ~  d . e  �9 I [r] l~}  

(iii) ~///g, ~ ,  { ~ C L )  P : (7" iff [ [Pl l~  �9 lRrllJff 
d ~ ,  ~ ,  ~ ~c~)  B iff ~/~, ~ ,  r ~c~) ~ ~ for all ~: ~ �9 B 
B ~ )  e .  ~ iff for ~1 d~ ,  ~ ,  ~ ~ )  B, J ~ ,  ~ ,  ~ ~ )  P :  ~. 

We shall denote by CLz ~ b L  X " O~ (with X a CL-term) the semantic validity of 
X : a in all A-algebras. 

Lemma 4.21. [Barendregt et al. 83] Let M be a A-term. 

B I-A M : ol C==~ B ~ A M : o~. 

We can now give a new proof of the fact that both systems ~_i and ~-~L are 
complete with respect to this notion of validity, provided we restrict ourvelves to 
bases and conclusions of derivations not containing co in their types. 

Since, via Meyer-Scott axioms [Meyer 82, Barendegt 1984], the theory of /3- 
conversion for A-terms is first order axiomatizable, an alternative proof of the above 
result can be easily obtained also from G6del's completeness theorem and Theo- 
rem 4.13, observing that, by definition of realizability predicate, it is straightforward 
to check that 

r,~[M] < )- ~A M : a ,  

where the symbol } to the left of the double implication denotes validity in first order 
models. 

Since we can easily get also 

CL~ ~ r~[X] ~ CL~ ~ i  X : a,  

semantic completeness for ~-~z can be obtained in the same way by G6del's com- 
, CL~ 

pleteness theorem for I-Lj and Theorem 4.19. 

Theorem 4.22. Let co r a. Then 

[-~L X : a r CL~ ~ L  X " a. 

Let us remark, that, of course, there are other, more direct ways of proving the 
semantic completeness for [_A . for instance, standard semantical arguments allow to CL ,  
derive the completeness direction of 4.22 from 4.21, while soundness is established 
with a routine induction. Provable realizability, however, offers, beside a new proof, 
a different perspective into the result. 

Some more consequences can be obtained, relating the validity of a type judgment 
X : a in all A-algebras to the validity of the judgment X~, : a in all A-models, and 
similarly for the translation (--)H, in the other direction. 

Observe first that, similarly to 4.15, we can easily establish the following relation 

I CL~ 
[-LJ ra[M] ~ --LJ r~[MH]. (8) 
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Corollary 4.23. 

Proof 

Lemma 4.22 

CL~ ~ L X ' a <  ) . ~ A x x : a .  

CL/~ ~ L  X : a  ~A X), : a  

Leillma 4 .17 

Lemma 4.21 

[] 

Corollary 4.24. 

Proof 

CLz ~ L  MH : a r ~A M : a. 

CL~ ~ L  MH : a ~A M : a 
G6del's 

completeness ~ ~ Lemma 4.21 
[_CL~ [_A 

LJ ra[MH] ~ ~-LJ ra [M]  ~=> M " a 
Relation (8) Theorem 4.13 

[] 

We conclude by pointing out that it is not difficult to modify the systems described 
above in order to take into account also the case of weak equality on CL-term instead 
of combinatory/3-equality. 

5 Relevant implication 

Realizers of usual intuitionistic implicative formulas are (intensional representatives 
of) functions transforming proofs of the antecedent formula into proofs of the conse- 
quent. The intuitionistic implication can then be consistently seen as a function space 
constructor for which only very limited restrictions are given on the extensional be- 
haviour of the functions belonging to it. In the spirit of the previous sections, however, 
it is natural to investigate if and how this notion can be restricted and still have a 
sound logical meaning. In this foundational study on the notion of implication, more- 
over, it is natural to investigate to what extent the restrictions affect the provability 
of implications. In other words, given a restricted function space, is it possible to 
characterize those implications that are realized by elements of that space? To begin 
tackling such a problem, one is naturally led to investigate the implication whose 
related function space is the simplest one, namely the one containing only the identity 
function. 

Let us note, en passant, that here, as in Sect. 3, computer science motivations lurk 
in the background. In the context of typed functional languages with subtypes, the 
notion of a type A being a subtype o f /3  is naturally formalized as a coercion from 
A into/3, that is a (typed) program c : A --~ B whose type-erasure is convertible to 
the identity function. 

The problem of characterizing the implicative formulas realized by such a re- 
stricted set of functions can be rightly posed and solved in the context of proof- 
functionality, where the realizability analysis for a restricted implication (---~) having 
only the identity as realizer can be rephrased, as: 
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To assert ~ ~ r / 3  is to assert that any proof of c~ is also a proof of/3. 

The realizability predicate corresponding to this informal analysis is the following. 

Definition 5.1. The realizability predicate for ---+r is defined as 

rAhaB[X] :~ rA~B[X] & X =[3 AX.X . 

This proof-functional implication will be considered in a propositional language with 
strong conjunction, and we will show in Theorem 5.5 that it corresponds to the 
implication of Relevant Logic [Anderson & Belnap 75], from which the r subscript. 
This result not only supports and justifies the study of proof-functional connectives, 
but shed also some light in the field of the logic of relevance, by showing a possible 
interpretation and formalization of what (some of) the mental processes involved in 
relevant reasoning look like. 

The system of relevant logic we shall consider is a restriction of the system B + of 
[Meyer & Routley 72a, Meyer & Routley 72b], obtained by removing the "Church 
constant" t. 

Definition 5.2 (Meyer, Routley). The Minimal Relevant Logic without constants is 
defined as follows: 

Language: The formulas of the language L~ are the propositional formulas built out 
of propositional variables using the connectives --+ and A. 

Axioms: al A ~ A 
a2 ( A A B ) - +  A 
a3 ( A A B ) - - +  B 
a4 (A ---+ B) A (A ---+ C) ~ (A --+ (B A C) 

A A - + B  Rules: modus ponens t3 

adjunction A /3 

A - + B  suffixing (B ~ C) -* (A ---+ C) 
B ~ C  prefixing (A ---+ B) ~ (A ~ C) 

We shall denote with T H r  the set of theorems of the Minimal Relevant Logic 
without constants. It is a very basic system, in which there is no weakening rule. As 
a consequence it is not possible to prove for this logic any form of the deduction 
theorem, which would allow to derive, from the adjunction rule, the formula A -~ 
/3 -+ (A A/3) and so the exportation law (exp) (A A/3 ~ C) --+ (A ---+/3 --+ C). 

Any formula of Lr can be equivalently read as a type of kA_~o and vice-versa 
(recall that F-A_~o is ~_A without the constant co, its related _<-rules, and axiom (Ax-w)). 
In what follows we shall explicitly say if an expression has to be considered as a type 
of ~_A or as a formula of L~ only when it is not clear from the context. 

The reader will have already noticed the strong similarity between the axioms and 
rules of the minimal relevant logic and the clauses defining the relation _< among 
types of ~_A . This informal similarity is formally stated in Proposition 5.4, which is 
proved in [Venneri 92], where it is used to define a logical calculus whose theorems are 
exactly those corresponding to inhabited (by closed terms) types of kA_~. Proposition 
5.4 enables the study of the relevant implication in a proof-functional context, where 
we will be able to apply the completeness result of the previous section. 
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L e m m a  5.3. Let M be a closed A-term such that M =~ Ax.x  and ~ a type o f  ~-~.  
[_A M " oL r oe ~ Ain__l "~i ----+/5i, T~ ~ 1 and ,  for  all 1 < i < n, 

~/i <_/3~ with 7i, /3~ types of~-A_oa. 

Proof  ( ~ )  Since in ~_/x typability is preserved under/3-conversion (Lemma 4.3), if 
~_/x M : c~ we get that ~_t, Ax.x : c~. Since c~ does not contain w, it follows that 
?A_~ Ax .x  : o~. By induction on a derivation ~-n__~o Ax.x  : c~ we get now the required 
condition on c~. 
( ~ )  To prove this direction it is sufficient to see that, from the assumptions x : "y~, by 

n a number of  applications of  (_<), (---+ I )  and (AI) it is possible to get Ax.x : Ai=l 7i --+ 
/3i. Lemma 4.3 then enables to get the thesis. [] 

Proposi t ion 5.4 ([Venneri 92]). Let c~ and/3 be types o f  F-/x~. 

(i) cx < /3 ~ cx ~ /3 e T H r ;  
n 

(ii) ~ E T H r  ~ c~ ~,, Ai=l 7i --+ fli, n > 1 and, for  all 1 < i < n, 7~ <-/3i. 

With these two results and those of the previous section it is now easy to see that 
a formula c~ ---+/5 is in TH~ iff its realizers are convertible to the identity function. 

Theorem 5.5. Let M be a closed A-term s.t. M =~ Ax.x  and let o~ be a formula of  
Lr. Then 

~LJ r~ [M]  ~ c~ E T H r .  

Proof. ( ~ ) :  By Proposition 5.4(ii) and Lemma 5.3, k-A_~ M : ce and hence ~_A M : c~. 
Then ~LJ r~ [M] ,  by completeness of provable realizability (Theorem 4.13). 
( ~ ) :  By completeness of  provable realizability, ~_A M : c~; by Lemma 5.3, cx 
A(Ti ---+/30, and 7i -</3i for 1 < i < n. By Proposition 5.4(i), 7i --+/3i e T H r ,  for 
any i. With n - 1 applications of  the adjunction rule we obtain/~(7i  --+/3i) E T H r  
and hence A(7~ ---+/3i) --+ a E T H r  by Proposition 5.4(i). Then a E TH~ by modus 
ponens (recall that a ~ / 3  is o~ < / 3  and/3 <_ c~). [] 
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