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SINGULAR INTEGRAL OPERATORS IN A WEIGHTED L2-SPACE 

Stephen T. Welstead 

Cauchy singular integral operators are characterized as 
operators in a weighted L2-space. The integral operator arises 
from a singular integral equation with variable coefficients. An 
appropriate weight function associated with the singular integral 
operator is constructed, and the set of polynomials orthogonal with 
respect to this weight function is defined. The action of the 
operator on polynomial sets is studied, and the definition of the 
operator is extended to a weighted L2-space. In this space, the 
operator is shown to be bounded, and, in some cases, isometric. 
Formulas are developed for the composition of the singular inte- 
gral operator and its one sided inverse. 

0. INTRODUCTION 

We consider the singular integral equation 

i -~I M(xtt)r = f(x) (0.i) 
a(x)}(x) + 7 - i  - - x " ' 

-i < x < i, 

given, for example, in [M](Section 106). In this equation, a(x), 

M(x,t), and f(x) are known functions, and r is the unknown 

function. The left hand side of (0.I) can be decomposed, and the 

equation rewritten as 

1 fl b(t)r + fl k(x,t)~(t)dt = f(x), (0.2) 
a(x)r + : -I t - x -I 

-i < x < i, 

where 

and 

b(t) = M(t, t) 

1 M(x,t) - M(t,t) 
k(x, t) = - t - X 

The integral in (0.i) and the first integral in (0.2) are under- 

stood to be Cauchy principal value integrals. 

When a and b are constant functions, it is well known 
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(cf.,[Er]) that a singular integral operator associated with the 

first two terms of (0.2) (the dominant part of the equation) maps 

a certain set of Jacobi polynomials to another set of Jacobi poly- 

nomials. This fact has been exploited in developing techniques 

for the numerical solution of (0.2) in this case. 

In [E] and [W], it was shown that a similar mapping 

result holds in the case when a(x) and b(x) are non-constant 

functions. When the appropriate weight function is considered, 

it can be shown that the singular integral operator associated 

with the dominant part of (0.2) maps one set of orthogonal poly- 

nomials to another set of orthogonal polynomials. However, both 

[E] and [W] make certain assumptions about the coefficient 

function b (due to its role in the construction of the weight 

function). In the present paper, we construct a weight function 

and the associated orthogonal polynomial set, with the only 

assumptions on b(x) being H61der continuity (the usual assumption 

in the analytical theory) and that it change sign at no more than 

finitely many points in (-i,i). The mapping result holds in this 

case as well. 

In Section 5, the definition of the singular integral 

operator is extended to a weighted L2-space and some operator 

theoretic results are given. These results are generalizations 

of those given in [W]. It is hoped that this theory will aid in 

the development of numerical methods for the variable coefficient 

equation (0.2), as was done for~special cases in [W]. 

I. THE COEFFICIENT FUNCTIONS 

In equation (0.2), we assume that a,b, and k are real 

valued and, following [M], we assume also that a(x) and b(x) are 

H61der continuous in [-i,I]. We require also that a2(x) + b2(x) 

does not vanish for x e [-I,i]. With this condition in mind, we 

assume without loss of generality that 
2 b 2 a (x) + (x) = i, x ~ [-i,13. 

Solutions to (0.2) are sought in the space H* of 

functions H61der continuous in every closed subinterval of (-i,I) 

and of the form 
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~*(x) 0 < ~' <l 
ix- cl 

near an end c = -+i, where ~* is HSlder continuous in [-I,i]. 

The real valued function f is assumed to be irf H* as well. 

We assume also that the function b(x) changes sign 

at no more than finitely many points t I < t 2 < ... < t N in 

(-i,i). This assumption is necessary because of the role 

played by b(x) in the construction of weight functions for 

orthogonal polynomial sequences~. Thus, the function 

b(t) 
g(t) = (t- tl)...(t- t N) 

is of one sign in (-i,i). Furthermore, it follows from the 

HSlder continuity of b that g is integrable in [-I,I]. In fact, 

for t sufficiently close to tj, we have 

I g(t)l < C I t - tjl ~-I 

for each j = I ..... N, where:~ (0 < ~ -< i) is the H61der index 

of b. 

Thus, we can write 

b(t) = p(t) g(t) (ioi) 

where g(t) is integrable and of one sign in (-i,i) and p(t) is a 

monic (lead coefficient equal to one) polynomial of exact degree 

N -> 0, all of whose zeros are simple and lie in (-I,i). Note 

also that g is bounded near the ends -+i, since these points are 

not considered as candidates for t I .... ,t N. 

2. ANALYTICAL SOLUTION OF THE DOMINANT EQUATION 

Define the operator U on H* by 

U~(x) - a(x)~(x) + p(x)]l~ g(tt)+(x t) dt (2.1) 
-i 

where p and g are defined by (i.i). The domain of definition of 

U will eventually be extended to a weighted L2-space. We now 

consider the so called dominant equat ion  

U~(x) = f(x) (2.2) 

where, as in the previous section, f is a known real valued 

function in the class H*. Define also the sectionally holomor- 

phic function 
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~(z) = i /i g(t)~(t)dt (2.3) 
~-#T 1 t- " 

Applying the Plemelj formulas to (2.3), one can formulate the 

equation 
(a + ib)~ + - (a - ib)P- = g-f. (2.4) 

Equation (2.4) can then be written as a nonhomogeneous Hilbert 

problem: 

~+(x) = G(x)~-(x) + a(x~(~ )ib(x) f(x) , (2.5] 

where 
G(x) = a(x) - ib(x) 

a(x) + ib(x) 

Note that G depends only on the HSlder continuous functions a and 

b, and, in fact, is the same G one would obtain when analyzing 

the dominant equation associated with the usual decomposition of 

(0.I). Thus, the solution X(z) of the homogeneous Hilbert problem 

X+(x) = G(x)X-(x) 

is also the same as that obtained when analyzing the usual dominant 

equation. The index K for our problem is also the same (see 

[M, p.232] for a discussion of the determination of the index). 

A solution of (2.5) vanishing at infinity has the form 

~(z) X(z)/l $(t) f(t) dt + X(z)P(z) . (2.6) 
= ~-~-I a(t) + ib(t) X+(t)(t_ z) 

Here, P(z) is a polynomial of degree not greater than K-I. We 

define the f~ndamental function Z(x) by 

Z(x) = (a(x) + ib(x))X+(x). (2.7) 

Once again, this is the same as the fundamental function assoc- 

iated with the usual dominant equation, and so has the usual 

properties of being real valued, nonvanishing in (-i,i), and 

bounded in each closed subinterval of (-i,I). The function I/Z 

has the same properties. 

From (2.3) and (2.6), using the Plemelj formulas and 

recalling the relationship (I.i) among b, g, and p, one obtains 

@(x) = a(x) f(x) - p(x)Z(x) /I $(t)f(t) dt + Z(x)p(x)P(x) (2 8) 
-I Z(t)(t - x) 

as a solution of the dominant equation (2.2). Here, ~ is an 

arbitrary polynomial of degree not greater than K-I (if <-I < 0, 
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then P - 0). 

Define the operator V on H* by 

V~(x) -a(x)~(x) p(x)Z(x) fl $(t)~(t) 
-i Z(t)(t - x) dt. (2.9) 

It then follows that 

(i) if < >i 0 then all solutions of (2.2) are given by 

~(x) = Vf(x) + Z(x)p(x)~K_l(X) (2.10) 

where ~<-i is an arbitrary polynomial of degree ~< <-i (~-i - 0). 

(ii) if K < 0 then a solution of (2,2) exists if and only if the 

conditions 

fl Z~ tJf(t) dt = 0, j = 0,I ..... -<-i (2.11) 
-I 

are satisfied. In this case, the unique solution is given by 

~(x) = Vf(x). 

(See [M], Sections 107 and 108.) 

3. THE WEIGHT FUNCTIONS 

We shall be interested in the action of the operators U 

and V on certain sequences of orthogonal polynomials. As weight 

functions for these orthogonal polynomials, we take gZ and g/Z. 

Recall that g is integrable and of one sign in (-I,I), and 

bounded near the ends -+I. The functions Z and I/Z are integrable 

and nonvanishing in (-i,i) and bounded in each closed subinterval 

of (-i,i). Thus, the products gZ and g/Z are integrable and of 

one sign in (-I,i). The standard theory of orthogonal polynomials 

(cf., [S]) therefore applies to polynomials orthogonal with 

respect to these functions as weight functions. 

In this section, we shall examine some properties of 

these weight functions. Throughout, p(x) is the monic polynomial 

of degree N I> 0 defined by (i.i). 

LEMMA 3.1 /~ < > 0 then 

U(Z-p-~<_ I) = 0 

where ~K-1 i s  any po l ynomi a l  of degree not  g r e a t e r  than  <-I. 

PROOF: This follows immediately from equation (2.10) 

with f -= 0. In particular, solutions of U@ = 0 are given by 

= Z.p.~K_ I. [] 
LEMMA 3.2 If K < O then 
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V ( p ' ~  K_I) = 0 

where  ~ - K - I  i s  any p o l y n o m i a l  of  d e g r e e  n o t  g r e a t e r  t h a n  - K - I .  

PROOF: T h i s  r e s u l t  i s  o b t a i n e d  by  c o n s i d e r i n g  t h e  

homogeneous  e q u a t i o n  V~ = 0. An a n a l y s i s  s i m i l a r  t o  t h a t  done 

i n  S e c t i o n  2 shows t h a t  t h i s  e q u a t i o n  has  s o l u t i o n s  ~ = p . ~  K_I.D 

Denote by L2(g/Z) and L2(gZ) the spaces of functions 

defined and measurable in [-I,i] for which, respectively, the 

quantity 

or (3. i) 

i s  f i n i t e .  We d e n o t e  t he  c o r r e s p o n d i n g  i n n e r  p r o d u c t s  b y  

( ' " ) g / Z  and ( . , . ) g Z .  
The f o l l o w i n g  t h e o r e m  e s t a b l i s h e s  a r e l a t i o n s h i p  

b e t w e e n  t h e  i n d e x  K and  N, t h e  number  o f  t i m e s  b c h a n g e s  s i g n  i n  

(-1,1) 
THEOREM 3.1 When K > I, 

m = 0 (3.2) (p,t)gZ 
f o r  m = 0, I , . . . , K - 2 .  When K < - I ,  

m 
(p,t)g/Z = 0 (3.3) 

f o r  m = 0,1  . . . . .  - K - 2 .  I t  f o l l o w s  t h a t  we m u s t  have  

I<l ~< N + i (3.4) 

i e . ,  t h e  i n d e x  can be no l a r g e r  i n  a b s o l u t e  v a l u e  t h a n  N+I, w h e r e  

N = d e g ( p )  i s  t h e  number o f  t i m e s  b c h a n g e s  s i g n  i n  ( - I ~ I ) .  

E q u a t i o n  ( 3 . 4 )  h o l d s  f o r  a l l  p o s s i b l e  v a l u e s  o f  t h e  i n d e x ,  

i n c l u d i n g  - I ,  0, and I .  

PROOF: Suppose K > I. We have 

U(Z(t)p(t)t K-I)(x) = xK-iu(z(t)p(t))(x) + (3.5) 

p(x) fl g(t)Z(t)p(t)r(x,t)dt 
-1 

where r(x,t) = (t K-I - x<-l)/(t-x) 

K-2 xK-3t xtK-3 tK-2 = x + + ... + + . 

From Lemma 3.1, the left side of (3.5) is zero, and so is 
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U(Z(t)p(t))(x). Thus, we get 
< - 2 x K- 2-m 

0 = ~ p(x) (p,t m) 
m=0 ~ gZ 

for all x in [-i,I]. The coefficient of each power of x in this 

polynomial must be 0, ie., (3.2) holds for m = 0,I ..... K-2. 

Equation (3.3) is proved similarly when K < -i by 

applying Lemma 3.2 to V(p(t) t-K-l)(x). Since p cannot be 

orthogonal to itself in either inner product, ,(3.2) implies 

K-2 4 N-I, and (3.3) implies -K-2 ~< N-I. In either case, 

(3.4) follows. The inequality is trivially true for K = -i,0, 

or i. D 

We now introduce the orthogonal polynomial sequences 

related to the weight functions mentioned above. Denote by 

{Pn}n~0 the sequence of monic polynomials orthogonal with re- 

spect to the weight function gZ, and by {Qn}n~0 the sequence 

of monic polynomials orthogonal.with respect to g/Z. Since 

we are on the finite interval [-i,i], {P } forms a basis for 
n 

L2(gZ) and {Qn } is a basis for L2(g/Z) ([S], Theorem 3.1.5). 

Z It is not difficult to show that the set of functions {Pn" }n=0 

is also a basis for L2(g/Z) ([W]). 

4. U AND V AS OPERATORS ON POLYNOMIALS 

We first consider the action of U and V on the basis 

sets {Pn Z} and {~}. Later, we will extend these operators to 

all of L2(g/Z). Throughout this section, we adopt the convention 

that if n is a negative integer, then a polynomial of "degree n" 

is identically zero. 

LEMMA 4.1 U(PPnZ)(x) i s  a monic  p o l y n o m i a l  of  d e g r e e  

N*n-K ~of t h e  form p(x)hn_K(x), where  hn_K(X) i s  a monic  p o l y n o m i a l  

o f  d e g r e e  n-K.  

PROOF: The monic orthogonal polynomials {Pn } satisfy 

a three term recurrence relation of the form 

P0(x) = i 

Pl(X) = (x- e0)P0(x) 

Pn+l(X) = (x- ~n)Pn(X) ~ BnPn_l(X ) (4..1) 

n = 1,2,... 
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where an, n i> 0, are real (possibly zero) constants and 8n, n I> i, 

are positive constants. 

Note that 

= xU(PPnZ)(x) + P(X)(p,Pn)g Z . ~  (4.2) U(tp(t) Pn(t) Z (t)) (x) 

Combining (4.1) and (4.2) we obtain a nonhomogeneous recurrence 

relation for the functions U(PPnZ): 

U(PPIZ)(x) = (x - ~0)U(PP0 Z)(x) + P(X)(p'P0~ )gZ 

U(PPn+IZ) (x) = (x - ~n)U(PPnZ ) (x) 8nU(PPn_iZ) (x) 

(4.3) 
+ p(x) (p,pn) gZ 

n = 1,2, .... 

In the case when K i> I, we can apply a result of Dow 

and Elliott ([D], Theorem 3ol) to obtain 

ifl $(t)p(t)PK(t)Z(t ) dt = -a(x)PK(x)Z(x) + I, 
~-I t - x 

where we have used the fact that g(x)p(x) = b(x). Thus, 

U(pPKZ)(x) = p(x). (4.4) 

From Lemma 3.1, we have U(PPnZ) = 0 for n = 0,I ..... K-I. 

Substituting these values, along with (4.4), into (4.3), we 

obtain that U(PPnZ) is a monic polynomial of degree N+n-K, with 

p(x) as a factor, for n = K,K+I ..... 

When < ~< 0, we use the same result of Dow and Elliott 

to show that 

U(PPoZ) (x) = p(x)h_<(x), (4.5) 

where h <(x ) is a monic polynomial of degree -<. Combining (4.5) 

and (4.3) we get that U(PPnZ) is a monic polynomial of degree 

N+n-< with p(x) as a factor for n i> 0. D 

THEOREM 4.1 U(PnZ)(x), n >I 0, i s  a p o l y n o m i a l  o f  e x a c t  

d e g r e e  m a x ( n - K , N - 1 - n ) .  I f  n-< > N - l - n ,  t h i s  p o l y n o m i a l  i s  mon ic .  

PROOF: U(PnZ) can be computed as 

1 fl p(t) Pn(t)Z(t)g(t) dt 
U(PnZ)(x) = a(x)Pn(X)Z(x) + ~-i t - x 

(4.6) 
+ ~z(Pn) (x) 

where, for a polynomial h, we define 
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I /i p(x) - Px(t) h(t)Z(t)g(t)dt. (4.7) Iz(h) (x) - ~ t 
-I 

Using the fact that p is a monic polynomial of degree N, we can 

write i N% i 
Iz(en)(X) - ~ x N-l-j j=0 (aj ,Pn) gZ (4.8) 

where aj (t) is a monic polynomial of degree j (if N = 0, I Z is 

identically zero). For j < n, the terms in this sum are zero by 

orthogonality. The first nonzero term corresponds to j = n, so 

that Iz(Pn) is a polynomial of degree at most N-l-n. The 
i coefficient of x N-l-n is -~(an,Pn)gZ, which is nonzero, so that 

Iz(Pn) in fact has exact degree N-l-n. 

The second term on the right side of (4.6) can be 

written as 
p~{U(PPnZ)(x) - a(x)p(x)Pn(X)Z(x)}. 

Thus, using Lemma 4.1, we can write (4.6) as 

U(PnZ)(x) = hn_K(x) + Iz(Pn)(X), (4.9) 

where hn_ K is a monic polynomial of degree n-<. When n-K ~ N-l-n, 

the theorem follows immediately by comparing the two polynomials 

on the right side of (4.9). If n-K = N-l-n, U(PnZ ) is still a 

polynomial of exact degree n-K = N-l-n. This follows from results 

to be established later. 

Theorem 4.1 completely characterizes the action of U on 

L2(g/Z) 
oo 

the set of functions {PnZ}n=0 , which forms a basis for 

We now determine the action of V on the set of polynomials {Qn}n~=0 

which also forms a basis for L2(g/Z). 

LEMMA 4.2 V(PQn) (x) i s  a f u n c t i o n  o f  t h e  form 

p ( x ) Z ( x ) r n + K ( x )  , where  r n +  K i s  a monic  p o l y n o m i a l  of  d e g r e e  n+K. 

PROOF: The proof is similar to that of Lemma 4.1. The 

functions V(PQn) are shown to satisfy a nonhomogeneous three term 

recurrence relation, using the recurrence relation satisfied by 

the orthogonal polynomials {Qn}. When K ~< -i, Lemma 3.2 implies 

V(pQ n) = 0 for n = 0,I ..... -K-l. A result of Dow and Elliott 

[D, Theorem 3.2] shows that V(pQ_K)(x) = p(x)Z(x), and the theorem 

follows. When K i> 0, the same result of Dow and Elliott gives 

V(pQ 0)(x) = p(x)Z(x)rK(x), where rK(x) is a monic polynomial of 
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degree <. The lemma follows by combining this with the re- 

currence relation for V(PQn). 

z-l(x)V(Qn)(X), n ~ 0, i s  a p o l y n o m i a l  THEOREM 4.2 

of e x a c t  d e g r e e  m a x ( n + K , N - 1 - n ) .  I f  n+K > N - l - n ,  t h i s  p o l y n o m i a l  

i s  m o n i c .  

PROOF: The proof easily obtained by mimicing the 

proof of Theorem 4.1, using Lemma 4.2. 

Denote by ~ the space of all polynomials defined on 

[-i,i], and by ~Z the space of functions of the form ~(x)Z(x), 

where ~ c ~. Note that ~ and ~Z are both dense subspaces of 
e2(g/Z). 

THEOREM 4~ L e t  ~ and ~ be e l e m e n t s  of  ~. Then 

(U(~Z) ,~) = (~Z,~V(p~)) (4. I0) g/Z g/Z and F 

(~Z,V(~))g/Z = (iU(pq~Z),@)g/Z. (4.11) 

PROOF: By Theorem 4.1, U(~Z) c ~ and by Theorem 4.2, 

V(~) ~ HZ. Also, by Lemma 4.1, ~U(p~Z) is an element of H and by 
F 

Lemma 4.2, ~V(p~) is an element of HZ. Thus, all terms in (4.10) 

and (4o11) are finite quantities. 

We can compute 

(U(~Z) '~)g/Z = 

/l{a(x)* (x) Z(x) + p(x)/l $(t)~(t)Z(t) dt}@(x)(g(x)/Z(x))dx 
-i ~ -i t - x 

= /la(x)~(x) ~(x)Z(x) (g(x)/Z(x)) dx + (4.12) 
-i 

i fl ~(x)p(x)(g(x)/Z(x)) /i g(t)~(t)Z(t)dtdx. 
-i -I t - x 

At this point, we would like to change the order of integration 

in the second term on the right. The general theory for the 

interchange of a regular integral and a singular integral given, 

for example, in IT]requires that the functions involved belong 

to certain LP-spaces for p > I. It is not clear that we have 

both gZ and g/Z belonging to LP-spaces for p > i. However, we do 

have the following lemma: 
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LEMMA 4.3 Suppose f(x) has the form 

f(x) = (I - x)~(l + x)@0(x) (4.13) 

w h e r e  O(x) i s  b o u n d e d  i n  [ - l , l ] a n d  - I  < ~ , ~  < I ,  and s u p p o s e  

h(x) has t h e  form 

h(x) = (i - x)-~(l + x)-B~(x) (4.14) 

w h e r e  ~(x) i s  i n t e g r a b l e  i n  [-i,i] w i t h  i s o l a t e d  s i n g u l a r i t i e s  

a t  s  < t 2  < " ' "  < t N i n  ( - I , i )  and 

l~(t) i ~<clt- t.l ~ (4.15) j ' 
- I  < n ,  i n  a n e i g h b o r h o o d  o f  t , .  Then  

J 
fl f(x) fl h(t) dtdx = ]i h(t)/l tf(X_)x dxdt. (4.16) 
-I -i t --~ -i -i 

We postpone the rather technical proof of this lemma 

until we have completed the proof of Theorem 4.3. Resuming the 

proof of the theorem, we can write 

Z(x) = (i - x)~(l + x)~w(x) 

where w is a nonvanishing, bounded function in [-i,I] and 

-i < ~,B < 1 ([M, w Thus, if we put 

f(x) = ~(x)p(x)g(x)/Z(x) 

= ~ (x)b (x)/Z(x) 

and 

h(x) = ~(x)g(x)Z(x) 

then f and h satisfy the hypothesis of the lemma and we can 

change the order of integration in (4.12). Thus, the right side 

of (4.12) can be written as 

/i a(x) ~(x) ~(x) Z(x) (g(x)/Z(x)) dx 
-i 

I /I ~(t)g(t)Z(t)/l ~(x)p(x)g(x) dxdt 
+ ~ -i -i Z(x)(t - x) 

= fl{a(x)~(x ) Z(x) fl ~(t)p(t)g(t) dt}~(x)Z(x)(g(x)/Z(x))dx 
-i ~ -I Z(t)(t - x) 

= (~Z, iV(p~))g/Z. 

This proves (4.10). Equation (4.11) is proved similarly with 

another application of Lemm 4.3. 

PROOF OF LEMMA 4.3: By hypothesis, unbounded behavior 

of the function f, defined by (4.13), can occur only at the 
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endpoints -+i. Let us first consider the case -i < ~,B < 0, 

so that f is unbounded near +I and -I, and is bounded in every 

closed subinterval of (-i,i). The function h, defined by (4.14), 

is bounded at both endpoints -+i. Let 61, G 2 be points in (-i,I) 

such that -I < 61 < t I and t N < 62 < i. The right side of 

(4.16) can be written as 
61 

62 h(t) dtdx + h(t) 
dtdx + r jl f(x) f t x /i f(x) / t - x 

-i -i -I 61 
(4.17) 

fl f(x) fl h(t) dtdx 
t - x 

-I 62 

In the first term of this expression, h(t) can be replaced by a 

function hl(t ) which agrees with h on (-1,61 ) and is 0 on (61,1). 

The domain of integration of the second integral in this term can 

then be extended to (-i,I). 

Let y = min(~,B), so that -i < y < O. Then f c Lq[-l,l] 

provided yq > -i. Put q = (i - ~)/2 and p = q/(q - I). Then 

i < q < _i and p > i and i + 1 =YI. We have f c Lq[-l,l] and 
P q 

h I ~ LP[ - ,i] and we can apply the results of Tricomi 

[T, Formula ii] to write this term as 

/i hi(t ) fl f(x) dxdt = f61h(t) /I f(x) 
-i -I t -- x -I -I t - x dxdt. 

The third term in (4.17) can be treated in exactly the same way, 

since h is bounded in [62,1]. 

To treat the second term in (4.17), choose points 

6{ c (-1,6 I) and 6~ e (62,1) and write that term as 

76"if(x)/62t.h(t)_x dtdx + /6ff(x)/62 h(t) dtdx + 
-i 61 6~ 61 t - x 

(4.18) 
/I f(x)S62 h(t) 
6~ 61 t" - x dtdx. 

Note that in the first and third terms of (4.18), the 'singular' 

integral is not singular, since x is not in the domain of 

integration (61,62) of t. Thus, by Fubini's Theorem, the order 

of integration for these ordinary integrals can be changed. 

We can write the middle term of (4.18) as 
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I I h?(t) dtdx 
-/i fl(X)/l- t - x 

where fl is zero outside (~{,6~) and agrees with f in that 

interval, and similarly, h 2 is zero outside (61,~2) and equals h 

in that interval. Observe that fl is bounded in the entire 

interval [-I,i] and thus belongs to LP[-I,I] for any p > 0. 

From the condition (4.15) it is clear that h 2 c Lq[-l,l] 

provided qn > -I. If n >i 0, then this condition is no restric- 

tion on q, and we can choose any q > i and p = q/(q-l) so that 

h 2 c Lq[-l,l] and fl ~ LP[-I'I]' If -i < ~ < 0, then put 
1 

q = (I - ~)/2 and p = q/(q-l) so that, again, we have h 2 

Lq[-l,l] and fl ~ LP[-I'I]" In either case, we can again apply 

Tricomi's results to interchange the order of integration. 

This establishes (4.16) in the case -i < ~,B < 0. The 

cases 0 ~< ~, B < 1 (h unbounded at both endpoints) and when ~ and 

B lie on different sides of 0 (h unbounded at one endpoint) are 

treated similarly. In the first of these cases, it is necessary 

to consider the minimum of ~,~ and B in order to find an appro- 

priate q. In the second case, one must consider the minimum of 

n and one of e,B. D 

The next lemma is a generalization of results given in 

[W; equations (3.2.3) and (3.2.8)]. It is interesting in its own 

right (an example is given in [W]), and it will also be used in 

the proof of the theorem which follows. 

LEMMA 4 . 4  When < >i I ,  

(p,t<-l) g Z = ~ (4.19) 

and  when  < <. - I ,  

(p,t -K = -~ (4.20) -1)g/Z 
PROOF : We have 

U(Zpt K)(x) -- xKU(Zp) (x) + p(x) ~I g(t)Z(t)p(t) (t K- XK)dt 
-I t - x 

= xKU(Zp)(x) + P(X~{<il xJf I g(t)Z(t)p(t)tK-l-Jdt}. 
j=0 -i 

By Lemma 3.1, the first term in the above expression is 0, and by 

Theorem 3.1, all terms in the summation, except that corresponding 
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to j = 0, are 0 (if < = i, there is only this one term). Thus 

obtain 

(x) p~x)- (p, U(Zpt K) = t K-l)g z. (4.21) 

From Lemma 3. i and the fact that P is monic, it follows that 
K 

the left side of (4.21) equals U(ZpPK)(x) , and, from (4.4), this 

is p(x). Equation (4.19) follows. 

Equation (4.20) is obtained similarly by looking at 

V(pt-K)(x), and applying Lemma 3.2, Theorem 3.1, and the fact 

that V(pQ_K)(x) = p(x)Z(x). 

THEOREM 4.4 In  t h e  s p a c e  R we have  

I I if K i> 0 (4.22) 

UoV 
I + Y if < ~< -I (4.23) 

and i n  t h e  s p a c e  IIZ we have  

II if K ~< 0 (4.24) 

VoU 
I - W if K I> i (4.25) 

w h e r e  I i s  t h e  i d e n t i t y  o p e r a t o r  and Y and W a r e  l i n e a r  o p e r a t o r s  

s u c h  t h a t  

Y(Qn )(x) = 0 for n i> -K (K ~< -i) 
and 

W(PnZ)(x) = 0 for n i> < (K >i I). 

REMARK: Explicit representations of the operators Y 

and W will be obtained in the proof of this theorem. 

PROOF: let f e ~. The equation 

U@ = f (4.26) 

has the unique (in H*) solution ~ = Vf e ~Z when < = 0. Thus 

UoVf = f for all f ~ I in this case. When < >J I, (4.26) has a 

family of solutions 

= Vf + ~K_I.Z-p (4.27) 

where ~<-i is an arbitrary polynomial of degree ~< K-I. Applying 

U to both sides of (4.27), and recalling that ~K_I'Z'p is in the 

null space of U when K >I I (Lemma 3.1), we obtain UoVf = f in 

this case also. This proves (4.22). 

Now suppose ~ is an element of ~Z and r I> i. Put 



416 Welstead 

f = UQo Then Q can be written as in (4.27), and substituting for 

f, we obtain 

Q = VoUQ + ~<_l.Z'p. (4.28) 

The polynomial ~<-i depends on Q, and we can write 

~<_l(X) = c<_I(Q)x <-I + c<_2(Q)x <-2 + ... + c0(Q), 

where we have indicated the dependence of the coefficients on Q. 

We now substitute this expression for ~<-i in (4.28) and take the 

inner product of both sides with Z to obtain: 

(Z,Q)g/Z = (Z,VoU~)g/Z + c<_I(Q)(Z,ZpxK-I)g/Z 

+ ..o + c0(Q)(Z,Zp)g/Z. (4.29) 

Since Q c ~Z, UQ is a polynomial and we can apply Theorem 4.3 to 

write the first term on the right as (~U(pZ)~ ,UQ)g/Z. But U(pZ) 

is 0 for < i> i, so this term vanishes. Also, 

(Z,ZpxJ)g/Z = (p,XJ)g z 

and this is 0 for j ~< <-2, and (by Lemma 4.4) equals ~ for j = 

<-i. So from (4.29) we can solve for C<_l(Q) as: 

C<_l(~) = I(Z,Q)g/Z. 

Similarly, by taking inner products of both sides of (4.28) with 

xZ we can solve for c<_2(~) as: 

= ,,I(xz'Q)g/Z i c<_2(Q) - ~C<-l(Q) (x<'p) gz" 
This process can be continued to find each of the cj(Q)'s in terms 

of the preceding Ck(Q)'s (k > j). 

Alternatively, one can consider the <xl vector 

c(~) ~ (c0(Q) ..... cK_I(Q)) 
as a solution of the linear system 

c(~) = _i B'c(Q) + I_ r(Q) 

or 
(I + ~I B)c(Q) = ~i r(Q) (4.30) 

where I is the <x< identity matrix and B is the <x< upper 

triangular matrix 
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0 (xK'p) gZ (x<+I'p) gz 

0 0 (x<,p)g Z 

..... (x2<-2,p)g Z 

�9 �9 �9 , . 

0 0 

and r(#) is the <• vector 

(x<+i' P) gZ 

(x< 'P) gZ 

0 

((x<-Iz'~) g/Z' (xK-2z' ~) g/Z ..... (Z,#) g/Z ). 

Note that I + i B is nonsingular (with determinant i) so that 
71 

the system (4.30) always has a unique solution for c(~). Thus, 

we can write 

c(~) = (I + 1 B)-ir(~) 
% 

and we can define the operator W as 

1 1 B)-ir(~) .~K_l} W(~)(x) - ~ Z(x)p(x){(I + ~- (4.31) 

where x<-i --- (l,x,x 2,. �9 <-I) is a <xl vector, and the dot (.) 

represents the ordinary scalar product for Euclidean vectors. 

Substituting W(~) for Z<_l'Z'p in (4.28), we obtain 

(4.25). Note that r(PnZ) = 0 for n >i K so that W(PnZ ) = 0 in 

this case�9 

When f ~ HZ, the equation 

V~ = f 

has family of solutions 

= Uf + ~_<_i. p (4.32) 

when < ~< 0, where ~-<-I is an arbitrary polynomial of degree 

~< -<-i. Applying V toboth sides of (4.32), and using Lemma 3.2, 

we obtain f = VoUf. This proves (4.24). 

Finally, if we consider ~ ~ H in the case K ~< -i, and 

put f = V~, then 9 can be written as in (4.32). The polynomial 

~-<-i depends on ~, and we can write (4.32) as 

= UoV~ + p.(c K_l(~)x-<-I + ... + C0(~)). (4.33) 

Proceeding as before, we can solve for the constants cj(~) by 
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taking (.,.)g/Z inner products of both sides of (4.33) with 
- < - i  appropriate functions, in this case l,x ..... x , and using 

Theorem 4.3. This leads to a linear system 
1 1 

c@) = ~ A.c@) ~ s@) 

for the (-<)xl vector 

c@) -= (c0(U) ..... c_K_i(,)), 

where A is the (-<)x(-<) matrix 

0 �9 �9 ~ �9 . 

0 

(x-<+l . (x-2<-2 
(x-K'P)g/Z 'P)g/Z 'P)g/Z 

0 (x-<,p)g/Z ..... 

(4.34) 

0 0 

and s($) is the (-<)xl vector 

(x-K+l,p) g/Z 

(x-K'P)g/Z 

((x -K-I, ,(x -K-2 
~) g/Z ' @) g/Z'" " " ' (l'~)g/Z) . 

The matrix (I - _i A) is nonsingular (with determinant i), so 
IT 

the solution of (4.34) can be written as 
i (I - i A)-is(~) 

c@) = -~ 7 ' 

and we define the operator Y as 

i i A)-is(~).~_<_i } (4 35) Y(~)(x) - ~ p(x){(l - ~ 

where the dot product and the (-<)xl vector x-K-I have the same 

meaning as in (4.31). Equation (4.33) can then be written as 

= uov~ - Y@), 

from which we obtain (4.23). This completes the proof of Theorem 

4.4. D 

The following theorem establishes the fundamental 

Z} and {Qn } mapping properties of U and V on the basis sets {Pn 

respectively. In the statement of the theorem, the notation 

[r] represents the smallest integer which is greater than or equal 

to the quantity r. r... I 
THEOREM 4.5 F0a j ~>I~-~l, 

ILl 
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U(PjZ)(x) = Qj_<(x) (4.36) 

V(Qj)(x) = Pj+K(x)Z(x). (4.37) 

PROOF: When j >IN, K I, we have j-< > N-j, so that 

j-< > N-j-I in this case. Thus, from Theorem 4ol, U(PjZ) is a 

monic polynomial of degree j-<. We can write 

U(PjZ)(x) = Qj_K(X) + bj_K_IQj_K_I(X ) + ... + b0Q0(x ) 

for certain constants b 0 ..... bj_K_ I. But, for k = 0,...,j-K-I, 

we have 

bkllQkll 2 Z) Qk ) g/Z = (U(Pj , g/Z 

i 
= (PjZ,~ V(PQk))g/Z (Theorem 4.3) 

= (Pj Z I Z) 'p P'rk+K" g/Z 

(Lemma 4.2, where rk+ K is a 

monic polynomial of degree k+<) 

= (Pj ,rk+<) g Z 

= 0. 

The last equality follows from the orthogonality of the P.'s, 
J 

since k+K ~< j-<-l+K = j-l. Therefore b k = 0 for k = 0 ..... 

j-<-l. This proves (4.36). 

Equation (4.37) can be proved by following a similar 

argument, using Theorem 4.2. Alternatively, one can apply V to 

both sides of (4.36) and employ Theorem 4.4. 

Theorem 4.5 represents a slight improvement over 

Theorems 3.2 and 3.4 of [E], in so much as our equations (4.36) 

and (4.37) are shown to hold for a larger subset of the bases 

{Pn Z} and {Qn }. In [E], these equations are proved for~.. ~J >i 

max{N, <}, Since l<l ~< N+I, it is easy to show that J~-~[ and 
N-K 

[~] and ~T] are slgnzflcantly smaller 

are always less than____ or equal to max{N,K}o If J KI is much 
N -  K . . . smaller that N, then 

than max{N, K}. 

COROLLARY 4.1 Fo~ j >i J~J we have 

llPjllg Z = IIQj_<IIg/z . 
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PROOF: Applying Theorem 4.5, for j ~ J~_iJ , we have 

IIQj_<II~/z = (U(PjZ),Qj_K)g/Z 

= (PjZ,~V(pQj_K))g/Z~ (Theorem 4.3) 

= (P.Z,~.p.r.Z)_/Z 
J P J g 
(Lemma 4.4, where r. is a monic 

J 
polynomial of degree j) 

= (Pj,rj)gZ 

= liP. I1~ j Z " 
The final equality follows from the orthogonality of the P.'s and 

J 
the fact that both P. and r. are monic. D 

J J 
We now define the sequences of orthonormal polynomials 

{Pn}n=0 and {qn}n=0 by 

= Pn/llPnilgz (4.38) Pn 
and 

= Qn/llQnllg/z_ . (4.39) qn 
The next result is a generalization of Theorem 3.1.2 of [W]. It 

follows easily from Theorem 4.5 and Corollary 4.1. 

THEOREM 4.6 For j ~ J~%J, 
ILl 

and for j ~ ~--~-], 

U(pjZ)(x) = qj_<(x) 

V(qj)(x) = pj+<(x)Z(x). 

(4.40) 

(4.41) 

5. U AND V AS BOUNDED OPERATORS IN L2(g/Z) 

We now extend the definitions of the operators U and V 

to all of L2(g/Z), and show that these are in fact bounded 
oo �9 �9 

operators in that space. The set {pn Z} 0' where Pn is defined 

by (4.38), is an orthonormal basis in L~(g/Z). Consider the 

following elements of L2(g/Z): 
oo 

f =j=~0xjpjZ (5. I) 

and n 

= j ~0 x fn j pj Z 
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where 

xj = (f,pjZ)g/Z. 

For each n, U(fn) is a well defined element of L2(g/Z). We now 

define 

U(f) --- lim U(fn) 
n§ 

oo 

= = ~0xj U (pj Z), (5.2) 
J 

where the limit is understood to be the strong limit in the 

Hilbert space L2(~g/Z). 
To show that the right side of (5.2) in fact defines an 

element of L2(g/Z), we show that the sequence U(f n) is ,~T~.,a strongly 

convergent Cauchy sequence in that space. For n > m i> I~l ' we 

have n 

II U(f n) - U(fm)ll 2 2 g/Z = II[ xjU(pjZ)II g/Z 
j =m+l 

n 

= U I xjqj_<ll 2 
j =m+l g / Z 

n 2 
= ~ Ix.l 

j =m+l j 

This expression converges to 0 as m,n + ~, since the series (5.1) 

converges in L2(g/Z).. Thus, {U(fn)} is a strongly convergent 

sequence in L2(g/Z), and (5.2) defines an operator U on all of 

L2 (g/Z). 

In a similar way, one can extend the definition of V 

to all of L2(g/Z) by using the orthonormal basis {qn}n~0 . For 

the element 
oo 

h = [ y.q~ 
j=0 j J 

in L 2(g/z) , where 

yj = (h,qj)g/Z, 
de f ine 

V(h) = j~0yjV(qj). (5.3) 

As above, one can show that the sequence Of partial sums is a 

Cauchy sequence, so that (5.3) defines an element of L2(g/Z). 

THEOREM 5.1 U and V a r e  b o u n d e d  o p e r a t o r s  on L2(g/Z). 
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PROOF: Define a functional ~k on L2(g/Z) by 

~k(f) = (Uf,qk)g/Z o 

= ,pjZ)g/Z, Then, if we put xj (f we have 

n 

~k(f) = n+~lim j~_0xj_ (U(pjZ),qk)g/Z 

n+k 
= ~ ajkx j 

j=0 

ajk = (U(pjZ),qk)g/Z 
and 

q = I~]" 

The final expression for ~k(f) follows from the fact that, for 

j > ~+k, 

(U(pjZ),qk)g/Z = (qj_K,qk)g/Z 

= 0 

since j-< > ~+k-< i> k. 

We also define the functional On, n = 0,1,2 ..... by 

Pn(f) z ( ~k= 0'~k(f)'2) I/2 

Pn is a convex functional (see [A]) and is bounded for each n: 

( n n+k 2)1/2 
Pn (f) = ~ I I ajkxjl 

k 0 j=0 

~< Anll fll g / Z 

where A n is a constant which does not depend on f o Also, since 

Pn(f) = (k !=01(Uf'qk)g/Zl2) I/2 

~< II Ufll g/Z' 
L 2 the sequence {pn(f)}n= 0 is bounded for each f ~ (g/Z). It now 

follows from a lemma given in [A] that the functional p defined 

by 

p(f) = sup pn(f) 

where 
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is a convex continuous functional, ie., we have 

P(f) ~< ~I fll g/Z 

for some positive constant A. But we also have 

p(f) = lim pn(f) 
n§ 

= II Ufll g/Z" 

Thus, U is a bounded operator on L2(g/Z). 

In a similar way, one can show that V is a bounded 

operator on L2(g/Z) by considering the linear functionals 

~k(h) = (Vh,PkZ)g/Z 

and the convex functionals 

On(h) =( ~ l~k(h) 12) ' I / 2 k = 0  D 

In some cases, U and V turn out to be isometric 

operators on L2(g/Z). In fact, if < = -N or -N-l, we have 

~] = 0, 
so that equation (4.40) of Theorem 4.6 holds for all j ) 0. 

Thus, if we apply U to a typical element f (given by (5.1)) 

we obtain 
II Ufll 2 n g/Z = lim II ~ xjU(pjZ)I[ 2 g/Z 

n+~ jn 0 
= lim II ~ xjqj KII 2 

n§ j =0 - g/Z 

co 

= I Ixj [ 2 
j=0 

2 
= II ~I g/Z 

Thus, U is an isometry when K = -N or -N-I. Similarly, one can 

show that V is an isometry on L2(g/Z) in the case when K = N or 

N+I. Also, in the special case when N = 0 and < = 0, it is not 

difficult to show that the range space of both U and V is all of 

L2(g/Z), so that these operators are in fact unitary in this case 

(see [W]). 

We now extend the results of Theorems 4.3 and 4.4 to 

U and V as operators on L2(g/Z). Let H n denote the subspace of 

polynomials of degree ~ n, and let ~ Z denote the subspace of 
n 
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functions of the form ~(x)Z(x), where ~ ~ II 
n 

THEOREM 5.2 I n  L2(g/Z), t h e  a d j o i n t  o f  U i s  p-l.v.p 

and t h e  a d j o i n t  o f  V i s  p-l-u.p. 

L 2 PROOF: For f,h ~ (g/Z), there are functions f c ~ Z 
n n 

§ f and h + h in L2(g/Z) We then have and h n e H n such that fn n " 

(U(f)'h)g/Z = n+~lim (U(fn),hn)g/Z 

= lim (fn 1 n§ 'P V(Phn) ) g/Z 

1 V(ph) ) = (f'p g/Z 
Thus, p-iVp is the adjoint of U, and the statement for V is 

proved similarly. D 

The following theorem is established in the same way, 

by considering limits of sequences of functions in fin and ~n Z, 

and using Theorem 4.4. 

THEOREM 5.3 I n  L2(g/Z) 

II when  K >i 0 

and UoV = I I + Y when  < <~ - I  

VoU = I I when K <<. 0 

I - W when K >i I 

w h e r e  t h e  o p e r a t o r s  Y and  W a r e  as  i n  T h e o r e m  4 . 4 .  D 

As our final result, we relate the classical 

Muskhelishvili notion of the index K to the more modern concept 

of the index of an operator as defined, for example, in [TL, 

p. 253]. The index of an operator A on a Hilbert space X is 

defined to be 

Index (A) - Dimension of kernel (A) - Dimension of (X/Range(A)). 

Our Hilbert space is L2(g/Z). Let <41 ..... ~k > denote 

the linear manifold in L2(g/Z) spanned by the elements 41 ..... ~k' 

In the case < i> 0, we have, from Lemma 3.1, 

kernel (U) = <p,p.x,p'x 2, ... ,p.xK-l> 

so that the dimension of the kernel of U is K. Also, for ~ in 

L2(g/Z), we have V~ c - L2(g/Z), and from Theorem 5.3, 

UoV~ = 

in the case < I> 0. Thus, 
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Range (U) = L2(g/Z) 

the dimension of (L2(g/Z)/Range(U)) is 0. So we have and 

Index (U) = K - 0 = K. 

When K < 0, the dimension of the kernel of U is 0. 

Also if ~ ~ is a polynomial of degree < -K-I we have for 
' - K - i  ' ' 

any ~ ~ L2(g/Z), 
1 

(~-K-I'U~)g/Z = (p V(P~-K-I)'~)g/Z 

= (0,~) g/Z 

=0. 

Thus, ~-K-I is orthogonal to the range of U, and we have 

Range (U) c L2(g/Z)/<l,x ..... x-K-l>. 

Now suppose ~ c L2(g/Z)/<l,x .... ,x-K-l>. Then Y~ = 0, where Y 

is the operator defined by Theorem 4.4. Thus, we have 

UoV~ = 

in this case, so that ~ c Range (U). Therefore, 

Range (U) = L2(g/Z)/<l,x ..... x-K-l>, 

and the dimension of L2(g/Z)/Range(U) is -K. So, we have 

Index (U) = 0 - (-K) = K 

when < < 0. Thus, in every case, the classical index K agrees 

with the operator theoretic index of U. One can also compute 

Index (V) as above. The result is 

Index (V) = -Index (U) 

which also agrees with classical results. 0 
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